
PostgreSQL 7.2 Programmer’s Guide

The PostgreSQL Global Development Group

PostgreSQL 7.2 Programmer’s Guide
by The PostgreSQL Global Development Group
Copyright © 1996-2001 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2001 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents
Preface...xii

1. What is PostgreSQL?..xii
2. A Short History of PostgreSQL..xii

2.1. The Berkeley POSTGRES Project..xiii
2.2. Postgres95..xiii
2.3. PostgreSQL..xiv

3. Documentation Resources..xiv
4. Terminology and Notation..xv
5. Bug Reporting Guidelines..xvi

5.1. Identifying Bugs..xvi
5.2. What to report...xvii
5.3. Where to report bugs...xviii

6. Y2K Statement...xix

I. Client Interfaces ..1

1. libpq - C Library...1
1.1. Introduction..1
1.2. Database Connection Functions...1
1.3. Command Execution Functions...7

1.3.1. Main Routines..7
1.3.2. Escaping strings for inclusion in SQL queries...8
1.3.3. Escaping binary strings for inclusion in SQL queries...................................9
1.3.4. Retrieving SELECT Result Information..9
1.3.5. Retrieving SELECT Result Values..10
1.3.6. Retrieving Non-SELECT Result Information...11

1.4. Asynchronous Query Processing..12
1.5. The Fast-Path Interface...14
1.6. Asynchronous Notification...15
1.7. Functions Associated with the COPY Command..16
1.8. libpq Tracing Functions..18
1.9. libpq Control Functions..18
1.10. Environment Variables...19
1.11. Threading Behavior..20
1.12. Building Libpq Programs...20
1.13. Example Programs..21

2. Large Objects..30
2.1. Introduction..30
2.2. Implementation Features..30
2.3. Interfaces..30

2.3.1. Creating a Large Object...31
2.3.2. Importing a Large Object...31
2.3.3. Exporting a Large Object...31
2.3.4. Opening an Existing Large Object...31
2.3.5. Writing Data to a Large Object..32
2.3.6. Reading Data from a Large Object..32
2.3.7. Seeking on a Large Object...32
2.3.8. Closing a Large Object Descriptor..32
2.3.9. Removing a Large Object..32

2.4. Server-side Built-in Functions..32
2.5. Accessing Large Objects from Libpq...33

iii

3. libpq++ - C++ Binding Library...38
3.1. Introduction..38
3.2. Control and Initialization..38

3.2.1. Environment Variables...38
3.3. libpq++ Classes..39

3.3.1. Connection Class:PgConnection ...39
3.3.2. Database Class:PgDatabase ...39

3.4. Database Connection Functions...39
3.5. Query Execution Functions..40

3.5.1. Main Routines..40
3.5.2. Retrieving SELECT Result Information..41
3.5.3. Retrieving SELECT Result Values..42
3.5.4. Retrieving Non-SELECT Result Information...43

3.6. Asynchronous Notification...43
3.7. Functions Associated with the COPY Command..43

4. pgtcl - Tcl Binding Library...45
4.1. Introduction..45
4.2. Loading pgtcl into your application...46
4.3. pgtcl Command Reference Information...46

pg_connect...46
pg_disconnect..48
pg_conndefaults...49
pg_exec..50
pg_result...51
pg_select..53
pg_listen...55
pg_lo_creat...56
pg_lo_open...57
pg_lo_close..58
pg_lo_read..59
pg_lo_write..60
pg_lo_lseek..61
pg_lo_tell...62
pg_lo_unlink..63
pg_lo_import..64
pg_lo_export..65

5. libpgeasy - Simplified C Library...66
6. ecpg - Embedded SQL in C..67

6.1. Why Embedded SQL?..67
6.2. The Concept..67
6.3. How To Use ecpg..67

6.3.1. Preprocessor...67
6.3.2. Library..67
6.3.3. Error handling..68

6.4. Limitations..70
6.5. Porting From Other RDBMS Packages..71
6.6. For the Developer...71

6.6.1. The Preprocessor..71
6.6.2. A Complete Example...74
6.6.3. The Library..75

7. ODBC Interface..76
7.1. Introduction..76

iv

7.2. Installation..76
7.3. Configuration Files...77
7.4. Windows Applications..78

7.4.1. Writing Applications..78
7.5. ApplixWare...79

7.5.1. Configuration...79
7.5.2. Common Problems..80
7.5.3. Debugging ApplixWare ODBC Connections..80
7.5.4. Running the ApplixWare Demo...81
7.5.5. Useful Macros..82

8. JDBC Interface..83
8.1. Setting up the JDBC Driver..83

8.1.1. Getting the Driver..83
8.1.2. Setting up the Class Path..84
8.1.3. Preparing the Database for JDBC..84

8.2. Using the Driver...84
8.2.1. Importing JDBC...84
8.2.2. Loading the Driver...85
8.2.3. Connecting to the Database...85
8.2.4. Closing the Connection..86

8.3. Issuing a Query and Processing the Result...86
8.3.1. Using theStatement or PreparedStatement Interface......................87
8.3.2. Using theResultSet Interface..87

8.4. Performing Updates..87
8.5. Creating and Modifying Database Objects...88
8.6. Storing Binary Data..88
8.7. PostgreSQL Extensions to the JDBC API..91

8.7.1. Accessing the Extensions...91
8.7.1.1. Classorg.postgresql.Connection ...91

8.7.1.1.1. Methods..91
8.7.1.2. Classorg.postgresql.Fastpath ..92

8.7.1.2.1. Methods..93
8.7.1.3. Classorg.postgresql.fastpath.FastpathArg94

8.7.1.3.1. Constructors..95
8.7.2. Geometric Data Types..95
8.7.3. Large Objects...108

8.7.3.1. Classorg.postgresql.largeobject.LargeObject108
8.7.3.1.1. Variables...108
8.7.3.1.2. Methods..108

8.7.3.2. Classorg.postgresql.largeobject.LargeObjectManager

110
8.7.3.2.1. Variables...110
8.7.3.2.2. Methods..110

8.8. Using the driver in a multi-threaded or a servlet environment...............................111
8.9. Further Reading..112

9. PyGreSQL - Python Interface...113
9.1. Thepg Module...113

9.1.1. Constants..113
9.2.pg Module Functions..113

connect...114
get_defhost...116
set_defhost...117

v

get_defport...118
set_defport..119
get_defopt..120
set_defopt...121
get_deftty...122
set_deftty..123
get_defbase..124
set_defbase...125

9.3. Connection object:pgobject ...126
query..126
reset..128
close...129
fileno..130
getnotify...131
inserttable...132
putline..133
getline...134
endcopy..135
locreate...136
getlo..137
loimport..138

9.4. Database wrapper class:DB..139
pkey..139
get_databases...141
get_tables...142
get_attnames..143
get...144
insert...145
update...146
clear..147
delete..148

9.5. Query result object:pgqueryobject ...149
getresult..149
dictresult...150
listfields..151
fieldname..152
fieldnum...153
ntuples..154

9.6. Large Object:pglarge ..155
open..155
close...157
read...158
write ...159
seek..160
tell ..161
unlink ...162
size...163
export...164

9.7. DB-API Interface..165

vi

II. Server Programming ...166

10. Architecture...167
10.1. PostgreSQL Architectural Concepts...167

11. Extending SQL: An Overview..170
11.1. How Extensibility Works..170
11.2. The PostgreSQL Type System..170
11.3. About the PostgreSQL System Catalogs..170

12. Extending SQL: Functions..174
12.1. Introduction..174
12.2. Query Language (SQL) Functions...174

12.2.1. Examples..174
12.2.2. SQL Functions on Base Types...175
12.2.3. SQL Functions on Composite Types...176
12.2.4. SQL Functions Returning Sets..178

12.3. Procedural Language Functions...179
12.4. Internal Functions...179
12.5. C Language Functions..179

12.5.1. Dynamic Loading...179
12.5.2. Base Types in C-Language Functions..181
12.5.3. Version-0 Calling Conventions for C-Language Functions.....................183
12.5.4. Version-1 Calling Conventions for C-Language Functions.....................185
12.5.5. Composite Types in C-Language Functions..187
12.5.6. Writing Code..188
12.5.7. Compiling and Linking Dynamically-Loaded Functions........................189

12.6. Function Overloading...192
12.7. Procedural Language Handlers...192

13. Extending SQL: Types..195
14. Extending SQL: Operators..197

14.1. Introduction..197
14.2. Example..197
14.3. Operator Optimization Information..197

14.3.1. COMMUTATOR..198
14.3.2. NEGATOR...198
14.3.3. RESTRICT...199
14.3.4. JOIN...200
14.3.5. HASHES..200
14.3.6. SORT1 and SORT2..201

15. Extending SQL: Aggregates...203
16. The Rule System...205

16.1. Introduction..205
16.2. What is a Query Tree?..205

16.2.1. The Parts of a Query tree...205
16.3. Views and the Rule System..207

16.3.1. Implementation of Views in PostgreSQL..207
16.3.2. How SELECT Rules Work..207
16.3.3. View Rules in Non-SELECT Statements...212
16.3.4. The Power of Views in PostgreSQL..213

16.3.4.1. Benefits..214
16.3.5. What about updating a view?...214

16.4. Rules on INSERT, UPDATE and DELETE...214
16.4.1. Differences from View Rules...214

vii

16.4.2. How These Rules Work...214
16.4.2.1. A First Rule Step by Step..216

16.4.3. Cooperation with Views...219
16.5. Rules and Permissions..224
16.6. Rules versus Triggers...225

17. Interfacing Extensions To Indexes..228
17.1. Introduction..228
17.2. Access Methods..228
17.3. Access Method Strategies...229
17.4. Access Method Support Routines..229
17.5. Operator Classes...230
17.6. Creating the Operators and Support Routines..230

18. Index Cost Estimation Functions..234
19. GiST Indexes...237
20. Triggers...239

20.1. Trigger Creation...239
20.2. Interaction with the Trigger Manager...240
20.3. Visibility of Data Changes..242
20.4. Examples..243

21. Server Programming Interface..246
21.1. Interface Functions...246

SPI_connect...246
SPI_finish...248
SPI_exec...249
SPI_prepare..252
SPI_execp...254
SPI_cursor_open..256
SPI_cursor_find..258
SPI_cursor_fetch..259
SPI_cursor_move...260
SPI_cursor_close..261
SPI_saveplan..262

21.2. Interface Support Functions...264
SPI_fnumber..264
SPI_fname..265
SPI_getvalue..266
SPI_getbinval...267
SPI_gettype..269
SPI_gettypeid...270
SPI_getrelname..271

21.3. Memory Management..272
SPI_copytuple..272
SPI_copytupledesc...274
SPI_copytupleintoslot..275
SPI_modifytuple..276
SPI_palloc..278
SPI_repalloc...279
SPI_pfree..280
SPI_freetuple..281
SPI_freetuptable...282
SPI_freeplan...283

21.4. Visibility of Data Changes..284

viii

21.5. Examples..284

III. Procedural Languages...287

22. Procedural Languages...288
22.1. Introduction..288
22.2. Installing Procedural Languages..288

23. PL/pgSQL - SQL Procedural Language...290
23.1. Overview..290

23.1.1. Advantages of Using PL/pgSQL...291
23.1.1.1. Better Performance..291
23.1.1.2. SQL Support..291
23.1.1.3. Portability..291

23.1.2. Developing in PL/pgSQL...291
23.2. Structure of PL/pgSQL...292

23.2.1. Lexical Details...293
23.3. Declarations..293

23.3.1. Aliases for Function Parameters..294
23.3.2. Rowtypes..294
23.3.3. Records..295
23.3.4. Attributes..295
23.3.5. RENAME...296

23.4. Expressions...296
23.5. Basic Statements...297

23.5.1. Assignment..297
23.5.2. SELECT INTO..298
23.5.3. Executing an expression or query with no result.....................................299
23.5.4. Executing dynamic queries..299
23.5.5. Obtaining result status..301

23.6. Control Structures...301
23.6.1. Returning from a function..301
23.6.2. Conditionals...301

23.6.2.1. IF-THEN...301
23.6.2.2. IF-THEN-ELSE..301
23.6.2.3. IF-THEN-ELSE IF..302
23.6.2.4. IF-THEN-ELSIF-ELSE..302

23.6.3. Simple Loops...303
23.6.3.1. LOOP..303
23.6.3.2. EXIT..303
23.6.3.3. WHILE..304
23.6.3.4. FOR (integer for-loop)..304

23.6.4. Looping Through Query Results...305
23.7. Cursors..306

23.7.1. Declaring Cursor Variables..306
23.7.2. Opening Cursors..306

23.7.2.1. OPEN FOR SELECT..306
23.7.2.2. OPEN FOR EXECUTE..307
23.7.2.3. OPENing a bound cursor...307

23.7.3. Using Cursors...307
23.7.3.1. FETCH..308
23.7.3.2. CLOSE..308

23.8. Errors and Messages...308
23.8.1. Exceptions..308

ix

23.9. Trigger Procedures...309
23.10. Examples..311
23.11. Porting from Oracle PL/SQL..312

23.11.1. Main Differences..312
23.11.1.1. Quote Me on That: Escaping Single Quotes.............................312

23.11.2. Porting Functions...313
23.11.3. Procedures..317
23.11.4. Packages...318
23.11.5. Other Things to Watch For...319

23.11.5.1. EXECUTE...320
23.11.5.2. Optimizing PL/pgSQL Functions..320

23.11.6. Appendix..320
23.11.6.1. Code for myinstr functions...320

24. PL/Tcl - Tcl Procedural Language..323
24.1. Overview..323
24.2. Description...323

24.2.1. PL/Tcl Functions and Arguments..323
24.2.2. Data Values in PL/Tcl..324
24.2.3. Global Data in PL/Tcl..324
24.2.4. Database Access from PL/Tcl..325
24.2.5. Trigger Procedures in PL/Tcl...327
24.2.6. Modules and theunknown command..328
24.2.7. Tcl Procedure Names...329

25. PL/Perl - Perl Procedural Language..330
25.1. Overview..330
25.2. Building and Installing PL/Perl..330
25.3. Description...331

25.3.1. PL/Perl Functions and Arguments...331
25.3.2. Data Values in PL/Perl...332
25.3.3. Database Access from PL/Perl...332
25.3.4. Missing Features..333

26. PL/Python - Python Procedural Language..334
26.1. Introduction..334
26.2. Installation..334
26.3. Using PL/Python..334

Bibliography ..337

Index...339

x

List of Tables
4-1.pgtcl Commands...45
11-1. PostgreSQL System Catalogs..171
12-1. Equivalent C Types for Built-In PostgreSQL Types...181
17-1. Index Access Method Schema..228
17-2. B-tree Strategies..229
23-1. Single Quotes Escaping Chart...312

List of Figures
10-1. How a connection is established..167
11-1. The major PostgreSQL system catalogs..171

List of Examples
1-1. libpq Example Program 1..21
1-2. libpq Example Program 2..24
1-3. libpq Example Program 3..26
2-1. Large Objects with Libpq Example Program..33
4-1. pgtcl Example Program...45
8-1. Processing a Simple Query in JDCB...86
8-2. Simple Delete Example...88
8-3. Drop Table Example..88
8-4. Binary Data Examples...89
22-1. Manual Installation of PL/pgSQL...289
23-1. A PL/pgSQL Trigger Procedure Example..310
23-2. A Simple PL/pgSQL Function to Increment an Integer..311
23-3. A Simple PL/pgSQL Function to Concatenate Text...311
23-4. A PL/pgSQL Function on Composite Type..311
23-5. A Simple Function...313
23-6. A Function that Creates Another Function..314
23-7. A Procedure with a lot of String Manipulation and OUT Parameters....................................315

xi

Preface

1. What is PostgreSQL?
PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.21, developed at the University of California at Berkeley Computer Science Department.
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99
language support and other modern features.

POSTGRES pioneered many of the object-relational concepts now becoming available in some com-
mercial databases. Traditional relational database management systems (RDBMS) support a data
model consisting of a collection of named relations, containing attributes of a specific type. In current
commercial systems, possible types include floating point numbers, integers, character strings, money,
and dates. It is commonly recognized that this model is inadequate for future data-processing appli-
cations. The relational model successfully replaced previous models in part because of its “Spartan
simplicity”. However, this simplicity makes the implementation of certain applications very difficult.
PostgreSQL offers substantial additional power by incorporating the following additional concepts in
such a way that users can easily extend the system:

• inheritance
• data types
• functions

Other features provide additional power and flexibility:

• constraints
• triggers
• rules
• transactional integrity

These features put PostgreSQL into the category of databases referred to asobject-relational. Note
that this is distinct from those referred to asobject-oriented, which in general are not as well suited
to supporting traditional relational database languages. So, although PostgreSQL has some object-
oriented features, it is firmly in the relational database world. In fact, some commercial databases
have recently incorporated features pioneered by PostgreSQL.

2. A Short History of PostgreSQL
The object-relational database management system now known as PostgreSQL (and briefly called
Postgres95) is derived from the POSTGRES package written at the University of California at Berke-
ley. With over a decade of development behind it, PostgreSQL is the most advanced open-source
database available anywhere, offering multiversion concurrency control, supporting almost all SQL

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

xii

Preface

constructs (including subselects, transactions, and user-defined types and functions), and having a
wide range of language bindings available (including C, C++, Java, Perl, Tcl, and Python).

2.1. The Berkeley POSTGRES Project

Implementation of the POSTGRES DBMS began in 1986. The initial concepts for the system were
presented inThe design of POSTGRESand the definition of the initial data model appeared inThe
POSTGRES data model. The design of the rule system at that time was described inThe design of the
POSTGRES rules system. The rationale and architecture of the storage manager were detailed inThe
design of the POSTGRES storage system.

Postgres has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES, was released to a few external users in June 1989. In response
to a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems) and Version 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rewrite rule system. For the
most part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix2, which is now owned by IBM3.) picked up the code
and commercialized it. POSTGRES became the primary data manager for the Sequoia 20004 scientific
computing project in late 1992.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Postgres95
was subsequently released to the Web to find its own way in the world as an open-source descendant
of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

• The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregates were re-implemented. Support for the GROUP BY query
clause was also added. Thelibpq interface remained available for C programs.

• In addition to the monitor program, a new program (psql) was provided for interactive SQL queries
using GNU Readline.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

xiii

Preface

• A new front-end library,libpgtcl , supported Tcl-based clients. A sample shell,pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 backend.

• The large-object interface was overhauled. The Inversion large objects were the only mechanism
for storing large objects. (The Inversion file system was removed.)

• The instance-level rule system was removed. Rules were still available as rewrite rules.

• A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

• GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continues in all areas.

Major enhancements in PostgreSQL include:

• Table-level locking has been replaced by multiversion concurrency control, which allows readers
to continue reading consistent data during writer activity and enables hot backups from pg_dump
while the database stays available for queries.

• Important backend features, including subselects, defaults, constraints, and triggers, have been im-
plemented.

• Additional SQL92-compliant language features have been added, including primary keys, quoted
identifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

• Built-in types have been improved, including new wide-range date/time types and additional geo-
metric type support.

• Overall backend code speed has been increased by approximately 20-40%, and backend start-up
time has decreased by 80% since version 6.0 was released.

3. Documentation Resources
This manual set is organized into several parts:

Tutorial

An informal introduction for new users

User’s Guide

Documents the SQL query language environment, including data types and functions.

xiv

Preface

Programmer’s Guide

Advanced information for application programmers. Topics include type and function extensi-
bility, library interfaces, and application design issues.

Administrator’s Guide

Installation and server management information

Reference Manual

Reference pages for SQL command syntax and client and server programs

Developer’s Guide

Information for PostgreSQL developers. This is intended for those who are contributing to the
PostgreSQL project; application development information appears in theProgrammer’s Guide.

In addition to this manual set, there are other resources to help you with PostgreSQL installation and
use:

man pages

TheReference Manual’s pages in the traditional Unix man format.

FAQs

Frequently Asked Questions (FAQ) lists document both general issues and some
platform-specific issues.

READMEs

README files are available for some contributed packages.

Web Site

The PostgreSQL web site5 carries details on the latest release, upcoming features, and other
information to make your work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the User’s Lounge6 section of the PostgreSQL
web site for details.

Yourself!

PostgreSQL is an open-source effort. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. If you
learn something which is not in the documentation, write it up and contribute it. If you add
features to the code, contribute them.

Even those without a lot of experience can provide corrections and minor changes in the docu-
mentation, and that is a good way to start. The <pgsql-docs@postgresql.org > mailing list
is the place to get going.

5. http://www.postgresql.org
6. http://www.postgresql.org/users-lounge/

xv

Preface

4. Terminology and Notation
The terms “PostgreSQL” and “Postgres” will be used interchangeably to refer to the software that
accompanies this documentation.

An administratoris generally a person who is in charge of installing and running the server. Auser
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this documentation set does not have fixed presumptions about system
administration procedures.

We use /usr/local/pgsql/ as the root directory of the installation and
/usr/local/pgsql/data as the directory with the database files. These directories may vary on
your site, details can be derived in theAdministrator’s Guide.

In a command synopsis, brackets ([and]) indicate an optional phrase or keyword. Anything in braces
({ and}) and containing vertical bars (|) indicates that you must choose one alternative.

Examples will show commands executed from various accounts and programs. Commands executed
from a Unix shell may be preceded with a dollar sign (“$”). Commands executed from particular
user accounts such as root or postgres are specially flagged and explained. SQL commands may be
preceded with “=>” or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistent throughout
the documentation set. Please report problems to the documentation mailing list
<pgsql-docs@postgresql.org >.

5. Bug Reporting Guidelines
When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that the program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

• A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

xvi

Preface

• A program produces the wrong output for any given input.

• A program refuses to accept valid input (as defined in the documentation).

• A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

• PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

• The exact sequence of stepsfrom program start-upnecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare select statement without the preceding create
table and insert statements, if the output should depend on the data in the tables. We do not have the
time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem. The best format for a test case for query-language related
problems is a file that can be run through the psql frontend that shows the problem. (Be sure to
not have anything in your~/.psqlrc start-up file.) An easy start at this file is to use pg_dump to
dump out the table declarations and data needed to set the scene, then add the problem query. You
are encouraged to minimize the size of your example, but this is not absolutely necessary. If the
bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files, do not guess that the problem happens for “large files”
or “mid-size databases”, etc. since this information is too inexact to be of use.

• The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

xvii

Preface

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

• The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

• Any command line options and other start-up options, including concerned environment variables
or configuration files that you changed from the default. Again, be exact. If you are using a prepack-
aged distribution that starts the database server at boot time, you should try to find out how that is
done.

• Anything you did at all differently from the installation instructions.

• The PostgreSQL version. You can run the commandSELECT version(); to find out the version
of the server you are connected to. Most executable programs also support a--version option; at
leastpostmaster --version andpsql --version should work. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. You can also look
into theREADMEfile in the source directory or at the name of your distribution file or package name.
If you run a prepackaged version, such as RPMs, say so, including any subversion the package may
have. If you are talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.2 we will almost certainly tell you to upgrade. There are tons of bug
fixes in each new release, that is why we make new releases.

• Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in to-
tal is called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the
backend server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend
server process is quite different from crash of the parent “postmaster” process; please don’t say “the
postmaster crashed” when you mean a single backend went down, nor vice versa. Also, client pro-
grams such as the interactive frontend “psql” are completely separate from the backend. Please try to
be specific about whether the problem is on the client or server side.

xviii

Preface

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresql.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresql.org > mailing list.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sql@postgresql.org >
or <pgsql-general@postgresql.org >. These mailing lists are for answering user questions and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list <pgsql-

hackers@postgresql.org >. This list is for discussing the development of PostgreSQL and it
would be nice if we could keep the bug reports separate. We might choose to take up a discussion
about your bug report onpgsql-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql-docs@postgresql.org >. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug report web-form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresql.org > with the single word
help in the body of the message.

6. Y2K Statement

Author: Written by Thomas Lockhart (<lockhart@fourpalms.org >) on 1998-10-22. Updated
2000-03-31.

The PostgreSQL Global Development Group provides the PostgreSQL software code tree as a public
service, without warranty and without liability for its behavior or performance. However, at the time
of writing:

• The author of this statement, a volunteer on the PostgreSQL support team since November, 1996,
is not aware of any problems in the PostgreSQL code base related to time transitions around Jan 1,
2000 (Y2K).

• The author of this statement is not aware of any reports of Y2K problems uncovered in regression
testing or in other field use of recent or current versions of PostgreSQL. We might have expected
to hear about problems if they existed, given the installed base and the active participation of users
on the support mailing lists.

xix

Preface

• To the best of the author’s knowledge, the assumptions PostgreSQL makes about dates specified
with a two-digit year are documented in the currentUser’s Guidein the chapter on data types. For
two-digit years, the significant transition year is 1970, not 2000; e.g.70-01-01 is interpreted as
1970-01-01, whereas69-01-01 is interpreted as 2069-01-01.

• Any Y2K problems in the underlying OS related to obtaining the “current time” may propagate
into apparent Y2K problems in PostgreSQL.

Refer to The GNU Project8 and The Perl Institute9 for further discussion of Y2K issues, particularly
as it relates to open source, no fee software.

8. http://www.gnu.org/software/year2000.html
9. http://language.perl.com/news/y2k.html

xx

I. Client Interfaces
This part of the manual is the description of the client-side programming interfaces and support li-
braries for various languages.

Chapter 1. libpq - C Library

1.1. Introduction
libpq is the C application programmer’s interface to PostgreSQL. libpq is a set of library routines that
allow client programs to pass queries to the PostgreSQL backend server and to receive the results of
these queries. libpq is also the underlying engine for several other PostgreSQL application interfaces,
including libpq++ (C++),libpgtcl (Tcl), Perl, andecpg . So some aspects of libpq’s behavior will
be important to you if you use one of those packages.

Three short programs are included at the end of this section to show how to write programs that use
libpq . There are several complete examples oflibpq applications in the following directories:

src/test/examples

src/bin/psql

Frontend programs that uselibpq must include the header filelibpq-fe.h and must link with the
libpq library.

1.2. Database Connection Functions
The following routines deal with making a connection to a PostgreSQL backend server. The appli-
cation program can have several backend connections open at one time. (One reason to do that is to
access more than one database.) Each connection is represented by aPGconn object which is obtained
from PQconnectdb or PQsetdbLogin . Note that these functions will always return a non-null object
pointer, unless perhaps there is too little memory even to allocate thePGconn object. ThePQstatus

function should be called to check whether a connection was successfully made before queries are
sent via the connection object.

• PQconnectdb Makes a new connection to the database server.

PGconn *PQconnectdb(const char *conninfo)

This routine opens a new database connection using the parameters taken from the stringcon-

ninfo . Unlike PQsetdbLogin below, the parameter set can be extended without changing the
function signature, so use either of this routine or the nonblocking analoguesPQconnectStart

andPQconnectPoll is preferred for application programming. The passed string can be empty to
use all default parameters, or it can contain one or more parameter settings separated by whitespace.

Each parameter setting is in the formkeyword = value . (To write an empty value or a value
containing spaces, surround it with single quotes, e.g.,keyword = ’a value’ . Single quotes
and backslashes within the value must be escaped with a backslash, e.g.,\’ or \\ .) Spaces around
the equal sign are optional. The currently recognized parameter keywords are:

1

Chapter 1. libpq - C Library

host

Name of host to connect to. If this begins with a slash, it specifies Unix-domain communica-
tion rather than TCP/IP communication; the value is the name of the directory in which the
socket file is stored. The default is to connect to a Unix-domain socket in/tmp .

hostaddr

IP address of host to connect to. This should be in standard numbers-and-dots form, as used
by the BSD functionsinet_aton et al. If a nonzero-length string is specified, TCP/IP com-
munication is used.

Usinghostaddr instead of host allows the application to avoid a host name look-up, which
may be important in applications with time constraints. However, Kerberos authentication
requires the host name. The following therefore applies. If host is specified withouthostaddr ,
a host name lookup is forced. Ifhostaddr is specified without host, the value forhostaddr

gives the remote address; if Kerberos is used, this causes a reverse name query. If both host
and hostaddr are specified, the value forhostaddr gives the remote address; the value
for host is ignored, unless Kerberos is used, in which case that value is used for Kerberos
authentication. Note that authentication is likely to fail if libpq is passed a host name that is
not the name of the machine athostaddr .

Without either a host name or host address, libpq will connect using a local Unix domain
socket.

port

Port number to connect to at the server host, or socket file name extension for Unix-domain
connections.

dbname

The database name.

user

User name to connect as.

password

Password to be used if the server demands password authentication.

options

Trace/debug options to be sent to the server.

tty

A file or tty for optional debug output from the backend.

requiressl

Set to 1 to require SSL connection to the backend. Libpq will then refuse to connect if the
server does not support SSL. Set to 0 (default) to negotiate with server.

If any parameter is unspecified, then the corresponding environment variable (seeSection 1.10) is
checked. If the environment variable is not set either, then hardwired defaults are used. The return
value is a pointer to an abstract struct representing the connection to the backend.

• PQsetdbLogin Makes a new connection to the database server.

PGconn *PQsetdbLogin(const char *pghost,
const char *pgport,
const char *pgoptions,

2

Chapter 1. libpq - C Library

const char *pgtty,
const char *dbName,
const char *login,
const char *pwd)

This is the predecessor ofPQconnectdb with a fixed number of parameters but the same function-
ality.

• PQsetdb Makes a new connection to the database server.

PGconn *PQsetdb(char *pghost,
char *pgport,
char *pgoptions,
char *pgtty,
char *dbName)

This is a macro that callsPQsetdbLogin with null pointers for thelogin andpwd parameters.
It is provided primarily for backward compatibility with old programs.

• PQconnectStart , PQconnectPoll Make a connection to the database server in a nonblocking
manner.

PGconn *PQconnectStart(const char *conninfo)

PostgresPollingStatusType PQconnectPoll(PGconn *conn)

These two routines are used to open a connection to a database server such that your application’s
thread of execution is not blocked on remote I/O whilst doing so.

The database connection is made using the parameters taken from the stringconninfo , passed to
PQconnectStart . This string is in the same format as described above forPQconnectdb .

NeitherPQconnectStart norPQconnectPoll will block, as long as a number of restrictions are
met:

• The hostaddr and host parameters are used appropriately to ensure that name and reverse
name queries are not made. See the documentation of these parameters underPQconnectdb

above for details.

• If you call PQtrace , ensure that the stream object into which you trace will not block.

• You ensure for yourself that the socket is in the appropriate state before callingPQconnectPoll ,
as described below.

To begin, callconn=PQconnectStart(" connection_info_string ") . If conn is NULL, then
libpq has been unable to allocate a newPGconn structure. Otherwise, a validPGconn pointer is
returned (though not yet representing a valid connection to the database). On return fromPQcon-

nectStart , call status=PQstatus(conn) . If status equalsCONNECTION_BAD, PQconnect-

Start has failed.

If PQconnectStart succeeds, the next stage is to poll libpq so that it may proceed with the con-
nection sequence. Loop thus: Consider a connection “inactive” by default. IfPQconnectPoll last
returnedPGRES_POLLING_ACTIVE, consider it “active” instead. IfPQconnectPoll(conn) last
returnedPGRES_POLLING_READING, perform aselect() for reading onPQsocket(conn) . If it
last returnedPGRES_POLLING_WRITING, perform aselect() for writing onPQsocket(conn) .
If you have yet to callPQconnectPoll , i.e. after the call toPQconnectStart , behave as if it last
returnedPGRES_POLLING_WRITING. If the select() shows that the socket is ready, consider
it “active”. If it has been decided that this connection is “active”, callPQconnectPoll(conn)

again. If this call returnsPGRES_POLLING_FAILED, the connection procedure has failed. If this
call returnsPGRES_POLLING_OK, the connection has been successfully made.

3

Chapter 1. libpq - C Library

Note that the use ofselect() to ensure that the socket is ready is merely a (likely) example; those
with other facilities available, such as apoll() call, may of course use that instead.

At any time during connection, the status of the connection may be checked, by callingPQstatus .
If this is CONNECTION_BAD, then the connection procedure has failed; if this isCONNECTION_OK,
then the connection is ready. Either of these states should be equally detectable from the return
value ofPQconnectPoll , as above. Other states may be shown during (and only during) an asyn-
chronous connection procedure. These indicate the current stage of the connection procedure, and
may be useful to provide feedback to the user for example. These statuses may include:

CONNECTION_STARTED

Waiting for connection to be made.

CONNECTION_MADE

Connection OK; waiting to send.

CONNECTION_AWAITING_RESPONSE

Waiting for a response from the server.

CONNECTION_AUTH_OK

Received authentication; waiting for connection start-up to continue.

CONNECTION_SETENV

Negotiating environment (part of the connection start-up).

Note that, although these constants will remain (in order to maintain compatibility), an application
should never rely upon these appearing in a particular order, or at all, or on the status always being
one of these documented values. An application may do something like this:

switch(PQstatus(conn))
{

case CONNECTION_STARTED:
feedback = "Connecting...";
break;

case CONNECTION_MADE:
feedback = "Connected to server...";
break;

.

.

.
default:

feedback = "Connecting...";
}

Note that ifPQconnectStart returns a non-NULL pointer, you must callPQfinish when you
are finished with it, in order to dispose of the structure and any associated memory blocks. This
must be done even if a call toPQconnectStart or PQconnectPoll failed.

PQconnectPoll will currently block if libpq is compiled withUSE_SSLdefined. This restriction
may be removed in the future.

These functions leave the socket in a nonblocking state as ifPQsetnonblocking had been called.

• PQconndefaults Returns the default connection options.

4

Chapter 1. libpq - C Library

PQconninfoOption *PQconndefaults(void)

struct PQconninfoOption
{

char *keyword; /* The keyword of the option */
char *envvar; /* Fallback environment variable name */
char *compiled; /* Fallback compiled in default value */
char *val; /* Option’s current value, or NULL */
char *label; /* Label for field in connect dialog */
char *dispchar; /* Character to display for this field

in a connect dialog. Values are:
"" Display entered value as is
"*" Password field - hide value
"D" Debug option - don’t show by default */

int dispsize; /* Field size in characters for dialog */
}

Returns a connection options array. This may be used to determine all possiblePQconnectdb

options and their current default values. The return value points to an array ofPQconninfoOption

structs, which ends with an entry having a NULL keyword pointer. Note that the default values (val

fields) will depend on environment variables and other context. Callers must treat the connection
options data as read-only.

After processing the options array, free it by passing it toPQconninfoFree . If this is not done, a
small amount of memory is leaked for each call toPQconndefaults .

In PostgreSQL versions before 7.0,PQconndefaults returned a pointer to a static array, rather
than a dynamically allocated array. That was not thread-safe, so the behavior has been changed.

• PQfinish Close the connection to the backend. Also frees memory used by thePGconn object.

void PQfinish(PGconn *conn)

Note that even if the backend connection attempt fails (as indicated byPQstatus), the application
should callPQfinish to free the memory used by thePGconn object. ThePGconn pointer should
not be used afterPQfinish has been called.

• PQreset Reset the communication port with the backend.

void PQreset(PGconn *conn)

This function will close the connection to the backend and attempt to reestablish a new connection
to the same server, using all the same parameters previously used. This may be useful for error
recovery if a working connection is lost.

• PQresetStart PQresetPoll Reset the communication port with the backend, in a nonblocking
manner.

int PQresetStart(PGconn *conn);

PostgresPollingStatusType PQresetPoll(PGconn *conn);

These functions will close the connection to the backend and attempt to reestablish a new connec-
tion to the same server, using all the same parameters previously used. This may be useful for error
recovery if a working connection is lost. They differ fromPQreset (above) in that they act in a
nonblocking manner. These functions suffer from the same restrictions asPQconnectStart and
PQconnectPoll .

Call PQresetStart . If it returns 0, the reset has failed. If it returns 1, poll the reset usingPQre-

setPoll in exactly the same way as you would create the connection usingPQconnectPoll .

5

Chapter 1. libpq - C Library

libpq application programmers should be careful to maintain thePGconn abstraction. Use the accessor
functions below to get at the contents ofPGconn. Avoid directly referencing the fields of thePGconn

structure because they are subject to change in the future. (Beginning in PostgreSQL release 6.4, the
definition of structPGconn is not even provided inlibpq-fe.h . If you have old code that accesses
PGconn fields directly, you can keep using it by includinglibpq-int.h too, but you are encouraged
to fix the code soon.)

• PQdbReturns the database name of the connection.

char *PQdb(const PGconn *conn)

PQdb and the next several functions return the values established at connection. These values are
fixed for the life of thePGconn object.

• PQuser Returns the user name of the connection.

char *PQuser(const PGconn *conn)

• PQpass Returns the password of the connection.

char *PQpass(const PGconn *conn)

• PQhost Returns the server host name of the connection.

char *PQhost(const PGconn *conn)

• PQport Returns the port of the connection.

char *PQport(const PGconn *conn)

• PQtty Returns the debug tty of the connection.

char *PQtty(const PGconn *conn)

• PQoptions Returns the backend options used in the connection.

char *PQoptions(const PGconn *conn)

• PQstatus Returns the status of the connection.

ConnStatusType PQstatus(const PGconn *conn)

The status can be one of a number of values. However, only two of these are seen outside of an
asynchronous connection procedure -CONNECTION_OKor CONNECTION_BAD. A good connection
to the database has the statusCONNECTION_OK. A failed connection attempt is signaled by status
CONNECTION_BAD. Ordinarily, an OK status will remain so untilPQfinish , but a communica-
tions failure might result in the status changing toCONNECTION_BADprematurely. In that case the
application could try to recover by callingPQreset .

See the entry forPQconnectStart andPQconnectPoll with regards to other status codes that
might be seen.

• PQerrorMessage Returns the error message most recently generated by an operation on the
connection.

char *PQerrorMessage(const PGconn* conn);

6

Chapter 1. libpq - C Library

Nearly all libpq functions will setPQerrorMessage if they fail. Note that by libpq convention, a
non-emptyPQerrorMessage will include a trailing newline.

• PQbackendPID Returns the process ID of the backend server handling this connection.

int PQbackendPID(const PGconn *conn);

The backend PID is useful for debugging purposes and for comparison to NOTIFY messages
(which include the PID of the notifying backend). Note that the PID belongs to a process executing
on the database server host, not the local host!

• PQgetssl Returns the SSL structure used in the connection, or NULL if SSL is not in use.

SSL *PQgetssl(const PGconn *conn);

This structure can be used to verify encryption levels, check server certificate and more. Refer to
the SSL documentation for information about this structure.

You must defineUSE_SSL in order to get the prototype for this function. Doing this will also
automatically includessl.h from OpenSSL.

1.3. Command Execution Functions
Once a connection to a database server has been successfully established, the functions described here
are used to perform SQL queries and commands.

1.3.1. Main Routines

• PQexec Submit a command to the server and wait for the result.

PGresult *PQexec(PGconn *conn,
const char *query);

Returns aPGresult pointer or possibly a NULL pointer. A non-NULL pointer will generally
be returned except in out-of-memory conditions or serious errors such as inability to send the
command to the backend. If a NULL is returned, it should be treated like aPGRES_FATAL_ERROR

result. UsePQerrorMessage to get more information about the error.

ThePGresult structure encapsulates the result returned by the backend.libpq application program-
mers should be careful to maintain thePGresult abstraction. Use the accessor functions below to
get at the contents ofPGresult . Avoid directly referencing the fields of thePGresult structure be-
cause they are subject to change in the future. (Beginning in PostgreSQL 6.4, the definition of struct
PGresult is not even provided inlibpq-fe.h . If you have old code that accessesPGresult fields
directly, you can keep using it by includinglibpq-int.h too, but you are encouraged to fix the code
soon.)

• PQresultStatus Returns the result status of the command.

ExecStatusType PQresultStatus(const PGresult *res)

PQresultStatus can return one of the following values:

7

Chapter 1. libpq - C Library

• PGRES_EMPTY_QUERY-- The string sent to the backend was empty.

• PGRES_COMMAND_OK-- Successful completion of a command returning no data

• PGRES_TUPLES_OK-- The query successfully executed

• PGRES_COPY_OUT-- Copy Out (from server) data transfer started

• PGRES_COPY_IN-- Copy In (to server) data transfer started

• PGRES_BAD_RESPONSE-- The server’s response was not understood

• PGRES_NONFATAL_ERROR

• PGRES_FATAL_ERROR

If the result status isPGRES_TUPLES_OK, then the routines described below can be used to retrieve
the rows returned by the query. Note that a SELECT command that happens to retrieve zero rows
still showsPGRES_TUPLES_OK. PGRES_COMMAND_OKis for commands that can never return rows
(INSERT, UPDATE, etc.). A response ofPGRES_EMPTY_QUERYoften exposes a bug in the client
software.

• PQresStatus Converts the enumerated type returned by PQresultStatus into a string constant
describing the status code.

char *PQresStatus(ExecStatusType status);

• PQresultErrorMessage returns the error message associated with the query, or an empty string
if there was no error.

char *PQresultErrorMessage(const PGresult *res);

Immediately following aPQexec or PQgetResult call, PQerrorMessage (on the connection)
will return the same string asPQresultErrorMessage (on the result). However, aPGresult

will retain its error message until destroyed, whereas the connection’s error message will change
when subsequent operations are done. UsePQresultErrorMessage when you want to know the
status associated with a particularPGresult ; usePQerrorMessage when you want to know the
status from the latest operation on the connection.

• PQclear Frees the storage associated with thePGresult . Every query result should be freed via
PQclear when it is no longer needed.

void PQclear(PQresult *res);

You can keep aPGresult object around for as long as you need it; it does not go away when you
issue a new query, nor even if you close the connection. To get rid of it, you must callPQclear .
Failure to do this will result in memory leaks in the frontend application.

• PQmakeEmptyPGresult Constructs an emptyPGresult object with the given status.

PGresult* PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

This is libpq’s internal routine to allocate and initialize an emptyPGresult object. It is exported
because some applications find it useful to generate result objects (particularly objects with error
status) themselves. Ifconn is not NULL and status indicates an error, the connection’s current
errorMessage is copied into thePGresult. Note thatPQclear should eventually be called on the
object, just as with aPGresult returned by libpq itself.

1.3.2. Escaping strings for inclusion in SQL queries

PQescapeString Escapes a string for use within an SQL query.

size_t PQescapeString (char *to, const char *from, size_t length);

8

Chapter 1. libpq - C Library

If you want to include strings that have been received from a source that is not trustworthy (for
example, because a random user entered them), you cannot directly include them in SQL queries for
security reasons. Instead, you have to quote special characters that are otherwise interpreted by the
SQL parser.

PQescapeString performs this operation. Thefrom points to the first character of the string that is
to be escaped, and thelength parameter counts the number of characters in this string (a terminating
zero byte is neither necessary nor counted).to shall point to a buffer that is able to hold at least
one more character than twice the value oflength , otherwise the behavior is undefined. A call to
PQescapeString writes an escaped version of thefrom string to theto buffer, replacing special
characters so that they cannot cause any harm, and adding a terminating zero byte. The single quotes
that must surround PostgreSQL string literals are not part of the result string.

PQescapeString returns the number of characters written toto , not including the terminating zero
byte. Behavior is undefined when theto andfrom strings overlap.

1.3.3. Escaping binary strings for inclusion in SQL queries

PQescapeBytea Escapes a binary string (bytea type) for use within an SQL query.

unsigned char *PQescapeBytea(unsigned char *from,
size_t from_length,
size_t *to_length);

Certain ASCII charactersmustbe escaped (but all charactersmaybe escaped) when used as part of
a bytea string literal in an SQL statement. In general, to escape a character, it is converted into the
three digit octal number equal to the decimal ASCII value, and preceded by two backslashes. The
single quote (’) and backslash (\) characters have special alternate escape sequences. See theUser’s
Guidefor more information.PQescapeBytea performs this operation, escaping only the minimally
required characters.

The from parameter points to the first character of the string that is to be escaped, and the
from_length parameter reflects the number of characters in this binary string (a terminating zero
byte is neither necessary nor counted). Theto_length parameter shall point to a buffer suitable to
hold the resultant escaped string length. The result string length does not include the terminating
zero byte of the result.

PQescapeBytea returns an escaped version of thefrom parameter binary string, to a caller-provided
buffer. The return string has all special characters replaced so that they can be properly processed by
the PostgreSQL string literal parser, and thebytea input function. A terminating zero byte is also
added. The single quotes that must surround PostgreSQL string literals are not part of the result
string.

1.3.4. Retrieving SELECT Result Information

• PQntuples Returns the number of tuples (rows) in the query result.

int PQntuples(const PGresult *res);

• PQnfields Returns the number of fields (columns) in each row of the query result.

int PQnfields(const PGresult *res);

9

Chapter 1. libpq - C Library

• PQfname Returns the field (column) name associated with the given field index. Field indices start
at 0.

char *PQfname(const PGresult *res,
int field_index);

• PQfnumber Returns the field (column) index associated with the given field name.

int PQfnumber(const PGresult *res,
const char *field_name);

-1 is returned if the given name does not match any field.

• PQftype Returns the field type associated with the given field index. The integer returned is an
internal coding of the type. Field indices start at 0.

Oid PQftype(const PGresult *res,
int field_index);

You can query the system tablepg_type to obtain the name and properties of the various data
types. The OIDs of the built-in data types are defined insrc/include/catalog/pg_type.h in
the source tree.

• PQfmod Returns the type-specific modification data of the field associated with the given field
index. Field indices start at 0.

int PQfmod(const PGresult *res,
int field_index);

• PQfsize Returns the size in bytes of the field associated with the given field index. Field indices
start at 0.

int PQfsize(const PGresult *res,
int field_index);

PQfsize returns the space allocated for this field in a database tuple, in other words the size of the
server’s binary representation of the data type. -1 is returned if the field is variable size.

• PQbinaryTuples Returns 1 if the PGresult contains binary tuple data, 0 if it contains ASCII data.

int PQbinaryTuples(const PGresult *res);

Currently, binary tuple data can only be returned by a query that extracts data from a binary cursor.

1.3.5. Retrieving SELECT Result Values

• PQgetvalue Returns a single field (column) value of one tuple (row) of aPGresult . Tuple and
field indices start at 0.

char* PQgetvalue(const PGresult *res,
int tup_num,
int field_num);

For most queries, the value returned byPQgetvalue is a null-terminated character string represen-
tation of the attribute value. But ifPQbinaryTuples() is 1, the value returned byPQgetvalue is
the binary representation of the type in the internal format of the backend server (but not including
the size word, if the field is variable-length). It is then the programmer’s responsibility to cast and
convert the data to the correct C type. The pointer returned byPQgetvalue points to storage that

10

Chapter 1. libpq - C Library

is part of thePGresult structure. One should not modify it, and one must explicitly copy the value
into other storage if it is to be used past the lifetime of thePGresult structure itself.

• PQgetisnull Tests a field for a NULL entry. Tuple and field indices start at 0.

int PQgetisnull(const PGresult *res,
int tup_num,
int field_num);

This function returns 1 if the field contains a NULL, 0 if it contains a non-null value. (Note that
PQgetvalue will return an empty string, not a null pointer, for a NULL field.)

• PQgetlength Returns the length of a field (attribute) value in bytes. Tuple and field indices start
at 0.

int PQgetlength(const PGresult *res,
int tup_num,
int field_num);

This is the actual data length for the particular data value, that is the size of the object pointed to by
PQgetvalue . Note that for character-represented values, this size has little to do with the binary
size reported byPQfsize .

• PQprint Prints out all the tuples and, optionally, the attribute names to the specified output stream.

void PQprint(FILE* fout, /* output stream */
const PGresult *res,
const PQprintOpt *po);

struct {
pqbool header; /* print output field headings and row count */
pqbool align; /* fill align the fields */
pqbool standard; /* old brain dead format */
pqbool html3; /* output html tables */
pqbool expanded; /* expand tables */
pqbool pager; /* use pager for output if needed */
char *fieldSep; /* field separator */
char *tableOpt; /* insert to HTML table ... */
char *caption; /* HTML caption */
char **fieldName; /* null terminated array of replacement field names */

} PQprintOpt;

This function was formerly used by psql to print query results, but this is no longer the case and
this function is no longer actively supported.

1.3.6. Retrieving Non-SELECT Result Information

• PQcmdStatus Returns the command status string from the SQL command that generated the
PGresult .

char * PQcmdStatus(const PGresult *res);

• PQcmdTuples Returns the number of rows affected by the SQL command.

char * PQcmdTuples(const PGresult *res);

If the SQL command that generated thePGresult was INSERT, UPDATE or DELETE, this re-
turns a string containing the number of rows affected. If the command was anything else, it returns
the empty string.

11

Chapter 1. libpq - C Library

• PQoidValue Returns the object ID of the inserted row, if the SQL command was an INSERT that
inserted exactly one row into a table that has OIDs. Otherwise, returnsInvalidOid .

Oid PQoidValue(const PGresult *res);

The typeOid and the constantInvalidOid will be defined if you include the libpq header file.
They will both be some integer type.

• PQoidStatus Returns a string with the object ID of the inserted row, if the SQL command was an
INSERT. (The string will be0 if the INSERT did not insert exactly one row, or if the target table
does not have OIDs.) If the command was not an INSERT, returns an empty string.

char * PQoidStatus(const PGresult *res);

This function is deprecated in favor ofPQoidValue and is not thread-safe.

1.4. Asynchronous Query Processing
The PQexec function is adequate for submitting commands in simple synchronous applications. It
has a couple of major deficiencies however:

• PQexec waits for the command to be completed. The application may have other work to do (such
as maintaining a user interface), in which case it won’t want to block waiting for the response.

• Since control is buried insidePQexec, it is hard for the frontend to decide it would like to try to
cancel the ongoing command. (It can be done from a signal handler, but not otherwise.)

• PQexec can return only onePGresult structure. If the submitted command string contains multi-
ple SQL commands, all but the lastPGresult are discarded byPQexec.

Applications that do not like these limitations can instead use the underlying functions thatPQexec

is built from: PQsendQuery andPQgetResult .

Older programs that used this functionality as well asPQputline andPQputnbytes could block
waiting to send data to the backend. To address that issue, the functionPQsetnonblocking was
added.

Old applications can neglect to usePQsetnonblocking and get the older potentially blocking behav-
ior. Newer programs can usePQsetnonblocking to achieve a completely nonblocking connection
to the backend.

• PQsetnonblocking Sets the nonblocking status of the connection.

int PQsetnonblocking(PGconn *conn, int arg)

Sets the state of the connection to nonblocking ifarg is 1, blocking ifarg is 0. Returns 0 if OK,
-1 if error.

In the nonblocking state, calls toPQputline , PQputnbytes , PQsendQuery andPQendcopy will
not block but instead return an error if they need to be called again.

When a database connection has been set to nonblocking mode andPQexec is called, it will tem-
porarily set the state of the connection to blocking until thePQexec completes.

More of libpq is expected to be made safe forPQsetnonblocking functionality in the near future.

12

Chapter 1. libpq - C Library

• PQisnonblocking Returns the blocking status of the database connection.

int PQisnonblocking(const PGconn *conn)

Returns 1 if the connection is set to nonblocking mode, 0 if blocking.

• PQsendQuery Submit a command to the server without waiting for the result(s). 1 is returned if
the command was successfully dispatched, 0 if not (in which case, usePQerrorMessage to get
more information about the failure).

int PQsendQuery(PGconn *conn,
const char *query);

After successfully callingPQsendQuery , call PQgetResult one or more times to obtain the re-
sults.PQsendQuery may not be called again (on the same connection) untilPQgetResult has
returned NULL, indicating that the command is done.

• PQgetResult Wait for the next result from a priorPQsendQuery , and return it. NULL is returned
when the query is complete and there will be no more results.

PGresult *PQgetResult(PGconn *conn);

PQgetResult must be called repeatedly until it returns NULL, indicating that the command is
done. (If called when no command is active,PQgetResult will just return NULL at once.) Each
non-NULL result fromPQgetResult should be processed using the same PGresult accessor func-
tions previously described. Don’t forget to free each result object withPQclear when done with
it. Note thatPQgetResult will block only if a query is active and the necessary response data has
not yet been read byPQconsumeInput .

Using PQsendQuery and PQgetResult solves one ofPQexec’s problems: If a command string
contains multiple SQL commands, the results of those commands can be obtained individually. (This
allows a simple form of overlapped processing, by the way: the frontend can be handling the results of
one query while the backend is still working on later queries in the same command string.) However,
callingPQgetResult will still cause the frontend to block until the backend completes the next SQL
command. This can be avoided by proper use of three more functions:

• PQconsumeInput If input is available from the backend, consume it.

int PQconsumeInput(PGconn *conn);

PQconsumeInput normally returns 1 indicating “no error”, but returns 0 if there was some kind of
trouble (in which casePQerrorMessage is set). Note that the result does not say whether any input
data was actually collected. After callingPQconsumeInput , the application may checkPQisBusy

and/orPQnotifies to see if their state has changed.

PQconsumeInput may be called even if the application is not prepared to deal with a result or
notification just yet. The routine will read available data and save it in a buffer, thereby causing a
select() read-ready indication to go away. The application can thus usePQconsumeInput to
clear theselect() condition immediately, and then examine the results at leisure.

• PQisBusy Returns 1 if a query is busy, that is,PQgetResult would block waiting for input. A 0
return indicates thatPQgetResult can be called with assurance of not blocking.

int PQisBusy(PGconn *conn);

PQisBusy will not itself attempt to read data from the backend; thereforePQconsumeInput must
be invoked first, or the busy state will never end.

13

Chapter 1. libpq - C Library

• PQflush Attempt to flush any data queued to the backend, returns 0 if successful (or if the send
queue is empty) orEOFif it failed for some reason.

int PQflush(PGconn *conn);

PQflush needs to be called on a nonblocking connection before callingselect() to determine if
a response has arrived. If 0 is returned it ensures that there is no data queued to the backend that
has not actually been sent. Only applications that have usedPQsetnonblocking have a need for
this.

• PQsocket Obtain the file descriptor number for the backend connection socket. A valid descriptor
will be >= 0; a result of -1 indicates that no backend connection is currently open.

int PQsocket(const PGconn *conn);

PQsocket should be used to obtain the backend socket descriptor in preparation for executing
select() . This allows an application using a blocking connection to wait for either backend re-
sponses or other conditions. If the result ofselect() indicates that data can be read from the
backend socket, thenPQconsumeInput should be called to read the data; after which,PQisBusy ,
PQgetResult , and/orPQnotifies can be used to process the response.

Nonblocking connections (that have usedPQsetnonblocking) should not useselect() until
PQflush has returned 0 indicating that there is no buffered data waiting to be sent to the backend.

A typical frontend using these functions will have a main loop that usesselect to wait for all the
conditions that it must respond to. One of the conditions will be input available from the backend,
which in select ’s terms is readable data on the file descriptor identified byPQsocket . When the
main loop detects input ready, it should callPQconsumeInput to read the input. It can then call
PQisBusy , followed byPQgetResult if PQisBusy returns false (0). It can also callPQnotifies

to detect NOTIFY messages (seeSection 1.6).

A frontend that usesPQsendQuery /PQgetResult can also attempt to cancel a command that is still
being processed by the backend.

• PQrequestCancel Request that PostgreSQL abandon processing of the current command.

int PQrequestCancel(PGconn *conn);

The return value is 1 if the cancel request was successfully dispatched, 0 if not. (If not,PQer-

rorMessage tells why not.) Successful dispatch is no guarantee that the request will have any
effect, however. Regardless of the return value ofPQrequestCancel , the application must con-
tinue with the normal result-reading sequence usingPQgetResult . If the cancellation is effective,
the current command will terminate early and return an error result. If the cancellation fails (say,
because the backend was already done processing the command), then there will be no visible result
at all.

Note that if the current command is part of a transaction, cancellation will abort the whole transaction.

PQrequestCancel can safely be invoked from a signal handler. So, it is also possible to use it
in conjunction with plainPQexec, if the decision to cancel can be made in a signal handler. For
example, psql invokesPQrequestCancel from a SIGINT signal handler, thus allowing interactive
cancellation of queries that it issues throughPQexec. Note thatPQrequestCancel will have no
effect if the connection is not currently open or the backend is not currently processing a command.

14

Chapter 1. libpq - C Library

1.5. The Fast-Path Interface
PostgreSQL provides a fast-path interface to send function calls to the backend. This is a trapdoor
into system internals and can be a potential security hole. Most users will not need this feature.

• PQfn Request execution of a backend function via the fast-path interface.

PGresult* PQfn(PGconn* conn,
int fnid,
int *result_buf,
int *result_len,
int result_is_int,
const PQArgBlock *args,
int nargs);

The fnid argument is the object identifier of the function to be executed.result_buf is the
buffer in which to place the return value. The caller must have allocated sufficient space to store
the return value (there is no check!). The actual result length will be returned in the integer pointed
to by result_len . If a 4-byte integer result is expected, setresult_is_int to 1; otherwise
set it to 0. (Settingresult_is_int to 1 tells libpq to byte-swap the value if necessary, so that
it is delivered as a proper int value for the client machine. Whenresult_is_int is 0, the byte
string sent by the backend is returned unmodified.)args andnargs specify the arguments to be
passed to the function.

typedef struct {
int len;
int isint;
union {

int *ptr;
int integer;

} u;
} PQArgBlock;

PQfn always returns a validPGresult* . The resultStatus should be checked before the result is
used. The caller is responsible for freeing thePGresult with PQclear when it is no longer needed.

1.6. Asynchronous Notification
PostgreSQL supports asynchronous notification via theLISTEN andNOTIFY commands. A back-
end registers its interest in a particular notification condition with theLISTEN command (and can
stop listening with theUNLISTEN command). All backends listening on a particular condition will
be notified asynchronously when aNOTIFY of that condition name is executed by any backend. No
additional information is passed from the notifier to the listener. Thus, typically, any actual data that
needs to be communicated is transferred through a database relation. Commonly the condition name
is the same as the associated relation, but it is not necessary for there to be any associated relation.

libpq applications submitLISTEN andUNLISTEN commands as ordinary SQL command. Sub-
sequently, arrival ofNOTIFY messages can be detected by callingPQnotifies .

• PQnotifies Returns the next notification from a list of unhandled notification messages received
from the backend. Returns NULL if there are no pending notifications. Once a notification is re-
turned from PQnotifies, it is considered handled and will be removed from the list of notifications.

PGnotify* PQnotifies(PGconn *conn);

15

Chapter 1. libpq - C Library

typedef struct pgNotify {
char relname[NAMEDATALEN]; /* name of relation

* containing data */
int be_pid; /* process id of backend */

} PGnotify;

After processing aPGnotify object returned byPQnotifies , be sure to free it withfree() to
avoid a memory leak.

Note: In PostgreSQL 6.4 and later, the be_pid is that of the notifying backend, whereas in
earlier versions it was always the PID of your own backend.

The second sample program gives an example of the use of asynchronous notification.

PQnotifies() does not actually read backend data; it just returns messages previously absorbed by
another libpq function. In prior releases of libpq, the only way to ensure timely receipt of NOTIFY
messages was to constantly submit queries, even empty ones, and then checkPQnotifies() after
eachPQexec() . While this still works, it is deprecated as a waste of processing power.

A better way to check for NOTIFY messages when you have no useful queries to make is to call
PQconsumeInput() , then checkPQnotifies() . You can useselect() to wait for backend data
to arrive, thereby using no CPU power unless there is something to do. (SeePQsocket() to obtain
the file descriptor number to use withselect() .) Note that this will work OK whether you submit
queries withPQsendQuery /PQgetResult or simply usePQexec. You should, however, remember
to checkPQnotifies() after eachPQgetResult or PQexec, to see if any notifications came in
during the processing of the query.

1.7. Functions Associated with the COPY Command
The COPY command in PostgreSQL has options to read from or write to the network connection
used bylibpq . Therefore, functions are necessary to access this network connection directly so
applications may take advantage of this capability.

These functions should be executed only after obtaining aPGRES_COPY_OUTor PGRES_COPY_IN

result object fromPQexec or PQgetResult .

• PQgetline Reads a newline-terminated line of characters (transmitted by the backend server) into
a buffer string of size length.

int PQgetline(PGconn *conn,
char *string,
int length)

Like fgets , this routine copies up to length-1 characters into string. It is likegets , however, in
that it converts the terminating newline into a zero byte.PQgetline returnsEOFat the end of input,
0 if the entire line has been read, and 1 if the buffer is full but the terminating newline has not yet
been read.

Notice that the application must check to see if a new line consists of the two characters\. , which
indicates that the backend server has finished sending the results of the copy command. If the

16

Chapter 1. libpq - C Library

application might receive lines that are more than length-1 characters long, care is needed to be
sure one recognizes the\. line correctly (and does not, for example, mistake the end of a long data
line for a terminator line). The code insrc/bin/psql/copy.c contains example routines that
correctly handle the copy protocol.

• PQgetlineAsync Reads a newline-terminated line of characters (transmitted by the backend
server) into a buffer without blocking.

int PQgetlineAsync(PGconn *conn,
char *buffer,
int bufsize)

This routine is similar toPQgetline , but it can be used by applications that must read COPY
data asynchronously, that is without blocking. Having issued the COPY command and gotten a
PGRES_COPY_OUTresponse, the application should callPQconsumeInput andPQgetlineAsync

until the end-of-data signal is detected. UnlikePQgetline , this routine takes responsibility for
detecting end-of-data. On each call,PQgetlineAsync will return data if a complete newline-
terminated data line is available in libpq’s input buffer, or if the incoming data line is too long to fit
in the buffer offered by the caller. Otherwise, no data is returned until the rest of the line arrives.

The routine returns -1 if the end-of-copy-data marker has been recognized, or 0 if no data is avail-
able, or a positive number giving the number of bytes of data returned. If -1 is returned, the caller
must next callPQendcopy , and then return to normal processing. The data returned will not extend
beyond a newline character. If possible a whole line will be returned at one time. But if the buffer
offered by the caller is too small to hold a line sent by the backend, then a partial data line will be
returned. This can be detected by testing whether the last returned byte is\n or not. The returned
string is not null-terminated. (If you want to add a terminating null, be sure to pass abufsize
one smaller than the room actually available.)

• PQputline Sends a null-terminated string to the backend server. Returns 0 if OK,EOFif unable
to send the string.

int PQputline(PGconn *conn,
const char *string);

Note the application must explicitly send the two characters\. on a final line to indicate to the
backend that it has finished sending its data.

• PQputnbytes Sends a non-null-terminated string to the backend server. Returns 0 if OK,EOF if
unable to send the string.

int PQputnbytes(PGconn *conn,
const char *buffer,
int nbytes);

This is exactly likePQputline , except that the data buffer need not be null-terminated since the
number of bytes to send is specified directly.

• PQendcopy Synchronizes with the backend. This function waits until the backend has finished the
copy. It should either be issued when the last string has been sent to the backend usingPQputline

or when the last string has been received from the backend usingPGgetline . It must be issued or
the backend may get “out of sync” with the frontend. Upon return from this function, the backend
is ready to receive the next SQL command. The return value is 0 on successful completion, nonzero
otherwise.

int PQendcopy(PGconn *conn);

17

Chapter 1. libpq - C Library

As an example:

PQexec(conn, "CREATE TABLE foo (a int4, b char(16), d double precision)");
PQexec(conn, "COPY foo FROM STDIN");
PQputline(conn, "3\thello world\t4.5\n");
PQputline(conn,"4\tgoodbye world\t7.11\n");
...
PQputline(conn,"\\.\n");
PQendcopy(conn);

When usingPQgetResult , the application should respond to aPGRES_COPY_OUTresult by execut-
ing PQgetline repeatedly, followed byPQendcopy after the terminator line is seen. It should then
return to thePQgetResult loop until PQgetResult returns NULL. Similarly aPGRES_COPY_IN

result is processed by a series ofPQputline calls followed byPQendcopy , then return to thePQge-

tResult loop. This arrangement will ensure that a copy in or copy out command embedded in a
series of SQL commands will be executed correctly.

Older applications are likely to submit a copy in or copy out viaPQexec and assume that the trans-
action is done afterPQendcopy . This will work correctly only if the copy in/out is the only SQL
command in the command string.

1.8. libpq Tracing Functions

• PQtrace Enable tracing of the frontend/backend communication to a debugging file stream.

void PQtrace(PGconn *conn
FILE *debug_port)

• PQuntrace Disable tracing started byPQtrace .

void PQuntrace(PGconn *conn)

1.9. libpq Control Functions

• PQsetNoticeProcessor Control reporting of notice and warning messages generated by libpq.

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor
PQsetNoticeProcessor(PGconn *conn,

PQnoticeProcessor proc,
void *arg);

18

Chapter 1. libpq - C Library

By default, libpq prints notice messages from the backend onstderr , as well as a few error mes-
sages that it generates by itself. This behavior can be overridden by supplying a callback function that
does something else with the messages. The callback function is passed the text of the error message
(which includes a trailing newline), plus a void pointer that is the same one passed toPQsetNoti-

ceProcessor . (This pointer can be used to access application-specific state if needed.) The default
notice processor is simply

static void
defaultNoticeProcessor(void * arg, const char * message)
{

fprintf(stderr, "%s", message);
}

To use a special notice processor, callPQsetNoticeProcessor just after creation of a newPGconn

object.

The return value is the pointer to the previous notice processor. If you supply a callback function
pointer of NULL, no action is taken, but the current pointer is returned.

Once you have set a notice processor, you should expect that that function could be called as long as
either thePGconn object orPGresult objects made from it exist. At creation of aPGresult , the
PGconn’s current notice processor pointer is copied into thePGresult for possible use by routines
like PQgetvalue .

1.10. Environment Variables
The following environment variables can be used to select default connection parameter values, which
will be used byPQconnectdb or PQsetdbLogin if no value is directly specified by the calling code.
These are useful to avoid hard-coding database names into simple application programs.

• PGHOSTsets the default server name. If this begins with a slash, it specifies Unix-domain com-
munication rather than TCP/IP communication; the value is the name of the directory in which the
socket file is stored (default/tmp).

• PGPORTsets the default TCP port number or Unix-domain socket file extension for communicating
with the PostgreSQL backend.

• PGDATABASEsets the default PostgreSQL database name.

• PGUSERsets the user name used to connect to the database and for authentication.

• PGPASSWORDsets the password used if the backend demands password authentication. This is
not recommended because the password can be read by others using theps command with special
options on some platforms.

• PGREALMsets the Kerberos realm to use with PostgreSQL, if it is different from the local realm.
If PGREALMis set, PostgreSQL applications will attempt authentication with servers for this realm
and use separate ticket files to avoid conflicts with local ticket files. This environment variable is
only used if Kerberos authentication is selected by the backend.

• PGOPTIONSsets additional runtime options for the PostgreSQL backend.

• PGTTYsets the file or tty on which debugging messages from the backend server are displayed.

The following environment variables can be used to specify user-level default behavior for every
PostgreSQL session:

19

Chapter 1. libpq - C Library

• PGDATESTYLEsets the default style of date/time representation.

• PGTZsets the default time zone.

• PGCLIENTENCODINGsets the default client encoding (if multibyte support was selected when con-
figuring PostgreSQL).

The following environment variables can be used to specify default internal behavior for every Post-
greSQL session:

• PGGEQOsets the default mode for the genetic optimizer.

Refer to theSET SQL command for information on correct values for these environment variables.

1.11. Threading Behavior
libpq is thread-safe as of PostgreSQL 7.0, so long as no two threads attempt to manipulate the same
PGconn object at the same time. In particular, you cannot issue concurrent queries from different
threads through the same connection object. (If you need to run concurrent queries, start up multiple
connections.)

PGresult objects are read-only after creation, and so can be passed around freely between threads.

The deprecated functionsPQoidStatus and fe_setauthsvc are not thread-safe and should not
be used in multithread programs.PQoidStatus can be replaced byPQoidValue . There is no good
reason to callfe_setauthsvc at all.

Libpq clients using thecrypt encryption method rely on thecrypt() operating system function,
which is often not thread-safe. It is better to useMD5encryption, which is thread-safe on all platforms.

1.12. Building Libpq Programs
To build (i.e., compile and link) your libpq programs you need to do all of the following things:

• Include thelibpq-fe.h header file:

#include <libpq-fe.h >

If you failed to do that then you will normally get error messages from your compiler similar to

foo.c: In function ‘main’:
foo.c:34: ‘PGconn’ undeclared (first use in this function)
foo.c:35: ‘PGresult’ undeclared (first use in this function)
foo.c:54: ‘CONNECTION_BAD’ undeclared (first use in this function)
foo.c:68: ‘PGRES_COMMAND_OK’ undeclared (first use in this function)
foo.c:95: ‘PGRES_TUPLES_OK’ undeclared (first use in this function)

• Point your compiler to the directory where the PostgreSQL header files were installed, by supplying
the-I directory option to your compiler. (In some cases the compiler will look into the directory
in question by default, so you can omit this option.) For instance, your compile command line could
look like:

cc -c -I/usr/local/pgsql/include testprog.c

20

Chapter 1. libpq - C Library

If you are using makefiles then add the option to theCPPFLAGSvariable:

CPPFLAGS += -I/usr/local/pgsql/include

If there is any chance that your program might be compiled by other users then you should not
hardcode the directory location like that. Instead, you can run the utilitypg_config to find out
where the header files are on the local system:

$ pg_config --includedir
/usr/local/include

Failure to specify the correct option to the compiler will result in an error message such as

testlibpq.c:8:22: libpq-fe.h: No such file or directory

• When linking the final program, specify the option-lpq so that the libpq library gets pulled in, as
well as the option-L directory to point it to the directory where the libpq library resides. (Again,
the compiler will search some directories by default.) For maximum portability, put the-L option
before the-lpq option. For example:

cc -o testprog testprog1.o testprog2.o -L/usr/local/pgsql/lib -lpq

You can find out the library directory usingpg_configas well:

$ pg_config --libdir
/usr/local/pgsql/lib

Error messages that point to problems in this area could look like the following.

testlibpq.o: In function ‘main’:
testlibpq.o(.text+0x60): undefined reference to ‘PQsetdbLogin’
testlibpq.o(.text+0x71): undefined reference to ‘PQstatus’
testlibpq.o(.text+0xa4): undefined reference to ‘PQerrorMessage’

This means you forgot-lpq .

/usr/bin/ld: cannot find -lpq

This means you forgot the-L or did not specify the right path.

If your codes references the header filelibpq-int.h and you refuse to fix
your code to not use it, starting in PostgreSQL 7.2, this file will be found in
includedir /postgresql/internal/libpq-int.h , so you need to add the appropriate-I

option to your compiler command line.

1.13. Example Programs

Example 1-1. libpq Example Program 1

/*
* testlibpq.c
*

21

Chapter 1. libpq - C Library

* Test the C version of libpq, the PostgreSQL frontend
* library.
*/

#include <stdio.h >

#include <libpq-fe.h >

void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

main()
{

char *pghost,
*pgport,
*pgoptions,
*pgtty;

char *dbName;
int nFields;
int i,

j;

/* FILE *debug; */

PGconn *conn;
PGresult *res;

/*
* begin, by setting the parameters for a backend connection if the
* parameters are null, then the system will try to use reasonable
* defaults by looking up environment variables or, failing that,
* using hardwired constants
*/

pghost = NULL; /* host name of the backend server */
pgport = NULL; /* port of the backend server */
pgoptions = NULL; /* special options to start up the backend

* server */
pgtty = NULL; /* debugging tty for the backend server */
dbName = "template1";

/* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

/*
* check to see that the backend connection was successfully made
*/

if (PQstatus(conn) == CONNECTION_BAD)
{

fprintf(stderr, "Connection to database ’%s’ failed.\n", dbName);
fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);

}

/* debug = fopen("/tmp/trace.out","w"); */
/* PQtrace(conn, debug); */

22

Chapter 1. libpq - C Library

/* start a transaction block */
res = PQexec(conn, "BEGIN");
if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "BEGIN command failed\n");
PQclear(res);
exit_nicely(conn);

}

/*
* should PQclear PGresult whenever it is no longer needed to avoid
* memory leaks
*/

PQclear(res);

/*
* fetch rows from the pg_database, the system catalog of
* databases
*/

res = PQexec(conn, "DECLARE mycursor CURSOR FOR SELECT * FROM pg_database");
if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "DECLARE CURSOR command failed\n");
PQclear(res);
exit_nicely(conn);

}
PQclear(res);
res = PQexec(conn, "FETCH ALL in mycursor");
if (!res || PQresultStatus(res) != PGRES_TUPLES_OK)
{

fprintf(stderr, "FETCH ALL command didn’t return tuples properly\n");
PQclear(res);
exit_nicely(conn);

}

/* first, print out the attribute names */
nFields = PQnfields(res);
for (i = 0; i < nFields; i++)

printf("%-15s", PQfname(res, i));
printf("\n\n");

/* next, print out the rows */
for (i = 0; i < PQntuples(res); i++)
{

for (j = 0; j < nFields; j++)
printf("%-15s", PQgetvalue(res, i, j));

printf("\n");
}
PQclear(res);

/* close the cursor */
res = PQexec(conn, "CLOSE mycursor");
PQclear(res);

/* commit the transaction */
res = PQexec(conn, "COMMIT");

23

Chapter 1. libpq - C Library

PQclear(res);

/* close the connection to the database and cleanup */
PQfinish(conn);

/* fclose(debug); */
return 0;

}

Example 1-2. libpq Example Program 2

/*
* testlibpq2.c
* Test of the asynchronous notification interface
*
* Start this program, then from psql in another window do
* NOTIFY TBL2;
*
* Or, if you want to get fancy, try this:
* Populate a database with the following:
*
* CREATE TABLE TBL1 (i int4);
*
* CREATE TABLE TBL2 (i int4);
*
* CREATE RULE r1 AS ON INSERT TO TBL1 DO
* (INSERT INTO TBL2 values (new.i); NOTIFY TBL2);
*
* and do
*
* INSERT INTO TBL1 values (10);
*
*/

#include <stdio.h >

#include "libpq-fe.h"

void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

main()
{

char *pghost,
*pgport,
*pgoptions,
*pgtty;

char *dbName;
int nFields;
int i,

j;

PGconn *conn;
PGresult *res;

24

Chapter 1. libpq - C Library

PGnotify *notify;

/*
* begin, by setting the parameters for a backend connection if the
* parameters are null, then the system will try to use reasonable
* defaults by looking up environment variables or, failing that,
* using hardwired constants
*/

pghost = NULL; /* host name of the backend server */
pgport = NULL; /* port of the backend server */
pgoptions = NULL; /* special options to start up the backend

* server */
pgtty = NULL; /* debugging tty for the backend server */
dbName = getenv("USER"); /* change this to the name of your test

* database */

/* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

/*
* check to see that the backend connection was successfully made
*/

if (PQstatus(conn) == CONNECTION_BAD)
{

fprintf(stderr, "Connection to database ’%s’ failed.\n", dbName);
fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);

}

res = PQexec(conn, "LISTEN TBL2");
if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "LISTEN command failed\n");
PQclear(res);
exit_nicely(conn);

}

/*
* should PQclear PGresult whenever it is no longer needed to avoid
* memory leaks
*/

PQclear(res);

while (1)
{

/*
* wait a little bit between checks; waiting with select()
* would be more efficient.
*/

sleep(1);
/* collect any asynchronous backend messages */
PQconsumeInput(conn);
/* check for asynchronous notify messages */
while ((notify = PQnotifies(conn)) != NULL)
{

fprintf(stderr,

25

Chapter 1. libpq - C Library

"ASYNC NOTIFY of ’%s’ from backend pid ’%d’ received\n",
notify- >relname, notify- >be_pid);

free(notify);
}

}

/* close the connection to the database and cleanup */
PQfinish(conn);

return 0;
}

Example 1-3. libpq Example Program 3

/*
* testlibpq3.c Test the C version of Libpq, the PostgreSQL frontend
* library. tests the binary cursor interface
*
*
*
* populate a database by doing the following:
*
* CREATE TABLE test1 (i int4, d real, p polygon);
*
* INSERT INTO test1 values (1, 3.567, polygon ’(3.0, 4.0, 1.0, 2.0)’);
*
* INSERT INTO test1 values (2, 89.05, polygon ’(4.0, 3.0, 2.0, 1.0)’);
*
* the expected output is:
*
* tuple 0: got i = (4 bytes) 1, d = (4 bytes) 3.567000, p = (4
* bytes) 2 points boundbox = (hi=3.000000/4.000000, lo =
* 1.000000,2.000000) tuple 1: got i = (4 bytes) 2, d = (4 bytes)
* 89.050003, p = (4 bytes) 2 points boundbox =
* (hi=4.000000/3.000000, lo = 2.000000,1.000000)
*
*
*/

#include <stdio.h >

#include "libpq-fe.h"
#include "utils/geo_decls.h" /* for the POLYGON type */

void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

main()
{

char *pghost,
*pgport,
*pgoptions,
*pgtty;

char *dbName;
int nFields;

26

Chapter 1. libpq - C Library

int i,
j;

int i_fnum,
d_fnum,
p_fnum;

PGconn *conn;
PGresult *res;

/*
* begin, by setting the parameters for a backend connection if the
* parameters are null, then the system will try to use reasonable
* defaults by looking up environment variables or, failing that,
* using hardwired constants
*/

pghost = NULL; /* host name of the backend server */
pgport = NULL; /* port of the backend server */
pgoptions = NULL; /* special options to start up the backend

* server */
pgtty = NULL; /* debugging tty for the backend server */

dbName = getenv("USER"); /* change this to the name of your test
* database */

/* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

/*
* check to see that the backend connection was successfully made
*/

if (PQstatus(conn) == CONNECTION_BAD)
{

fprintf(stderr, "Connection to database ’%s’ failed.\n", dbName);
fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);

}

/* start a transaction block */
res = PQexec(conn, "BEGIN");
if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "BEGIN command failed\n");
PQclear(res);
exit_nicely(conn);

}

/*
* should PQclear PGresult whenever it is no longer needed to avoid
* memory leaks
*/

PQclear(res);

/*
* fetch rows from the pg_database, the system catalog of
* databases
*/

res = PQexec(conn, "DECLARE mycursor BINARY CURSOR FOR SELECT * FROM test1");
if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)

27

Chapter 1. libpq - C Library

{
fprintf(stderr, "DECLARE CURSOR command failed\n");
PQclear(res);
exit_nicely(conn);

}
PQclear(res);

res = PQexec(conn, "FETCH ALL in mycursor");
if (!res || PQresultStatus(res) != PGRES_TUPLES_OK)
{

fprintf(stderr, "FETCH ALL command didn’t return tuples properly\n");
PQclear(res);
exit_nicely(conn);

}

i_fnum = PQfnumber(res, "i");
d_fnum = PQfnumber(res, "d");
p_fnum = PQfnumber(res, "p");

for (i = 0; i < 3; i++)
{

printf("type[%d] = %d, size[%d] = %d\n",
i, PQftype(res, i),
i, PQfsize(res, i));

}
for (i = 0; i < PQntuples(res); i++)
{

int *ival;
float *dval;
int plen;
POLYGON *pval;

/* we hard-wire this to the 3 fields we know about */
ival = (int *) PQgetvalue(res, i, i_fnum);
dval = (float *) PQgetvalue(res, i, d_fnum);
plen = PQgetlength(res, i, p_fnum);

/*
* plen doesn’t include the length field so need to
* increment by VARHDSZ
*/

pval = (POLYGON *) malloc(plen + VARHDRSZ);
pval- >size = plen;
memmove((char *) &pval- >npts, PQgetvalue(res, i, p_fnum), plen);
printf("tuple %d: got\n", i);
printf(" i = (%d bytes) %d,\n",

PQgetlength(res, i, i_fnum), *ival);
printf(" d = (%d bytes) %f,\n",

PQgetlength(res, i, d_fnum), *dval);
printf(" p = (%d bytes) %d points \tboundbox = (hi=%f/%f, lo = %f,%f)\n",

PQgetlength(res, i, d_fnum),
pval- >npts,
pval- >boundbox.xh,
pval- >boundbox.yh,
pval- >boundbox.xl,
pval- >boundbox.yl);

}

28

Chapter 1. libpq - C Library

PQclear(res);

/* close the cursor */
res = PQexec(conn, "CLOSE mycursor");
PQclear(res);

/* commit the transaction */
res = PQexec(conn, "COMMIT");
PQclear(res);

/* close the connection to the database and cleanup */
PQfinish(conn);

return 0;
}

29

Chapter 2. Large Objects

2.1. Introduction
In PostgreSQL releases prior to 7.1, the size of any row in the database could not exceed the size of a
data page. Since the size of a data page is 8192 bytes (the default, which can be raised up to 32768),
the upper limit on the size of a data value was relatively low. To support the storage of larger atomic
values, PostgreSQL provided and continues to provide a large object interface. This interface provides
file-oriented access to user data that has been declared to be a large object.

POSTGRES 4.2, the indirect predecessor of PostgreSQL, supported three standard implementations
of large objects: as files external to the POSTGRES server, as external files managed by the POST-
GRES server, and as data stored within the POSTGRES database. This caused considerable confusion
among users. As a result, only support for large objects as data stored within the database is retained
in PostgreSQL. Even though this is slower to access, it provides stricter data integrity. For historical
reasons, this storage scheme is referred to asInversion large objects. (You will see the term Inversion
used occasionally to mean the same thing as large object.) Since PostgreSQL 7.1, all large objects are
placed in one system table calledpg_largeobject .

PostgreSQL 7.1 introduced a mechanism (nicknamed “TOAST”) that allows data rows to be much
larger than individual data pages. This makes the large object interface partially obsolete. One remain-
ing advantage of the large object interface is that it allows random access to the data, i.e., the ability
to read or write small chunks of a large value. It is planned to equip TOAST with such functionality
in the future.

This section describes the implementation and the programming and query language interfaces to
PostgreSQL large object data. We use the libpq C library for the examples in this section, but most
programming interfaces native to PostgreSQL support equivalent functionality. Other interfaces may
use the large object interface internally to provide generic support for large values. This is not de-
scribed here.

2.2. Implementation Features
The large object implementation breaks large objects up into “chunks” and stores the chunks in tuples
in the database. A B-tree index guarantees fast searches for the correct chunk number when doing
random access reads and writes.

2.3. Interfaces
The facilities PostgreSQL provides to access large objects, both in the backend as part of user-defined
functions or the front end as part of an application using the interface, are described below. For users
familiar with POSTGRES 4.2, PostgreSQL has a new set of functions providing a more coherent
interface.

Note: All large object manipulation must take place within an SQL transaction. This requirement
is strictly enforced as of PostgreSQL 6.5, though it has been an implicit requirement in previous
versions, resulting in misbehavior if ignored.

30

Chapter 2. Large Objects

The PostgreSQL large object interface is modeled after the Unix file-system interface, with analogues
of open(2) , read(2) , write(2) , lseek(2) , etc. User functions call these routines to retrieve only
the data of interest from a large object. For example, if a large object type calledmugshot existed that
stored photographs of faces, then a function calledbeard could be declared onmugshot data.beard

could look at the lower third of a photograph, and determine the color of the beard that appeared there,
if any. The entire large-object value need not be buffered, or even examined, by thebeard function.
Large objects may be accessed from dynamically-loaded C functions or database client programs that
link the library. PostgreSQL provides a set of routines that support opening, reading, writing, closing,
and seeking on large objects.

2.3.1. Creating a Large Object

The routine

Oid lo_creat(PGconn * conn , int mode)

creates a new large object.mode is a bit mask describing several different attributes of the new object.
The symbolic constants listed here are defined in the header filelibpq/libpq-fs.h . The access
type (read, write, or both) is controlled by or’ing together the bitsINV_READand INV_WRITE. The
low-order sixteen bits of the mask have historically been used at Berkeley to designate the storage
manager number on which the large object should reside. These bits should always be zero now. The
commands below create a large object:

inv_oid = lo_creat(INV_READ|INV_WRITE);

2.3.2. Importing a Large Object

To import an operating system file as a large object, call

Oid lo_import(PGconn * conn , const char * filename)

filename specifies the operating system name of the file to be imported as a large object.

2.3.3. Exporting a Large Object

To export a large object into an operating system file, call

int lo_export(PGconn * conn , Oid lobjId , const char * filename)

The lobjId argument specifies the OID of the large object to export and thefilename argument
specifies the operating system name name of the file.

2.3.4. Opening an Existing Large Object

To open an existing large object, call

int lo_open(PGconn *conn, Oid lobjId, int mode)

The lobjId argument specifies the OID of the large object to open. Themode bits control whether
the object is opened for reading (INV_READ), writing (INV_WRITE), or both. A large object cannot

31

Chapter 2. Large Objects

be opened before it is created.lo_open returns a large object descriptor for later use inlo_read ,
lo_write , lo_lseek , lo_tell , andlo_close .

2.3.5. Writing Data to a Large Object

The routine

int lo_write(PGconn *conn, int fd, const char *buf, size_t len)

writes len bytes frombuf to large objectfd . The fd argument must have been returned by a
previouslo_open . The number of bytes actually written is returned. In the event of an error, the
return value is negative.

2.3.6. Reading Data from a Large Object

The routine

int lo_read(PGconn *conn, int fd, char *buf, size_t len)

readslen bytes from large objectfd into buf . The fd argument must have been returned by a
previouslo_open . The number of bytes actually read is returned. In the event of an error, the return
value is negative.

2.3.7. Seeking on a Large Object

To change the current read or write location on a large object, call

int lo_lseek(PGconn *conn, int fd, int offset, int whence)

This routine moves the current location pointer for the large object described byfd to the new location
specified byoffset . The valid values forwhence areSEEK_SET, SEEK_CUR, andSEEK_END.

2.3.8. Closing a Large Object Descriptor

A large object may be closed by calling

int lo_close(PGconn *conn, int fd)

wherefd is a large object descriptor returned bylo_open . On success,lo_close returns zero. On
error, the return value is negative.

2.3.9. Removing a Large Object

To remove a large object from the database, call

Oid lo_unlink(PGconn * conn , Oid lobjId)

The lobjId argument specifies the OID of the large object to remove.

32

Chapter 2. Large Objects

2.4. Server-side Built-in Functions
There are two built-in registered functions,lo_import andlo_export which are convenient for use
in SQL queries. Here is an example of their use

CREATE TABLE image (
name text,
raster oid

);

INSERT INTO image (name, raster)
VALUES (’beautiful image’, lo_import(’/etc/motd’));

SELECT lo_export(image.raster, ’/tmp/motd’) FROM image
WHERE name = ’beautiful image’;

2.5. Accessing Large Objects from Libpq
Example 2-1is a sample program which shows how the large object interface in libpq can be used.
Parts of the program are commented out but are left in the source for the reader’s benefit. This program
can be found insrc/test/examples/testlo.c in the source distribution. Frontend applications
which use the large object interface in libpq should include the header filelibpq/libpq-fs.h and
link with the libpq library.

Example 2-1. Large Objects with Libpq Example Program

/*--
*
* testlo.c--
* test using large objects with libpq
*
* Copyright (c) 1994, Regents of the University of California
*
*--
*/

#include <stdio.h >

#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE 1024

/*
* importFile
* import file "in_filename" into database as large object "lobjOid"
*
*/

Oid
importFile(PGconn *conn, char *filename)
{

Oid lobjId;
int lobj_fd;
char buf[BUFSIZE];
int nbytes,

33

Chapter 2. Large Objects

tmp;
int fd;

/*
* open the file to be read in
*/

fd = open(filename, O_RDONLY, 0666);
if (fd < 0)
{ /* error */

fprintf(stderr, "can’t open unix file %s\n", filename);
}

/*
* create the large object
*/

lobjId = lo_creat(conn, INV_READ | INV_WRITE);
if (lobjId == 0)

fprintf(stderr, "can’t create large object\n");

lobj_fd = lo_open(conn, lobjId, INV_WRITE);

/*
* read in from the Unix file and write to the inversion file
*/

while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
{

tmp = lo_write(conn, lobj_fd, buf, nbytes);
if (tmp < nbytes)

fprintf(stderr, "error while reading large object\n");
}

(void) close(fd);
(void) lo_close(conn, lobj_fd);

return lobjId;
}

void
pickout(PGconn *conn, Oid lobjId, int start, int len)
{

int lobj_fd;
char *buf;
int nbytes;
int nread;

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0)
{

fprintf(stderr, "can’t open large object %d\n",
lobjId);

}

lo_lseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len + 1);

nread = 0;
while (len - nread > 0)

34

Chapter 2. Large Objects

{
nbytes = lo_read(conn, lobj_fd, buf, len - nread);
buf[nbytes] = ’ ’;
fprintf(stderr, " >>> %s", buf);
nread += nbytes;

}
free(buf);
fprintf(stderr, "\n");
lo_close(conn, lobj_fd);

}

void
overwrite(PGconn *conn, Oid lobjId, int start, int len)
{

int lobj_fd;
char *buf;
int nbytes;
int nwritten;
int i;

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0)
{

fprintf(stderr, "can’t open large object %d\n",
lobjId);

}

lo_lseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len + 1);

for (i = 0; i < len; i++)
buf[i] = ’X’;

buf[i] = ’ ’;

nwritten = 0;
while (len - nwritten > 0)
{

nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
nwritten += nbytes;

}
free(buf);
fprintf(stderr, "\n");
lo_close(conn, lobj_fd);

}

/*
* exportFile * export large object "lobjOid" to file "out_filename"
*
*/

void
exportFile(PGconn *conn, Oid lobjId, char *filename)
{

int lobj_fd;
char buf[BUFSIZE];
int nbytes,

tmp;
int fd;

35

Chapter 2. Large Objects

/*
* create an inversion "object"
*/

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0)
{

fprintf(stderr, "can’t open large object %d\n",
lobjId);

}

/*
* open the file to be written to
*/

fd = open(filename, O_CREAT | O_WRONLY, 0666);
if (fd < 0)
{ /* error */

fprintf(stderr, "can’t open unix file %s\n",
filename);

}

/*
* read in from the Unix file and write to the inversion file
*/

while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
{

tmp = write(fd, buf, nbytes);
if (tmp < nbytes)
{

fprintf(stderr, "error while writing %s\n",
filename);

}
}

(void) lo_close(conn, lobj_fd);
(void) close(fd);

return;
}

void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

int
main(int argc, char **argv)
{

char *in_filename,
*out_filename;

char *database;
Oid lobjOid;
PGconn *conn;
PGresult *res;

36

Chapter 2. Large Objects

if (argc != 4)
{

fprintf(stderr, "Usage: %s database_name in_filename out_filename\n",
argv[0]);

exit(1);
}

database = argv[1];
in_filename = argv[2];
out_filename = argv[3];

/*
* set up the connection
*/

conn = PQsetdb(NULL, NULL, NULL, NULL, database);

/* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD)
{

fprintf(stderr, "Connection to database ’%s’ failed.\n", database);
fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);

}

res = PQexec(conn, "begin");
PQclear(res);

printf("importing file %s\n", in_filename);
/* lobjOid = importFile(conn, in_filename); */

lobjOid = lo_import(conn, in_filename);
/*

printf("as large object %d.\n", lobjOid);

printf("picking out bytes 1000-2000 of the large object\n");
pickout(conn, lobjOid, 1000, 1000);

printf("overwriting bytes 1000-2000 of the large object with X’s\n");
overwrite(conn, lobjOid, 1000, 1000);

*/

printf("exporting large object to file %s\n", out_filename);
/* exportFile(conn, lobjOid, out_filename); */

lo_export(conn, lobjOid, out_filename);

res = PQexec(conn, "end");
PQclear(res);
PQfinish(conn);
exit(0);

}

37

Chapter 3. libpq++ - C++ Binding Library

3.1. Introduction
libpq++ is the C++ API to PostgreSQL. libpq++ is a set of classes that allow client programs to
connect to the PostgreSQL backend server. These connections come in two forms: a database class
and a large object class.

The database class is intended for manipulating a database. You can send all sorts of SQL queries and
commands to the PostgreSQL backend server and retrieve the responses of the server.

The large object class is intended for manipulating a large object in a database. Although a large
object instance can send normal queries to the PostgreSQL backend server it is only intended for
simple queries that do not return any data. A large object should be seen as a file stream. In the future
it should behave much like the C++ file streamscin , cout andcerr .

This chapter is based on the documentation for the libpq C library (seeChapter 1). There are several
examples of libpq++ applications insrc/interfaces/libpq++/examples in the source distribu-
tion.

3.2. Control and Initialization

3.2.1. Environment Variables
The following environment variables can be used to set up default values for an environment and to
avoid hard-coding database names into an application program:

Note: Refer to Section 1.10 for a complete list of available connection options.

The following environment variables can be used to select default connection parameter values, which
will be used byPQconnectdb or PQsetdbLogin if no value is directly specified by the calling code.
These are useful to avoid hard-coding database names into simple application programs.

Note: libpq++ uses only environment variables or libpq ’s PQconnectdb conninfo style strings.

• PGHOSTsets the default server name. If this begins with a slash, it specifies Unix-domain commu-
nication rather than TCP/IP communication; the value is the name of the directory in which the
socket file is stored (default/tmp).

• PGPORTsets the default TCP port number or Unix-domain socket file extension for communicating
with the PostgreSQL backend.

• PGDATABASEsets the default PostgreSQL database name.

• PGUSERsets the user name used to connect to the database and for authentication.

38

Chapter 3. libpq++ - C++ Binding Library

• PGPASSWORDsets the password used if the backend demands password authentication. This is not
recommended because the password can be read by others using theps command with special
options on some platforms.

• PGREALMsets the Kerberos realm to use with PostgreSQL, if it is different from the local realm.
If PGREALMis set, PostgreSQL applications will attempt authentication with servers for this realm
and use separate ticket files to avoid conflicts with local ticket files. This environment variable is
only used if Kerberos authentication is selected by the backend.

• PGOPTIONSsets additional runtime options for the PostgreSQL backend.

• PGTTYsets the file or tty on which debugging messages from the backend server are displayed.

The following environment variables can be used to specify user-level default behavior for every
PostgreSQL session:

• PGDATESTYLEsets the default style of date/time representation.

• PGTZsets the default time zone.

The following environment variables can be used to specify default internal behavior for every Post-
greSQL session:

• PGGEQOsets the default mode for the genetic optimizer.

Refer to theSET SQL command for information on correct values for these environment variables.

3.3. libpq++ Classes

3.3.1. Connection Class: PgConnection

The connection class makes the actual connection to the database and is inherited by all of the access
classes.

3.3.2. Database Class: PgDatabase

The database class provides C++ objects that have a connection to a backend server. To create such
an object one first needs the appropriate environment for the backend to access. The following con-
structors deal with making a connection to a backend server from a C++ program.

3.4. Database Connection Functions

• PgConnection makes a new connection to a backend database server.

PgConnection::PgConnection(const char *conninfo)

39

Chapter 3. libpq++ - C++ Binding Library

Theconninfo string is the same as for the underlying libpqPQconnectdb function.

Although typically called from one of the access classes, a connection to a backend server is possi-
ble by creating aPgConnection object.

• ConnectionBad returns whether or not the connection to the backend server succeeded or failed.

bool PgConnection::ConnectionBad() const

Returns true if the connection failed.

• Status returns the status of the connection to the backend server.

ConnStatusType PgConnection::Status()

Returns eitherCONNECTION_OKor CONNECTION_BADdepending on the state of the connection.

• PgDatabase makes a new connection to a backend database server.

PgDatabase(const char *conninfo)

After a PgDatabase has been created it should be checked to make sure the connection to the
database succeeded before sending queries to the object. This can easily be done by retrieving the
current status of thePgDatabase object with theStatus or ConnectionBad methods.

• DBNamereturns the name of the current database.

const char *PgConnection::DBName()

• Notifies returns the next notification from a list of unhandled notification messages received
from the backend.

PGnotify* PgConnection::Notifies()

SeePQnotifies in libpq for details.

3.5. Query Execution Functions

3.5.1. Main Routines

• Exec sends a command to the backend server. It’s probably more desirable to use one of the next
two functions.

ExecStatusType PgConnection::Exec(const char* query)

Returns the result status of the command. The following status results can be expected:

PGRES_EMPTY_QUERY

PGRES_COMMAND_OK, if the command was not a query
PGRES_TUPLES_OK, if the query successfully returned tuples
PGRES_COPY_OUT

PGRES_COPY_IN

PGRES_BAD_RESPONSE, if an unexpected response was received
PGRES_NONFATAL_ERROR

PGRES_FATAL_ERROR

40

Chapter 3. libpq++ - C++ Binding Library

• ExecCommandOksends a non-query command (one that does not return rows) to the backend
server.

int PgConnection::ExecCommandOk(const char *query)

Returns true (1) if the command succeeds.

• ExecTuplesOk Sends a query command (one that returns rows) to the backend server.

int PgConnection::ExecTuplesOk(const char *query)

Returns true (1) if the query succeeds.

• ErrorMessage returns the last error message text.

const char *PgConnection::ErrorMessage()

3.5.2. Retrieving SELECT Result Information

• Tuples returns the number of tuples (rows) in the query result.

int PgDatabase::Tuples() const

• Fields returns the number of fields (rows) in each tuple of the query result.

int PgDatabase::Fields()

• FieldName returns the field (column) name associated with the given field index. Field indices
start at 0.

const char *PgDatabase::FieldName(int field_num) const

• FieldNum returns the field (column) index associated with the given field name.

int PgDatabase::FieldNum(const char* field_name) const

-1 is returned if the given name does not match any field.

• FieldType returns the field type associated with the given field index. The integer returned is an
internal coding of the type. Field indices start at 0.

Oid PgDatabase::FieldType(int field_num) const

• FieldType returns the field type associated with the given field name. The integer returned is an
internal coding of the type. Field indices start at 0.

Oid PgDatabase::FieldType(const char* field_name) const

• FieldSize returns the size in bytes of the field associated with the given field index. Field indices
start at 0.

int PgDatabase::FieldSize(int field_num) const

Returns the space allocated for this field in a database tuple given the field number. In other words
the size of the server’s binary representation of the data type. -1 is returned if the field is variable
size.

• FieldSize returns the size in bytes of the field associated with the given field index. Field indices
start at 0.

int PgDatabase::FieldSize(const char *field_name) const

41

Chapter 3. libpq++ - C++ Binding Library

Returns the space allocated for this field in a database tuple given the field name. In other words
the size of the server’s binary representation of the data type. -1 is returned if the field is variable
size.

3.5.3. Retrieving SELECT Result Values

• GetValue returns a single field (column) value of one tuple of aPGresult . Tuple and field indices
start at 0.

const char *PgDatabase::GetValue(int tup_num, int field_num) const

For most queries, the value returned byGetValue is a null-terminated string representation of
the attribute value. But ifBinaryTuples is true, the value returned byGetValue is the binary
representation of the type in the internal format of the backend server (but not including the size
word, if the field is variable-length). It is then the programmer’s responsibility to cast and convert
the data to the correct C type. The pointer returned byGetValue points to storage that is part of the
PGresult structure. One should not modify it, and one must explicitly copy the value into other
storage if it is to be used past the lifetime of thePGresult structure itself.BinaryTuples is not
yet implemented.

• GetValue returns a single field (column) value of one tuple of aPGresult . Tuple and field indices
start at 0.

const char *PgDatabase::GetValue(int tup_num, const char *field_name) const

For most queries, the value returned byGetValue is a null-terminated string representation of
the attribute value. But ifBinaryTuples is true, the value returned byGetValue is the binary
representation of the type in the internal format of the backend server (but not including the size
word, if the field is variable-length). It is then the programmer’s responsibility to cast and convert
the data to the correct C type. The pointer returned byGetValue points to storage that is part of the
PGresult structure. One should not modify it, and one must explicitly copy the value into other
storage if it is to be used past the lifetime of thePGresult structure itself.BinaryTuples is not
yet implemented.

• GetLength returns the length of a field (column) in bytes. Tuple and field indices start at 0.

int PgDatabase::GetLength(int tup_num, int field_num) const

This is the actual data length for the particular data value, that is the size of the object pointed to by
GetValue . Note that for character-represented values, this size has little to do with the binary size
reported byPQfsize .

• GetLength returns the length of a field (column) in bytes. Tuple and field indices start at 0.

int PgDatabase::GetLength(int tup_num, const char* field_name) const

This is the actual data length for the particular data value, that is the size of the object pointed to by
GetValue . Note that for character-represented values, this size has little to do with the binary size
reported byPQfsize .

• GetIsNull returns whether a field has the null value.

bool GetIsNull(int tup_num, int field_num) const

Note thatGetValue will return the empty string for null fields, not the NULL pointer.

• GetIsNull returns whether a field has the null value.

bool GetIsNull(int tup_num, const char *field_name) const

Note thatGetValue will return the empty string for null fields, not the NULL pointer.

42

Chapter 3. libpq++ - C++ Binding Library

• DisplayTuples prints out all the tuples and, optionally, the attribute names to the specified output
stream.

void PgDatabase::DisplayTuples(FILE *out = 0, bool fillAlign = true,
const char* fieldSep = "|", bool printHeader = true, bool quiet = false) const

This function is obsolescent.

• PrintTuples prints out all the tuples and, optionally, the attribute names to the specified output
stream.

void PgDatabase::PrintTuples(FILE *out = 0, bool printAttName = true,
bool terseOutput = false, bool fillAlign = false) const

This function is obsolescent.

3.5.4. Retrieving Non-SELECT Result Information

• CmdTuples returns the number of rows affected after anINSERT, UPDATE, or DELETE . If the
command was anything else, it returns -1.

int PgDatabase::CmdTuples() const

• OidStatus

const char *PgDatabase::OidStatus() const

3.6. Asynchronous Notification
PostgreSQL supports asynchronous notification via theLISTEN andNOTIFY commands. A back-
end registers its interest in a particular notification condition with theLISTEN command. All back-
ends that are listening on a particular condition will be notified asynchronously when aNOTIFY of
that name is executed by another backend. No additional information is passed from the notifier to
the listener. Thus, typically, any actual data that needs to be communicated is transferred through a
relation.

libpq++ applications are notified whenever a connected backend has received an asynchronous no-
tification. However, the communication from the backend to the frontend is not asynchronous. The
libpq++ application must poll the backend to see if there is any pending notification information. After
the execution of a command, a frontend may callPgDatabase::Notifies to see if any notification
data is currently available from the backend.PgDatabase::Notifies returns the notification from
a list of unhandled notifications from the backend. The function returnsNULL if there are no pend-
ing notifications from the backend.PgDatabase::Notifies behaves like the popping of a stack.
Once a notification is returned fromPgDatabase::Notifies , it is considered handled and will be
removed from the list of notifications.

• PgDatabase::Notifies retrieves pending notifications from the server.

PGnotify* PgDatabase::Notifies()

The second sample program gives an example of the use of asynchronous notification.

43

Chapter 3. libpq++ - C++ Binding Library

3.7. Functions Associated with the COPY Command
The COPY command in PostgreSQL has options to read from or write to the network connection
used by libpq++. Therefore, functions are necessary to access this network connection directly so
applications may take full advantage of this capability.

• PgDatabase::GetLine reads a newline-terminated line of characters (transmitted by the backend
server) into a bufferstring of sizelength .

int PgDatabase::GetLine(char* string, int length)

Like the Unix system routinefgets() , this routine copies up tolength -1 characters into
string . It is like gets() , however, in that it converts the terminating newline into a zero byte.

PgDatabase::GetLine returnsEOFat end of file, 0 if the entire line has been read, and 1 if the
buffer is full but the terminating newline has not yet been read.

Notice that the application must check to see if a new line consists of a backslash followed by a
period (\.), which indicates that the backend server has finished sending the results of theCOPY.
Therefore, if the application ever expects to receive lines that are more thanlength -1 charac-
ters long, the application must be sure to check the return value ofPgDatabase::GetLine very
carefully.

• PgDatabase::PutLine Sends a null-terminatedstring to the backend server.

void PgDatabase::PutLine(char* string)

The application must explicitly send the characters\. to indicate to the backend that it has finished
sending its data.

• PgDatabase::EndCopy synchronizes with the backend.

int PgDatabase::EndCopy()

This function waits until the backend has finished processing theCOPY. It should either be issued
when the last string has been sent to the backend usingPgDatabase::PutLine or when the last
string has been received from the backend usingPgDatabase::GetLine . It must be issued or the
backend may get “out of sync” with the frontend. Upon return from this function, the backend is
ready to receive the next command.

The return value is 0 on successful completion, nonzero otherwise.

As an example:

PgDatabase data;
data.Exec("CREATE TABLE foo (a int4, b char(16), d double precision)");
data.Exec("COPY foo FROM STDIN");
data.PutLine("3\tHello World\t4.5\n");
data.PutLine("4\tGoodbye World\t7.11\n");
...
data.PutLine("\\.\n");
data.EndCopy();

44

Chapter 4. pgtcl - Tcl Binding Library

4.1. Introduction
pgtcl is a Tcl package for client programs to interface with PostgreSQL servers. It makes most of the
functionality of libpq available to Tcl scripts.

This package was originally written by Jolly Chen.

Table 4-1gives an overview over the commands available in pgtcl. These commands are described
further on subsequent pages.

Table 4-1.pgtcl Commands

Command Description

pg_connect opens a connection to the backend server

pg_disconnect closes a connection

pg_conndefaults get connection options and their defaults

pg_exec send a query to the backend

pg_result manipulate the results of a query

pg_select loop over the result of a SELECT statement

pg_listen establish a callback for NOTIFY messages

pg_lo_creat create a large object

pg_lo_open open a large object

pg_lo_close close a large object

pg_lo_read read a large object

pg_lo_write write a large object

pg_lo_lseek seek to a position in a large object

pg_lo_tell return the current seek position of a large object

pg_lo_unlink delete a large object

pg_lo_import import a Unix file into a large object

pg_lo_export export a large object into a Unix file

The pg_lo_* routines are interfaces to the large object features of PostgreSQL. The functions are
designed to mimic the analogous file system functions in the standard Unix file system interface.
The pg_lo_* routines should be used within aBEGIN /COMMIT transaction block because the
file descriptor returned bypg_lo_open is only valid for the current transaction.pg_lo_import and
pg_lo_export mustbe used in aBEGIN /COMMIT transaction block.

Example 4-1shows a small example of how to use the routines.

Example 4-1. pgtcl Example Program

getDBs :
get the names of all the databases at a given host and port number
with the defaults being the localhost and port 5432
return them in alphabetical order
proc getDBs { {host "localhost"} {port "5432"} } {

datnames is the list to be result

45

set conn [pg_connect template1 -host $host -port $port]
set res [pg_exec $conn "SELECT datname FROM pg_database ORDER BY datname"]
set ntups [pg_result $res -numTuples]
for {set i 0} {$i < $ntups} {incr i} {

lappend datnames [pg_result $res -getTuple $i]
}
pg_result $res -clear
pg_disconnect $conn
return $datnames

}

4.2. Loading pgtcl into your application
Before using pgtcl commands, you must loadlibpgtcl into your Tcl application. This is normally
done with the Tclload command. Here is an example:

load libpgtcl[info sharedlibextension]

The use ofinfo sharedlibextension is recommended in preference to hard-wiring.so or .sl

into the program.

The load command will fail unless the system’s dynamic loader knows where to look for the
libpgtcl shared library file. You may need to work withldconfig, or set the environment variable
LD_LIBRARY_PATH, or use some equivalent facility for your platform to make it work. Refer to the
PostgreSQL installation instructions for more information.

libpgtcl in turn depends onlibpq , so the dynamic loader must also be able to find thelibpq

shared library. In practice this is seldom an issue, since both of these shared libraries are normally
stored in the same directory, but it can be a stumbling block in some configurations.

If you use a custom executable for your application, you might choose to statically bindlibpgtcl

into the executable and thereby avoid theload command and the potential problems of dynamic
linking. See the source code for pgtclsh for an example.

4.3. pgtcl Command Reference Information

pg_connect

Name
pg_connect — open a connection to the backend server

Synopsis

pg_connect -conninfo connectOptions
pg_connect dbName [-host hostName]

[-port portNumber] [-tty pqtty]
[-options optionalBackendArgs]

46

pg_connect

Inputs (new style)

connectOptions

A string of connection options, each written in the form keyword = value. A list of valid options
can be found inlibpq ’s PQconnectdb() manual entry.

Inputs (old style)

dbName

Specifies a valid database name.

[-hosthostName]

Specifies the domain name of the backend server fordbName.

[-port portNumber]

Specifies the IP port number of the backend server fordbName.

[-tty pqtty]

Specifies file or tty for optional debug output from backend.

[-optionsoptionalBackendArgs]

Specifies options for the backend server fordbName.

Outputs

dbHandle

If successful, a handle for a database connection is returned. Handles start with the prefixpgsql .

Description

pg_connect opens a connection to the PostgreSQL backend.

Two syntaxes are available. In the older one, each possible option has a separate option switch in the
pg_connect statement. In the newer form, a single option string is supplied that can contain multiple
option values. Seepg_conndefaults for info about the available options in the newer syntax.

Usage

47

pg_disconnect

Name
pg_disconnect — close a connection to the backend server

Synopsis

pg_disconnect dbHandle

Inputs

dbHandle

Specifies a valid database handle.

Outputs

None

Description

pg_disconnect closes a connection to the PostgreSQL backend.

48

pg_conndefaults

Name
pg_conndefaults — obtain information about default connection parameters

Synopsis

pg_conndefaults

Inputs

None.

Outputs

option list

The result is a list describing the possible connection options and their current default values.
Each entry in the list is a sublist of the format:

{optname label dispchar dispsize value}

where theoptname is usable as an option inpg_connect -conninfo .

Description

pg_conndefaults returns info about the connection options available inpg_connect -conninfo

and the current default value for each option.

Usage

pg_conndefaults

49

pg_exec

Name
pg_exec — send a command string to the server

Synopsis

pg_exec dbHandle queryString

Inputs

dbHandle

Specifies a valid database handle.

queryString

Specifies a valid SQL query.

Outputs

resultHandle

A Tcl error will be returned if pgtcl was unable to obtain a backend response. Otherwise, a query
result object is created and a handle for it is returned. This handle can be passed topg_result

to obtain the results of the query.

Description

pg_exec submits a query to the PostgreSQL backend and returns a result. Query result handles start
with the connection handle and add a period and a result number.

Note that lack of a Tcl error is not proof that the query succeeded! An error message returned by
the backend will be processed as a query result with failure status, not by generating a Tcl error in
pg_exec.

50

pg_result

Name
pg_result — get information about a query result

Synopsis

pg_result resultHandle resultOption

Inputs

resultHandle

The handle for a query result.

resultOption

Specifies one of several possible options.

Options

-status

the status of the result.

-error

the error message, if the status indicates error; otherwise an empty string.

-conn

the connection that produced the result.

-oid

if the command was an INSERT, the OID of the inserted tuple; otherwise an empty string.

-numTuples

the number of tuples returned by the query.

-numAttrs

the number of attributes in each tuple.

-assign arrayName

assign the results to an array, using subscripts of the form(tupno,attributeName) .

-assignbyidx arrayName ?appendstr?

assign the results to an array using the first attribute’s value and the remaining attributes’
names as keys. Ifappendstr is given then it is appended to each key. In short, all
but the first field of each tuple are stored into the array, using subscripts of the form
(firstFieldValue,fieldNameAppendStr) .

-getTuple tupleNumber

returns the fields of the indicated tuple in a list. Tuple numbers start at zero.

51

pg_result

-tupleArray tupleNumber arrayName

stores the fields of the tuple in arrayarrayName , indexed by field names. Tuple numbers start
at zero.

-attributes

returns a list of the names of the tuple attributes.

-lAttributes

returns a list of sublists,{name ftype fsize} for each tuple attribute.

-clear

clear the result query object.

Outputs

The result depends on the selected option, as described above.

Description

pg_result returns information about a query result created by a priorpg_exec .

You can keep a query result around for as long as you need it, but when you are done with it, be
sure to free it by executingpg_result -clear . Otherwise, you have a memory leak, and Pgtcl will
eventually start complaining that you’ve created too many query result objects.

52

pg_select

Name
pg_select — loop over the result of a SELECT statement

Synopsis

pg_select dbHandle queryString arrayVar queryProcedure

Inputs

dbHandle

Specifies a valid database handle.

queryString

Specifies a valid SQL select query.

arrayVar

Array variable for tuples returned.

queryProcedure

Procedure run on each tuple found.

Outputs

None.

Description

pg_select submits a SELECT query to the PostgreSQL backend, and executes a given chunk of
code for each tuple in the result. ThequeryString must be a SELECT statement. Anything else
returns an error. ThearrayVar variable is an array name used in the loop. For each tuple,ar-
rayVar is filled in with the tuple field values, using the field names as the array indexes. Then the
queryProcedure is executed.

In addition to the field values, the following special entries are made in the array:

.headers

A list of the column names returned by the SELECT.

.numcols

The number of columns returned by the SELECT.

.tupno

The current tuple number, starting at zero and incrementing for each iteration of the loop body.

53

pg_select

Usage

This would work if tabletable has fieldscontrol andname (and, perhaps, other fields):

pg_select $pgconn "SELECT * FROM table" array {
puts [format "%5d %s" $array(control) $array(name)]

}

54

pg_listen

Name
pg_listen — set or change a callback for asynchronous NOTIFY messages

Synopsis

pg_listen dbHandle notifyName callbackCommand

Inputs

dbHandle

Specifies a valid database handle.

notifyName

Specifies the notify condition name to start or stop listening to.

callbackCommand

If present and not empty, provides the command string to execute when a matching notification
arrives.

Outputs

None

Description

pg_listen creates, changes, or cancels a request to listen for asynchronous NOTIFY messages from
the PostgreSQL backend. With acallbackCommand parameter, the request is established, or the
command string of an already existing request is replaced. With nocallbackCommand parameter,
a prior request is canceled.

After apg_listen request is established, the specified command string is executed whenever a NO-
TIFY message bearing the given name arrives from the backend. This occurs when any PostgreSQL
client application issues a NOTIFY command referencing that name. (Note that the name can be, but
does not have to be, that of an existing relation in the database.) The command string is executed from
the Tcl idle loop. That is the normal idle state of an application written with Tk. In non-Tk Tcl shells,
you can executeupdate or vwait to cause the idle loop to be entered.

You should not invoke the SQL statementsLISTEN or UNLISTEN directly when usingpg_listen .
Pgtcl takes care of issuing those statements for you. But if you want to send a NOTIFY message
yourself, invoke the SQL NOTIFY statement usingpg_exec .

55

pg_lo_creat

Name
pg_lo_creat — create a large object

Synopsis

pg_lo_creat conn mode

Inputs

conn

Specifies a valid database connection.

mode

Specifies the access mode for the large object

Outputs

objOid

The oid of the large object created.

Description

pg_lo_creat creates an Inversion Large Object.

Usage

mode can be any or’ing together ofINV_READandINV_WRITE. The “or” operator is| .

[pg_lo_creat $conn "INV_READ|INV_WRITE"]

56

pg_lo_open

Name
pg_lo_open — open a large object

Synopsis

pg_lo_open conn objOid mode

Inputs

conn

Specifies a valid database connection.

objOid

Specifies a valid large object oid.

mode

Specifies the access mode for the large object

Outputs

fd

A file descriptor for use in later pg_lo* routines.

Description

pg_lo_open open an Inversion Large Object.

Usage

Mode can be eitherr , w, or rw .

57

pg_lo_close

Name
pg_lo_close — close a large object

Synopsis

pg_lo_close conn fd

Inputs

conn

Specifies a valid database connection.

fd

A file descriptor for use in later pg_lo* routines.

Outputs

None

Description

pg_lo_close closes an Inversion Large Object.

Usage

58

pg_lo_read

Name
pg_lo_read — read a large object

Synopsis

pg_lo_read conn fd bufVar len

Inputs

conn

Specifies a valid database connection.

fd

File descriptor for the large object from pg_lo_open.

bufVar

Specifies a valid buffer variable to contain the large object segment.

len

Specifies the maximum allowable size of the large object segment.

Outputs

None

Description

pg_lo_read reads at mostlen bytes from a large object into a variable namedbufVar .

Usage

bufVar must be a valid variable name.

59

pg_lo_write

Name
pg_lo_write — write a large object

Synopsis

pg_lo_write conn fd buf len

Inputs

conn

Specifies a valid database connection.

fd

File descriptor for the large object from pg_lo_open.

buf

Specifies a valid string variable to write to the large object.

len

Specifies the maximum size of the string to write.

Outputs

None

Description

pg_lo_write writes at mostlen bytes to a large object from a variablebuf .

Usage

buf must be the actual string to write, not a variable name.

60

pg_lo_lseek

Name
pg_lo_lseek — seek to a position in a large object

Synopsis

pg_lo_lseek conn fd offset whence

Inputs

conn

Specifies a valid database connection.

fd

File descriptor for the large object from pg_lo_open.

offset

Specifies a zero-based offset in bytes.

whence

whence can beSEEK_CUR, SEEK_END, or SEEK_SET

Outputs

None

Description

pg_lo_lseek positions tooffset bytes from the beginning of the large object.

Usage

whence can beSEEK_CUR, SEEK_END, or SEEK_SET.

61

pg_lo_tell

Name
pg_lo_tell — return the current seek position of a large object

Synopsis

pg_lo_tell conn fd

Inputs

conn

Specifies a valid database connection.

fd

File descriptor for the large object from pg_lo_open.

Outputs

offset

A zero-based offset in bytes suitable for input topg_lo_lseek .

Description

pg_lo_tell returns the current tooffset in bytes from the beginning of the large object.

Usage

62

pg_lo_unlink

Name
pg_lo_unlink — delete a large object

Synopsis

pg_lo_unlink conn lobjId

Inputs

conn

Specifies a valid database connection.

lobjId

Identifier for a large object.

Outputs

None

Description

pg_lo_unlink deletes the specified large object.

Usage

63

pg_lo_import

Name
pg_lo_import — import a large object from a file

Synopsis

pg_lo_import conn filename

Inputs

conn

Specifies a valid database connection.

filename

Unix file name.

Outputs

None

Description

pg_lo_import reads the specified file and places the contents into a large object.

Usage

pg_lo_import must be called within a BEGIN/END transaction block.

64

pg_lo_export

Name
pg_lo_export — export a large object to a file

Synopsis

pg_lo_export conn lobjId filename

Inputs

conn

Specifies a valid database connection.

lobjId

Large object identifier.

filename

Unix file name.

Outputs

None

Description

pg_lo_export writes the specified large object into a Unix file.

Usage

pg_lo_export must be called within a BEGIN/END transaction block.

65

Chapter 5. libpgeasy - Simplified C Library

Author: Written by Bruce Momjian (<pgman@candle.pha.pa.us >) and last updated 2000-03-30

pgeasy allows you to cleanly interface to the libpq library, more like a 4GL SQL interface. Refer to
Chapter 1for more information about libpq

It consists of set of simplified C functions that encapsulate the functionality of libpq. The functions
are:

• PGresult *doquery(char *query);

• PGconn *connectdb(char *options);

• void disconnectdb();

• int fetch(void *param,...);

• int fetchwithnulls(void *param,...);

• void reset_fetch();

• void on_error_continue();

• void on_error_stop();

• PGresult *get_result();

• void set_result(PGresult *newres);

• void unset_result(PGresult *oldres);

Many functions return a structure or value, so you can do more work with the result if required.

You basically connect to the database withconnectdb , issue your query withdoquery , fetch the
results withfetch , and finish withdisconnectdb .

ForSELECTqueries,fetch allows you to pass pointers as parameters, and on return the variables are
filled with data from the binary cursor you opened. These binary cursors cannot be used if you are
running the pgeasy client on a system with a different architecture than the database server. If you
pass a NULL pointer parameter, the column is skipped.fetchwithnulls allows you to retrieve the
NULL status of the field by passing anint* after each result pointer, which returns true or false if
the field is null. You can always use libpq functions on thePGresult pointer returned bydoquery .
reset_fetch starts the fetch back at the beginning.

get_result , set_result , andunset_result allow you to handle multiple result sets at the same
time.

There are several demonstration programs in the source directory.

66

Chapter 6. ecpg - Embedded SQL in C
This describes the embedded SQL package for PostgreSQL. It works with C and C++. It was written
by Linus Tolke (<linus@epact.se >) and Michael Meskes (<meskes@debian.org >). The pack-
age is installed with the PostgreSQL distribution, and carries a similar license.

6.1. Why Embedded SQL?
Embedded SQL has advantages over other methods for handling SQL queries. It takes care of the
tedious passing of information to and from variables in your C or C++ program. Many RDBMS
packages support this embedded language.

There is an ANSI standard describing how the embedded language should work. ecpg was designed
to match this standard as much as possible. It is possible to port embedded SQL programs written for
other RDBMS to PostgreSQL.

6.2. The Concept
You write your program in C/C++ with special SQL constructs. When declaring variables to be used
in SQL statements, you need to put them in a specialdeclaresection. You use a special syntax for the
SQL queries.

Before compiling you run the file through the embedded SQL C preprocessor and it converts the SQL
statements you used to function calls with the variables used as arguments. Both query input and
result output variables are passed.

After compiling, you must link with a special library that contains needed functions. These functions
fetch information from the arguments, perform the SQL query using thelibpq interface, and put the
result in the arguments specified for output.

6.3. How To Use ecpg
This section describes how to use ecpg.

6.3.1. Preprocessor

The preprocessor is called ecpg. After installation it resides in the PostgreSQLbin/ directory.

6.3.2. Library

The ecpg library is calledlibecpg.a or libecpg.so . Additionally, the library uses thelibpq

library for communication to the PostgreSQL server. You will have to link your program using-
lecpg -lpq .

The library has some methods that are “hidden” but may prove useful.

• ECPGdebug(int on , FILE * stream) turns on debug logging if called with the first argument
non-zero. Debug logging is done onstream . Most SQL statement log their arguments and results.

67

Chapter 6. ecpg - Embedded SQL in C

The most important function ,ECPGdo, logs all SQL statements with both the expanded string, i.e.
the string with all the input variables inserted, and the result from the PostgreSQL server. This can
be very useful when searching for errors in your SQL statements.

• ECPGstatus() This method returns TRUE if we are connected to a database and FALSE if not.

6.3.3. Error handling

To detect errors from the PostgreSQL server, include a line like:

exec sql include sqlca;

in the include section of your file. This will define a struct and a variable with the namesqlca as
follows:

struct sqlca
{

char sqlcaid[8];
long sqlabc;
long sqlcode;
struct
{

int sqlerrml;
char sqlerrmc[70];

} sqlerrm;
char sqlerrp[8];
long sqlerrd[6];
/* 0: empty */
/* 1: OID of processed tuple if applicable */
/* 2: number of rows processed in an INSERT, UPDATE */
/* or DELETE statement */
/* 3: empty */
/* 4: empty */
/* 5: empty */
char sqlwarn[8];
/* 0: set to ’W’ if at least one other is ’W’ */
/* 1: if ’W’ at least one character string */
/* value was truncated when it was */
/* stored into a host variable. */
/* 2: empty */
/* 3: empty */
/* 4: empty */
/* 5: empty */
/* 6: empty */
/* 7: empty */
char sqlext[8];

} sqlca;

If an no error occurred in the last SQL statement.sqlca.sqlcode will be 0 (ECPG_NO_ERROR).
If sqlca.sqlcode is less that zero, this is a serious error, like the database definition does not
match the query. If it is greater than zero, it is a normal error like the table did not contain the requested
row.

68

Chapter 6. ecpg - Embedded SQL in C

sqlca.sqlerrm.sqlerrmc will contain a string that describes the error. The string ends with
the line number in the source file.

These are the errors that can occur:

-12, Out of memory in line %d.

Should not normally occur. This indicates your virtual memory is exhausted.

-200 (ECPG_UNSUPPORTED): Unsupported type %s on line %d.

Should not normally occur. This indicates the preprocessor has generated something that the
library does not know about. Perhaps you are running incompatible versions of the preprocessor
and the library.

-201 (ECPG_TOO_MANY_ARGUMENTS): Too many arguments line %d.

This means that PostgreSQL has returned more arguments than we have matching variables.
Perhaps you have forgotten a couple of the host variables in theINTO :var1,:var2 -list.

-202 (ECPG_TOO_FEW_ARGUMENTS): Too few arguments line %d.

This means that PostgreSQL has returned fewer arguments than we have host variables. Perhaps
you have too many host variables in theINTO :var1,:var2 -list.

-203 (ECPG_TOO_MANY_MATCHES): Too many matches line %d.

This means the query has returned several rows but the variables specified are not arrays. The
SELECT command was not unique.

-204 (ECPG_INT_FORMAT): Not correctly formatted int type: %s line %d.

This means the host variable is of typeint and the field in the PostgreSQL database is of another
type and contains a value that cannot be interpreted as anint . The library usesstrtol() for
this conversion.

-205 (ECPG_UINT_FORMAT): Not correctly formatted unsigned type: %s line

%d.

This means the host variable is of typeunsigned int and the field in the PostgreSQL database
is of another type and contains a value that cannot be interpreted as anunsigned int . The
library usesstrtoul() for this conversion.

-206 (ECPG_FLOAT_FORMAT): Not correctly formatted floating-point type: %s

line %d.

This means the host variable is of typefloat and the field in the PostgreSQL database is of an-
other type and contains a value that cannot be interpreted as afloat . The library usesstrtod()

for this conversion.

-207 (ECPG_CONVERT_BOOL): Unable to convert %s to bool on line %d.

This means the host variable is of typebool and the field in the PostgreSQL database is neither
’t’ nor ’f’ .

-208 (ECPG_EMPTY): Empty query line %d.

PostgreSQL returnedPGRES_EMPTY_QUERY, probably because the query indeed was empty.

-209 (ECPG_MISSING_INDICATOR): NULL value without indicator in line %d.

PostgreSQL returnedECPG_MISSING_INDICATORbecause a NULL was returned and no NULL
indicator variable was supplied.

69

Chapter 6. ecpg - Embedded SQL in C

-210 (ECPG_NO_ARRAY): Variable is not an array in line %d.

PostgreSQL returnedECPG_NO_ARRAYbecause an ordinary variable was used in a place that
requires an array.

-211 (ECPG_DATA_NOT_ARRAY): Data read from backend is not an array in line

%d.

PostgreSQL returnedECPG_DATA_NOT_ARRAYbecause the database returned an ordinary vari-
able in a place that requires array value.

-220 (ECPG_NO_CONN): No such connection %s in line %d.

The program tried to access a connection that does not exist.

-221 (ECPG_NOT_CONN): Not connected in line %d.

The program tried to access a connection that does exist but is not open.

-230 (ECPG_INVALID_STMT): Invalid statement name %s in line %d.

The statement you are trying to use has not been prepared.

-240 (ECPG_UNKNOWN_DESCRIPTOR): Descriptor %s not found in line %d.

The descriptor specified was not found. The statement you are trying to use has not been pre-
pared.

-241 (ECPG_INVALID_DESCRIPTOR_INDEX): Descriptor index out of range in

line %d.

The descriptor index specified was out of range.

-242 (ECPG_UNKNOWN_DESCRIPTOR_ITEM): Descriptor %s not found in line %d.

The descriptor specified was not found. The statement you are trying to use has not been pre-
pared.

-243 (ECPG_VAR_NOT_NUMERIC): Variable is not a numeric type in line %d.

The database returned a numeric value and the variable was not numeric.

-244 (ECPG_VAR_NOT_CHAR): Variable is not a character type in line %d.

The database returned a non-numeric value and the variable was numeric.

-400 (ECPG_PGSQL): Postgres error: %s line %d.

Some PostgreSQL error. The message contains the error message from the PostgreSQL backend.

-401 (ECPG_TRANS): Error in transaction processing line %d.

PostgreSQL signaled that we cannot start, commit or rollback the transaction.

-402 (ECPG_CONNECT): Could not connect to database %s in line %d.

The connect to the database did not work.

100 (ECPG_NOT_FOUND): Data not found line %d.

This is a “normal” error that tells you that what you are querying cannot be found or you are at
the end of the cursor.

70

Chapter 6. ecpg - Embedded SQL in C

6.4. Limitations
What will never be included and why it cannot be done:

Oracle’s single tasking

Oracle version 7.0 on AIX 3 uses OS-supported locks in shared memory that allow an application
designer to link an application in a “single tasking” way. Instead of starting one client process
per application process, both the database part and the application part run in the same process.
In later versions of Oracle this is no longer supported.

This would require a total redesign of the PostgreSQL access model and the performance gain
does not justify the effort.

6.5. Porting From Other RDBMS Packages
The design of ecpg follows the SQL standard. Porting from a standard RDBMS should not be a prob-
lem. Unfortunately there is no such thing as a standard RDBMS. Therefore ecpg tries to understand
syntax extensions as long as they do not create conflicts with the standard.

The following list shows all the known incompatibilities. If you find one not listed please notify the
developers. Note, however, that we list only incompatibilities from a precompiler of another RDBMS
to ecpg and not ecpg features that these RDBMS do not support.

Syntax of FETCH

The standard syntax for FETCH is:

FETCH [direction] [amount] IN|FROMcursor .

Oracle, however, does not use the keywords IN or FROM. This feature cannot be added since it
would create parsing conflicts.

6.6. For the Developer
This section explain how ecpg works internally. It contains valuable information to help users under-
stand how to use ecpg.

6.6.1. The Preprocessor

The first four lines written byecpgto the output are fixed lines. Two are comments and two are include
lines necessary to interface to the library.

Then the preprocessor reads through the file and writes output. Normally it just echoes everything to
the output.

When it sees anEXEC SQL statement, it intervenes and changes it. TheEXEC SQL statement can
be one of these:

71

Chapter 6. ecpg - Embedded SQL in C

Declare sections

Declaresections begin with:

exec sql begin declare section;

and end with:

exec sql end declare section;

In this section only variable declarations are allowed. Every variable declared within this section
is stored in a list of variables indexed by name together with its corresponding type.

In particular the definition of a structure or union also must be listed inside adeclare section.
Otherwise ecpg cannot handle these types since it does not know the definition.

The declaration is also echoed to the file to make it a normal C variable.

The special typesVARCHARandVARCHAR2are converted into a named struct for every variable.
A declaration like:

VARCHAR var[180];

is converted into:

struct varchar_var { int len; char arr[180]; } var;

Include statements

An include statement looks like:

exec sql include filename;

Note that this is NOT the same as:

#include <filename.h >

Instead the file specified is parsed by ecpg so the contents of the file are included in the resulting
C code. This way you are able to specify EXEC SQL commands in an include file.

Connect statement

A connect statement looks like:

exec sql connect to connection target ;

It creates a connection to the specified database.

Theconnection target can be specified in the following ways:

• dbname[@server][:port][as connection name][user user name]

• tcp:postgresql://server[:port][/dbname][as connection name][user user

name]

• unix:postgresql://server[:port][/dbname][as connection name][user

user name]

• character variable [as connection name][user user name]

• character string [as connection name][user]

• default

• user

72

Chapter 6. ecpg - Embedded SQL in C

There are also different ways to specify the user name:

• userid

• userid / password

• userid identified by password

• userid using password

Finally, theuserid andpassword may be a constant text, a character variable, or a character
string.

Disconnect statements

A disconnect statement looks like:

exec sql disconnect [connection target];

It closes the connection to the specified database.

Theconnection target can be specified in the following ways:

• connection name

• default

• current

• all

Open cursor statement

An open cursor statement looks like:

exec sql open cursor ;

and is not copied to the output. Instead, the cursor’sDECLARE command is used because it
opens the cursor as well.

Commit statement

A commit statement looks like:

exec sql commit;

Rollback statement

A rollback statement looks like:

exec sql rollback;

Other statements

Other SQL statements are used by starting withexec sqland ending with;. Everything in be-
tween is treated as an SQL statement and parsed for variable substitution.

Variable substitution occurs when a symbol starts with a colon (:). The variable with that name is
looked up among the variables that were previously declared within adeclaresection. Depending
on whether the variable is being use for input or output, a pointer to the variable is output to allow
access by the function.

73

Chapter 6. ecpg - Embedded SQL in C

For every variable that is part of the SQL query, the function gets other arguments:

• The type as a special symbol.

• A pointer to the value or a pointer to the pointer.

• The size of the variable if it is achar or varchar .

• The number of elements in the array (for array fetches).

• The offset to the next element in the array (for array fetches).

• The type of the indicator variable as a special symbol.

• A pointer to the value of the indicator variable or a pointer to the pointer of the indicator
variable.

• 0.

• Number of elements in the indicator array (for array fetches).

• The offset to the next element in the indicator array (for array fetches).

6.6.2. A Complete Example

Here is a complete example describing the output of the preprocessor of a filefoo.pgc :

exec sql begin declare section;
int index;
int result;
exec sql end declare section;
...
exec sql select res into :result from mytable where index = :index;

is translated into:

/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h >;
#include <ecpglib.h >;

/* exec sql begin declare section */

#line 1 "foo.pgc"

int index;
int result;

/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "select res from mytable where index = ? ",

ECPGt_int,&(index),1L,1L,sizeof(int),
ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
ECPGt_int,&(result),1L,1L,sizeof(int),
ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);

#line 147 "foo.pgc"

(The indentation in this manual is added for readability and not something the preprocessor does.)

74

Chapter 6. ecpg - Embedded SQL in C

6.6.3. The Library

The most important function in the library isECPGdo. It takes a variable number of arguments. Hope-
fully there are no computers that limit the number of variables that can be accepted by avarargs()

function. This can easily add up to 50 or so arguments.

The arguments are:

A line number

This is a line number of the original line; used in error messages only.

A string

This is the SQL query that is to be issued. It is modified by the input variables, i.e. the variables
that where not known at compile time but are to be entered in the query. Where the variables
should go the string contains?.

Input variables

As described in the section about the preprocessor, every input variable gets ten arguments.

ECPGt_EOIT

An enum telling that there are no more input variables.

Output variables

As described in the section about the preprocessor, every input variable gets ten arguments. These
variables are filled by the function.

ECPGt_EORT

An enum telling that there are no more variables.

In the default mode, queries are committed only whenexec sql commitis issued. Ecpg also supports
auto-commit of transactions via the-t command-line option or via theexec sql set autocom-

mit to on statement. Inautocommit mode, each query is automatically committed unless it is
inside an explicit transaction block. This mode can be explicitly turned off usingexec sql set

autocommit to off .

75

Chapter 7. ODBC Interface

7.1. Introduction

Note: Background information originally by Tim Goeke (<tgoeke@xpressway.com >)

ODBC (Open Database Connectivity) is an abstract API that allows you to write applications that
can interoperate with various RDBMS servers. ODBC provides a product-neutral interface between
frontend applications and database servers, allowing a user or developer to write applications that are
portable between servers from different manufacturers..

The ODBC API matches up on the backend to an ODBC-compatible data source. This could be
anything from a text file to an Oracle or PostgreSQL RDBMS.

The backend access comes from ODBC drivers, or vendor-specific drivers that allow data access.
psqlODBC, which is included in the PostgreSQL distribution, is such a driver, along with others that
are available, such as the OpenLink ODBC drivers.

Once you write an ODBC application, youshould be able to connect toany back-end database,
regardless of the vendor, as long as the database schema is the same.

For example. you could have MS SQL Server and PostgreSQL servers that have exactly the same
data. Using ODBC, your Windows application would make exactly the same calls and the back-end
data source would look the same (to the Windows application).

7.2. Installation
In order to make use of an ODBC driver there must exist adriver manageron the system where
the ODBC driver is to be used. There are two free ODBC driver managers for Unix-like operating
systems known to us: iODBC1 and unixODBC2. Instructions for installing these driver managers
are to be found in the respective distribution. Software that provides database access through ODBC
should provide its own driver manager (which may well be one of these two). Having said that, any
driver manager that you can find for your platform should support the PostgreSQL ODBC driver, or
any other ODBC driver for that matter.

Note: The unixODBC distribution ships with a PostgreSQL ODBC driver of its own, which is
similar to the one contained in the PostgreSQL distribution. It is up to you which one you want to
use. We plan to coordinate the development of both drivers better in the future.

To install the ODBC you simply need to supply the--enable-odbc option to theconfigure script
when you are building the entire PostgreSQL distribution. The library will then automatically be built
and installed with the rest of the programs. If you forget that option or want to build the ODBC driver
later you can change into the directorysrc/interfaces/odbc and domake andmake install

there.

It is also possible to build the driver to be specifically tuned for use with iODBC or unixODBC.
This means in particular that the driver will use the driver manager’s routines to process the config-

1. http://www.iodbc.org
2. http://www.unixodbc.org

76

Chapter 7. ODBC Interface

uration files, which is probably desirable since it creates a more consistent ODBC environment on
your system. If you want to do that, then supply theconfigure options--with-iodbc or --with-

unixodbc (but not both).

If you build a “stand-alone” driver (not tied to iODBC or unixODBC), then you can specify where
the driver should look for the configuration fileodbcinst.ini . By default it will be the directory
/usr/local/pgsql/etc/ , or equivalent, depending on what--prefix and/or --sysconfdir

options you supplied toconfigure . To select a specific location outside the PostgreSQL installation
layout, use the--with-odbcinst option. To be most useful, it should be arranged that the driver
and the driver manager read the same configuration file.

Additionally, you should install the ODBC catalog extensions. That will provide a number of func-
tions mandated by the ODBC standard that are not supplied by PostgreSQL by default. The file
/usr/local/pgsql/share/odbc.sql (in the default installation layout) contains the appropriate
definitions, which you can install as follows:

psql -d template1 -f LOCATION/odbc.sql

where specifyingtemplate1 as the target database will ensure that all subsequent new databases will
have these same definitions. If for any reason you want to remove these functions again, run the file
odbc-drop.sql throughpsql.

7.3. Configuration Files
~/.odbc.ini contains user-specified access information for the psqlODBC driver. The file uses
conventions typical for Windows Registry files.

The .odbc.ini file has three required sections. The first is[ODBC Data Sources] which is a
list of arbitrary names and descriptions for each database you wish to access. The second required
section is the Data Source Specification and there will be one of these sections for each database.
Each section must be labeled with the name given in[ODBC Data Sources] and must contain the
following entries:

Driver = prefix /lib/libpsqlodbc.so
Database = DatabaseName
Servername = localhost
Port = 5432

Tip: Remember that the PostgreSQL database name is usually a single word, without path names
of any sort. The PostgreSQL server manages the actual access to the database, and you need
only specify the name from the client.

Other entries may be inserted to control the format of the display. The third required section is
[ODBC] which must contain theInstallDir keyword and which may contain other options.

Here is an example.odbc.ini file, showing access information for three databases:

[ODBC Data Sources]
DataEntry = Read/Write Database
QueryOnly = Read-only Database
Test = Debugging Database
Default = Postgres Stripped

[DataEntry]

77

Chapter 7. ODBC Interface

ReadOnly = 0
Servername = localhost
Database = Sales

[QueryOnly]
ReadOnly = 1
Servername = localhost
Database = Sales

[Test]
Debug = 1
CommLog = 1
ReadOnly = 0
Servername = localhost
Username = tgl
Password = "no$way"
Port = 5432
Database = test

[Default]
Servername = localhost
Database = tgl
Driver = /opt/postgres/current/lib/libpsqlodbc.so

[ODBC]
InstallDir = /opt/applix/axdata/axshlib

7.4. Windows Applications
In the real world, differences in drivers and the level of ODBC support lessens the potential of ODBC:

• Access, Delphi, and Visual Basic all support ODBC directly.
• Under C++, such as Visual C++, you can use the C++ ODBC API.
• In Visual C++, you can use theCRecordSet class, which wraps the ODBC API set within an MFC

4.2 class. This is the easiest route if you are doing Windows C++ development under Windows NT.

7.4.1. Writing Applications

“ If I write an application for PostgreSQL can I write it using ODBC calls to the PostgreSQL server,
or is that only when another database program like MS SQL Server or Access needs to access the
data? ”

The ODBC API is the way to go. For Visual C++ coding you can find out more at Microsoft’s web
site or in your Visual C++ documentation.

Visual Basic and the other RAD tools haveRecordset objects that use ODBC directly to access data.
Using the data-aware controls, you can quickly link to the ODBC back-end database (veryquickly).

Playing around with MS Access will help you sort this out. Try usingFile−→Get External Data.

78

Chapter 7. ODBC Interface

Tip: You’ll have to set up a DSN first.

7.5. ApplixWare
ApplixWare has an ODBC database interface supported on at least some platforms. ApplixWare 4.4.2
has been demonstrated under Linux with PostgreSQL 7.0 using the psqlODBC driver contained in the
PostgreSQL distribution.

7.5.1. Configuration

ApplixWare must be configured correctly in order for it to be able to access the PostgreSQL ODBC
software drivers.

Enabling ApplixWare Database Access

These instructions are for the 4.4.2 release of ApplixWare on Linux. Refer to theLinux Sys Admin
on-line book for more detailed information.

1. You must modifyaxnet.cnf so thatelfodbc can findlibodbc.so (the ODBC driver man-
ager) shared library. This library is included with the ApplixWare distribution, butaxnet.cnf

needs to be modified to point to the correct location.

As root, edit the fileapplixroot /applix/axdata/axnet.cnf .

a. At the bottom ofaxnet.cnf , find the line that starts with

#libFor elfodbc /ax/ ...

b. Change line to read

libFor elfodbc applixroot /applix/axdata/axshlib/lib

which will tell elfodbc to look in this directory for the ODBC support
library. Typically Applix is installed in /opt so the full path would be
/opt/applix/axdata/axshlib/lib , but if you have installed Applix somewhere
else then change the path accordingly.

2. Create.odbc.ini as described inSection 7.3. You may also want to add the flag

TextAsLongVarchar=0

to the database-specific portion of.odbc.ini so that text fields will not be shown as**BLOB** .

Testing ApplixWare ODBC Connections

1. Bring up Applix Data

2. Select the PostgreSQL database of interest.

a. SelectQuery−→Choose Server.

b. SelectODBC, and clickBrowse. The database you configured in.odbc.ini should
be shown. Make sure that theHost: field is empty (if it is not,axnet will try to contact
axnet on another machine to look for the database).

79

Chapter 7. ODBC Interface

c. Select the database in the box that was launched byBrowse, then clickOK.

d. Enter user name and password in the login identification dialog, and clickOK.

You should seeStarting elfodbc server in the lower left corner of the data window. If you get
an error dialog box, see the debugging section below.

3. The “Ready” message will appear in the lower left corner of the data window. This indicates that
you can now enter queries.

4. Select a table fromQuery−→Choose tables, and then selectQuery−→Query to access the
database. The first 50 or so rows from the table should appear.

7.5.2. Common Problems

The following messages can appear while trying to make an ODBC connection through Applix Data:

Cannot launch gateway on server

elfodbc can’t find libodbc.so . Check youraxnet.cnf .

Error from ODBC Gateway: IM003::[iODBC][Driver Manager]Specified driver

could not be loaded

libodbc.so cannot find the driver listed in.odbc.ini . Verify the settings.

Server: Broken Pipe

The driver process has terminated due to some other problem. You might not have an up-to-date
version of the PostgreSQL ODBC package.

setuid to 256: failed to launch gateway

The September release of ApplixWare 4.4.1 (the first release with official ODBC support un-
der Linux) shows problems when user names exceed eight (8) characters in length. Problem
description contributed by Steve Campbell (<scampbell@lear.com >).

Author: Contributed by Steve Campbell (<scampbell@lear.com >), 1998-10-20

The axnet program’s security system seems a little suspect. axnet does things on behalf of the user
and on a true multiuser system it really should be run with root security (so it can read/write in each
user’s directory). I would hesitate to recommend this, however, since we have no idea what security
holes this creates.

7.5.3. Debugging ApplixWare ODBC Connections

One good tool for debugging connection problems uses the Unix system utility strace.

Debugging with strace

1. Start ApplixWare.

2. Start an strace on theaxnet process. For example, if

80

Chapter 7. ODBC Interface

$ ps -aucx | grep ax

shows

cary 10432 0.0 2.6 1740 392 ? S Oct 9 0:00 axnet
cary 27883 0.9 31.0 12692 4596 ? S 10:24 0:04 axmain

Then run

$ strace -f -s 1024 -p 10432

3. Check thestraceoutput.

Note from Cary: Many of the error messages from ApplixWare go to stderr , but I’m not
sure where stderr is sent, so strace is the way to find out.

For example, after getting a Cannot launch gateway on server, I ranstraceon axnet and got

[pid 27947] open("/usr/lib/libodbc.so", O_RDONLY) = -1 ENOENT (No such file or di-
rectory)
[pid 27947] open("/lib/libodbc.so", O_RDONLY) = -1 ENOENT (No such file or directory)
[pid 27947] write(2, "/usr2/applix/axdata/elfodbc: can’t load library ’libodbc.so’\n", 61) = -
1 EIO (I/O error)

So what is happening is thatapplix elfodbc is searching forlibodbc.so , but it cannot find it.
That is whyaxnet.cnf needed to be changed.

7.5.4. Running the ApplixWare Demo

In order to go through theApplixWare Data Tutorial, you need to create the sample tables that the
Tutorial refers to. The ELF Macro used to create the tables tries to use a NULL condition on many of
the database columns, and PostgreSQL does not currently allow this option.

To get around this problem, you can do the following:

Modifying the ApplixWare Demo

1. Copy /opt/applix/axdata/eng/Demos/sqldemo.am to a local directory.

2. Edit this local copy ofsqldemo.am :

a. Search fornull_clause = "NULL" .

b. Change this tonull_clause = "" .

3. Start Applix Macro Editor.

4. Open thesqldemo.am file from the Macro Editor.

5. SelectFile−→Compile and Save.

6. Exit Macro Editor.

7. Start Applix Data.

8. Select*−→Run Macro.

81

Chapter 7. ODBC Interface

9. Enter the valuesqldemo , then clickOK.

You should see the progress in the status line of the data window (in the lower left corner).

10. You should now be able to access the demo tables.

7.5.5. Useful Macros

You can add information about your database login and password to the standard Applix start-up
macro file. This is an example~/axhome/macros/login.am file:

macro login
set_set_system_var@("sql_username@","tgl")
set_system_var@("sql_passwd@","no$way")
endmacro

Caution
You should be careful about the file protections on any file containing user name
and password information.

82

Chapter 8. JDBC Interface

Author: Originally written by Peter T. Mount (<peter@retep.org.uk >), the original author of the
JDBC driver.

JDBC is a core API of Java 1.1 and later. It provides a standard set of interfaces to SQL-compliant
databases.

PostgreSQL provides atype 4JDBC Driver. Type 4 indicates that the driver is written in Pure Java, and
communicates in the database system’s own network protocol. Because of this, the driver is platform
independent; once compiled, the driver can be used on any system.

This chapter is not intended as a complete guide to JDBC programming, but should help to get you
started. For more information refer to the standard JDBC API documentation. Also, take a look at the
examples included with the source. The basic example is used here.

8.1. Setting up the JDBC Driver

8.1.1. Getting the Driver

Precompiled versions of the driver can be downloaded from the PostgreSQL JDBC web site1.

Alternatively you can build the driver from source. Although you should only need to do this if you
are making changes to the source code.

Starting with PostgreSQL version 7.1, the JDBC driver is built using Ant, a special tool for building
Java-based packages. You should download Ant from the Ant web site2 and install it before proceed-
ing. Precompiled Ant distributions are typically set up to read a file.antrc in the current user’s home
directory for configuration. For example, to use a different JDK than the default, this may work:

JAVA_HOME=/usr/local/sun-jdk1.3
JAVACMD=$JAVA_HOME/bin/java

To build the driver, add the--with-java option to yourconfigure command line, e.g.,

$./configure --prefix= xxx --with-java ...

This will build and install the driver along with the rest of the PostgreSQL package when you issue
themake/gmake andmake/gmake install commands. If you only want to build the driver and not
the rest of PostgreSQL, change into the directorysrc/interfaces/jdbc and issue the respective
make/gmake command there. Refer to the PostgreSQL installation instructions for more information
about the configuration and build process.

When building the driver from source the jar file that is created will be namedpostgresql.jar .
The build will create this file in thesrc/interfaces/jdbc/jars directory. The resulting driver
will be built for the version of Java you are running. If you build with a 1.1 JDK you will build a
version that supports the jdbc1 specification, if you build with a Java2 JDK (i.e. JDK1.2 or JDK1.3)
you will build a version that supports the jdbc2 specification.

1. http://jdbc.postgresql.org
2. http://jakarta.apache.org/ant/index.html

83

Chapter 8. JDBC Interface

Note: Do not try to build the driver by calling javac directly, as the driver uses some dynamic
loading techniques for performance reasons, and javac cannot cope. Do not try to run ant directly
either, because some configuration information is communicated through the makefiles. Running
ant directly without providing these parameters will result in a broken driver.

8.1.2. Setting up the Class Path

To use the driver, the jar archive (namedpostgresql.jar if you built from source, otherwise it
will likely be namedjdbc7.2-1.1.jar or jdbc7.2-1.2.jar for the jdbc1 and jdbc2 versions
respectively) needs to be included in the class path, either by putting it in theCLASSPATHenvironment
variable, or by using flags on thejava command line. By default, the jar archive is installed in the
directory /usr/local/pgsql/share/java . You may have it in a different directory if you used
the --prefix option when you ranconfigure , or if you are using a binary distribution that places
it in some different location.

For instance, I have an application that uses the JDBC driver to access a large database containing
astronomical objects. I have the application and the JDBC driver installed in the/usr/local/lib

directory, and the Java JDK installed in/usr/local/jdk1.3.1 . To run the application, I would
use:

export CLASSPATH=/usr/local/lib/finder.jar ➊:/usr/local/pgsql/share/java/postgresql.jar:.
java Finder

➊ finder.jar contains the Finder application.

Loading the driver from within the application is covered inSection 8.2.

8.1.3. Preparing the Database for JDBC

Because Java only uses TCP/IP connections, the PostgreSQL server must be configured to accept
TCP/IP connections. This can be done by settingtcpip_socket = true in thepostgresql.conf

file or by supplying the-i option flag when startingpostmaster.

Also, the client authentication setup in thepg_hba.conf file may need to be configured. Refer to the
Administrator’s Guidefor details. The JDBC Driver supports trust, ident, password, md5, and crypt
authentication methods.

8.2. Using the Driver

8.2.1. Importing JDBC

Any source that uses JDBC needs to import thejava.sql package, using:

import java.sql.*;

84

Chapter 8. JDBC Interface

Important: Do not import the org.postgresql package. If you do, your source will not compile,
as javac will get confused.

8.2.2. Loading the Driver

Before you can connect to a database, you need to load the driver. There are two methods available,
and it depends on your code which is the best one to use.

In the first method, your code implicitly loads the driver using theClass.forName() method. For
PostgreSQL, you would use:

Class.forName("org.postgresql.Driver");

This will load the driver, and while loading, the driver will automatically register itself with JDBC.

Note: The forName() method can throw a ClassNotFoundException if the driver is not available.

This is the most common method to use, but restricts your code to use just PostgreSQL. If your
code may access another database system in the future, and you do not use any PostgreSQL-specific
extensions, then the second method is advisable.

The second method passes the driver as a parameter to the JVM as it starts, using the-D argument.
Example:

java -Djdbc.drivers=org.postgresql.Driver example.ImageViewer

In this example, the JVM will attempt to load the driver as part of its initialization. Once done, the
ImageViewer is started.

Now, this method is the better one to use because it allows your code to be used with other database
packages without recompiling the code. The only thing that would also change is the connection URL,
which is covered next.

One last thing: When your code then tries to open aConnection , and you get a No driver available
SQLException being thrown, this is probably caused by the driver not being in the class path, or the
value in the parameter not being correct.

8.2.3. Connecting to the Database

With JDBC, a database is represented by a URL (Uniform Resource Locator). With PostgreSQL, this
takes one of the following forms:

• jdbc:postgresql: database

• jdbc:postgresql:// host / database

• jdbc:postgresql:// host : port / database

where:

85

Chapter 8. JDBC Interface

host

The host name of the server. Defaults tolocalhost .

port

The port number the server is listening on. Defaults to the PostgreSQL standard port number
(5432).

database

The database name.

To connect, you need to get aConnection instance from JDBC. To do this, you would use the
DriverManager.getConnection() method:

Connection db = DriverManager.getConnection(url, username, password);

8.2.4. Closing the Connection

To close the database connection, simply call theclose() method to theConnection :

db.close();

8.3. Issuing a Query and Processing the Result
Any time you want to issue SQL statements to the database, you require aStatement or Pre-

paredStatement instance. Once you have aStatement or PreparedStatement , you can use
issue a query. This will return aResultSet instance, which contains the entire result.Example 8-1
illustrates this process.

Example 8-1. Processing a Simple Query in JDCB

This example will issue a simple query and print out the first column of each row using aStatement .

Statement st = db.createStatement();
ResultSet rs = st.executeQuery("SELECT * FROM mytable where columnfoo = 500");
while(rs.next()) {

System.out.print("Column 1 returned ");
System.out.println(rs.getString(1));

}
rs.close();
st.close();

This example will issue the same query as before using aPreparedStatement and a bind value in
the query.

int foovalue = 500;
PreparedStatement st = db.prepareStatement("SELECT * FROM mytable where colum-
nfoo = ?");
st.setInt(1, foovalue);
ResultSet rs = st.executeQuery();

86

Chapter 8. JDBC Interface

while(rs.next()) {
System.out.print("Column 1 returned ");
System.out.println(rs.getString(1));

}
rs.close();
st.close();

8.3.1. Using the Statement or PreparedStatement Interface

The following must be considered when using theStatement or PreparedStatement interface:

• You can use a singleStatement instance as many times as you want. You could create one as soon
as you open the connection and use it for the connection’s lifetime. But you have to remember that
only oneResultSet can exist perStatement or PreparedStatement at a given time.

• If you need to perform a query while processing aResultSet , you can simply create and use
anotherStatement .

• If you are using threads, and several are using the database, you must use a separateStatement for
each thread. Refer toSection 8.8if you are thinking of using threads, as it covers some important
points.

• When you are done using theStatement or PreparedStatement you should close it.

8.3.2. Using the ResultSet Interface

The following must be considered when using theResultSet interface:

• Before reading any values, you must callnext() . This returns true if there is a result, but more
importantly, it prepares the row for processing.

• Under the JDBC specification, you should access a field only once. It is safest to stick to this rule,
although at the current time, the PostgreSQL driver will allow you to access a field as many times
as you want.

• You must close aResultSet by callingclose() once you have finished using it.

• Once you make another query with theStatement used to create aResultSet , the currently open
ResultSet instance is closed automatically.

• ResultSet is currently read only. You can not update data through theResultSet . If you want
to update data you need to do it the old fashioned way by issuing a SQL update statement. This is
in conformance with the JDBC specification which does not require drivers to provide this func-
tionality.

8.4. Performing Updates
To change data (perform an insert, update, or delete) you use theexecuteUpdate() method.exe-

cuteUpdate() is similar to theexecuteQuery() used to issue a select, however it doesn’t return

87

Chapter 8. JDBC Interface

a ResultSet , instead it returns the number of records affected by the insert, update, or delete state-
ment.

Example 8-2. Simple Delete Example

This example will issue a simple delete and print out the number of rows deleted.

int foovalue = 500;
PreparedStatement st = db.prepareStatement("DELETE FROM mytable where colum-
nfoo = ?");
st.setInt(1, foovalue);
int rowsDeleted = st.executeUpdate();
System.out.println(rowsDeleted + " rows deleted");
st.close();

8.5. Creating and Modifying Database Objects
To create, modify or drop a database object like a table or view you use theexecute() method.
execute is similar to theexecuteQuery() used to issue a select, however it doesn’t return a result.

Example 8-3. Drop Table Example

This example will drop a table.

Statement st = db.createStatement();
ResultSet rs = st.executeQuery("DROP TABLE mytable");
st.close();

8.6. Storing Binary Data
PostgreSQL provides two distinct ways to store binary data. Binary data can be stored in a table using
PostgreSQL’s binary data typebytea , or by using theLarge Objectfeature which stores the binary
data in a separate table in a special format, and refers to that table by storing a value of typeOID in
your table.

In order to determine which method is appropriate you need to understand the limitations of each
method. Thebytea data type is not well suited for storing very large amounts of binary data. While a
column of typebytea can hold upto 1Gig of binary data, it would require a huge amount of memory
(RAM) to process such a large value. The Large Object method for storing binary data is better suited
to storing very large values, but it has its own limitations. Specifically deleting a row that contains
a Large Object does not delete the Large Object. Deleting the Large Object is a separate operation
that needs to be performed. Large Objects also have some security issues since anyone connected
to the database case view and/or modify any Large Object, even if they don’t have permissions to
view/update the row containing the Large Object.

7.2 is the first release of the JDBC Driver that supports thebytea data type. The introduction of
this functionality in 7.2 has introduced a change in behavior as compared to previous releases. In 7.2
the methodsgetBytes() , setBytes() , getBinaryStream() , andsetBinaryStream() operate
on thebytea data type. In 7.1 these methods operated on theOID data type associated with Large

88

Chapter 8. JDBC Interface

Objects. It is possible to revert the driver back to the old 7.1 behavior by setting thecompatible
property on theConnection to a value of7.1

To use thebytea data type you should simply use thegetBytes() , setBytes() , getBinaryS-

tream() , or setBinaryStream() methods.

To use the Large Object functionality you can use either theLargeObject API provided by the
PostgreSQL JDBC Driver, or by using thegetBLOB() andsetBLOB() methods.

Important: For PostgreSQL, you must access Large Objects within an SQL transaction. You
would open a transaction by using the setAutoCommit() method with an input parameter of
false .

Note: In a future release of the JDBC Driver, the getBLOB() and setBLOB() methods may no
longer interact with Large Objects and will instead work on bytea data types. So it is recom-
mended that you use the LargeObject API if you intend to use Large Objects.

Example 8-4. Binary Data Examples

For example, suppose you have a table containing the file name of an image and you also want to
store the image in abytea column:

CREATE TABLE images (imgname text, img bytea);

To insert an image, you would use:

File file = new File("myimage.gif");
FileInputStream fis = new FileInputStream(file);
PreparedStatement ps = conn.prepareStatement("INSERT INTO images VALUES (?, ?)");
ps.setString(1, file.getName());
ps.setBinaryStream(2, fis, file.length());
ps.executeUpdate();
ps.close();
fis.close();

Here,setBinaryStream() transfers a set number of bytes from a stream into the column of type
bytea . This also could have been done using thesetBytes() method if the contents of the image
was already in abyte[] .

Retrieving an image is even easier. (We usePreparedStatement here, but theStatement class
can equally be used.)

PreparedStatement ps = con.prepareStatement("SELECT img FROM images WHERE img-
name=?");
ps.setString(1, "myimage.gif");
ResultSet rs = ps.executeQuery();
if (rs != null) {

while(rs.next()) {
byte[] imgBytes = rs.getBytes(1);
// use the stream in some way here

}
rs.close();

}
ps.close();

Here the binary data was retrieved as anbyte[] . You could have used aInputStream object instead.

89

Chapter 8. JDBC Interface

Alternatively you could be storing a very large file and want to use theLargeObject API to store
the file:

CREATE TABLE imagesLO (imgname text, imgOID OID);

To insert an image, you would use:

// All LargeObject API calls must be within a transaction
conn.setAutoCommit(false);

// Get the Large Object Manager to perform operations with
LargeObjectManager lobj = ((org.postgresql.Connection)conn).getLargeObjectAPI();

//create a new large object
int oid = lobj.create(LargeObjectManager.READ | LargeObjectManager.WRITE);

//open the large object for write
LargeObject obj = lobj.open(oid, LargeObjectManager.WRITE);

// Now open the file
File file = new File("myimage.gif");
FileInputStream fis = new FileInputStream(file);

// copy the data from the file to the large object
byte buf[] = new byte[2048];
int s, tl = 0;
while ((s = fis.read(buf, 0, 2048)) > 0)
{

obj.write(buf, 0, s);
tl += s;

}

// Close the large object
obj.close();

//Now insert the row into imagesLO
PreparedStatement ps = conn.prepareStatement("INSERT INTO imagesLO VALUES (?, ?)");
ps.setString(1, file.getName());
ps.setInt(2, oid);
ps.executeUpdate();
ps.close();
fis.close();

Retrieving the image from the Large Object:

// All LargeObject API calls must be within a transaction
conn.setAutoCommit(false);

// Get the Large Object Manager to perform operations with
LargeObjectManager lobj = ((org.postgresql.Connection)conn).getLargeObjectAPI();

PreparedStatement ps = con.prepareStatement("SELECT imgOID FROM imagesLO WHERE imgname=?");
ps.setString(1, "myimage.gif");
ResultSet rs = ps.executeQuery();
if (rs != null) {

while(rs.next()) {
//open the large object for reading
int oid = rs.getInt(1);
LargeObject obj = lobj.open(oid, LargeObjectManager.READ);

90

Chapter 8. JDBC Interface

//read the data
byte buf[] = new byte[obj.size()];
obj.read(buf, 0, obj.size());
//do something with the data read here

// Close the object
obj.close();

}
rs.close();

}
ps.close();

8.7. PostgreSQL Extensions to the JDBC API
PostgreSQL is an extensible database system. You can add your own functions to the backend, which
can then be called from queries, or even add your own data types. As these are facilities unique to
PostgreSQL, we support them from Java, with a set of extension API’s. Some features within the core
of the standard driver actually use these extensions to implement Large Objects, etc.

8.7.1. Accessing the Extensions

To access some of the extensions, you need to use some extra methods in the
org.postgresql.Connection class. In this case, you would need to case the return value of
Driver.getConnection() . For example:

Connection db = Driver.getConnection(url, username, password);
// ...
// later on
Fastpath fp = ((org.postgresql.Connection)db).getFastpathAPI();

8.7.1.1. Class org.postgresql.Connection

public class Connection extends Object implements Connection

java.lang.Object
|
+----org.postgresql.Connection

These are the extra methods used to gain access to PostgreSQL’s extensions. Methods defined by
java.sql.Connection are not listed.

8.7.1.1.1. Methods

• public Fastpath getFastpathAPI() throws SQLException

This returns the Fastpath API for the current connection. It is primarily used by the Large Object
API.

The best way to use this is as follows:

import org.postgresql.fastpath.*;

91

Chapter 8. JDBC Interface

...
Fastpath fp = ((org.postgresql.Connection)myconn).getFastpathAPI();

wheremyconn is an openConnection to PostgreSQL.

Returns: Fastpath object allowing access to functions on the PostgreSQL backend.

Throws: SQLException by Fastpath when initializing for first time

•

public LargeObjectManager getLargeObjectAPI() throws SQLException

This returns the Large Object API for the current connection.

The best way to use this is as follows:

import org.postgresql.largeobject.*;
...
LargeObjectManager lo = ((org.postgresql.Connection)myconn).getLargeObjectAPI();

wheremyconn is an openConnection to PostgreSQL.

Returns: LargeObject object that implements the API

Throws: SQLException by LargeObject when initializing for first time

•

public void addDataType(String type, String name)

This allows client code to add a handler for one of PostgreSQL’s more unique data types. Normally,
a data type not known by the driver is returned byResultSet.getObject() as aPGobject

instance. This method allows you to write a class that extendsPGobject , and tell the driver the
type name, and class name to use. The down side to this, is that you must call this method each
time a connection is made.

The best way to use this is as follows:

...
((org.postgresql.Connection)myconn).addDataType("mytype","my.class.name");

...

where myconn is an openConnection to PostgreSQL. The handling class must extend
org.postgresql.util.PGobject .

8.7.1.2. Class org.postgresql.Fastpath

public class Fastpath extends Object

java.lang.Object
|
+----org.postgresql.fastpath.Fastpath

Fastpath is an API that exists within the libpq C interface, and allows a client machine to execute a
function on the database backend. Most client code will not need to use this method, but it is provided
because the Large Object API uses it.

To use, you need to import theorg.postgresql.fastpath package, using the line:

92

Chapter 8. JDBC Interface

import org.postgresql.fastpath.*;

Then, in your code, you need to get aFastPath object:

Fastpath fp = ((org.postgresql.Connection)conn).getFastpathAPI();

This will return an instance associated with the database connection that you can use to issue com-
mands. The casing ofConnection to org.postgresql.Connection is required, as thegetFast-

pathAPI() is an extension method, not part of JDBC. Once you have aFastpath instance, you can
use thefastpath() methods to execute a backend function.

See Also: FastpathFastpathArg , LargeObject

8.7.1.2.1. Methods

• public Object fastpath(int fnid,
boolean resulttype,
FastpathArg args[]) throws SQLException

Send a function call to the PostgreSQL backend.

Parameters: fnid - Function idresulttype - True if the result is an integer, false for other
resultsargs - FastpathArguments to pass to fastpath

Returns: null if no data, Integer if an integer result, or byte[] otherwise

• public Object fastpath(String name,
boolean resulttype,
FastpathArg args[]) throws SQLException

Send a function call to the PostgreSQL backend by name.

Note: The mapping for the procedure name to function id needs to exist, usually to an earlier
call to addfunction() . This is the preferred method to call, as function id’s can/may
change between versions of the backend. For an example of how this works, refer to
org.postgresql.LargeObject

Parameters: name - Function nameresulttype - True if the result is an integer, false for other
resultsargs - FastpathArguments to pass to fastpath

Returns: null if no data, Integer if an integer result, or byte[] otherwise

See Also:LargeObject

• public int getInteger(String name,
FastpathArg args[]) throws SQLException

This convenience method assumes that the return value is an Integer

Parameters: name - Function nameargs - Function arguments

Returns: integer result

Throws: SQLException if a database-access error occurs or no result

• public byte[] getData(String name,

93

Chapter 8. JDBC Interface

FastpathArg args[]) throws SQLException

This convenience method assumes that the return value is binary data.

Parameters: name - Function nameargs - Function arguments

Returns: byte[] array containing result

Throws: SQLException if a database-access error occurs or no result

• public void addFunction(String name,
int fnid)

This adds a function to our look-up table. User code should use theaddFunctions method, which
is based upon a query, rather than hard coding the oid. The oid for a function is not guaranteed to
remain static, even on different servers of the same version.

• public void addFunctions(ResultSet rs) throws SQLException

This takes aResultSet containing two columns. Column 1 contains the function name, Column
2 the oid. It reads the entireResultSet , loading the values into the function table.

Important: Remember to close() the ResultSet after calling this!

Implementation note about function name look-ups: PostgreSQL stores the function id’s
and their corresponding names in the pg_proc table. To speed things up locally, instead of
querying each function from that table when required, a Hashtable is used. Also, only the
function’s required are entered into this table, keeping connection times as fast as possible.

The org.postgresql.LargeObject class performs a query upon its start-up, and passes the
returned ResultSet to the addFunctions() method here. Once this has been done, the Large
Object API refers to the functions by name.

Do not think that manually converting them to the oid’s will work. OK, they will for now, but they
can change during development (there was some discussion about this for V7.0), so this is
implemented to prevent any unwarranted headaches in the future.

See Also: LargeObjectManager

• public int getID(String name) throws SQLException

This returns the function id associated by its name IfaddFunction() or addFunctions() have
not been called for this name, then anSQLException is thrown.

8.7.1.3. Class org.postgresql.fastpath.FastpathArg

public class FastpathArg extends Object

java.lang.Object
|
+----org.postgresql.fastpath.FastpathArg

94

Chapter 8. JDBC Interface

Each fastpath call requires an array of arguments, the number and type dependent on the function
being called. This class implements methods needed to provide this capability.

For an example on how to use this, refer to theorg.postgresql.LargeObject package.

See Also: Fastpath , LargeObjectManager , LargeObject

8.7.1.3.1. Constructors

• public FastpathArg(int value)

Constructs an argument that consists of an integer value

Parameters: value - int value to set

• public FastpathArg(byte bytes[])

Constructs an argument that consists of an array of bytes

Parameters: bytes - array to store

• public FastpathArg(byte buf[],
int off,
int len)

Constructs an argument that consists of part of a byte array

Parameters:

buf

source array

off

offset within array

len

length of data to include

• public FastpathArg(String s)

Constructs an argument that consists of a String.

8.7.2. Geometric Data Types

PostgreSQL has a set of data types that can store geometric features into a table. These include single
points, lines, and polygons. We support these types in Java with the org.postgresql.geometric package.
It contains classes that extend the org.postgresql.util.PGobject class. Refer to that class for details on
how to implement your own data type handlers.

Class org.postgresql.geometric.PGbox

95

Chapter 8. JDBC Interface

java.lang.Object
|
+----org.postgresql.util.PGobject

|
+----org.postgresql.geometric.PGbox

public class PGbox extends PGobject implements Serializable,
Cloneable

This represents the box data type within PostgreSQL.

Variables

public PGpoint point[]

These are the two corner points of the box.

Constructors

public PGbox(double x1,
double y1,
double x2,
double y2)

Parameters:
x1 - first x coordinate
y1 - first y coordinate
x2 - second x coordinate
y2 - second y coordinate

public PGbox(PGpoint p1,
PGpoint p2)

Parameters:
p1 - first point
p2 - second point

public PGbox(String s) throws SQLException

Parameters:
s - Box definition in PostgreSQL syntax

Throws: SQLException
if definition is invalid

public PGbox()

Required constructor

Methods

public void setValue(String value) throws SQLException

This method sets the value of this object. It should be
overridden, but still called by subclasses.

Parameters:

96

Chapter 8. JDBC Interface

value - a string representation of the value of the
object

Throws: SQLException
thrown if value is invalid for this type

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two boxes are identical

Overrides:
equals in class PGobject

public Object clone()

This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGbox in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

Class org.postgresql.geometric.PGcircle

java.lang.Object
|
+----org.postgresql.util.PGobject

|
+----org.postgresql.geometric.PGcircle

public class PGcircle extends PGobject implements Serializable,
Cloneable

This represents PostgreSQL’s circle data type, consisting of a point
and a radius

Variables

public PGpoint center

This is the center point

double radius

This is the radius

97

Chapter 8. JDBC Interface

Constructors

public PGcircle(double x,
double y,
double r)

Parameters:
x - coordinate of center

y - coordinate of center
r - radius of circle

public PGcircle(PGpoint c,
double r)

Parameters:
c - PGpoint describing the circle’s center
r - radius of circle

public PGcircle(String s) throws SQLException

Parameters:
s - definition of the circle in PostgreSQL’s syntax.

Throws: SQLException
on conversion failure

public PGcircle()

This constructor is used by the driver.

Methods

public void setValue(String s) throws SQLException

Parameters:
s - definition of the circle in PostgreSQL’s syntax.

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two circles are identical

Overrides:
equals in class PGobject

public Object clone()

98

Chapter 8. JDBC Interface

This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGcircle in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

Class org.postgresql.geometric.PGline

java.lang.Object
|
+----org.postgresql.util.PGobject

|
+----org.postgresql.geometric.PGline

public class PGline extends PGobject implements Serializable,
Cloneable

This implements a line consisting of two points. Currently line is
not yet implemented in the backend, but this class ensures that when
it’s done were ready for it.

Variables

public PGpoint point[]

These are the two points.

Constructors

public PGline(double x1,
double y1,
double x2,
double y2)

Parameters:
x1 - coordinate for first point
y1 - coordinate for first point
x2 - coordinate for second point
y2 - coordinate for second point

public PGline(PGpoint p1,
PGpoint p2)

Parameters:
p1 - first point
p2 - second point

public PGline(String s) throws SQLException

Parameters:

99

Chapter 8. JDBC Interface

s - definition of the line in PostgreSQL’s syntax.

Throws: SQLException
on conversion failure

public PGline()

required by the driver

Methods

public void setValue(String s) throws SQLException

Parameters:
s - Definition of the line segment in PostgreSQL’s

syntax

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two lines are identical

Overrides:
equals in class PGobject

public Object clone()

This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGline in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

Class org.postgresql.geometric.PGlseg

java.lang.Object
|
+----org.postgresql.util.PGobject

|
+----org.postgresql.geometric.PGlseg

100

Chapter 8. JDBC Interface

public class PGlseg extends PGobject implements Serializable,
Cloneable

This implements a lseg (line segment) consisting of two points

Variables

public PGpoint point[]

These are the two points.

Constructors

public PGlseg(double x1,
double y1,
double x2,
double y2)

Parameters:

x1 - coordinate for first point
y1 - coordinate for first point
x2 - coordinate for second point
y2 - coordinate for second point

public PGlseg(PGpoint p1,
PGpoint p2)

Parameters:
p1 - first point
p2 - second point

public PGlseg(String s) throws SQLException

Parameters:
s - Definition of the line segment in PostgreSQL’s syntax.

Throws: SQLException
on conversion failure

public PGlseg()

required by the driver

Methods

public void setValue(String s) throws SQLException

Parameters:
s - Definition of the line segment in PostgreSQL’s

syntax

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

101

Chapter 8. JDBC Interface

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two line segments are identical

Overrides:
equals in class PGobject

public Object clone()

This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGlseg in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

Class org.postgresql.geometric.PGpath

java.lang.Object
|
+----org.postgresql.util.PGobject

|
+----org.postgresql.geometric.PGpath

public class PGpath extends PGobject implements Serializable,
Cloneable

This implements a path (a multiply segmented line, which may be
closed)

Variables

public boolean open

True if the path is open, false if closed

public PGpoint points[]

The points defining this path

Constructors

public PGpath(PGpoint points[],
boolean open)

Parameters:

102

Chapter 8. JDBC Interface

points - the PGpoints that define the path
open - True if the path is open, false if closed

public PGpath()

Required by the driver

public PGpath(String s) throws SQLException

Parameters:
s - definition of the path in PostgreSQL’s syntax.

Throws: SQLException
on conversion failure

Methods

public void setValue(String s) throws SQLException

Parameters:
s - Definition of the path in PostgreSQL’s syntax

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two pathes are identical

Overrides:
equals in class PGobject

public Object clone()

This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

This returns the path in the syntax expected by
PostgreSQL

Overrides:
getValue in class PGobject

public boolean isOpen()

This returns true if the path is open

103

Chapter 8. JDBC Interface

public boolean isClosed()

This returns true if the path is closed

public void closePath()

Marks the path as closed

public void openPath()

Marks the path as open

Class org.postgresql.geometric.PGpoint

java.lang.Object
|
+----org.postgresql.util.PGobject

|
+----org.postgresql.geometric.PGpoint

public class PGpoint extends PGobject implements Serializable,
Cloneable

This implements a version of java.awt.Point, except it uses double
to represent the coordinates.

It maps to the point data type in PostgreSQL.

Variables

public double x

The X coordinate of the point

public double y

The Y coordinate of the point

Constructors

public PGpoint(double x,
double y)

Parameters:
x - coordinate
y - coordinate

public PGpoint(String value) throws SQLException

This is called mainly from the other geometric types, when a
point is embedded within their definition.

Parameters:
value - Definition of this point in PostgreSQL’s

syntax

104

Chapter 8. JDBC Interface

public PGpoint()

Required by the driver

Methods

public void setValue(String s) throws SQLException

Parameters:
s - Definition of this point in PostgreSQL’s syntax

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two points are identical

Overrides:
equals in class PGobject

public Object clone()

This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGpoint in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

public void translate(int x,
int y)

Translate the point with the supplied amount.

Parameters:
x - integer amount to add on the x axis
y - integer amount to add on the y axis

public void translate(double x,
double y)

Translate the point with the supplied amount.

105

Chapter 8. JDBC Interface

Parameters:
x - double amount to add on the x axis
y - double amount to add on the y axis

public void move(int x,
int y)

Moves the point to the supplied coordinates.

Parameters:
x - integer coordinate
y - integer coordinate

public void move(double x,
double y)

Moves the point to the supplied coordinates.

Parameters:
x - double coordinate
y - double coordinate

public void setLocation(int x,
int y)

Moves the point to the supplied coordinates. refer to
java.awt.Point for description of this

Parameters:
x - integer coordinate
y - integer coordinate

See Also:
Point

public void setLocation(Point p)

Moves the point to the supplied java.awt.Point refer to
java.awt.Point for description of this

Parameters:
p - Point to move to

See Also:
Point

Class org.postgresql.geometric.PGpolygon

java.lang.Object
|
+----org.postgresql.util.PGobject

|
+----org.postgresql.geometric.PGpolygon

public class PGpolygon extends PGobject implements Serializable,
Cloneable

106

Chapter 8. JDBC Interface

This implements the polygon data type within PostgreSQL.

Variables

public PGpoint points[]

The points defining the polygon

Constructors

public PGpolygon(PGpoint points[])

Creates a polygon using an array of PGpoints

Parameters:
points - the points defining the polygon

public PGpolygon(String s) throws SQLException

Parameters:
s - definition of the polygon in PostgreSQL’s syntax.

Throws: SQLException
on conversion failure

public PGpolygon()

Required by the driver

Methods

public void setValue(String s) throws SQLException

Parameters:
s - Definition of the polygon in PostgreSQL’s syntax

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two polygons are identical

Overrides:
equals in class PGobject

public Object clone()

This must be overridden to allow the object to be cloned

107

Chapter 8. JDBC Interface

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGpolygon in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

8.7.3. Large Objects

Large objects are supported in the standard JDBC specification. However, that interface is limited,
and the API provided by PostgreSQL allows for random access to the objects contents, as if it was a
local file.

The org.postgresql.largeobject package provides to Java the libpq C interface’s large object API. It
consists of two classes,LargeObjectManager , which deals with creating, opening and deleting
large objects, andLargeObject which deals with an individual object.

8.7.3.1. Class org.postgresql.largeobject.LargeObject

public class LargeObject extends Object

java.lang.Object
|
+----org.postgresql.largeobject.LargeObject

This class implements the large object interface to PostgreSQL.

It provides the basic methods required to run the interface, plus a pair of methods that provideIn-

putStream andOutputStream classes for this object.

Normally, client code would use the methods inBLOBto access large objects.

However, sometimes lower level access to Large Objects is required, that is not supported by the
JDBC specification.

Refer to org.postgresql.largeobject.LargeObjectManager on how to gain access to a Large Object, or
how to create one.

See Also:LargeObjectManager

8.7.3.1.1. Variables

public static final int SEEK_SET

Indicates a seek from the beginning of a file

public static final int SEEK_CUR

Indicates a seek from the current position

public static final int SEEK_END

Indicates a seek from the end of a file

108

Chapter 8. JDBC Interface

8.7.3.1.2. Methods

• public int getOID()

Returns the OID of thisLargeObject

• public void close() throws SQLException

This method closes the object. You must not call methods in this object after this is called.

• public byte[] read(int len) throws SQLException

Reads some data from the object, and return as a byte[] array

• public int read(byte buf[],
int off,
int len) throws SQLException

Reads some data from the object into an existing array

Parameters:

buf

destination array

off

offset within array

len

number of bytes to read

• public void write(byte buf[]) throws SQLException

Writes an array to the object

• public void write(byte buf[],
int off,
int len) throws SQLException

Writes some data from an array to the object

Parameters:

buf

destination array

off

offset within array

109

Chapter 8. JDBC Interface

len

number of bytes to write

8.7.3.2. Class org.postgresql.largeobject.LargeObjectManager

public class LargeObjectManager extends Object

java.lang.Object
|
+----org.postgresql.largeobject.LargeObjectManager

This class implements the large object interface to PostgreSQL. It provides methods that allow client
code to create, open and delete large objects from the database. When opening an object, an instance
of org.postgresql.largeobject.LargeObject is returned, and its methods then allow access
to the object.

This class can only be created by org.postgresql.Connection. To get access to this class, use the fol-
lowing segment of code:

import org.postgresql.largeobject.*;
Connection conn;
LargeObjectManager lobj;
// ... code that opens a connection ...
lobj = ((org.postgresql.Connection)myconn).getLargeObjectAPI();

Normally, client code would use theBLOBmethods to access large objects. However, sometimes lower
level access to Large Objects is required, that is not supported by the JDBC specification.

Refer to org.postgresql.largeobject.LargeObject on how to manipulate the contents of a Large Object.

8.7.3.2.1. Variables

public static final int WRITE

This mode indicates we want to write to an object.

public static final int READ

This mode indicates we want to read an object.

public static final int READWRITE

This mode is the default. It indicates we want read and write access to a large object.

8.7.3.2.2. Methods

• public LargeObject open(int oid) throws SQLException

110

Chapter 8. JDBC Interface

This opens an existing large object, based on its OID. This method assumes that READ and WRITE
access is required (the default).

• public LargeObject open(int oid,
int mode) throws SQLException

This opens an existing large object, based on its OID, and allows setting the access mode.

• public int create() throws SQLException

This creates a large object, returning its OID. It defaults to READWRITE for the new object’s
attributes.

• public int create(int mode) throws SQLException

This creates a large object, returning its OID, and sets the access mode.

• public void delete(int oid) throws SQLException

This deletes a large object.

• public void unlink(int oid) throws SQLException

This deletes a large object. It is identical to the delete method, and is supplied as the C API uses
“unlink”.

8.8. Using the driver in a multi-threaded or a servlet environment
A problem with many JDBC drivers is that only one thread can use aConnection at any one time --
otherwise a thread could send a query while another one is receiving results, and this would be a bad
thing for the database engine.

The PostgreSQL JDBC Driver is thread safe. Consequently, if your application uses multiple threads
then you do not have to worry about complex algorithms to ensure that only one uses the database at
any time.

If a thread attempts to use the connection while another one is using it, it will wait until the other
thread has finished its current operation. If it is a regular SQL statement, then the operation consists
of sending the statement and retrieving anyResultSet (in full). If it is a Fastpath call (e.g., reading
a block from aLargeObject) then it is the time to send and retrieve that block.

This is fine for applications and applets but can cause a performance problem with servlets. With
servlets you can have a heavy load on the connection. If you have several threads performing queries
then each but one will pause, which may not be what you are after.

To solve this, you would be advised to create a pool of connections. When ever a thread needs to use
the database, it asks a manager class for aConnection . The manager hands a free connection to the
thread and marks it as busy. If a free connection is not available, it opens one. Once the thread has

111

Chapter 8. JDBC Interface

finished with it, it returns it to the manager who can then either close it or add it to the pool. The
manager would also check that the connection is still alive and remove it from the pool if it is dead.

So, with servlets, it is up to you to use either a single connection, or a pool. The plus side for a pool is
that threads will not be hit by the bottle neck caused by a single network connection. The down side
is that it increases the load on the server, as a backend process is created for eachConnection . It is
up to you and your applications requirements.

8.9. Further Reading
If you have not yet read it, I’d advise you read the JDBC API Documentation
(supplied with Sun’s JDK), and the JDBC Specification. Both are available from
http://java.sun.com/products/jdbc/index.html.

http://jdbc.postgresql.org contains updated information not included in this document, and also in-
cludes precompiled drivers.

112

Chapter 9. PyGreSQL - Python Interface

Author: Written by D’Arcy J.M. Cain (<darcy@druid.net >). Based heavily on code written by
Pascal Andre <andre@chimay.via.ecp.fr >. Copyright © 1995, Pascal Andre. Further modifica-
tions Copyright © 1997-2000 by D’Arcy J.M. Cain.

9.1. The pg Module
You may either choose to use the old mature interface provided by thepg module or otherwise the
newerpgdb interface compliant with the DB-API 2.01 specification developed by the Python DB-SIG.

Here we describe only the olderpg API. As long as PyGreSQL does not contain a description of
the DB-API you should read about the API at http://www.python.org/topics/database/DatabaseAPI-
2.0.html.

A tutorial-like introduction to the DB-API can be found at http://www2.linuxjournal.com/lj-
issues/issue49/2605.html

Thepg module defines three objects:

• pgobject , which handles the connection and all the requests to the database,

• pglargeobject , which handles all the accesses to PostgreSQL large objects, and

• pgqueryobject that handles query results.

If you want to see a simple example of the use of some of these functions, see
http://www.druid.net/rides where I have a link at the bottom to the actual Python code for the page.

9.1.1. Constants

Some constants are defined in thepg module dictionary. They are intended to be used as a parameters
for methods calls. You should refer to thelibpq description (Chapter 1) for more information about
them. These constants are:

INV_READ

INV_WRITE

large objects access modes, used by(pgobject.)locreate and(pglarge.)open .

SEEK_SET

SEEK_CUR

SEEK_END

positional flags, used by(pglarge.)seek .

version

__version__

constants that give the current version

1. http://www.python.org/topics/database/DatabaseAPI-2.0.html

113

9.2. pg Module Functions
pg module defines only a few methods that allow to connect to a database and to define “default
variables” that override the environment variables used by PostgreSQL.

These “default variables” were designed to allow you to handle general connection parameters without
heavy code in your programs. You can prompt the user for a value, put it in the default variable, and
forget it, without having to modify your environment. The support for default variables can be disabled
by setting the -DNO_DEF_VAR option in the Python Setup file. Methods relative to this are specified
by te tag [DV].

All variables are set toNone at module initialization, specifying that standard environment variables
should be used.

connect

Name
connect — opens a connection to the database server

Synopsis

connect([dbname], [host], [port], [opt], [tty], [user], [passwd])

Parameters

dbname

Name of connected database (string/None).

host

Name of the server host (string/None).

port

Port used by the database server (integer/-1).

opt

Options for the server (string/None).

tty

File or tty for optional debug output from backend (string/None).

user

PostgreSQL user (string/None).

passwd

Password for user (string/None).

114

connect

Return Type

pgobject

If successful, an object handling a database connection is returned.

Exceptions

TypeError

Bad argument type, or too many arguments.

SyntaxError

Duplicate argument definition.

pg.error

Some error occurred during pg connection definition.

(+ all exceptions relative to object allocation)

Description

This method opens a connection to a specified database on a given PostgreSQL server. You can use
keywords here, as described in the Python tutorial. The names of the keywords are the name of the
parameters given in the syntax line. For a precise description of the parameters, please refer to the
PostgreSQL user manual.

Examples

import pg

con1 = pg.connect(’testdb’, ’myhost’, 5432, None, None, ’bob’, None)
con2 = pg.connect(dbname=’testdb’, host=’localhost’, user=’bob’)

115

get_defhost

Name
get_defhost — get default host name [DV]

Synopsis

get_defhost()

Parameters

none

Return Type

string or None

Default host specification

Exceptions

SyntaxError

Too many arguments.

Description

get_defhost() returns the current default host specification, or None if the environment variables
should be used. Environment variables will not be looked up.

116

set_defhost

Name
set_defhost — set default host name [DV]

Synopsis

set_defhost(host)

Parameters

host

New default host (string/None).

Return Type

string or None

Previous default host specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_defhost() sets the default host value for new connections. If None is supplied as parameter,
environment variables will be used in future connections. It returns the previous setting for default
host.

117

get_defport

Name
get_defport — get default port [DV]

Synopsis

get_defport()

Parameters

none

Return Type

integer or None

Default port specification

Exceptions

SyntaxError

Too many arguments.

Description

get_defport() returns the current default port specification, or None if the environment variables
should be used. Environment variables will not be looked up.

118

set_defport

Name
set_defport — set default port [DV]

Synopsis

set_defport(port)

Parameters

port

New default host (integer/-1).

Return Type

integer or None

Previous default port specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_defport() sets the default port value for new connections. If -1 is supplied as parameter, envi-
ronment variables will be used in future connections. It returns the previous setting for default port.

119

get_defopt

Name
get_defopt — get default options specification [DV]

Synopsis

get_defopt()

Parameters

none

Return Type

string or None

Default options specification

Exceptions

SyntaxError

Too many arguments.

Description

get_defopt() returns the current default connection options specification, or None if the environ-
ment variables should be used. Environment variables will not be looked up.

120

set_defopt

Name
set_defopt — set options specification [DV]

Synopsis

set_defopt(options)

Parameters

options

New default connection options (string/None).

Return Type

string or None

Previous default opt specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_defopt() sets the default connection options value for new connections. If None is supplied as
parameter, environment variables will be used in future connections. It returns the previous setting for
default options.

121

get_deftty

Name
get_deftty — get default connection debug terminal specification [DV]

Synopsis

get_deftty()

Parameters

none

Return Type

string or None

Default debug terminal specification

Exceptions

SyntaxError

Too many arguments.

Description

get_deftty() returns the current default debug terminal specification, or None if the environment
variables should be used. Environment variables will not be looked up.

122

set_deftty

Name
set_deftty — set default debug terminal specification [DV]

Synopsis

set_deftty(terminal)

Parameters

terminal

New default debug terminal (string/None).

Return Type

string or None

Previous default debug terminal specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_deftty() sets the default terminal value for new connections. If None is supplied as parameter,
environment variables will be used in future connections. It returns the previous setting for default
terminal.

123

get_defbase

Name
get_defbase — get default database name specification [DV]

Synopsis

get_defbase()

Parameters

none

Return Type

string or None

Default debug database name specification

Exceptions

SyntaxError

Too many arguments.

Description

get_defbase() returns the current default database name specification, or None if the environment
variables should be used. Environment variables will not be looked up.

124

set_defbase

Name
set_defbase — set default database name specification [DV]

Synopsis

set_defbase(database)

Parameters

database

New default database name (string/None).

Return Type

string or None

Previous default database name specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_defbase() sets the default database name for new connections. If None is supplied as parame-
ter, environment variables will be used in future connections. It returns the previous setting for default
database name.

125

9.3. Connection object: pgobject

This object handles a connection to the PostgreSQL database. It embeds and hides all the parameters
that define this connection, leaving just really significant parameters in function calls.

Some methods give direct access to the connection socket. They are specified by the tag [DA].Do
not use them unless you really know what you are doing.If you prefer disabling them, set the-
DNO_DIRECToption in the PythonSetup file.

Some other methods give access to large objects. if you want to forbid access to these from the module,
set the-DNO_LARGEoption in the PythonSetup file. These methods are specified by the tag [LO].

Everypgobject defines a set of read-only attributes that describe the connection and its status. These
attributes are:

host

the host name of the server (string)

port

the port of the server (integer)

db

the selected database (string)

options

the connection options (string)

tty

the connection debug terminal (string)

user

user name on the database system (string)

status

the status of the connection (integer: 1 - OK, 0 - BAD)

error

the last warning/error message from the server (string)

query

Name
query — executes a SQL command

Synopsis

query(command)

126

query

Parameters

command

SQL command (string).

Return Type

pgqueryobject or None

Result values.

Exceptions

TypeError

Bad argument type, or too many arguments.

ValueError

Empty SQL query.

pg.error

Error during query processing, or invalid connection.

Description

query() method sends a SQL query to the database. If the query is an insert statement, the return
value is the OID of the newly inserted row. If it is otherwise a query that does not return a result (i.e.,
is not a some kind ofSELECTstatement), it returns None. Otherwise, it returns apgqueryobject

that can be accessed via thegetresult() or dictresult() methods or simply printed.

127

reset

Name
reset — resets the connection

Synopsis

reset()

Parameters

none

Return Type

none

Exceptions

TypeError

Too many (any) arguments.

Description

reset() method resets the current database.

128

close

Name
close — close the database connection

Synopsis

close()

Parameters

none

Return Type

none

Exceptions

TypeError

Too many (any) arguments.

Description

close() method closes the database connection. The connection will be closed in any case when the
connection is deleted but this allows you to explicitly close it. It is mainly here to allow the DB-SIG
API wrapper to implement a close function.

129

fileno

Name
fileno — returns the socket used to connect to the database

Synopsis

fileno()

Parameters

none

Return Type

socket id

The underlying socket id used to connect to the database.

Exceptions

TypeError

Too many (any) arguments.

Description

fileno() method returns the underlying socket id used to connect to the database. This is useful for
use inselect calls, etc.

130

getnotify

Name
getnotify — gets the last notify from the server

Synopsis

getnotify()

Parameters

none

Return Type

tuple, None

Last notify from server

Exceptions

TypeError

Too many (any) arguments.

pg.error

Invalid connection.

Description

getnotify() method tries to get a notify from the server (from theSQLstatementNOTIFY). If the
server returns no notify, the methods returns None. Otherwise, it returns a tuple (couple)(relname,

pid) , whererelname is the name of the notify andpid the process id of the connection that triggered
the notify. Remember to do a listen query first otherwise getnotify will always return None.

131

inserttable

Name
inserttable — inserts a list into a table

Synopsis

inserttable(table , values)

Parameters

table

The table name (string).

values

The list of rows values to insert (list).

Return Type

none

Exceptions

TypeError

Bad argument type or too many (any) arguments.

pg.error

Invalid connection.

Description

inserttable() method allows to quickly insert large blocks of data in a table: it inserts the whole
values list into the given table. The list is a list of tuples/lists that define the values for each inserted
row. The rows values may contain string, integer, long or double (real) values.Be very careful:this
method does not typecheck the fields according to the table definition; it just look whether or not it
knows how to handle such types.

132

putline

Name
putline — writes a line to the server socket [DA]

Synopsis

putline(line)

Parameters

line

Line to be written (string).

Return Type

none

Exceptions

TypeError

Bad argument type or too many (any) arguments.

pg.error

Invalid connection.

Description

putline() method allows to directly write a string to the server socket.

133

getline

Name
getline — gets a line from server socket [DA]

Synopsis

getline()

Parameters

none

Return Type

string

The line read.

Exceptions

TypeError

Bad argument type or too many (any) arguments.

pg.error

Invalid connection.

Description

getline() method allows to directly read a string from the server socket.

134

endcopy

Name
endcopy — synchronizes client and server [DA]

Synopsis

endcopy()

Parameters

none

Return Type

none

Exceptions

TypeError

Bad argument type or too many (any) arguments.

pg.error

Invalid connection.

Description

The use of direct access methods may desynchronize client and server. This method ensure that client
and server will be synchronized.

135

locreate

Name
locreate — creates of large object in the database [LO]

Synopsis

locreate(mode)

Parameters

mode

Large object create mode.

Return Type

pglarge

Object handling the PostgreSQL large object.

Exceptions

TypeError

Bad argument type or too many arguments.

pg.error

Invalid connection, or creation error.

Description

locreate() method creates a large object in the database. The mode can be defined by OR-ing the
constants defined in the pg module (INV_READ and INV_WRITE).

136

getlo

Name
getlo — builds a large object from givenoid [LO]

Synopsis

getlo(oid)

Parameters

oid

OID of the existing large object (integer).

Return Type

pglarge

Object handling the PostgreSQL large object.

Exceptions

TypeError

Bad argument type or too many arguments.

pg.error

Invalid connection.

Description

getlo() method allows to reuse a formerly created large object through thepglarge interface,
providing the user have itsoid .

137

loimport

Name
loimport — imports a file to a PostgreSQL large object [LO]

Synopsis

loimport(filename)

Parameters

filename

The name of the file to be imported (string).

Return Type

pglarge

Object handling the PostgreSQL large object.

Exceptions

TypeError

Bad argument type or too many arguments.

pg.error

Invalid connection, or error during file import.

Description

loimport() method allows to create large objects in a very simple way. You just give the name of a
file containing the data to be use.

138

9.4. Database wrapper class: DB

pg module contains a class calledDB. All pgobject methods are included in this class also. A number
of additionalDBclass methods are described below. The preferred way to use this module is as follows
(See description of the initialization method below.):

import pg

db = pg.DB(...)

for r in db.query(
"SELECT foo,bar

FROM foo_bar_table
WHERE foo !~ bar"

).dictresult():

print ’%(foo)s %(bar)s’ % r

The following describes the methods and variables of this class.

TheDBclass is initialized with the same arguments as thepg.connect method. It also initializes a
few internal variables. The statementdb = DB() will open the local database with the name of the
user just likepg.connect() does.

pkey

Name
pkey — returns the primary key of a table

Synopsis

pkey(table)

Parameters

table

name of table.

Return Type

string

Name of field which is the primary key of the table.

139

pkey

Description

pkey() method returns the primary key of a table. Note that this raises an exception if the table does
not have a primary key.

140

get_databases

Name
get_databases — get list of databases in the system

Synopsis

get_databases()

Parameters

none

Return Type

list

List of databases in the system.

Description

Although you can do this with a simple select, it is added here for convenience

141

get_tables

Name
get_tables — get list of tables in connected database

Synopsis

get_tables()

Parameters

none

Return Type

list

List of tables in connected database.

Description

Although you can do this with a simple select, it is added here for convenience

142

get_attnames

Name
get_attnames — returns the attribute names of a table

Synopsis

get_attnames(table)

Parameters

table

name of table.

Return Type

dictionary

The dictionary’s keys are the attribute names, the values are the type names of the attributes.

Description

Given the name of a table, digs out the set of attribute names and types.

143

get

Name
get — get a tuple from a database table

Synopsis

get(table , arg , [keyname])

Parameters

table

Name of table.

arg

Either a dictionary or the value to be looked up.

[keyname]

Name of field to use as key (optional).

Return Type

dictionary

A dictionary mapping attribute names to row values.

Description

This method is the basic mechanism to get a single row. It assumes that the key specifies a unique
row. If keyname is not specified then the primary key for the table is used. If arg is a dictionary then
the value for the key is taken from it and it is modified to include the new values, replacing existing
values where necessary. The oid is also put into the dictionary but in order to allow the caller to work
with multiple tables, the attribute name is munged to make it unique. It consists of the stringoid_

followed by the name of the table.

144

insert

Name
insert — insert a tuple into a database table

Synopsis

insert(table , a)

Parameters

table

Name of table.

a

A dictionary of values.

Return Type

integer

The OID of the newly inserted row.

Description

This method inserts values into the table specified filling in the values from the dictionary. It then
reloads the dictionary with the values from the database. This causes the dictionary to be updated
with values that are modified by rules, triggers, etc.

145

update

Name
update — update a database table

Synopsis

update(table , a)

Parameters

table

Name of table.

a

A dictionary of values.

Return Type

integer

The OID of the newly updated row.

Description

Similar to insert but updates an existing row. The update is based on the OID value as munged by
get. The array returned is the one sent modified to reflect any changes caused by the update due to
triggers, rules, defaults, etc.

146

clear

Name
clear — clear a database table

Synopsis

clear(table , [a])

Parameters

table

Name of table.

[a]

A dictionary of values.

Return Type

dictionary

A dictionary with an empty row.

Description

This method clears all the attributes to values determined by the types. Numeric types are set to 0,
dates are set to’today’ and everything else is set to the empty string. If the array argument is present,
it is used as the array and any entries matching attribute names are cleared with everything else left
unchanged.

147

delete

Name
delete — deletes the row from a table

Synopsis

delete(table , [a])

Parameters

table

Name of table.

[a]

A dictionary of values.

Return Type

none

Description

This method deletes the row from a table. It deletes based on the OID as munged as described above.

148

9.5. Query result object: pgqueryobject

getresult

Name
getresult — gets the values returned by the query

Synopsis

getresult()

Parameters

none

Return Type

list

List of tuples.

Exceptions

SyntaxError

Too many arguments.

pg.error

Invalid previous result.

Description

getresult() method returns the list of the values returned by the query. More information about
this result may be accessed usinglistfields , fieldname andfieldnum methods.

149

dictresult

Name
dictresult — like getresult but returns a list of dictionaries

Synopsis

dictresult()

Parameters

none

Return Type

list

List of dictionaries.

Exceptions

SyntaxError

Too many arguments.

pg.error

Invalid previous result.

Description

dictresult() method returns the list of the values returned by the query with each tuple returned
as a dictionary with the field names used as the dictionary index.

150

listfields

Name
listfields — lists the fields names of the query result

Synopsis

listfields()

Parameters

none

Return Type

list

field names

Exceptions

SyntaxError

Too many arguments.

pg.error

Invalid query result, or invalid connection.

Description

listfields() method returns the list of field names defined for the query result. The fields are in
the same order as the result values.

151

fieldname

Name
fieldname — field number-name conversion

Synopsis

fieldname(i)

Parameters

i

field number (integer).

Return Type

string

field name.

Exceptions

TypeError

Bad parameter type, or too many arguments.

ValueError

Invalid field number.

pg.error

Invalid query result, or invalid connection.

Description

fieldname() method allows to find a field name from its rank number. It can be useful for displaying
a result. The fields are in the same order than the result values.

152

fieldnum

Name
fieldnum — field name-number conversion

Synopsis

fieldnum(name)

Parameters

name

field name (string).

Return Type

integer

field number (integer).

Exceptions

TypeError

Bad parameter type, or too many arguments.

ValueError

Unknown field name.

pg.error

Invalid query result, or invalid connection.

Description

fieldnum() method returns a field number from its name. It can be used to build a function that con-
verts result list strings to their correct type, using a hardcoded table definition. The number returned
is the field rank in the result values list.

153

ntuples

Name
ntuples — returns the number of tuples in query object

Synopsis

ntuples()

Parameters

none

Return Type

integer

The number of tuples in query object.

Exceptions

SyntaxError

Too many arguments.

Description

ntuples() method returns the number of tuples found in a query.

154

9.6. Large Object: pglarge

This object handles all the request concerning a PostgreSQL large object. It embeds and hides all
the “recurrent” variables (object oid and connection), exactly in the same waypgobject s do, thus
only keeping significant parameters in function calls. It keeps a reference to thepgobject used for
its creation, sending requests though with its parameters. Any modification but dereferencing the
pgobject will thus affect thepglarge object. Dereferencing the initialpgobject is not a problem
since Python will not deallocate it before the large object dereference it. All functions return a generic
error message on call error, whatever the exact error was. Theerror attribute of the object allows to
get the exact error message.

pglarge objects define a read-only set of attributes that allow to get some information about it. These
attributes are:

oid

the oid associated with the object

pgcnx

thepgobject associated with the object

error

the last warning/error message of the connection

Be careful: In multithreaded environments, error may be modified by another thread using the
same pgobject . Remember these object are shared, not duplicated; you should provide some
locking to be able if you want to check this. The oid attribute is very interesting because it allow
you reuse the oid later, creating the pglarge object with a pgobject getlo() method call.

See alsoChapter 2for more information about the PostgreSQL large object interface.

open

Name
open — opens a large object

Synopsis

open(mode)

Parameters

mode

open mode definition (integer).

155

open

Return Type

none

Exceptions

TypeError

Bad parameter type, or too many arguments.

IOError

Already opened object, or open error.

pg.error

Invalid connection.

Description

open() method opens a large object for reading/writing, in the same way than the UNIXopen()

function. The mode value can be obtained by OR-ing the constants defined in the pg module
(INV_READ, INV_WRITE).

156

close

Name
close — closes the large object

Synopsis

close()

Parameters

none

Return Type

none

Exceptions

SyntaxError

Too many arguments.

IOError

Object is not opened, or close error.

pg.error

Invalid connection.

Description

close() method closes previously opened large object, in the same way than the UNIXclose()

function.

157

read

Name
read — reads from the large object

Synopsis

read(size)

Parameters

size

Maximal size of the buffer to be read (integer).

Return Type

string

The read buffer.

Exceptions

TypeError

Bad parameter type, or too many arguments.

IOError

Object is not opened, or read error.

pg.error

Invalid connection or invalid object.

Description

read() method allows to read data from the large object, starting at current position.

158

write

Name
write — writes to the large object

Synopsis

write(string)

Parameters

string

Buffer to be written (string).

Return Type

none

Exceptions

TypeError

Bad parameter type, or too many arguments.

IOError

Object is not opened, or write error.

pg.error

Invalid connection or invalid object.

Description

write() method allows to write data to the large object, starting at current position.

159

seek

Name
seek — change current position in the large object

Synopsis

seek(offset , whence)

Parameters

offset

Position offset (integer).

whence

Positional parameter (integer).

Return Type

integer

New current position in the object.

Exceptions

TypeError

Bad parameter type, or too many arguments.

IOError

Object is not opened, or seek error.

pg.error

Invalid connection or invalid object.

Description

seek() method allows to move the cursor position in the large object. The whence parameter can be
obtained by OR-ing the constants defined in thepg module (SEEK_SET, SEEK_CUR, SEEK_END).

160

tell

Name
tell — returns current position in the large object

Synopsis

tell()

Parameters

none

Return Type

integer

Current position in the object.

Exceptions

SyntaxError

Too many arguments.

IOError

Object is not opened, or seek error.

pg.error

Invalid connection or invalid object.

Description

tell() method allows to get the current position in the large object.

161

unlink

Name
unlink — deletes the large object

Synopsis

unlink()

Parameters

none

Return Type

none

Exceptions

SyntaxError

Too many arguments.

IOError

Object is not closed, or unlink error.

pg.error

Invalid connection or invalid object.

Description

unlink() method unlinks (deletes) the large object.

162

size

Name
size — gives the large object size

Synopsis

size()

Parameters

none

Return Type

integer

The large object size.

Exceptions

SyntaxError

Too many arguments.

IOError

Object is not opened, or seek/tell error.

pg.error

Invalid connection or invalid object.

Description

size() method allows to get the size of the large object. It was implemented because this function is
very useful for a WWW interfaced database. Currently the large object needs to be opened.

163

export

Name
export — saves the large object to file

Synopsis

export(filename)

Parameters

filename

The file to be created.

Return Type

none

Exceptions

TypeError

Bad argument type, or too many arguments.

IOError

Object is not closed, or export error.

pg.error

Invalid connection or invalid object.

Description

export() method allows to dump the content of a large object in a very simple way. The exported
file is created on the host of the program, not the server host.

164

Chapter 9. PyGreSQL - Python Interface

9.7. DB-API Interface
See http://www.python.org/topics/database/DatabaseAPI-2.0.html for a description of the DB-API
2.0.

165

II. Server Programming
This second part of the manual explains the PostgreSQL approach to extensibility and describe how
users can extend PostgreSQL by adding user-defined types, operators, aggregates, and both query
language and programming language functions. After a discussion of the PostgreSQL rule system,
we discuss the trigger and SPI interfaces.

Chapter 10. Architecture

10.1. PostgreSQL Architectural Concepts
Before we begin, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make the next chapter somewhat clearer. In database jargon,
PostgreSQL uses a simple "process per-user" client/server model. A PostgreSQL session consists of
the following cooperating Unix processes (programs):

• A supervisory daemon process (the postmaster),

• the user’s frontend application (e.g., the psql program), and

• one or more backend database servers (the postgres process itself).

A single postmaster manages a given collection of databases on a single host. Such a collection of
databases is called a cluster (of databases). A frontend application that wishes to access a given
database within a cluster makes calls to an interface library (e.g., libpq) that is linked into the ap-
plication. The library sends user requests over the network to the postmaster (Figure 10-1(a)), which
in turn starts a new backend server process (Figure 10-1(b))

167

Chapter 10. Architecture

Figure 10-1. How a connection is established

168

Chapter 10. Architecture

and connects the frontend process to the new server (Figure 10-1(c)). From that point on, the fron-
tend process and the backend server communicate without intervention by the postmaster. Hence, the
postmaster is always running, waiting for connection requests, whereas frontend and backend pro-
cesses come and go. Thelibpq library allows a single frontend to make multiple connections to
backend processes. However, each backend process is a single-threaded process that can only execute
one query at a time; so the communication over any one frontend-to-backend connection is single-
threaded.

One implication of this architecture is that the postmaster and the backend always run on the same
machine (the database server), while the frontend application may run anywhere. You should keep
this in mind, because the files that can be accessed on a client machine may not be accessible (or may
only be accessed using a different path name) on the database server machine.

You should also be aware that the postmaster and postgres servers run with the user ID of the Post-
greSQL “superuser”. Note that the PostgreSQL superuser does not have to be any particular user
(e.g., a user namedpostgres), although many systems are installed that way. Furthermore, the Post-
greSQL superuser should definitely not be the Unix superuser,root ! It is safest if the PostgreSQL
superuser is an ordinary, unprivileged user so far as the surrounding Unix system is concerned. In any
case, all files relating to a database should belong to this Postgres superuser.

169

Chapter 11. Extending SQL: An Overview
In the sections that follow, we will discuss how you can extend the PostgreSQL SQL query language
by adding:

• functions
• data types
• operators
• aggregates

11.1. How Extensibility Works
PostgreSQL is extensible because its operation is catalog-driven. If you are familiar with standard
relational systems, you know that they store information about databases, tables, columns, etc., in
what are commonly known as system catalogs. (Some systems call this the data dictionary). The
catalogs appear to the user as tables like any other, but the DBMS stores its internal bookkeeping
in them. One key difference between PostgreSQL and standard relational systems is that PostgreSQL
stores much more information in its catalogs -- not only information about tables and columns, but also
information about its types, functions, access methods, and so on. These tables can be modified by the
user, and since PostgreSQL bases its internal operation on these tables, this means that PostgreSQL
can be extended by users. By comparison, conventional database systems can only be extended by
changing hardcoded procedures within the DBMS or by loading modules specially written by the
DBMS vendor.

PostgreSQL is also unlike most other data managers in that the server can incorporate user-written
code into itself through dynamic loading. That is, the user can specify an object code file (e.g., a
shared library) that implements a new type or function and PostgreSQL will load it as required. Code
written in SQL is even more trivial to add to the server. This ability to modify its operation “on the fly”
makes PostgreSQL uniquely suited for rapid prototyping of new applications and storage structures.

11.2. The PostgreSQL Type System
The PostgreSQL type system can be broken down in several ways. Types are divided into base types
and composite types. Base types are those, likeint4 , that are implemented in a language such as
C. They generally correspond to what are often known asabstract data types; PostgreSQL can only
operate on such types through methods provided by the user and only understands the behavior of
such types to the extent that the user describes them. Composite types are created whenever the user
creates a table.

PostgreSQL stores these types in only one way (within the file that stores all rows of a table) but
the user can “look inside” at the attributes of these types from the query language and optimize their
retrieval by (for example) defining indexes on the attributes. PostgreSQL base types are further divided
into built-in types and user-defined types. Built-in types (likeint4) are those that are compiled into
the system. User-defined types are those created by the user in the manner to be described later.

170

Chapter 11. Extending SQL: An Overview

11.3. About the PostgreSQL System Catalogs
Having introduced the basic extensibility concepts, we can now take a look at how the catalogs are
actually laid out. You can skip this section for now, but some later sections will be incomprehen-
sible without the information given here, so mark this page for later reference. All system catalogs
have names that begin withpg_ . The following tables contain information that may be useful to the
end user. (There are many other system catalogs, but there should rarely be a reason to query them
directly.)

Table 11-1. PostgreSQL System Catalogs

Catalog Name Description

pg_database databases

pg_class tables

pg_attribute table columns

pg_index indexes

pg_proc procedures/functions

pg_type data types (both base and complex)

pg_operator operators

pg_aggregate aggregate functions

pg_am access methods

pg_amop access method operators

pg_amproc access method support functions

pg_opclass access method operator classes

171

Chapter 11. Extending SQL: An Overview

Figure 11-1. The major PostgreSQL system catalogs

172

Chapter 11. Extending SQL: An Overview

TheDeveloper’s Guidegives a more detailed explanation of these catalogs and their columns. How-
ever,Figure 11-1shows the major entities and their relationships in the system catalogs. (Columns
that do not refer to other entities are not shown unless they are part of a primary key.) This diagram is
more or less incomprehensible until you actually start looking at the contents of the catalogs and see
how they relate to each other. For now, the main things to take away from this diagram are as follows:

• In several of the sections that follow, we will present various join queries on the system catalogs
that display information we need to extend the system. Looking at this diagram should make some
of these join queries (which are often three- or four-way joins) more understandable, because you
will be able to see that the columns used in the queries form foreign keys in other tables.

• Many different features (tables, columns, functions, types, access methods, etc.) are tightly inte-
grated in this schema. A simple create command may modify many of these catalogs.

• Types and procedures are central to the schema.

Note: We use the words procedure and function more or less interchangeably.

Nearly every catalog contains some reference to rows in one or both of these tables. For example,
PostgreSQL frequently uses type signatures (e.g., of functions and operators) to identify unique
rows of other catalogs.

• There are many columns and relationships that have obvious meanings, but there are many (partic-
ularly those that have to do with access methods) that do not. The relationships betweenpg_am,
pg_amop, pg_amproc , pg_operator , andpg_opclass are particularly hard to understand and
will be described in depth (inChapter 17) after we have discussed basic extensions.

173

Chapter 12. Extending SQL: Functions

12.1. Introduction
As it turns out, part of defining a new type is the definition of functions that describe its behavior.
Consequently, while it is possible to define a new function without defining a new type, the reverse
is not true. We therefore describe how to add new functions to PostgreSQL before describing how to
add new types.

PostgreSQL provides four kinds of functions:

• query language functions (functions written in SQL)

• procedural language functions (functions written in, for example, PL/Tcl or PL/pgSQL)

• internal functions

• C language functions

Every kind of function can take a base type, a composite type, or some combination as arguments
(parameters). In addition, every kind of function can return a base type or a composite type. It’s
easiest to define SQL functions, so we’ll start with those. Examples in this section can also be found
in funcs.sql andfuncs.c in the tutorial directory.

Throughout this chapter, it can be useful to look at the reference page of theCREATE FUNCTION
command to understand the examples better.

12.2. Query Language (SQL) Functions
SQL functions execute an arbitrary list of SQL statements, returning the result of the last query in the
list, which must be aSELECT. In the simple (non-set) case, the first row of the last query’s result will
be returned. (Bear in mind that “the first row” of a multi-row result is not well-defined unless you use
ORDER BY.) If the last query happens to return no rows at all, NULL will be returned.

Alternatively, an SQL function may be declared to return a set, by specifying the function’s return
type asSETOFsometype . In this case all rows of the last query’s result are returned. Further details
appear below.

The body of an SQL function should be a list of one or more SQL statements separated by semi-
colons. Note that because the syntax of theCREATE FUNCTION command requires the body of
the function to be enclosed in single quotes, single quote marks (’) used in the body of the function
must be escaped, by writing two single quotes (”) or a backslash (\’) where each quote is desired.

Arguments to the SQL function may be referenced in the function body using the syntax$n: $1 refers
to the first argument, $2 to the second, and so on. If an argument is of a composite type, then the “dot
notation”, e.g.,$1.emp , may be used to access attributes of the argument.

12.2.1. Examples

To illustrate a simple SQL function, consider the following, which might be used to debit a bank
account:

CREATE FUNCTION tp1 (integer, numeric) RETURNS integer AS ’

174

Chapter 12. Extending SQL: Functions

UPDATE bank
SET balance = balance - $2
WHERE accountno = $1;

SELECT 1;
’ LANGUAGE SQL;

A user could execute this function to debit account 17 by $100.00 as follows:

SELECT tp1(17, 100.0);

In practice one would probably like a more useful result from the function than a constant “1”, so a
more likely definition is

CREATE FUNCTION tp1 (integer, numeric) RETURNS numeric AS ’
UPDATE bank

SET balance = balance - $2
WHERE accountno = $1;

SELECT balance FROM bank WHERE accountno = $1;
’ LANGUAGE SQL;

which adjusts the balance and returns the new balance.

Any collection of commands in the SQL language can be packaged together and defined as a function.
The commands can include data modification (i.e.,INSERT, UPDATE, andDELETE) as well as
SELECT queries. However, the final command must be aSELECT that returns whatever is specified
as the function’s return type.

CREATE FUNCTION clean_EMP () RETURNS integer AS ’
DELETE FROM EMP

WHERE EMP.salary <= 0;
SELECT 1 AS ignore_this;

’ LANGUAGE SQL;

SELECT clean_EMP();

x

1

12.2.2. SQL Functions on Base Types

The simplest possible SQL function has no arguments and simply returns a base type, such asinte-

ger :

CREATE FUNCTION one() RETURNS integer AS ’
SELECT 1 as RESULT;

’ LANGUAGE SQL;

SELECT one();

one

1

175

Chapter 12. Extending SQL: Functions

Notice that we defined a column alias within the function body for the result of the function (with the
nameRESULT), but this column alias is not visible outside the function. Hence, the result is labeled
one instead ofRESULT.

It is almost as easy to define SQL functions that take base types as arguments. In the example below,
notice how we refer to the arguments within the function as$1 and$2:

CREATE FUNCTION add_em(integer, integer) RETURNS integer AS ’
SELECT $1 + $2;

’ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

answer

3

12.2.3. SQL Functions on Composite Types

When specifying functions with arguments of composite types, we must not only specify which argu-
ment we want (as we did above with$1 and$2) but also the attributes of that argument. For example,
suppose thatEMPis a table containing employee data, and therefore also the name of the composite
type of each row of the table. Here is a functiondouble_salary that computes what your salary
would be if it were doubled:

CREATE FUNCTION double_salary(EMP) RETURNS integer AS ’
SELECT $1.salary * 2 AS salary;

’ LANGUAGE SQL;

SELECT name, double_salary(EMP) AS dream
FROM EMP
WHERE EMP.cubicle ~= point ’(2,1)’;

name | dream
------+-------

Sam | 2400

Notice the use of the syntax$1.salary to select one field of the argument row value. Also notice
how the callingSELECT command uses a table name to denote the entire current row of that table
as a composite value.

It is also possible to build a function that returns a composite type. (However, as we’ll see below, there
are some unfortunate restrictions on how the function may be used.) This is an example of a function
that returns a singleEMProw:

CREATE FUNCTION new_emp() RETURNS EMP AS ’
SELECT text ”None” AS name,

1000 AS salary,
25 AS age,
point ”(2,2)” AS cubicle;

’ LANGUAGE SQL;

176

Chapter 12. Extending SQL: Functions

In this case we have specified each of the attributes with a constant value, but any computation or
expression could have been substituted for these constants. Note two important things about defining
the function:

• The target list order must be exactly the same as that in which the columns appear in the table
associated with the composite type.

• You must typecast the expressions to match the definition of the composite type, or you will get
errors like this:

ERROR: function declared to return emp returns varchar instead of text at column 1

In the present release of PostgreSQL there are some unpleasant restrictions on how functions returning
composite types can be used. Briefly, when calling a function that returns a row, we cannot retrieve the
entire row. We must either project a single attribute out of the row or pass the entire row into another
function. (Trying to display the entire row value will yield a meaningless number.) For example,

SELECT name(new_emp());

name

None

This example makes use of the function notation for projecting attributes. The simple way to explain
this is that we can usually use the notationsattribute(table) and table.attribute inter-
changeably:

--
-- this is the same as:
-- SELECT EMP.name AS youngster FROM EMP WHERE EMP.age< 30
--
SELECT name(EMP) AS youngster

FROM EMP
WHERE age(EMP)< 30;

youngster

Sam

The reason why, in general, we must use the function syntax for projecting attributes of function
return values is that the parser just doesn’t understand the dot syntax for projection when combined
with function calls.

SELECT new_emp().name AS nobody;
ERROR: parser: parse error at or near "."

Another way to use a function returning a row result is to declare a second function accepting a row
type parameter, and pass the function result to it:

CREATE FUNCTION getname(emp) RETURNS text AS

177

Chapter 12. Extending SQL: Functions

’SELECT $1.name;’
LANGUAGE SQL;

SELECT getname(new_emp());
getname

None

(1 row)

12.2.4. SQL Functions Returning Sets

As previously mentioned, an SQL function may be declared as returningSETOF sometype . In this
case the function’s finalSELECT query is executed to completion, and each row it outputs is returned
as an element of the set.

Functions returning sets may only be called in the target list of aSELECT query. For each row that
theSELECT generates by itself, the function returning set is invoked, and an output row is generated
for each element of the function’s result set. An example:

CREATE FUNCTION listchildren(text) RETURNS SETOF text AS
’SELECT name FROM nodes WHERE parent = $1’
LANGUAGE SQL;

SELECT * FROM nodes;
name | parent

-----------+--------
Top |
Child1 | Top
Child2 | Top
Child3 | Top
SubChild1 | Child1
SubChild2 | Child1

(6 rows)

SELECT listchildren(’Top’);
listchildren

Child1
Child2
Child3

(3 rows)

SELECT name, listchildren(name) FROM nodes;
name | listchildren

--------+--------------
Top | Child1
Top | Child2
Top | Child3
Child1 | SubChild1
Child1 | SubChild2

(5 rows)

In the lastSELECT, notice that no output row appears forChild2 , Child3 , etc. This happens
becauselistchildren returns an empty set for those inputs, so no output rows are generated.

178

Chapter 12. Extending SQL: Functions

12.3. Procedural Language Functions
Procedural languages aren’t built into the PostgreSQL server; they are offered by loadable modules.
Please refer to the documentation of the procedural language in question for details about the syntax
and how the function body is interpreted for each language.

There are currently four procedural languages available in the standard PostgreSQL distribution:
PL/pgSQL, PL/Tcl, PL/Perl, and PL/Python. Other languages can be defined by users. Refer toChap-
ter 22 for more information. The basics of developing a new procedural language are covered in
Section 12.7.

12.4. Internal Functions
Internal functions are functions written in C that have been statically linked into the PostgreSQL
server. The “body” of the function definition specifies the C-language name of the function, which
need not be the same as the name being declared for SQL use. (For reasons of backwards compatibil-
ity, an empty body is accepted as meaning that the C-language function name is the same as the SQL
name.)

Normally, all internal functions present in the backend are declared during the initialization of the
database cluster (initdb), but a user could useCREATE FUNCTION to create additional alias names
for an internal function. Internal functions are declared inCREATE FUNCTION with language
nameinternal . For instance, to create an alias for thesqrt function:

CREATE FUNCTION square_root(double precision) RETURNS double precision
AS ’dsqrt’
LANGUAGE INTERNAL
WITH (isStrict);

(Most internal functions expect to be declared “strict”.)

Note: Not all “predefined” functions are “internal” in the above sense. Some predefined functions
are written in SQL.

12.5. C Language Functions
User-defined functions can be written in C (or a language that can be made compatible with C, such as
C++). Such functions are compiled into dynamically loadable objects (also called shared libraries) and
are loaded by the server on demand. The dynamic loading feature is what distinguishes “C language”
functions from “internal” functions --- the actual coding conventions are essentially the same for both.
(Hence, the standard internal function library is a rich source of coding examples for user-defined C
functions.)

Two different calling conventions are currently used for C functions. The newer “version 1” calling
convention is indicated by writing aPG_FUNCTION_INFO_V1() macro call for the function, as illus-
trated below. Lack of such a macro indicates an old-style ("version 0") function. The language name
specified inCREATE FUNCTION is C in either case. Old-style functions are now deprecated be-
cause of portability problems and lack of functionality, but they are still supported for compatibility
reasons.

179

Chapter 12. Extending SQL: Functions

12.5.1. Dynamic Loading

The first time a user-defined function in a particular loadable object file is called in a backend session,
the dynamic loader loads that object file into memory so that the function can be called. TheCREATE
FUNCTION for a user-defined C function must therefore specify two pieces of information for the
function: the name of the loadable object file, and the C name (link symbol) of the specific function to
call within that object file. If the C name is not explicitly specified then it is assumed to be the same
as the SQL function name.

The following algorithm is used to locate the shared object file based on the name given in theCRE-
ATE FUNCTION command:

1. If the name is an absolute path, the given file is loaded.

2. If the name starts with the string$libdir , that part is replaced by the PostgreSQL package
library directory name, which is determined at build time.

3. If the name does not contain a directory part, the file is searched for in the path specified by the
configuration variabledynamic_library_path .

4. Otherwise (the file was not found in the path, or it contains a non-absolute directory part), the
dynamic loader will try to take the name as given, which will most likely fail. (It is unreliable to
depend on the current working directory.)

If this sequence does not work, the platform-specific shared library file name extension (often.so) is
appended to the given name and this sequence is tried again. If that fails as well, the load will fail.

Note: The user ID the PostgreSQL server runs as must be able to traverse the path to the file
you intend to load. Making the file or a higher-level directory not readable and/or not executable
by the “postgres” user is a common mistake.

In any case, the file name that is given in theCREATE FUNCTION command is recorded literally
in the system catalogs, so if the file needs to be loaded again the same procedure is applied.

Note: PostgreSQL will not compile a C function automatically. The object file must be compiled
before it is referenced in a CREATE FUNCTION command. See Section 12.5.7 for additional
information.

Note: After it is used for the first time, a dynamically loaded object file is retained in memory.
Future calls in the same session to the function(s) in that file will only incur the small overhead of
a symbol table lookup. If you need to force a reload of an object file, for example after recompiling
it, use the LOAD command or begin a fresh session.

It is recommended to locate shared libraries either relative to$libdir or through the dynamic library
path. This simplifies version upgrades if the new installation is at a different location. The actual
directory that$libdir stands for can be found out with the commandpg_config --pkglibdir .

Note: Before PostgreSQL release 7.2, only exact absolute paths to object files could be specified
in CREATE FUNCTION. This approach is now deprecated since it makes the function defini-
tion unnecessarily unportable. It’s best to specify just the shared library name with no path nor
extension, and let the search mechanism provide that information instead.

180

Chapter 12. Extending SQL: Functions

12.5.2. Base Types in C-Language Functions

Table 12-1gives the C type required for parameters in the C functions that will be loaded into Post-
greSQL. The “Defined In” column gives the header file that needs to be included to get the type
definition. (The actual definition may be in a different file that is included by the listed file. It is rec-
ommended that users stick to the defined interface.) Note that you should always includepostgres.h

first in any source file, because it declares a number of things that you will need anyway.

Table 12-1. Equivalent C Types for Built-In PostgreSQL Types

SQL Type C Type Defined In

abstime AbsoluteTime utils/nabstime.h

boolean bool postgres.h (maybe compiler
built-in)

box BOX* utils/geo_decls.h

bytea bytea* postgres.h

"char" char (compiler built-in)

character BpChar* postgres.h

cid CommandId postgres.h

date DateADT utils/date.h

smallint (int2) int2 or int16 postgres.h

int2vector int2vector* postgres.h

integer (int4) int4 or int32 postgres.h

real (float4) float4* postgres.h

double precision (float8) float8* postgres.h

interval Interval* utils/timestamp.h

lseg LSEG* utils/geo_decls.h

name Name postgres.h

oid Oid postgres.h

oidvector oidvector* postgres.h

path PATH* utils/geo_decls.h

point POINT* utils/geo_decls.h

regproc regproc postgres.h

reltime RelativeTime utils/nabstime.h

text text* postgres.h

tid ItemPointer storage/itemptr.h

time TimeADT utils/date.h

time with time zone TimeTzADT utils/date.h

timestamp Timestamp* utils/timestamp.h

tinterval TimeInterval utils/nabstime.h

varchar VarChar* postgres.h

xid TransactionId postgres.h

181

Chapter 12. Extending SQL: Functions

Internally, PostgreSQL regards a base type as a “blob of memory”. The user-defined functions that
you define over a type in turn define the way that PostgreSQL can operate on it. That is, PostgreSQL
will only store and retrieve the data from disk and use your user-defined functions to input, process,
and output the data. Base types can have one of three internal formats:

• pass by value, fixed-length

• pass by reference, fixed-length

• pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in length (also 8 bytes, ifsizeof(Datum) is 8 on your
machine). You should be careful to define your types such that they will be the same size (in bytes) on
all architectures. For example, thelong type is dangerous because it is 4 bytes on some machines and
8 bytes on others, whereasint type is 4 bytes on most Unix machines. A reasonable implementation
of the int4 type on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

PostgreSQL automatically figures things out so that the integer types really have the size they adver-
tise.

On the other hand, fixed-length types of any size may be passed by-reference. For example, here is a
sample implementation of a PostgreSQL type:

/* 16-byte structure, passed by reference */
typedef struct
{

double x, y;
} Point;

Only pointers to such types can be used when passing them in and out of PostgreSQL functions. To
return a value of such a type, allocate the right amount of memory withpalloc() , fill in the allocated
memory, and return a pointer to it. (Alternatively, you can return an input value of the same type by
returning its pointer.Nevermodify the contents of a pass-by-reference input value, however.)

Finally, all variable-length types must also be passed by reference. All variable-length types must
begin with a length field of exactly 4 bytes, and all data to be stored within that type must be located
in the memory immediately following that length field. The length field is the total length of the
structure (i.e., it includes the size of the length field itself). We can define the text type as follows:

typedef struct {
int4 length;
char data[1];

} text;

Obviously, the data field declared here is not long enough to hold all possible strings. Since it’s
impossible to declare a variable-size structure in C, we rely on the knowledge that the C compiler
won’t range-check array subscripts. We just allocate the necessary amount of space and then access the
array as if it were declared the right length. (If this isn’t a familiar trick to you, you may wish to spend
some time with an introductory C programming textbook before delving deeper into PostgreSQL

182

Chapter 12. Extending SQL: Functions

server programming.) When manipulating variable-length types, we must be careful to allocate the
correct amount of memory and set the length field correctly. For example, if we wanted to store 40
bytes in a text structure, we might use a code fragment like this:

#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
destination- >length = VARHDRSZ + 40;
memcpy(destination- >data, buffer, 40);
...

VARHDRSZis the same assizeof(int4) , but it’s considered good style to use the macroVARHDRSZ

to refer to the size of the overhead for a variable-length type.

Now that we’ve gone over all of the possible structures for base types, we can show some examples
of real functions.

12.5.3. Version-0 Calling Conventions for C-Language Functions

We present the “old style” calling convention first --- although this approach is now deprecated, it’s
easier to get a handle on initially. In the version-0 method, the arguments and result of the C function
are just declared in normal C style, but being careful to use the C representation of each SQL data
type as shown above.

Here are some examples:

#include "postgres.h"
#include <string.h >

/* By Value */

int
add_one(int arg)
{

return arg + 1;
}

/* By Reference, Fixed Length */

float8 *
add_one_float8(float8 *arg)
{

float8 *result = (float8 *) palloc(sizeof(float8));

*result = *arg + 1.0;

return result;
}

Point *
makepoint(Point *pointx, Point *pointy)
{

Point *new_point = (Point *) palloc(sizeof(Point));

new_point->x = pointx->x;

183

Chapter 12. Extending SQL: Functions

new_point->y = pointy->y;

return new_point;
}

/* By Reference, Variable Length */

text *
copytext(text *t)
{

/*
* VARSIZE is the total size of the struct in bytes.
*/

text *new_t = (text *) palloc(VARSIZE(t));
VARATT_SIZEP(new_t) = VARSIZE(t);
/*

* VARDATA is a pointer to the data region of the struct.
*/

memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */
VARSIZE(t)-VARHDRSZ); /* how many bytes */

return new_t;
}

text *
concat_text(text *arg1, text *arg2)
{

int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);

VARATT_SIZEP(new_text) = new_text_size;
memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1)-VARHDRSZ);
memcpy(VARDATA(new_text) + (VARSIZE(arg1)-VARHDRSZ),

VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
return new_text;

}

Supposing that the above code has been prepared in filefuncs.c and compiled into a shared object,
we could define the functions to PostgreSQL with commands like this:

CREATE FUNCTION add_one(int4) RETURNS int4
AS ’ PGROOT/tutorial/funcs’ LANGUAGE C
WITH (isStrict);

-- note overloading of SQL function name add_one()
CREATE FUNCTION add_one(float8) RETURNS float8

AS ’ PGROOT/tutorial/funcs’,
’add_one_float8’

LANGUAGE C WITH (isStrict);

CREATE FUNCTION makepoint(point, point) RETURNS point
AS ’ PGROOT/tutorial/funcs’ LANGUAGE C
WITH (isStrict);

CREATE FUNCTION copytext(text) RETURNS text
AS ’ PGROOT/tutorial/funcs’ LANGUAGE C

184

Chapter 12. Extending SQL: Functions

WITH (isStrict);

CREATE FUNCTION concat_text(text, text) RETURNS text
AS ’ PGROOT/tutorial/funcs’ LANGUAGE C
WITH (isStrict);

HerePGROOTstands for the full path to the PostgreSQL source tree. (Better style would be to use
just ’funcs’ in the AS clause, after having addedPGROOT/tutorial to the search path. In any
case, we may omit the system-specific extension for a shared library, commonly.so or .sl .)

Notice that we have specified the functions as “strict”, meaning that the system should automatically
assume a NULL result if any input value is NULL. By doing this, we avoid having to check for NULL
inputs in the function code. Without this, we’d have to check for NULLs explicitly, for example by
checking for a null pointer for each pass-by-reference argument. (For pass-by-value arguments, we
don’t even have a way to check!)

Although this calling convention is simple to use, it is not very portable; on some architectures there
are problems with passing smaller-than-int data types this way. Also, there is no simple way to return
a NULL result, nor to cope with NULL arguments in any way other than making the function strict.
The version-1 convention, presented next, overcomes these objections.

12.5.4. Version-1 Calling Conventions for C-Language Functions

The version-1 calling convention relies on macros to suppress most of the complexity of passing
arguments and results. The C declaration of a version-1 function is always

Datum funcname(PG_FUNCTION_ARGS)

In addition, the macro call

PG_FUNCTION_INFO_V1(funcname);

must appear in the same source file (conventionally it’s written just before the function itself). This
macro call is not needed forinternal -language functions, since PostgreSQL currently assumes all
internal functions are version-1. However, it isrequiredfor dynamically-loaded functions.

In a version-1 function, each actual argument is fetched using aPG_GETARG_xxx () macro that cor-
responds to the argument’s datatype, and the result is returned using aPG_RETURN_xxx () macro for
the return type.

Here we show the same functions as above, coded in version-1 style:

#include "postgres.h"
#include <string.h >

#include "fmgr.h"

/* By Value */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{

int32 arg = PG_GETARG_INT32(0);

185

Chapter 12. Extending SQL: Functions

PG_RETURN_INT32(arg + 1);
}

/* By Reference, Fixed Length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{

/* The macros for FLOAT8 hide its pass-by-reference nature */
float8 arg = PG_GETARG_FLOAT8(0);

PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{

/* Here, the pass-by-reference nature of Point is not hidden */
Point *pointx = PG_GETARG_POINT_P(0);
Point *pointy = PG_GETARG_POINT_P(1);
Point *new_point = (Point *) palloc(sizeof(Point));

new_point->x = pointx->x;
new_point->y = pointy->y;

PG_RETURN_POINT_P(new_point);
}

/* By Reference, Variable Length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{

text *t = PG_GETARG_TEXT_P(0);
/*

* VARSIZE is the total size of the struct in bytes.
*/

text *new_t = (text *) palloc(VARSIZE(t));
VARATT_SIZEP(new_t) = VARSIZE(t);
/*

* VARDATA is a pointer to the data region of the struct.
*/

memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */
VARSIZE(t)-VARHDRSZ); /* how many bytes */

PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum

186

Chapter 12. Extending SQL: Functions

concat_text(PG_FUNCTION_ARGS)
{

text *arg1 = PG_GETARG_TEXT_P(0);
text *arg2 = PG_GETARG_TEXT_P(1);
int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);

VARATT_SIZEP(new_text) = new_text_size;
memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1)-VARHDRSZ);
memcpy(VARDATA(new_text) + (VARSIZE(arg1)-VARHDRSZ),

VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
PG_RETURN_TEXT_P(new_text);

}

TheCREATE FUNCTION commands are the same as for the version-0 equivalents.

At first glance, the version-1 coding conventions may appear to be just pointless obscurantism. How-
ever, they do offer a number of improvements, because the macros can hide unnecessary detail. An
example is that in codingadd_one_float8 , we no longer need to be aware thatfloat8 is a pass-
by-reference type. Another example is that theGETARGmacros for variable-length types hide the
need to deal with fetching “toasted” (compressed or out-of-line) values. The old-stylecopytext and
concat_text functions shown above are actually wrong in the presence of toasted values, because
they don’t callpg_detoast_datum() on their inputs. (The handler for old-style dynamically-loaded
functions currently takes care of this detail, but it does so less efficiently than is possible for a version-
1 function.)

One big improvement in version-1 functions is better handling of NULL inputs and results. The
macroPG_ARGISNULL(n) allows a function to test whether each input is NULL (of course, doing
this is only necessary in functions not declared “strict”). As with thePG_GETARG_xxx () macros,
the input arguments are counted beginning at zero. Note that one should refrain from executing
PG_GETARG_xxx () until one has verified that the argument isn’t NULL. To return a NULL result,
executePG_RETURN_NULL(); this works in both strict and nonstrict functions.

The version-1 function call conventions make it possible to return “set” results and implement trigger
functions and procedural-language call handlers. Version-1 code is also more portable than version-
0, because it does not break ANSI C restrictions on function call protocol. For more details see
src/backend/utils/fmgr/README in the source distribution.

12.5.5. Composite Types in C-Language Functions

Composite types do not have a fixed layout like C structures. Instances of a composite type may
contain null fields. In addition, composite types that are part of an inheritance hierarchy may have
different fields than other members of the same inheritance hierarchy. Therefore, PostgreSQL provides
a procedural interface for accessing fields of composite types from C. As PostgreSQL processes a set
of rows, each row will be passed into your function as an opaque structure of typeTUPLE. Suppose
we want to write a function to answer the query

SELECT name, c_overpaid(emp, 1500) AS overpaid
FROM emp
WHERE name = ’Bill’ OR name = ’Sam’;

In the query above, we can definec_overpaid as:

#include "postgres.h"

187

Chapter 12. Extending SQL: Functions

#include "executor/executor.h" /* for GetAttributeByName() */

bool
c_overpaid(TupleTableSlot *t, /* the current row of EMP */

int32 limit)
{

bool isnull;
int32 salary;

salary = DatumGetInt32(GetAttributeByName(t, "salary", &isnull));
if (isnull)

return (false);
return salary > limit;

}

/* In version-1 coding, the above would look like this: */

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{

TupleTableSlot *t = (TupleTableSlot *) PG_GETARG_POINTER(0);
int32 limit = PG_GETARG_INT32(1);
bool isnull;
int32 salary;

salary = DatumGetInt32(GetAttributeByName(t, "salary", &isnull));
if (isnull)

PG_RETURN_BOOL(false);
/* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary */

PG_RETURN_BOOL(salary > limit);
}

GetAttributeByName is the PostgreSQL system function that returns attributes out of the current
row. It has three arguments: the argument of typeTupleTableSlot* passed into the function, the
name of the desired attribute, and a return parameter that tells whether the attribute is null.GetAt-

tributeByName returns aDatum value that you can convert to the proper data type by using the
appropriateDatumGet XXX() macro.

The following command lets PostgreSQL know about thec_overpaid function:

CREATE FUNCTION c_overpaid(emp, int4)
RETURNS bool
AS ’ PGROOT/tutorial/funcs’
LANGUAGE C;

While there are ways to construct new rows or modify existing rows from within a C function, these
are far too complex to discuss in this manual. Consult the backend source code for examples.

188

Chapter 12. Extending SQL: Functions

12.5.6. Writing Code

We now turn to the more difficult task of writing programming language functions. Be warned: this
section of the manual will not make you a programmer. You must have a good understanding of C
(including the use of pointers and the malloc memory manager) before trying to write C functions for
use with PostgreSQL. While it may be possible to load functions written in languages other than C
into PostgreSQL, this is often difficult (when it is possible at all) because other languages, such as
FORTRAN and Pascal often do not follow the samecalling conventionas C. That is, other languages
do not pass argument and return values between functions in the same way. For this reason, we will
assume that your programming language functions are written in C.

The basic rules for building C functions are as follows:

• Usepg_config --includedir-server to find out where the PostgreSQL server header files
are installed on your system (or the system that your users will be running on). This option is new
with PostgreSQL 7.2. For PostgreSQL 7.1 you should use the option--includedir . (pg_config
will exit with a non-zero status if it encounters an unknown option.) For releases prior to 7.1 you
will have to guess, but since that was before the current calling conventions were introduced, it is
unlikely that you want to support those releases.

• When allocating memory, use the PostgreSQL routinespalloc andpfree instead of the corre-
sponding C library routinesmalloc and free . The memory allocated bypalloc will be freed
automatically at the end of each transaction, preventing memory leaks.

• Always zero the bytes of your structures usingmemset or bzero . Several routines (such as the
hash access method, hash join and the sort algorithm) compute functions of the raw bits contained
in your structure. Even if you initialize all fields of your structure, there may be several bytes of
alignment padding (holes in the structure) that may contain garbage values.

• Most of the internal PostgreSQL types are declared inpostgres.h , while the function manager
interfaces (PG_FUNCTION_ARGS, etc.) are infmgr.h , so you will need to include at least these two
files. For portability reasons it’s best to includepostgres.h first, before any other system or user
header files. Includingpostgres.h will also includeelog.h andpalloc.h for you.

• Symbol names defined within object files must not conflict with each other or with symbols defined
in the PostgreSQL server executable. You will have to rename your functions or variables if you
get error messages to this effect.

• Compiling and linking your object code so that it can be dynamically loaded into PostgreSQL
always requires special flags. SeeSection 12.5.7for a detailed explanation of how to do it for your
particular operating system.

12.5.7. Compiling and Linking Dynamically-Loaded Functions

Before you are able to use your PostgreSQL extension functions written in C, they must be compiled
and linked in a special way to produce a file that can be dynamically loaded by the server. To be
precise, ashared libraryneeds to be created.

For more information you should read the documentation of your operating system, in particular the
manual pages for the C compiler,cc, and the link editor,ld. In addition, the PostgreSQL source code
contains several working examples in thecontrib directory. If you rely on these examples you will
make your modules dependent on the availability of the PostgreSQL source code, however.

Creating shared libraries is generally analogous to linking executables: first the source files are com-
piled into object files, then the object files are linked together. The object files need to be created as

189

Chapter 12. Extending SQL: Functions

position-independent code(PIC), which conceptually means that they can be placed at an arbitrary
location in memory when they are loaded by the executable. (Object files intended for executables
are usually not compiled that way.) The command to link a shared library contains special flags to
distinguish it from linking an executable. --- At least this is the theory. On some systems the practice
is much uglier.

In the following examples we assume that your source code is in a filefoo.c and we will create a
shared libraryfoo.so . The intermediate object file will be calledfoo.o unless otherwise noted. A
shared library can contain more than one object file, but we only use one here.

BSD/OS

The compiler flag to create PIC is-fpic . The linker flag to create shared libraries is-shared .

gcc -fpic -c foo.c
ld -shared -o foo.so foo.o

This is applicable as of version 4.0 of BSD/OS.

FreeBSD

The compiler flag to create PIC is-fpic . To create shared libraries the compiler flag is-shared .

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

This is applicable as of version 3.0 of FreeBSD.

HP-UX

The compiler flag of the system compiler to create PIC is+z . When using GCC it’s-fpic . The
linker flag for shared libraries is-b . So

cc +z -c foo.c

or

gcc -fpic -c foo.c

and then

ld -b -o foo.sl foo.o

HP-UX uses the extension.sl for shared libraries, unlike most other systems.

IRIX

PIC is the default, no special compiler options are necessary. The linker option to produce shared
libraries is-shared .

cc -c foo.c
ld -shared -o foo.so foo.o

Linux

The compiler flag to create PIC is-fpic . On some platforms in some situations-fPIC must be
used if-fpic does not work. Refer to the GCC manual for more information. The compiler flag
to create a shared library is-shared . A complete example looks like this:

cc -fpic -c foo.c
cc -shared -o foo.so foo.o

190

Chapter 12. Extending SQL: Functions

NetBSD

The compiler flag to create PIC is-fpic . For ELF systems, the compiler with the flag-shared

is used to link shared libraries. On the older non-ELF systems,ld -Bshareable is used.

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

OpenBSD

The compiler flag to create PIC is-fpic . ld -Bshareable is used to link shared libraries.

gcc -fpic -c foo.c
ld -Bshareable -o foo.so foo.o

Solaris

The compiler flag to create PIC is-KPIC with the Sun compiler and-fpic with GCC. To link
shared libraries, the compiler option is-G with either compiler or alternatively-shared with
GCC.

cc -KPIC -c foo.c
cc -G -o foo.so foo.o

or

gcc -fpic -c foo.c
gcc -G -o foo.so foo.o

Tru64 UNIX

PIC is the default, so the compilation command is the usual one.ld with special options is used
to do the linking:

cc -c foo.c
ld -shared -expect_unresolved ’*’ -o foo.so foo.o

The same procedure is used with GCC instead of the system compiler; no special options are
required.

UnixWare

The compiler flag to create PIC is-K PIC with the SCO compiler and-fpic with GCC. To link
shared libraries, the compiler option is-G with the SCO compiler and-shared with GCC.

cc -K PIC -c foo.c
cc -G -o foo.so foo.o

or

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

Tip: If you want to package your extension modules for wide distribution you should consider using
GNU Libtool1 for building shared libraries. It encapsulates the platform differences into a general

1. http://www.gnu.org/software/libtool/

191

Chapter 12. Extending SQL: Functions

and powerful interface. Serious packaging also requires considerations about library versioning,
symbol resolution methods, and other issues.

The resulting shared library file can then be loaded into PostgreSQL. When specifying the file name
to theCREATE FUNCTION command, one must give it the name of the shared library file, not the
intermediate object file. Note that the system’s standard shared-library extension (usually.so or .sl)
can be omitted from theCREATE FUNCTION command, and normally should be omitted for best
portability.

Refer back toSection 12.5.1about where the server expects to find the shared library files.

12.6. Function Overloading
More than one function may be defined with the same SQL name, so long as the arguments they take
are different. In other words, function names can beoverloaded. When a query is executed, the server
will determine which function to call from the data types and the number of the provided arguments.
Overloading can also be used to simulate functions with a variable number of arguments, up to a finite
maximum number.

A function may also have the same name as an attribute. In the case that there is an ambiguity between
a function on a complex type and an attribute of the complex type, the attribute will always be used.

When creating a family of overloaded functions, one should be careful not to create ambiguities. For
instance, given the functions

CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...

it is not immediately clear which function would be called with some trivial input liketest(1,

1.5) . The currently implemented resolution rules are described in theUser’s Guide, but it is unwise
to design a system that subtly relies on this behavior.

When overloading C language functions, there is an additional constraint: The C name of each func-
tion in the family of overloaded functions must be different from the C names of all other functions,
either internal or dynamically loaded. If this rule is violated, the behavior is not portable. You might
get a run-time linker error, or one of the functions will get called (usually the internal one). The al-
ternative form of theAS clause for the SQLCREATE FUNCTION command decouples the SQL
function name from the function name in the C source code. E.g.,

CREATE FUNCTION test(int) RETURNS int
AS ’ filename ’, ’test_1arg’
LANGUAGE C;

CREATE FUNCTION test(int, int) RETURNS int
AS ’ filename ’, ’test_2arg’
LANGUAGE C;

The names of the C functions here reflect one of many possible conventions.

Prior to PostgreSQL 7.0, this alternative syntax did not exist. There is a trick to get around the prob-
lem, by defining a set of C functions with different names and then define a set of identically-named
SQL function wrappers that take the appropriate argument types and call the matching C function.

192

Chapter 12. Extending SQL: Functions

12.7. Procedural Language Handlers
All calls to functions that are written in a language other than the current “version 1” interface for
compiled languages (this includes functions in user-defined procedural languages, functions written
in SQL, and functions using the version 0 compiled language interface), go through acall handler
function for the specific language. It is the responsibility of the call handler to execute the function
in a meaningful way, such as by interpreting the supplied source text. This section describes how
a language call handler can be written. This is not a common task, in fact, it has only been done a
handful of times in the history of PostgreSQL, but the topic naturally belongs in this chapter, and the
material might give some insight into the extensible nature of the PostgreSQL system.

The call handler for a procedural language is a “normal” function, which must be written in a compiled
language such as C and registered with PostgreSQL as taking no arguments and returning theopaque

type, a placeholder for unspecified or undefined types. This prevents the call handler from being called
directly as a function from queries. (However, arguments may be supplied in the actual call to the
handler when a function in the language offered by the handler is to be executed.)

Note: In PostgreSQL 7.1 and later, call handlers must adhere to the “version 1” function manager
interface, not the old-style interface.

The call handler is called in the same way as any other function: It receives a pointer to aFunction-

CallInfoData struct containing argument values and information about the called function, and it
is expected to return aDatum result (and possibly set theisnull field of theFunctionCallInfo-

Data struct, if it wishes to return an SQL NULL result). The difference between a call handler and an
ordinary callee function is that theflinfo- >fn_oid field of theFunctionCallInfoData struct
will contain the OID of the actual function to be called, not of the call handler itself. The call handler
must use this field to determine which function to execute. Also, the passed argument list has been set
up according to the declaration of the target function, not of the call handler.

It’s up to the call handler to fetch thepg_proc entry and to analyze the argument and return types of
the called procedure. The AS clause from theCREATE FUNCTION of the procedure will be found
in the prosrc attribute of thepg_proc table entry. This may be the source text in the procedural
language itself (like for PL/Tcl), a path name to a file, or anything else that tells the call handler what
to do in detail.

Often, the same function is called many times per SQL statement. A call handler can avoid repeated
lookups of information about the called function by using theflinfo- >fn_extra field. This will
initially be NULL, but can be set by the call handler to point at information about the PL function.
On subsequent calls, ifflinfo- >fn_extra is already non-NULL then it can be used and the in-
formation lookup step skipped. The call handler must be careful thatflinfo- >fn_extra is made
to point at memory that will live at least until the end of the current query, since anFmgrInfo data
structure could be kept that long. One way to do this is to allocate the extra data in the memory context
specified byflinfo- >fn_mcxt ; such data will normally have the same lifespan as theFmgrInfo

itself. But the handler could also choose to use a longer-lived context so that it can cache function
definition information across queries.

When a PL function is invoked as a trigger, no explicit arguments are passed, but theFunction-

CallInfoData ’s context field points at aTriggerData node, rather than being NULL as it is in
a plain function call. A language handler should provide mechanisms for PL functions to get at the
trigger information.

This is a template for a PL handler written in C:

#include "postgres.h"

193

Chapter 12. Extending SQL: Functions

#include "executor/spi.h"
#include "commands/trigger.h"
#include "utils/elog.h"
#include "fmgr.h"
#include "access/heapam.h"
#include "utils/syscache.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"

PG_FUNCTION_INFO_V1(plsample_call_handler);

Datum
plsample_call_handler(PG_FUNCTION_ARGS)
{

Datum retval;

if (CALLED_AS_TRIGGER(fcinfo))
{

/*
* Called as a trigger procedure
*/

TriggerData *trigdata = (TriggerData *) fcinfo->context;

retval = ...
}
else {

/*
* Called as a function
*/

retval = ...
}

return retval;
}

Only a few thousand lines of code have to be added instead of the dots to complete the call handler.
SeeSection 12.5for information on how to compile it into a loadable module.

The following commands then register the sample procedural language:

CREATE FUNCTION plsample_call_handler () RETURNS opaque
AS ’/usr/local/pgsql/lib/plsample’
LANGUAGE C;

CREATE LANGUAGE plsample
HANDLER plsample_call_handler;

194

Chapter 13. Extending SQL: Types
As previously mentioned, there are two kinds of types in PostgreSQL: base types (defined in a pro-
gramming language) and composite types. This chapter describes how to define new base types.

The examples in this section can be found incomplex.sql andcomplex.c in the tutorial directory.
Composite examples are infuncs.sql .

A user-defined type must always have input and output functions. These functions determine how the
type appears in strings (for input by the user and output to the user) and how the type is organized
in memory. The input function takes a null-terminated character string as its input and returns the
internal (in memory) representation of the type. The output function takes the internal representation
of the type and returns a null-terminated character string.

Suppose we want to define a complex type which represents complex numbers. Naturally, we would
choose to represent a complex in memory as the following C structure:

typedef struct Complex {
double x;
double y;

} Complex;

and a string of the form(x,y) as the external string representation.

The functions are usually not hard to write, especially the output function. However, there are a
number of points to remember:

• When defining your external (string) representation, remember that you must eventually write a
complete and robust parser for that representation as your input function!

For instance:

Complex *
complex_in(char *str)
{

double x, y;
Complex *result;
if (sscanf(str, " (%lf , %lf)", &x, &y) != 2) {

elog(ERROR, "complex_in: error in parsing %s", str);
return NULL;

}
result = (Complex *)palloc(sizeof(Complex));
result- >x = x;
result- >y = y;
return (result);

}

The output function can simply be:

char *
complex_out(Complex *complex)
{

char *result;
if (complex == NULL)

return(NULL);
result = (char *) palloc(60);
sprintf(result, "(%g,%g)", complex- >x, complex- >y);

195

Chapter 13. Extending SQL: Types

return(result);
}

• You should try to make the input and output functions inverses of each other. If you do not, you will
have severe problems when you need to dump your data into a file and then read it back in (say,
into someone else’s database on another computer). This is a particularly common problem when
floating-point numbers are involved.

To define thecomplex type, we need to create the two user-defined functionscomplex_in and
complex_out before creating the type:

CREATE FUNCTION complex_in(opaque)
RETURNS complex
AS ’ PGROOT/tutorial/complex’
LANGUAGE C;

CREATE FUNCTION complex_out(opaque)
RETURNS opaque
AS ’ PGROOT/tutorial/complex’
LANGUAGE C;

Finally, we can declare the data type:

CREATE TYPE complex (
internallength = 16,
input = complex_in,
output = complex_out

);

As discussed earlier, PostgreSQL fully supports arrays of base types. Additionally, PostgreSQL sup-
ports arrays of user-defined types as well. When you define a type, PostgreSQL automatically pro-
vides support for arrays of that type. For historical reasons, the array type has the same name as the
user-defined type with the underscore character_ prepended.

Composite types do not need any function defined on them, since the system already understands
what they look like inside.

If the values of your datatype might exceed a few hundred bytes in size (in internal form), you should
be careful to mark them TOAST-able. To do this, the internal representation must follow the standard
layout for variable-length data: the first four bytes must be anint32 containing the total length in
bytes of the datum (including itself). Then, all your functions that accept values of the type must be
careful to callpg_detoast_datum() on the supplied values --- after checking that the value is not
NULL, if your function is not strict. Finally, select the appropriate storage option when giving the
CREATE TYPE command.

196

Chapter 14. Extending SQL: Operators

14.1. Introduction
PostgreSQL supports left unary, right unary, and binary operators. Operators can be overloaded; that
is, the same operator name can be used for different operators that have different numbers and types
of operands. If there is an ambiguous situation and the system cannot determine the correct operator
to use, it will return an error. You may have to type-cast the left and/or right operands to help it
understand which operator you meant to use.

Every operator is “syntactic sugar” for a call to an underlying function that does the real work; so you
must first create the underlying function before you can create the operator. However, an operator is
not merelysyntactic sugar, because it carries additional information that helps the query planner opti-
mize queries that use the operator. Much of this chapter will be devoted to explaining that additional
information.

14.2. Example
Here is an example of creating an operator for adding two complex numbers. We assume we’ve
already created the definition of typecomplex (seeChapter 13). First we need a function that does
the work, then we can define the operator:

CREATE FUNCTION complex_add(complex, complex)
RETURNS complex
AS ’ PGROOT/tutorial/complex’
LANGUAGE C;

CREATE OPERATOR + (
leftarg = complex,
rightarg = complex,
procedure = complex_add,
commutator = +

);

Now we can do:

SELECT (a + b) AS c FROM test_complex;

c

(5.2,6.05)
(133.42,144.95)

We’ve shown how to create a binary operator here. To create unary operators, just omit one ofleft-

arg (for left unary) orrightarg (for right unary). Theprocedure clause and the argument clauses
are the only required items inCREATE OPERATOR . Thecommutator clause shown in the exam-
ple is an optional hint to the query optimizer. Further details aboutcommutator and other optimizer
hints appear below.

197

Chapter 14. Extending SQL: Operators

14.3. Operator Optimization Information

Author: Written by Tom Lane.

A PostgreSQL operator definition can include several optional clauses that tell the system useful
things about how the operator behaves. These clauses should be provided whenever appropriate, be-
cause they can make for considerable speedups in execution of queries that use the operator. But if
you provide them, you must be sure that they are right! Incorrect use of an optimization clause can
result in backend crashes, subtly wrong output, or other Bad Things. You can always leave out an
optimization clause if you are not sure about it; the only consequence is that queries might run slower
than they need to.

Additional optimization clauses might be added in future versions of PostgreSQL. The ones described
here are all the ones that release 7.2 understands.

14.3.1. COMMUTATOR

TheCOMMUTATORclause, if provided, names an operator that is the commutator of the operator being
defined. We say that operator A is the commutator of operator B if (x A y) equals (y B x) for all
possible input values x, y. Notice that B is also the commutator of A. For example, operators< and>
for a particular data type are usually each others’ commutators, and operator+ is usually commutative
with itself. But operator- is usually not commutative with anything.

The left operand type of a commuted operator is the same as the right operand type of its commutator,
and vice versa. So the name of the commutator operator is all that PostgreSQL needs to be given to
look up the commutator, and that’s all that needs to be provided in theCOMMUTATORclause.

When you are defining a self-commutative operator, you just do it. When you are defining a pair of
commutative operators, things are a little trickier: how can the first one to be defined refer to the other
one, which you haven’t defined yet? There are two solutions to this problem:

• One way is to omit theCOMMUTATORclause in the first operator that you define, and then provide
one in the second operator’s definition. Since PostgreSQL knows that commutative operators come
in pairs, when it sees the second definition it will automatically go back and fill in the missing
COMMUTATORclause in the first definition.

• The other, more straightforward way is just to includeCOMMUTATORclauses in both definitions.
When PostgreSQL processes the first definition and realizes thatCOMMUTATORrefers to a non-
existent operator, the system will make a dummy entry for that operator in the system catalog. This
dummy entry will have valid data only for the operator name, left and right operand types, and
result type, since that’s all that PostgreSQL can deduce at this point. The first operator’s catalog
entry will link to this dummy entry. Later, when you define the second operator, the system updates
the dummy entry with the additional information from the second definition. If you try to use the
dummy operator before it’s been filled in, you’ll just get an error message. (Note: This procedure
did not work reliably in PostgreSQL versions before 6.5, but it is now the recommended way to do
things.)

198

Chapter 14. Extending SQL: Operators

14.3.2. NEGATOR

TheNEGATORclause, if provided, names an operator that is the negator of the operator being defined.
We say that operator A is the negator of operator B if both return Boolean results and (x A y) equals
NOT (x B y) for all possible inputs x, y. Notice that B is also the negator of A. For example,< and
>= are a negator pair for most data types. An operator can never validly be its own negator.

Unlike commutators, a pair of unary operators could validly be marked as each others’ negators; that
would mean (A x) equals NOT (B x) for all x, or the equivalent for right unary operators.

An operator’s negator must have the same left and/or right operand types as the operator itself, so just
as withCOMMUTATOR, only the operator name need be given in theNEGATORclause.

Providing a negator is very helpful to the query optimizer since it allows expressions like NOT (x =
y) to be simplified into x<> y. This comes up more often than you might think, because NOTs can
be inserted as a consequence of other rearrangements.

Pairs of negator operators can be defined using the same methods explained above for commutator
pairs.

14.3.3. RESTRICT

TheRESTRICTclause, if provided, names a restriction selectivity estimation function for the operator
(note that this is a function name, not an operator name).RESTRICT clauses only make sense for
binary operators that returnboolean . The idea behind a restriction selectivity estimator is to guess
what fraction of the rows in a table will satisfy aWHERE-clause condition of the form

column OP constant

for the current operator and a particular constant value. This assists the optimizer by giving it some
idea of how many rows will be eliminated byWHEREclauses that have this form. (What happens if
the constant is on the left, you may be wondering? Well, that’s one of the things thatCOMMUTATORis
for...)

Writing new restriction selectivity estimation functions is far beyond the scope of this chapter, but
fortunately you can usually just use one of the system’s standard estimators for many of your own
operators. These are the standard restriction estimators:

eqsel for =

neqsel for <>
scalarltsel for < or<=

scalargtsel for > or>=

It might seem a little odd that these are the categories, but they make sense if you think about it.=

will typically accept only a small fraction of the rows in a table;<> will typically reject only a small
fraction.< will accept a fraction that depends on where the given constant falls in the range of values
for that table column (which, it just so happens, is information collected byANALYZE and made
available to the selectivity estimator).<= will accept a slightly larger fraction than< for the same
comparison constant, but they’re close enough to not be worth distinguishing, especially since we’re
not likely to do better than a rough guess anyhow. Similar remarks apply to> and>=.

You can frequently get away with using eithereqsel or neqsel for operators that have very high or
very low selectivity, even if they aren’t really equality or inequality. For example, the approximate-
equality geometric operators useeqsel on the assumption that they’ll usually only match a small
fraction of the entries in a table.

199

Chapter 14. Extending SQL: Operators

You can use scalarltsel and scalargtsel for comparisons on data types that have
some sensible means of being converted into numeric scalars for range comparisons. If
possible, add the data type to those understood by the routineconvert_to_scalar() in
src/backend/utils/adt/selfuncs.c . (Eventually, this routine should be replaced by
per-data-type functions identified through a column of thepg_type system catalog; but that hasn’t
happened yet.) If you do not do this, things will still work, but the optimizer’s estimates won’t be as
good as they could be.

There are additional selectivity functions designed for geometric operators in
src/backend/utils/adt/geo_selfuncs.c : areasel , positionsel , and contsel . At this
writing these are just stubs, but you may want to use them (or even better, improve them) anyway.

14.3.4. JOIN

TheJOIN clause, if provided, names a join selectivity estimation function for the operator (note that
this is a function name, not an operator name).JOIN clauses only make sense for binary operators
that returnboolean . The idea behind a join selectivity estimator is to guess what fraction of the rows
in a pair of tables will satisfy aWHERE-clause condition of the form

table1.column1 OP table2.column2

for the current operator. As with theRESTRICTclause, this helps the optimizer very substantially by
letting it figure out which of several possible join sequences is likely to take the least work.

As before, this chapter will make no attempt to explain how to write a join selectivity estimator
function, but will just suggest that you use one of the standard estimators if one is applicable:

eqjoinsel for =

neqjoinsel for <>
scalarltjoinsel for < or<=

scalargtjoinsel for > or>=

areajoinsel for 2D area-based comparisons
positionjoinsel for 2D position-based comparisons
contjoinsel for 2D containment-based comparisons

14.3.5. HASHES

The HASHESclause, if present, tells the system that it is OK to use the hash join method for a join
based on this operator.HASHESonly makes sense for binary operators that returnboolean , and in
practice the operator had better be equality for some data type.

The assumption underlying hash join is that the join operator can only return true for pairs of left and
right values that hash to the same hash code. If two values get put in different hash buckets, the join
will never compare them at all, implicitly assuming that the result of the join operator must be false.
So it never makes sense to specifyHASHESfor operators that do not represent equality.

In fact, logical equality is not good enough either; the operator had better represent pure bitwise
equality, because the hash function will be computed on the memory representation of the values
regardless of what the bits mean. For example, equality of time intervals is not bitwise equality; the
interval equality operator considers two time intervals equal if they have the same duration, whether or
not their endpoints are identical. What this means is that a join using= between interval fields would
yield different results if implemented as a hash join than if implemented another way, because a large

200

Chapter 14. Extending SQL: Operators

fraction of the pairs that should match will hash to different values and will never be compared by
the hash join. But if the optimizer chose to use a different kind of join, all the pairs that the equality
operator says are equal will be found. We don’t want that kind of inconsistency, so we don’t mark
interval equality as hashable.

There are also machine-dependent ways in which a hash join might fail to do the right thing. For
example, if your data type is a structure in which there may be uninteresting pad bits, it’s unsafe to
mark the equality operatorHASHES. (Unless, perhaps, you write your other operators to ensure that the
unused bits are always zero.) Another example is that the floating-point data types are unsafe for hash
joins. On machines that meet the IEEE floating-point standard, minus zero and plus zero are different
values (different bit patterns) but they are defined to compare equal. So, if the equality operator on
floating-point data types were markedHASHES, a minus zero and a plus zero would probably not be
matched up by a hash join, but they would be matched up by any other join process.

The bottom line is that you should probably only useHASHESfor equality operators that are (or could
be) implemented bymemcmp().

14.3.6. SORT1 and SORT2

TheSORTclauses, if present, tell the system that it is permissible to use the merge join method for a
join based on the current operator. Both must be specified if either is. The current operator must be
equality for some pair of data types, and theSORT1andSORT2clauses name the ordering operator
(“<” operator) for the left and right-side data types respectively.

Merge join is based on the idea of sorting the left and righthand tables into order and then scanning
them in parallel. So, both data types must be capable of being fully ordered, and the join operator
must be one that can only succeed for pairs of values that fall at the “same place” in the sort order.
In practice this means that the join operator must behave like equality. But unlike hash join, where
the left and right data types had better be the same (or at least bitwise equivalent), it is possible to
merge-join two distinct data types so long as they are logically compatible. For example, theint2 -
versus-int4 equality operator is merge-joinable. We only need sorting operators that will bring both
data types into a logically compatible sequence.

When specifying merge-sort operators, the current operator and both referenced operators must re-
turnboolean ; theSORT1operator must have both input data types equal to the current operator’s left
operand type, and theSORT2operator must have both input data types equal to the current operator’s
right operand type. (As withCOMMUTATORandNEGATOR, this means that the operator name is suffi-
cient to specify the operator, and the system is able to make dummy operator entries if you happen to
define the equality operator before the other ones.)

In practice you should only writeSORTclauses for an= operator, and the two referenced operators
should always be named<. Trying to use merge join with operators named anything else will result
in hopeless confusion, for reasons we’ll see in a moment.

There are additional restrictions on operators that you mark merge-joinable. These restrictions are not
currently checked byCREATE OPERATOR , but a merge join may fail at run time if any are not
true:

• The merge-joinable equality operator must have a commutator (itself if the two data types are the
same, or a related equality operator if they are different).

• There must be< and> ordering operators having the same left and right operand data types as
the merge-joinable operator itself. These operatorsmustbe named< and>; you do not have any
choice in the matter, since there is no provision for specifying them explicitly. Note that if the left
and right data types are different, neither of these operators is the same as eitherSORToperator. But

201

Chapter 14. Extending SQL: Operators

they had better order the data values compatibly with theSORToperators, or the merge join will
fail to work.

202

Chapter 15. Extending SQL: Aggregates
Aggregate functions in PostgreSQL are expressed asstate valuesandstate transition functions. That
is, an aggregate can be defined in terms of state that is modified whenever an input item is processed.
To define a new aggregate function, one selects a data type for the state value, an initial value for
the state, and a state transition function. The state transition function is just an ordinary function that
could also be used outside the context of the aggregate. Afinal functioncan also be specified, in case
the desired output of the aggregate is different from the data that needs to be kept in the running state
value.

Thus, in addition to the input and result data types seen by a user of the aggregate, there is an internal
state-value data type that may be different from both the input and result types.

If we define an aggregate that does not use a final function, we have an aggregate that computes a
running function of the column values from each row.Sum is an example of this kind of aggregate.
Sumstarts at zero and always adds the current row’s value to its running total. For example, if we
want to make asum aggregate to work on a data type for complex numbers, we only need the addition
function for that data type. The aggregate definition is:

CREATE AGGREGATE complex_sum (
sfunc = complex_add,
basetype = complex,
stype = complex,
initcond = ’(0,0)’

);

SELECT complex_sum(a) FROM test_complex;

complex_sum

(34,53.9)

(In practice, we’d just name the aggregatesum, and rely on PostgreSQL to figure out which kind of
sum to apply to a column of typecomplex .)

The above definition ofsum will return zero (the initial state condition) if there are no non-null input
values. Perhaps we want to return NULL in that case instead --- the SQL standard expectssum to
behave that way. We can do this simply by omitting theinitcond phrase, so that the initial state
condition is NULL. Ordinarily this would mean that thesfunc would need to check for a NULL
state-condition input, but forsumand some other simple aggregates likemaxandmin , it’s sufficient to
insert the first non-null input value into the state variable and then start applying the transition function
at the second non-null input value. PostgreSQL will do that automatically if the initial condition is
NULL and the transition function is marked “strict” (i.e., not to be called for NULL inputs).

Another bit of default behavior for a “strict” transition function is that the previous state value is
retained unchanged whenever a NULL input value is encountered. Thus, NULLs are ignored. If you
need some other behavior for NULL inputs, just define your transition function as non-strict, and code
it to test for NULL inputs and do whatever is needed.

Avg (average) is a more complex example of an aggregate. It requires two pieces of running state:
the sum of the inputs and the count of the number of inputs. The final result is obtained by dividing
these quantities. Average is typically implemented by using a two-element array as the transition state
value. For example, the built-in implementation ofavg(float8) looks like:

CREATE AGGREGATE avg (
sfunc = float8_accum,

203

Chapter 15. Extending SQL: Aggregates

basetype = float8,
stype = float8[],
finalfunc = float8_avg,
initcond = ’{0,0}’

);

For further details see the description of theCREATE AGGREGATE command in theReference
Manual.

204

Chapter 16. The Rule System

Author: Written by Jan Wieck. Updates for 7.1 by Tom Lane.

16.1. Introduction
Production rule systems are conceptually simple, but there are many subtle points involved in actually
using them. Some of these points and the theoretical foundations of the PostgreSQL rule system can
be found inOn Rules, Procedures, Caching and Views in Database Systems.

Some other database systems define active database rules. These are usually stored procedures and
triggers and are implemented in PostgreSQL as functions and triggers.

The query rewrite rule system (therule systemfrom now on) is totally different from stored procedures
and triggers. It modifies queries to take rules into consideration, and then passes the modified query
to the query planner for planning and execution. It is very powerful, and can be used for many things
such as query language procedures, views, and versions. The power of this rule system is discussed
in A Unified Framework for Version Modeling Using Production Rules in a Database Systemas well
asOn Rules, Procedures, Caching and Views in Database Systems.

16.2. What is a Query Tree?
To understand how the rule system works it is necessary to know when it is invoked and what its input
and results are.

The rule system is located between the query parser and the planner. It takes the output of the parser,
one query tree, and the rewrite rules from thepg_rewrite catalog, which are query trees too with
some extra information, and creates zero or many query trees as result. So its input and output are
always things the parser itself could have produced and thus, anything it sees is basically representable
as an SQL statement.

Now what is a query tree? It is an internal representation of an SQL statement where the single parts
that built it are stored separately. These query trees are visible when starting the PostgreSQL backend
with debug level 4 and typing queries into the interactive backend interface. The rule actions in the
pg_rewrite system catalog are also stored as query trees. They are not formatted like the debug
output, but they contain exactly the same information.

Reading a query tree requires some experience and it was a hard time when I started to work on the
rule system. I can remember that I was standing at the coffee machine and I saw the cup in a target
list, water and coffee powder in a range table and all the buttons in a qualification expression. Since
SQL representations of query trees are sufficient to understand the rule system, this document will
not teach how to read them. It might help to learn it and the naming conventions are required in the
later following descriptions.

16.2.1. The Parts of a Query tree

When reading the SQL representations of the query trees in this document it is necessary to be able
to identify the parts the statement is broken into when it is in the query tree structure. The parts of a

205

Chapter 16. The Rule System

query tree are

the command type

This is a simple value telling which command (SELECT, INSERT, UPDATE, DELETE) pro-
duced the parse tree.

the range table

The range table is a list of relations that are used in the query. In a SELECT statement these are
the relations given after the FROM keyword.

Every range table entry identifies a table or view and tells by which name it is called in the other
parts of the query. In the query tree the range table entries are referenced by index rather than by
name, so here it doesn’t matter if there are duplicate names as it would in an SQL statement. This
can happen after the range tables of rules have been merged in. The examples in this document
will not have this situation.

the result relation

This is an index into the range table that identifies the relation where the results of the query go.

SELECT queries normally don’t have a result relation. The special case of a SELECT INTO
is mostly identical to a CREATE TABLE, INSERT ... SELECT sequence and is not discussed
separately here.

On INSERT, UPDATE and DELETE queries the result relation is the table (or view!) where the
changes take effect.

the target list

The target list is a list of expressions that define the result of the query. In the case of a SELECT,
the expressions are what builds the final output of the query. They are the expressions between
the SELECT and the FROM keywords. (* is just an abbreviation for all the attribute names of a
relation. It is expanded by the parser into the individual attributes, so the rule system never sees
it.)

DELETE queries don’t need a target list because they don’t produce any result. In fact the planner
will add a special CTID entry to the empty target list. But this is after the rule system and will
be discussed later. For the rule system the target list is empty.

In INSERT queries the target list describes the new rows that should go into the result relation.
It is the expressions in the VALUES clause or the ones from the SELECT clause in INSERT ...
SELECT. Missing columns of the result relation will be filled in by the planner with a constant
NULL expression.

In UPDATE queries, the target list describes the new rows that should replace the old ones. In
the rule system, it contains just the expressions from the SET attribute = expression part of the
query. The planner will add missing columns by inserting expressions that copy the values from
the old row into the new one. And it will add the special CTID entry just as for DELETE too.

Every entry in the target list contains an expression that can be a constant value, a variable
pointing to an attribute of one of the relations in the range table, a parameter, or an expression
tree made of function calls, constants, variables, operators etc.

the qualification

The query’s qualification is an expression much like one of those contained in the target list
entries. The result value of this expression is a Boolean that tells if the operation (INSERT,
UPDATE, DELETE or SELECT) for the final result row should be executed or not. It is the
WHERE clause of an SQL statement.

206

Chapter 16. The Rule System

the join tree

The query’s join tree shows the structure of the FROM clause. For a simple query like SELECT
FROM a, b, c the join tree is just a list of the FROM items, because we are allowed to join them
in any order. But when JOIN expressions --- particularly outer joins --- are used, we have to join
in the order shown by the joins. The join tree shows the structure of the JOIN expressions. The
restrictions associated with particular JOIN clauses (from ON or USING expressions) are stored
as qualification expressions attached to those join tree nodes. It turns out to be convenient to
store the top-level WHERE expression as a qualification attached to the top-level join tree item,
too. So really the join tree represents both the FROM and WHERE clauses of a SELECT.

the others

The other parts of the query tree like the ORDER BY clause aren’t of interest here. The rule
system substitutes entries there while applying rules, but that doesn’t have much to do with the
fundamentals of the rule system.

16.3. Views and the Rule System

16.3.1. Implementation of Views in PostgreSQL

Views in PostgreSQL are implemented using the rule system. In fact there is absolutely no difference
between a

CREATE VIEW myview AS SELECT * FROM mytab;

compared against the two commands

CREATE TABLE myview (same attribute list as for mytab);
CREATE RULE "_RETmyview" AS ON SELECT TO myview DO INSTEAD

SELECT * FROM mytab;

because this is exactly what the CREATE VIEW command does internally. This has some side effects.
One of them is that the information about a view in the PostgreSQL system catalogs is exactly the
same as it is for a table. So for the query parser, there is absolutely no difference between a table and
a view. They are the same thing - relations. That is the important one for now.

16.3.2. How SELECT Rules Work

Rules ON SELECT are applied to all queries as the last step, even if the command given is an INSERT,
UPDATE or DELETE. And they have different semantics from the others in that they modify the parse
tree in place instead of creating a new one. So SELECT rules are described first.

Currently, there can be only one action in an ON SELECT rule, and it must be an unconditional
SELECT action that is INSTEAD. This restriction was required to make rules safe enough to open
them for ordinary users and it restricts rules ON SELECT to real view rules.

The examples for this document are two join views that do some calculations and some more views
using them in turn. One of the two first views is customized later by adding rules for INSERT, UP-
DATE and DELETE operations so that the final result will be a view that behaves like a real table with
some magic functionality. It is not such a simple example to start from and this makes things harder

207

Chapter 16. The Rule System

to get into. But it’s better to have one example that covers all the points discussed step by step rather
than having many different ones that might mix up in mind.

The database needed to play with the examples is namedal_bundy . You’ll see soon why this is the
database name. And it needs the procedural language PL/pgSQL installed, because we need a little
min() function returning the lower of 2 integer values. We create that as

CREATE FUNCTION min(integer, integer) RETURNS integer AS ’
BEGIN

IF $1 < $2 THEN
RETURN $1;

END IF;
RETURN $2;

END;
’ LANGUAGE plpgsql;

The real tables we need in the first two rule system descriptions are these:

CREATE TABLE shoe_data (
shoename char(10), -- primary key
sh_avail integer, -- available # of pairs
slcolor char(10), -- preferred shoelace color
slminlen float, -- miminum shoelace length
slmaxlen float, -- maximum shoelace length
slunit char(8) -- length unit

);

CREATE TABLE shoelace_data (
sl_name char(10), -- primary key
sl_avail integer, -- available # of pairs
sl_color char(10), -- shoelace color
sl_len float, -- shoelace length
sl_unit char(8) -- length unit

);

CREATE TABLE unit (
un_name char(8), -- the primary key
un_fact float -- factor to transform to cm

);

I think most of us wear shoes and can realize that this is really useful data. Well there are shoes out in
the world that don’t require shoelaces, but this doesn’t make Al’s life easier and so we ignore it.

The views are created as

CREATE VIEW shoe AS
SELECT sh.shoename,

sh.sh_avail,
sh.slcolor,
sh.slminlen,
sh.slminlen * un.un_fact AS slminlen_cm,
sh.slmaxlen,
sh.slmaxlen * un.un_fact AS slmaxlen_cm,
sh.slunit

FROM shoe_data sh, unit un
WHERE sh.slunit = un.un_name;

208

Chapter 16. The Rule System

CREATE VIEW shoelace AS
SELECT s.sl_name,

s.sl_avail,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
SELECT rsh.shoename,

rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail

FROM shoe rsh, shoelace rsl
WHERE rsl.sl_color = rsh.slcolor

AND rsl.sl_len_cm >= rsh.slminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

The CREATE VIEW command for theshoelace view (which is the simplest one we have) will
create a relation shoelace and an entry inpg_rewrite that tells that there is a rewrite rule that must
be applied whenever the relation shoelace is referenced in a query’s range table. The rule has no rule
qualification (discussed later, with the non SELECT rules, since SELECT rules currently cannot have
them) and it is INSTEAD. Note that rule qualifications are not the same as query qualifications! The
rule’s action has a query qualification.

The rule’s action is one query tree that is a copy of the SELECT statement in the view creation
command.

Note: The two extra range table entries for NEW and OLD (named *NEW* and *CURRENT* for
historical reasons in the printed query tree) you can see in the pg_rewrite entry aren’t of interest
for SELECT rules.

Now we populateunit , shoe_data andshoelace_data and Al types the first SELECT in his
life:

al_bundy=> INSERT INTO unit VALUES (’cm’, 1.0);
al_bundy=> INSERT INTO unit VALUES (’m’, 100.0);
al_bundy=> INSERT INTO unit VALUES (’inch’, 2.54);
al_bundy=>
al_bundy=> INSERT INTO shoe_data VALUES
al_bundy-> (’sh1’, 2, ’black’, 70.0, 90.0, ’cm’);
al_bundy=> INSERT INTO shoe_data VALUES
al_bundy-> (’sh2’, 0, ’black’, 30.0, 40.0, ’inch’);
al_bundy=> INSERT INTO shoe_data VALUES
al_bundy-> (’sh3’, 4, ’brown’, 50.0, 65.0, ’cm’);
al_bundy=> INSERT INTO shoe_data VALUES
al_bundy-> (’sh4’, 3, ’brown’, 40.0, 50.0, ’inch’);
al_bundy=>
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> (’sl1’, 5, ’black’, 80.0, ’cm’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> (’sl2’, 6, ’black’, 100.0, ’cm’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> (’sl3’, 0, ’black’, 35.0 , ’inch’);
al_bundy=> INSERT INTO shoelace_data VALUES

209

Chapter 16. The Rule System

al_bundy-> (’sl4’, 8, ’black’, 40.0 , ’inch’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> (’sl5’, 4, ’brown’, 1.0 , ’m’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> (’sl6’, 0, ’brown’, 0.9 , ’m’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> (’sl7’, 7, ’brown’, 60 , ’cm’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> (’sl8’, 1, ’brown’, 40 , ’inch’);
al_bundy=>
al_bundy=> SELECT * FROM shoelace;
sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
----------+--------+----------+------+--------+---------
sl1 | 5|black | 80|cm | 80
sl2 | 6|black | 100|cm | 100
sl7 | 7|brown | 60|cm | 60
sl3 | 0|black | 35|inch | 88.9
sl4 | 8|black | 40|inch | 101.6
sl8 | 1|brown | 40|inch | 101.6
sl5 | 4|brown | 1|m | 100
sl6 | 0|brown | 0.9|m | 90
(8 rows)

It’s the simplest SELECT Al can do on our views, so we take this to explain the basics of view rules.
TheSELECT * FROM shoelace was interpreted by the parser and produced the parse tree

SELECT shoelace.sl_name, shoelace.sl_avail,
shoelace.sl_color, shoelace.sl_len,
shoelace.sl_unit, shoelace.sl_len_cm

FROM shoelace shoelace;

and this is given to the rule system. The rule system walks through the range table and checks if there
are rules inpg_rewrite for any relation. When processing the range table entry forshoelace (the
only one up to now) it finds the rule_RETshoelace with the parse tree

SELECT s.sl_name, s.sl_avail,
s.sl_color, s.sl_len, s.sl_unit,
float8mul(s.sl_len, u.un_fact) AS sl_len_cm

FROM shoelace *OLD*, shoelace *NEW*,
shoelace_data s, unit u

WHERE bpchareq(s.sl_unit, u.un_name);

Note that the parser changed the calculation and qualification into calls to the appropriate functions.
But in fact this changes nothing.

To expand the view, the rewriter simply creates a subselect range-table entry containing the rule’s
action parse tree, and substitutes this range table entry for the original one that referenced the view.
The resulting rewritten parse tree is almost the same as if Al had typed

SELECT shoelace.sl_name, shoelace.sl_avail,
shoelace.sl_color, shoelace.sl_len,
shoelace.sl_unit, shoelace.sl_len_cm

FROM (SELECT s.sl_name,
s.sl_avail,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

210

Chapter 16. The Rule System

FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name) shoelace;

There is one difference however: the sub-query’s range table has two extra entries shoelace *OLD*,
shoelace *NEW*. These entries don’t participate directly in the query, since they aren’t referenced by
the sub-query’s join tree or target list. The rewriter uses them to store the access permission check info
that was originally present in the range-table entry that referenced the view. In this way, the executor
will still check that the user has proper permissions to access the view, even though there’s no direct
use of the view in the rewritten query.

That was the first rule applied. The rule system will continue checking the remaining range-table
entries in the top query (in this example there are no more), and it will recursively check the range-
table entries in the added sub-query to see if any of them reference views. (But it won’t expand *OLD*
or *NEW* --- otherwise we’d have infinite recursion!) In this example, there are no rewrite rules for
shoelace_data or unit, so rewriting is complete and the above is the final result given to the planner.

Now we face Al with the problem that the Blues Brothers appear in his shop and want to buy some
new shoes, and as the Blues Brothers are, they want to wear the same shoes. And they want to wear
them immediately, so they need shoelaces too.

Al needs to know for which shoes currently in the store he has the matching shoelaces (color and size)
and where the total number of exactly matching pairs is greater or equal to two. We teach him what
to do and he asks his database:

al_bundy=> SELECT * FROM shoe_ready WHERE total_avail >= 2;
shoename |sh_avail|sl_name |sl_avail|total_avail
----------+--------+----------+--------+-----------
sh1 | 2|sl1 | 5| 2
sh3 | 4|sl7 | 7| 4
(2 rows)

Al is a shoe guru and so he knows that only shoes of type sh1 would fit (shoelace sl7 is brown and
shoes that need brown shoelaces aren’t shoes the Blues Brothers would ever wear).

The output of the parser this time is the parse tree

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM shoe_ready shoe_ready
WHERE int4ge(shoe_ready.total_avail, 2);

The first rule applied will be the one for theshoe_ready view and it results in the parse tree

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM (SELECT rsh.shoename,
rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail

FROM shoe rsh, shoelace rsl
WHERE rsl.sl_color = rsh.slcolor

AND rsl.sl_len_cm >= rsh.slminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready

WHERE int4ge(shoe_ready.total_avail, 2);

211

Chapter 16. The Rule System

Similarly, the rules forshoe and shoelace are substituted into the range table of the sub-query,
leading to a three-level final query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM (SELECT rsh.shoename,
rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail

FROM (SELECT sh.shoename,
sh.sh_avail,
sh.slcolor,
sh.slminlen,
sh.slminlen * un.un_fact AS slminlen_cm,
sh.slmaxlen,
sh.slmaxlen * un.un_fact AS slmaxlen_cm,
sh.slunit

FROM shoe_data sh, unit un
WHERE sh.slunit = un.un_name) rsh,

(SELECT s.sl_name,
s.sl_avail,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name) rsl

WHERE rsl.sl_color = rsh.slcolor
AND rsl.sl_len_cm >= rsh.slminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready

WHERE int4ge(shoe_ready.total_avail, 2);

It turns out that the planner will collapse this tree into a two-level query tree: the bottommost selects
will be “pulled up” into the middle select since there’s no need to process them separately. But the
middle select will remain separate from the top, because it contains aggregate functions. If we pulled
those up it would change the behavior of the topmost select, which we don’t want. However, col-
lapsing the query tree is an optimization that the rewrite system doesn’t have to concern itself with.

Note: There is currently no recursion stopping mechanism for view rules in the rule system (only
for the other kinds of rules). This doesn’t hurt much, because the only way to push this into an
endless loop (blowing up the backend until it reaches the memory limit) is to create tables and
then setup the view rules by hand with CREATE RULE in such a way, that one selects from the
other that selects from the one. This could never happen if CREATE VIEW is used because for
the first CREATE VIEW, the second relation does not exist and thus the first view cannot select
from the second.

212

Chapter 16. The Rule System

16.3.3. View Rules in Non-SELECT Statements

Two details of the parse tree aren’t touched in the description of view rules above. These are the
command type and the result relation. In fact, view rules don’t need this information.

There are only a few differences between a parse tree for a SELECT and one for any other command.
Obviously they have another command type and this time the result relation points to the range table
entry where the result should go. Everything else is absolutely the same. So having two tables t1 and
t2 with attributes a and b, the parse trees for the two statements

SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b WHERE t1.a = t2.a;

are nearly identical.

• The range tables contain entries for the tables t1 and t2.

• The target lists contain one variable that points to attribute b of the range table entry for table t2.

• The qualification expressions compare the attributes a of both ranges for equality.

• The join trees show a simple join between t1 and t2.

The consequence is, that both parse trees result in similar execution plans. They are both joins over the
two tables. For the UPDATE the missing columns from t1 are added to the target list by the planner
and the final parse tree will read as

UPDATE t1 SET a = t1.a, b = t2.b WHERE t1.a = t2.a;

and thus the executor run over the join will produce exactly the same result set as a

SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

will do. But there is a little problem in UPDATE. The executor does not care what the results from
the join it is doing are meant for. It just produces a result set of rows. The difference that one is a
SELECT command and the other is an UPDATE is handled in the caller of the executor. The caller
still knows (looking at the parse tree) that this is an UPDATE, and he knows that this result should go
into table t1. But which of the rows that are there has to be replaced by the new row?

To resolve this problem, another entry is added to the target list in UPDATE (and also in DELETE)
statements: the current tuple ID (CTID). This is a system attribute containing the file block number
and position in the block for the row. Knowing the table, the CTID can be used to retrieve the original
t1 row to be updated. After adding the CTID to the target list, the query actually looks like

SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

Now another detail of PostgreSQL enters the stage. At this moment, table rows aren’t overwritten and
this is why ABORT TRANSACTION is fast. In an UPDATE, the new result row is inserted into the
table (after stripping CTID) and in the tuple header of the row that CTID pointed to the cmax and
xmax entries are set to the current command counter and current transaction ID. Thus the old row is
hidden and after the transaction committed the vacuum cleaner can really move it out.

Knowing all that, we can simply apply view rules in absolutely the same way to any command. There
is no difference.

213

Chapter 16. The Rule System

16.3.4. The Power of Views in PostgreSQL

The above demonstrates how the rule system incorporates view definitions into the original parse tree.
In the second example a simple SELECT from one view created a final parse tree that is a join of 4
tables (unit is used twice with different names).

16.3.4.1. Benefits

The benefit of implementing views with the rule system is, that the planner has all the information
about which tables have to be scanned plus the relationships between these tables plus the restrictive
qualifications from the views plus the qualifications from the original query in one single parse tree.
And this is still the situation when the original query is already a join over views. Now the planner
has to decide which is the best path to execute the query. The more information the planner has, the
better this decision can be. And the rule system as implemented in PostgreSQL ensures, that this is
all information available about the query up to now.

16.3.5. What about updating a view?

What happens if a view is named as the target relation for an INSERT, UPDATE, or DELETE? After
doing the substitutions described above, we will have a query tree in which the result relation points
at a subquery range table entry. This will not work, so the rewriter throws an error if it sees it has
produced such a thing.

To change this we can define rules that modify the behavior of non-SELECT queries. This is the topic
of the next section.

16.4. Rules on INSERT, UPDATE and DELETE

16.4.1. Differences from View Rules

Rules that are defined ON INSERT, UPDATE and DELETE are totally different from the view rules
described in the previous section. First, their CREATE RULE command allows more:

• They can have no action.

• They can have multiple actions.

• The keyword INSTEAD is optional.

• The pseudo relations NEW and OLD become useful.

• They can have rule qualifications.

Second, they don’t modify the parse tree in place. Instead they create zero or many new parse trees
and can throw away the original one.

16.4.2. How These Rules Work

Keep the syntax

CREATE RULE rule_name AS ON event
TO object [WHERE rule_qualification]

214

Chapter 16. The Rule System

DO [INSTEAD] [action | (actions) | NOTHING];

in mind. In the following,update rulesmeans rules that are defined ON INSERT, UPDATE or
DELETE.

Update rules get applied by the rule system when the result relation and the command type of a parse
tree are equal to the object and event given in the CREATE RULE command. For update rules, the rule
system creates a list of parse trees. Initially the parse tree list is empty. There can be zero (NOTHING
keyword), one or multiple actions. To simplify, we look at a rule with one action. This rule can have
a qualification or not and it can be INSTEAD or not.

What is a rule qualification? It is a restriction that tells when the actions of the rule should be done
and when not. This qualification can only reference the NEW and/or OLD pseudo relations which are
basically the relation given as object (but with a special meaning).

So we have four cases that produce the following parse trees for a one-action rule.

• No qualification and not INSTEAD:

• The parse tree from the rule action where the original parse tree’s qualification has been added.

• No qualification but INSTEAD:

• The parse tree from the rule action where the original parse tree’s qualification has been added.

• Qualification given and not INSTEAD:

• The parse tree from the rule action where the rule qualification and the original parse tree’s
qualification have been added.

• Qualification given and INSTEAD:

• The parse tree from the rule action where the rule qualification and the original parse tree’s
qualification have been added.

• The original parse tree where the negated rule qualification has been added.

Finally, if the rule is not INSTEAD, the unchanged original parse tree is added to the list. Since only
qualified INSTEAD rules already add the original parse tree, we end up with either one or two output
parse trees for a rule with one action.

For ON INSERT rules, the original query (if not suppressed by INSTEAD) is done before any actions
added by rules. This allows the actions to see the inserted row(s). But for ON UPDATE and ON
DELETE rules, the original query is done after the actions added by rules. This ensures that the actions
can see the to-be-updated or to-be-deleted rows; otherwise, the actions might do nothing because they
find no rows matching their qualifications.

The parse trees generated from rule actions are thrown into the rewrite system again and maybe more
rules get applied resulting in more or less parse trees. So the parse trees in the rule actions must have
either another command type or another result relation. Otherwise this recursive process will end up
in a loop. There is a compiled in recursion limit of currently 10 iterations. If after 10 iterations there
are still update rules to apply the rule system assumes a loop over multiple rule definitions and reports
an error.

The parse trees found in the actions of thepg_rewrite system catalog are only templates. Since they
can reference the range-table entries for NEW and OLD, some substitutions have to be made before
they can be used. For any reference to NEW, the target list of the original query is searched for a

215

Chapter 16. The Rule System

corresponding entry. If found, that entry’s expression replaces the reference. Otherwise NEW means
the same as OLD (for an UPDATE) or is replaced by NULL (for an INSERT). Any reference to OLD
is replaced by a reference to the range-table entry which is the result relation.

After we are done applying update rules, we apply view rules to the produced parse tree(s). Views
cannot insert new update actions so there is no need to apply update rules to the output of view
rewriting.

16.4.2.1. A First Rule Step by Step

We want to trace changes to the sl_avail column in theshoelace_data relation. So we setup a
log table and a rule that conditionally writes a log entry when an UPDATE is performed on
shoelace_data .

CREATE TABLE shoelace_log (
sl_name char(10), -- shoelace changed
sl_avail integer, -- new available value
log_who text, -- who did it
log_when timestamp -- when

);

CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
WHERE NEW.sl_avail != OLD.sl_avail
DO INSERT INTO shoelace_log VALUES (

NEW.sl_name,
NEW.sl_avail,
current_user,
current_timestamp

);

Now Al does

al_bundy=> UPDATE shoelace_data SET sl_avail = 6
al_bundy-> WHERE sl_name = ’sl7’;

and we look at the log table.

al_bundy=> SELECT * FROM shoelace_log;
sl_name |sl_avail|log_who|log_when
----------+--------+-------+--------------------------------
sl7 | 6|Al |Tue Oct 20 16:14:45 1998 MET DST
(1 row)

That’s what we expected. What happened in the background is the following. The parser created the
parse tree (this time the parts of the original parse tree are highlighted because the base of operations
is the rule action for update rules).

UPDATE shoelace_data SET sl_avail = 6
FROM shoelace_data shoelace_data

WHERE bpchareq(shoelace_data.sl_name, ’sl7’);

There is a rulelog_shoelace that is ON UPDATE with the rule qualification expression

int4ne(NEW.sl_avail, OLD.sl_avail)

and one action

216

Chapter 16. The Rule System

INSERT INTO shoelace_log VALUES(
NEW.sl_name, *NEW*.sl_avail,
current_user, current_timestamp

FROM shoelace_data *NEW*, shoelace_data *OLD*;

This is a little strange-looking since you can’t normally write INSERT ... VALUES ... FROM. The
FROM clause here is just to indicate that there are range-table entries in the parse tree for *NEW*
and *OLD*. These are needed so that they can be referenced by variables in the INSERT command’s
querytree.

The rule is a qualified non-INSTEAD rule, so the rule system has to return two parse trees: the
modified rule action and the original parse tree. In the first step the range table of the original query
is incorporated into the rule’s action parse tree. This results in

INSERT INTO shoelace_log VALUES(
NEW.sl_name, *NEW*.sl_avail,
current_user, current_timestamp

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data ;

In step 2 the rule qualification is added to it, so the result set is restricted to rows where sl_avail
changes.

INSERT INTO shoelace_log VALUES(
NEW.sl_name, *NEW*.sl_avail,
current_user, current_timestamp

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data

WHERE int4ne(*NEW*.sl_avail, *OLD*.sl_avail) ;

This is even stranger-looking, since INSERT ... VALUES doesn’t have a WHERE clause either, but
the planner and executor will have no difficulty with it. They need to support this same functionality
anyway for INSERT ... SELECT. In step 3 the original parse tree’s qualification is added, restricting
the result set further to only the rows touched by the original parse tree.

INSERT INTO shoelace_log VALUES(
NEW.sl_name, *NEW*.sl_avail,
current_user, current_timestamp

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data

WHERE int4ne(*NEW*.sl_avail, *OLD*.sl_avail)
AND bpchareq(shoelace_data.sl_name, ’sl7’) ;

Step 4 substitutes NEW references by the target list entries from the original parse tree or with the
matching variable references from the result relation.

INSERT INTO shoelace_log VALUES(
shoelace_data.sl_name , 6,
current_user, current_timestamp

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data

WHERE int4ne(6, *OLD*.sl_avail)
AND bpchareq(shoelace_data.sl_name, ’sl7’);

Step 5 changes OLD references into result relation references.

INSERT INTO shoelace_log VALUES(

217

Chapter 16. The Rule System

shoelace_data.sl_name, 6,
current_user, current_timestamp

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data

WHERE int4ne(6, shoelace_data.sl_avail)
AND bpchareq(shoelace_data.sl_name, ’sl7’);

That’s it. Since the rule is not INSTEAD, we also output the original parse tree. In short, the output
from the rule system is a list of two parse trees that are the same as the statements:

INSERT INTO shoelace_log VALUES(
shoelace_data.sl_name, 6,
current_user, current_timestamp

FROM shoelace_data
WHERE 6 != shoelace_data.sl_avail

AND shoelace_data.sl_name = ’sl7’;

UPDATE shoelace_data SET sl_avail = 6
WHERE sl_name = ’sl7’;

These are executed in this order and that is exactly what the rule defines. The substitutions and the
qualifications added ensure that if the original query would be, say,

UPDATE shoelace_data SET sl_color = ’green’
WHERE sl_name = ’sl7’;

no log entry would get written. This time the original parse tree does not contain a target list entry for
sl_avail, so NEW.sl_avail will get replaced by shoelace_data.sl_avail resulting in the extra query

INSERT INTO shoelace_log VALUES(
shoelace_data.sl_name, shoelace_data.sl_avail ,
current_user, current_timestamp)

FROM shoelace_data
WHEREshoelace_data.sl_avail != shoelace_data.sl_avail

AND shoelace_data.sl_name = ’sl7’;

and that qualification will never be true. It will also work if the original query modifies multiple rows.
So if Al would issue the command

UPDATE shoelace_data SET sl_avail = 0
WHERE sl_color = ’black’;

four rows in fact get updated (sl1, sl2, sl3 and sl4). But sl3 already has sl_avail = 0. This time, the
original parse trees qualification is different and that results in the extra parse tree

INSERT INTO shoelace_log SELECT
shoelace_data.sl_name, 0,
current_user, current_timestamp

FROM shoelace_data
WHERE 0 != shoelace_data.sl_avail

AND shoelace_data.sl_color = ’black’ ;

This parse tree will surely insert three new log entries. And that’s absolutely correct.

Here we can see why it is important that the original parse tree is executed last. If the UPDATE would
have been executed first, all the rows are already set to zero, so the logging INSERT would not find
any row where 0 != shoelace_data.sl_avail.

218

Chapter 16. The Rule System

16.4.3. Cooperation with Views

A simple way to protect view relations from the mentioned possibility that someone can try to IN-
SERT, UPDATE and DELETE on them is to let those parse trees get thrown away. We create the
rules

CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
DO INSTEAD NOTHING;

CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
DO INSTEAD NOTHING;

CREATE RULE shoe_del_protect AS ON DELETE TO shoe
DO INSTEAD NOTHING;

If Al now tries to do any of these operations on the view relationshoe , the rule system will apply the
rules. Since the rules have no actions and are INSTEAD, the resulting list of parse trees will be empty
and the whole query will become nothing because there is nothing left to be optimized or executed
after the rule system is done with it.

Note: This way might irritate frontend applications because absolutely nothing happened
on the database and thus, the backend will not return anything for the query. Not even a
PGRES_EMPTY_QUERYwill be available in libpq. In psql, nothing happens. This might change in the
future.

A more sophisticated way to use the rule system is to create rules that rewrite the parse tree into
one that does the right operation on the real tables. To do that on theshoelace view, we create the
following rules:

CREATE RULE shoelace_ins AS ON INSERT TO shoelace
DO INSTEAD
INSERT INTO shoelace_data VALUES (

NEW.sl_name,
NEW.sl_avail,
NEW.sl_color,
NEW.sl_len,
NEW.sl_unit);

CREATE RULE shoelace_upd AS ON UPDATE TO shoelace
DO INSTEAD
UPDATE shoelace_data SET

sl_name = NEW.sl_name,
sl_avail = NEW.sl_avail,
sl_color = NEW.sl_color,
sl_len = NEW.sl_len,
sl_unit = NEW.sl_unit

WHERE sl_name = OLD.sl_name;

CREATE RULE shoelace_del AS ON DELETE TO shoelace
DO INSTEAD
DELETE FROM shoelace_data

WHERE sl_name = OLD.sl_name;

Now there is a pack of shoelaces arriving in Al’s shop and it has a big part list. Al is not that good
in calculating and so we don’t want him to manually update the shoelace view. Instead we setup two

219

Chapter 16. The Rule System

little tables, one where he can insert the items from the part list and one with a special trick. The create
commands for these are:

CREATE TABLE shoelace_arrive (
arr_name char(10),
arr_quant integer

);

CREATE TABLE shoelace_ok (
ok_name char(10),
ok_quant integer

);

CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
DO INSTEAD
UPDATE shoelace SET

sl_avail = sl_avail + NEW.ok_quant
WHERE sl_name = NEW.ok_name;

Now Al can sit down and do whatever until

al_bundy=> SELECT * FROM shoelace_arrive;
arr_name |arr_quant
----------+---------
sl3 | 10
sl6 | 20
sl8 | 20
(3 rows)

is exactly what’s on the part list. We take a quick look at the current data,

al_bundy=> SELECT * FROM shoelace;
sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
----------+--------+----------+------+--------+---------
sl1 | 5|black | 80|cm | 80
sl2 | 6|black | 100|cm | 100
sl7 | 6|brown | 60|cm | 60
sl3 | 0|black | 35|inch | 88.9
sl4 | 8|black | 40|inch | 101.6
sl8 | 1|brown | 40|inch | 101.6
sl5 | 4|brown | 1|m | 100
sl6 | 0|brown | 0.9|m | 90
(8 rows)

move the arrived shoelaces in

al_bundy=> INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

and check the results

al_bundy=> SELECT * FROM shoelace ORDER BY sl_name;
sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
----------+--------+----------+------+--------+---------
sl1 | 5|black | 80|cm | 80
sl2 | 6|black | 100|cm | 100
sl7 | 6|brown | 60|cm | 60
sl4 | 8|black | 40|inch | 101.6
sl3 | 10|black | 35|inch | 88.9

220

Chapter 16. The Rule System

sl8 | 21|brown | 40|inch | 101.6
sl5 | 4|brown | 1|m | 100
sl6 | 20|brown | 0.9|m | 90
(8 rows)

al_bundy=> SELECT * FROM shoelace_log;
sl_name |sl_avail|log_who|log_when
----------+--------+-------+--------------------------------
sl7 | 6|Al |Tue Oct 20 19:14:45 1998 MET DST
sl3 | 10|Al |Tue Oct 20 19:25:16 1998 MET DST
sl6 | 20|Al |Tue Oct 20 19:25:16 1998 MET DST
sl8 | 21|Al |Tue Oct 20 19:25:16 1998 MET DST
(4 rows)

It’s a long way from the one INSERT ... SELECT to these results. And its description will be the last
in this document (but not the last example :-). First there was the parser’s output

INSERT INTO shoelace_ok SELECT
shoelace_arrive.arr_name, shoelace_arrive.arr_quant

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

Now the first ruleshoelace_ok_ins is applied and turns it into

UPDATE shoelace SET
sl_avail = int4pl(shoelace.sl_avail, shoelace_arrive.arr_quant)

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok *OLD*, shoelace_ok *NEW*,
shoelace shoelace

WHERE bpchareq(shoelace.sl_name, showlace_arrive.arr_name);

and throws away the original INSERT onshoelace_ok . This rewritten query is passed to the rule
system again and the second applied ruleshoelace_upd produced

UPDATE shoelace_data SET
sl_name = shoelace.sl_name,
sl_avail = int4pl(shoelace.sl_avail, shoelace_arrive.arr_quant),
sl_color = shoelace.sl_color,
sl_len = shoelace.sl_len,
sl_unit = shoelace.sl_unit

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok *OLD*, shoelace_ok *NEW*,
shoelace shoelace, shoelace *OLD*,
shoelace *NEW*, shoelace_data showlace_data

WHERE bpchareq(shoelace.sl_name, showlace_arrive.arr_name)
AND bpchareq(shoelace_data.sl_name, shoelace.sl_name);

Again it’s an INSTEAD rule and the previous parse tree is trashed. Note that this query still uses the
view shoelace . But the rule system isn’t finished with this loop so it continues and applies the rule
_RETshoelace on it and we get

UPDATE shoelace_data SET
sl_name = s.sl_name,
sl_avail = int4pl(s.sl_avail, shoelace_arrive.arr_quant),
sl_color = s.sl_color,
sl_len = s.sl_len,
sl_unit = s.sl_unit

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok *OLD*, shoelace_ok *NEW*,

221

Chapter 16. The Rule System

shoelace shoelace, shoelace *OLD*,
shoelace *NEW*, shoelace_data showlace_data,
shoelace *OLD*, shoelace *NEW*,
shoelace_data s, unit u

WHERE bpchareq(s.sl_name, showlace_arrive.arr_name)
AND bpchareq(shoelace_data.sl_name, s.sl_name);

Again an update rule has been applied and so the wheel turns on and we are in rewrite round 3. This
time rulelog_shoelace gets applied what produces the extra parse tree

INSERT INTO shoelace_log SELECT
s.sl_name,
int4pl(s.sl_avail, shoelace_arrive.arr_quant),
current_user,
current_timestamp

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok *OLD*, shoelace_ok *NEW*,
shoelace shoelace, shoelace *OLD*,
shoelace *NEW*, shoelace_data showlace_data,
shoelace *OLD*, shoelace *NEW*,
shoelace_data s, unit u,
shoelace_data *OLD*, shoelace_data *NEW*
shoelace_log shoelace_log

WHERE bpchareq(s.sl_name, showlace_arrive.arr_name)
AND bpchareq(shoelace_data.sl_name, s.sl_name);
AND int4ne(int4pl(s.sl_avail, shoelace_arrive.arr_quant), s.sl_avail);

After that the rule system runs out of rules and returns the generated parse trees. So we end up with
two final parse trees that are equal to the SQL statements

INSERT INTO shoelace_log SELECT
s.sl_name,
s.sl_avail + shoelace_arrive.arr_quant,
current_user,
current_timestamp

FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
shoelace_data s

WHERE s.sl_name = shoelace_arrive.arr_name
AND shoelace_data.sl_name = s.sl_name
AND s.sl_avail + shoelace_arrive.arr_quant != s.sl_avail;

UPDATE shoelace_data SET
sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant

FROM shoelace_arrive shoelace_arrive,
shoelace_data shoelace_data,
shoelace_data s

WHERE s.sl_name = shoelace_arrive.sl_name
AND shoelace_data.sl_name = s.sl_name;

The result is that data coming from one relation inserted into another, changed into updates on a third,
changed into updating a fourth plus logging that final update in a fifth gets reduced into two queries.

There is a little detail that’s a bit ugly. Looking at the two queries turns out, that theshoelace_data

relation appears twice in the range table where it could definitely be reduced to one. The planner does
not handle it and so the execution plan for the rule systems output of the INSERT will be

Nested Loop
-> Merge Join

222

Chapter 16. The Rule System

-> Seq Scan
-> Sort

-> Seq Scan on s
-> Seq Scan

-> Sort
-> Seq Scan on shoelace_arrive

-> Seq Scan on shoelace_data

while omitting the extra range table entry would result in a

Merge Join
-> Seq Scan

-> Sort
-> Seq Scan on s

-> Seq Scan
-> Sort

-> Seq Scan on shoelace_arrive

that totally produces the same entries in the log relation. Thus, the rule system caused one extra scan
on theshoelace_data relation that is absolutely not necessary. And the same obsolete scan is done
once more in the UPDATE. But it was a really hard job to make that all possible at all.

A final demonstration of the PostgreSQL rule system and its power. There is a cute blonde that sells
shoelaces. And what Al could never realize, she’s not only cute, she’s smart too - a little too smart.
Thus, it happens from time to time that Al orders shoelaces that are absolutely not sellable. This time
he ordered 1000 pairs of magenta shoelaces and since another kind is currently not available but he
committed to buy some, he also prepared his database for pink ones.

al_bundy=> INSERT INTO shoelace VALUES
al_bundy-> (’sl9’, 0, ’pink’, 35.0, ’inch’, 0.0);
al_bundy=> INSERT INTO shoelace VALUES
al_bundy-> (’sl10’, 1000, ’magenta’, 40.0, ’inch’, 0.0);

Since this happens often, we must lookup for shoelace entries, that fit for absolutely no shoe some-
times. We could do that in a complicated statement every time, or we can setup a view for it. The view
for this is

CREATE VIEW shoelace_obsolete AS
SELECT * FROM shoelace WHERE NOT EXISTS

(SELECT shoename FROM shoe WHERE slcolor = sl_color);

Its output is

al_bundy=> SELECT * FROM shoelace_obsolete;
sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
----------+--------+----------+------+--------+---------
sl9 | 0|pink | 35|inch | 88.9
sl10 | 1000|magenta | 40|inch | 101.6

For the 1000 magenta shoelaces we must debt Al before we can throw ’em away, but that’s another
problem. The pink entry we delete. To make it a little harder for PostgreSQL, we don’t delete it
directly. Instead we create one more view

CREATE VIEW shoelace_candelete AS
SELECT * FROM shoelace_obsolete WHERE sl_avail = 0;

and do it this way:

223

Chapter 16. The Rule System

DELETE FROM shoelace WHERE EXISTS
(SELECT * FROM shoelace_candelete

WHERE sl_name = shoelace.sl_name);

Voilà:

al_bundy=> SELECT * FROM shoelace;
sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
----------+--------+----------+------+--------+---------
sl1 | 5|black | 80|cm | 80
sl2 | 6|black | 100|cm | 100
sl7 | 6|brown | 60|cm | 60
sl4 | 8|black | 40|inch | 101.6
sl3 | 10|black | 35|inch | 88.9
sl8 | 21|brown | 40|inch | 101.6
sl10 | 1000|magenta | 40|inch | 101.6
sl5 | 4|brown | 1|m | 100
sl6 | 20|brown | 0.9|m | 90
(9 rows)

A DELETE on a view, with a subselect qualification that in total uses 4 nesting/joined views, where
one of them itself has a subselect qualification containing a view and where calculated view columns
are used, gets rewritten into one single parse tree that deletes the requested data from a real table.

I think there are only a few situations out in the real world, where such a construct is necessary. But it
makes me feel comfortable that it works.

The truth is: Doing this I found one more bug while writing this document. But after fixing that I
was a little amazed that it works at all.

16.5. Rules and Permissions
Due to rewriting of queries by the PostgreSQL rule system, other tables/views than those used in the
original query get accessed. Using update rules, this can include write access to tables.

Rewrite rules don’t have a separate owner. The owner of a relation (table or view) is automatically the
owner of the rewrite rules that are defined for it. The PostgreSQL rule system changes the behavior
of the default access control system. Relations that are used due to rules get checked against the
permissions of the rule owner, not the user invoking the rule. This means, that a user does only need
the required permissions for the tables/views he names in his queries.

For example: A user has a list of phone numbers where some of them are private, the others are of
interest for the secretary of the office. He can construct the following:

CREATE TABLE phone_data (person text, phone text, private bool);
CREATE VIEW phone_number AS

SELECT person, phone FROM phone_data WHERE NOT private;
GRANT SELECT ON phone_number TO secretary;

Nobody except him (and the database superusers) can access the phone_data table. But due to the
GRANT, the secretary can SELECT from the phone_number view. The rule system will rewrite the
SELECT from phone_number into a SELECT from phone_data and add the qualification that only
entries where private is false are wanted. Since the user is the owner of phone_number, the read access
to phone_data is now checked against his permissions and the query is considered granted. The check

224

Chapter 16. The Rule System

for accessing phone_number is also performed, but this is done against the invoking user, so nobody
but the user and the secretary can use it.

The permissions are checked rule by rule. So the secretary is for now the only one who can see the
public phone numbers. But the secretary can setup another view and grant access to that to public.
Then, anyone can see the phone_number data through the secretaries view. What the secretary cannot
do is to create a view that directly accesses phone_data (actually he can, but it will not work since
every access aborts the transaction during the permission checks). And as soon as the user will notice,
that the secretary opened his phone_number view, he can REVOKE his access. Immediately any
access to the secretaries view will fail.

Someone might think that this rule by rule checking is a security hole, but in fact it isn’t. If this would
not work, the secretary could setup a table with the same columns as phone_number and copy the
data to there once per day. Then it’s his own data and he can grant access to everyone he wants. A
GRANT means “I trust you”. If someone you trust does the thing above, it’s time to think it over and
then REVOKE.

This mechanism does also work for update rules. In the examples of the previous section, the owner of
the tables in Al’s database could GRANT SELECT, INSERT, UPDATE and DELETE on the shoelace
view to al. But only SELECT on shoelace_log. The rule action to write log entries will still be exe-
cuted successfully. And Al could see the log entries. But he cannot create fake entries, nor could he
manipulate or remove existing ones.

Warning: GRANT ALL currently includes RULE permission. This means the granted user could
drop the rule, do the changes and reinstall it. I think this should get changed quickly.

16.6. Rules versus Triggers
Many things that can be done using triggers can also be implemented using the PostgreSQL rule
system. What currently cannot be implemented by rules are some kinds of constraints. It is possible,
to place a qualified rule that rewrites a query to NOTHING if the value of a column does not appear
in another table. But then the data is silently thrown away and that’s not a good idea. If checks for
valid values are required, and in the case of an invalid value an error message should be generated, it
must be done by a trigger for now.

On the other hand a trigger that is fired on INSERT on a view can do the same as a rule, put the data
somewhere else and suppress the insert in the view. But it cannot do the same thing on UPDATE or
DELETE, because there is no real data in the view relation that could be scanned and thus the trigger
would never get called. Only a rule will help.

For the things that can be implemented by both, it depends on the usage of the database, which is the
best. A trigger is fired for any row affected once. A rule manipulates the parse tree or generates an
additional one. So if many rows are affected in one statement, a rule issuing one extra query would
usually do a better job than a trigger that is called for any single row and must execute his operations
this many times.

For example: There are two tables

CREATE TABLE computer (
hostname text, -- indexed
manufacturer text -- indexed

);

225

Chapter 16. The Rule System

CREATE TABLE software (
software text, -- indexed
hostname text -- indexed

);

Both tables have many thousands of rows and the index onhostname is unique. Thehostname

column contains the full qualified domain name of the computer. The rule/trigger should constraint
delete rows from software that reference the deleted host. Since the trigger is called for each individual
row deleted from computer, it can use the statement

DELETE FROM software WHERE hostname = $1;

in a prepared and saved plan and pass thehostname in the parameter. The rule would be written as

CREATE RULE computer_del AS ON DELETE TO computer
DO DELETE FROM software WHERE hostname = OLD.hostname;

Now we look at different types of deletes. In the case of a

DELETE FROM computer WHERE hostname = ’mypc.local.net’;

the table computer is scanned by index (fast) and the query issued by the trigger would also be an
index scan (fast too). The extra query from the rule would be a

DELETE FROM software WHERE computer.hostname = ’mypc.local.net’
AND software.hostname = computer.hostname;

Since there are appropriate indexes setup, the planner will create a plan of

Nestloop
-> Index Scan using comp_hostidx on computer
-> Index Scan using soft_hostidx on software

So there would be not that much difference in speed between the trigger and the rule implementation.
With the next delete we want to get rid of all the 2000 computers where thehostname starts with
’old’. There are two possible queries to do that. One is

DELETE FROM computer WHERE hostname >= ’old’
AND hostname < ’ole’

Where the plan for the rule query will be a

Hash Join
-> Seq Scan on software
-> Hash

-> Index Scan using comp_hostidx on computer

The other possible query is a

DELETE FROM computer WHERE hostname ~ ’^old’;

with the execution plan

Nestloop
-> Index Scan using comp_hostidx on computer
-> Index Scan using soft_hostidx on software

226

Chapter 16. The Rule System

This shows, that the planner does not realize that the qualification for thehostname on computer
could also be used for an index scan on software when there are multiple qualification expressions
combined with AND, what he does in the regexp version of the query. The trigger will get invoked
once for any of the 2000 old computers that have to be deleted and that will result in one index scan
over computer and 2000 index scans for the software. The rule implementation will do it with two
queries over indexes. And it depends on the overall size of the software table if the rule will still be
faster in the sequential scan situation. 2000 query executions over the SPI manager take some time,
even if all the index blocks to look them up will soon appear in the cache.

The last query we look at is a

DELETE FROM computer WHERE manufacurer = ’bim’;

Again this could result in many rows to be deleted from computer. So the trigger will again fire many
queries into the executor. But the rule plan will again be the nested loop over two index scans. Only
using another index on computer:

Nestloop
-> Index Scan using comp_manufidx on computer
-> Index Scan using soft_hostidx on software

resulting from the rules query

DELETE FROM software WHERE computer.manufacurer = ’bim’
AND software.hostname = computer.hostname;

In any of these cases, the extra queries from the rule system will be more or less independent from
the number of affected rows in a query.

Another situation is cases on UPDATE where it depends on the change of an attribute if an action
should be performed or not. In PostgreSQL version 6.4, the attribute specification for rule events is
disabled (it will have its comeback latest in 6.5, maybe earlier - stay tuned). So for now the only way
to create a rule as in the shoelace_log example is to do it with a rule qualification. That results in
an extra query that is performed always, even if the attribute of interest cannot change at all because
it does not appear in the target list of the initial query. When this is enabled again, it will be one
more advantage of rules over triggers. Optimization of a trigger must fail by definition in this case,
because the fact that its actions will only be done when a specific attribute is updated is hidden in its
functionality. The definition of a trigger only allows to specify it on row level, so whenever a row is
touched, the trigger must be called to make its decision. The rule system will know it by looking up
the target list and will suppress the additional query completely if the attribute isn’t touched. So the
rule, qualified or not, will only do its scans if there ever could be something to do.

Rules will only be significantly slower than triggers if their actions result in large and bad qualified
joins, a situation where the planner fails. They are a big hammer. Using a big hammer without caution
can cause big damage. But used with the right touch, they can hit any nail on the head.

227

Chapter 17. Interfacing Extensions To Indexes

17.1. Introduction
The procedures described thus far let you define new types, new functions, and new operators. How-
ever, we cannot yet define a secondary index (such as a B-tree, R-tree, or hash access method) over a
new type or its operators.

Look back atFigure 11-1. The right half shows the catalogs that we must modify in order to tell
PostgreSQL how to use a user-defined type and/or user-defined operators with an index (i.e.,pg_am,

pg_amop, pg_amproc, pg_operator andpg_opclass). Unfortunately, there is no simple com-
mand to do this. We will demonstrate how to modify these catalogs through a running example: a
new operator class for the B-tree access method that stores and sorts complex numbers in ascending
absolute value order.

17.2. Access Methods
Thepg_am table contains one row for every index access method. Support for the heap access method
is built into PostgreSQL, but all other access methods are described inpg_am. The schema is shown
in Table 17-1.

Table 17-1. Index Access Method Schema

Column Description

amname name of the access method

amowner user ID of the owner (currently not used)

amstrategies number of strategies for this access method (see
below)

amsupport number of support routines for this access
method (see below)

amorderstrategy zero if the index offers no sort order, otherwise
the strategy number of the strategy operator that
describes the sort order

amcanunique does AM support unique indexes?

amcanmulticol does AM support multicolumn indexes?

amindexnulls does AM support NULL index entries?

amconcurrent does AM support concurrent updates?

amgettuple

aminsert

... procedure identifiers for interface routines to the
access method. For example, regproc IDs for
opening, closing, and getting rows from the
access method appear here.

The object ID of the row inpg_am is used as a foreign key in a lot of other tables. You do not need
to add a new row to this table; all that you are interested in is the object ID of the access method you

228

Chapter 17. Interfacing Extensions To Indexes

want to extend:

SELECT oid FROM pg_am WHERE amname = ’btree’;

oid

403
(1 row)

We will use that query in aWHEREclause later.

17.3. Access Method Strategies
The amstrategies column exists to standardize comparisons across data types. For example, B-
trees impose a strict ordering on keys, lesser to greater. Since PostgreSQL allows the user to define
operators, PostgreSQL cannot look at the name of an operator (e.g.,> or <) and tell what kind of
comparison it is. In fact, some access methods don’t impose any ordering at all. For example, R-trees
express a rectangle-containment relationship, whereas a hashed data structure expresses only bitwise
similarity based on the value of a hash function. PostgreSQL needs some consistent way of taking a
qualification in your query, looking at the operator, and then deciding if a usable index exists. This
implies that PostgreSQL needs to know, for example, that the<= and> operators partition a B-tree.
PostgreSQL usesstrategiesto express these relationships between operators and the way they can be
used to scan indexes.

Defining a new set of strategies is beyond the scope of this discussion, but we’ll explain how B-tree
strategies work because you’ll need to know that to add a new B-tree operator class. In thepg_am

table, theamstrategies column sets the number of strategies defined for this access method. For
B-trees, this number is 5. The meanings of these strategies are shown inTable 17-2.

Table 17-2. B-tree Strategies

Operation Index

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

The idea is that you’ll need to add operators corresponding to these strategies to thepg_amop relation
(see below). The access method code can use these strategy numbers, regardless of data type, to figure
out how to partition the B-tree, compute selectivity, and so on. Don’t worry about the details of adding
operators yet; just understand that there must be a set of these operators forint2 , int4 , oid , and all
other data types on which a B-tree can operate.

17.4. Access Method Support Routines
Sometimes, strategies aren’t enough information for the system to figure out how to use an index.
Some access methods require additional support routines in order to work. For example, the B-tree
access method must be able to compare two keys and determine whether one is greater than, equal
to, or less than the other. Similarly, the R-tree access method must be able to compute intersections,

229

Chapter 17. Interfacing Extensions To Indexes

unions, and sizes of rectangles. These operations do not correspond to operators used in qualifications
in SQL queries; they are administrative routines used by the access methods, internally.

In order to manage diverse support routines consistently across all PostgreSQL access methods,
pg_am includes a column calledamsupport . This column records the number of support routines
used by an access method. For B-trees, this number is one: the routine to take two keys and return -1,
0, or +1, depending on whether the first key is less than, equal to, or greater than the second. (Strictly
speaking, this routine can return a negative number (< 0), zero, or a non-zero positive number (> 0).)

The amstrategies entry in pg_am is just the number of strategies defined for the access method
in question. The operators for less than, less equal, and so on don’t appear inpg_am. Similarly,
amsupport is just the number of support routines required by the access method. The actual routines
are listed elsewhere.

By the way, theamorderstrategy column tells whether the access method supports ordered scan.
Zero means it doesn’t; if it does,amorderstrategy is the number of the strategy routine that corre-
sponds to the ordering operator. For example, B-tree hasamorderstrategy = 1, which is its “less
than” strategy number.

17.5. Operator Classes
The next table of interest ispg_opclass . This table defines operator class names and input data
types for each of the operator classes supported by a given index access method. The same class name
can be used for several different access methods (for example, both B-tree and hash access methods
have operator classes namedoid_ops), but a separatepg_opclass row must appear for each access
method. The OID of thepg_opclass row is used as a foreign key in other tables to associate specific
operators and support routines with the operator class.

You need to add a row with your operator class name (for example,complex_abs_ops) to
pg_opclass :

INSERT INTO pg_opclass (opcamid, opcname, opcintype, opcdefault, opckeytype)
VALUES (

(SELECT oid FROM pg_am WHERE amname = ’btree’),
’complex_abs_ops’,
(SELECT oid FROM pg_type WHERE typname = ’complex’),
true,
0);

SELECT oid, *
FROM pg_opclass
WHERE opcname = ’complex_abs_ops’;

oid | opcamid | opcname | opcintype | opcdefault | opckeytype
--------+---------+-----------------+-----------+------------+------------

277975 | 403 | complex_abs_ops | 277946 | t | 0
(1 row)

Note that the OID for yourpg_opclass row will be different! Don’t worry about this though. We’ll
get this number from the system later just like we got the OID of the type here.

The above example assumes that you want to make this new operator class the default B-tree operator
class for thecomplex data type. If you don’t, just setopcdefault to false instead.opckeytype is
not described here; it should always be zero for B-tree operator classes.

230

Chapter 17. Interfacing Extensions To Indexes

17.6. Creating the Operators and Support Routines
So now we have an access method and an operator class. We still need a set of operators. The proce-
dure for defining operators was discussed inChapter 14. For thecomplex_abs_ops operator class
on B-trees, the operators we require are:

• absolute-value less-than (strategy 1)
• absolute-value less-than-or-equal (strategy 2)
• absolute-value equal (strategy 3)
• absolute-value greater-than-or-equal (strategy 4)
• absolute-value greater-than (strategy 5)

Suppose the code that implements these functions is stored in the file
PGROOT/src/tutorial/complex.c , which we have compiled into
PGROOT/src/tutorial/complex.so . Part of the C code looks like this:

#define Mag(c) ((c)- >x*(c)- >x + (c)- >y*(c)- >y)

bool
complex_abs_eq(Complex *a, Complex *b)
{

double amag = Mag(a), bmag = Mag(b);
return (amag==bmag);

}

(Note that we will only show the equality operator for the rest of the examples. The other four opera-
tors are very similar. Refer tocomplex.c or complex.source for the details.)

We make the function known to PostgreSQL like this:

CREATE FUNCTION complex_abs_eq(complex, complex) RETURNS boolean
AS ’ PGROOT/src/tutorial/complex’
LANGUAGE C;

There are some important things that are happening here:

• First, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal, and greater-
than forcomplex are being defined. We can only have one operator named, say, = and taking type
complex for both operands. In this case we don’t have any other operator = forcomplex , but if we
were building a practical data type we’d probably want = to be the ordinary equality operation for
complex numbers. In that case, we’d need to use some other operator name forcomplex_abs_eq .

• Second, although PostgreSQL can cope with operators having the same name as long as they have
different input data types, C can only cope with one global routine having a given name, period.
So we shouldn’t name the C function something simple likeabs_eq . Usually it’s a good practice
to include the data type name in the C function name, so as not to conflict with functions for other
data types.

• Third, we could have made the PostgreSQL name of the functionabs_eq , relying on PostgreSQL
to distinguish it by input data types from any other PostgreSQL function of the same name. To keep
the example simple, we make the function have the same names at the C level and PostgreSQL level.

231

Chapter 17. Interfacing Extensions To Indexes

• Finally, note that these operator functions return Boolean values. In practice, all operators defined
as index access method strategies must return typeboolean , since they must appear at the top
level of aWHEREclause to be used with an index. (On the other hand, the support function returns
whatever the particular access method expects -- in this case, a signed integer.)

The final routine in the file is the “support routine” mentioned when we discussed theamsupport

column of thepg_am table. We will use this later on. For now, ignore it.

Now we are ready to define the operators:

CREATE OPERATOR = (
leftarg = complex, rightarg = complex,
procedure = complex_abs_eq,
restrict = eqsel, join = eqjoinsel

);

The important things here are the procedure names (which are the C functions defined above) and
the restriction and join selectivity functions. You should just use the selectivity functions used in the
example (seecomplex.source). Note that there are different such functions for the less-than, equal,
and greater-than cases. These must be supplied or the optimizer will be unable to make effective use
of the index.

The next step is to add entries for these operators to thepg_amop relation. To do this, we’ll need
the OIDs of the operators we just defined. We’ll look up the names of all the operators that take two
operands of typecomplex , and pick ours out:

SELECT o.oid AS opoid, o.oprname
INTO TEMP TABLE complex_ops_tmp
FROM pg_operator o, pg_type t
WHERE o.oprleft = t.oid and o.oprright = t.oid

and t.typname = ’complex’;

opoid | oprname
--------+---------

277963 | +
277970 | <

277971 | <=
277972 | =
277973 | >=
277974 | >

(6 rows)

(Again, some of your OID numbers will almost certainly be different.) The operators we are interested
in are those with OIDs 277970 through 277974. The values you get will probably be different, and
you should substitute them for the values below. We will do this with a select statement.

Now we are ready to insert entries intopg_amop for our new operator class. These entries must
associate the correct B-tree strategy numbers with each of the operators we need. The command to
insert the less-than operator looks like:

INSERT INTO pg_amop (amopclaid, amopstrategy, amopreqcheck, amopopr)
SELECT opcl.oid, 1, false, c.opoid

FROM pg_opclass opcl, complex_ops_tmp c
WHERE

opcamid = (SELECT oid FROM pg_am WHERE amname = ’btree’) AND
opcname = ’complex_abs_ops’ AND

232

Chapter 17. Interfacing Extensions To Indexes

c.oprname = ’ <’;

Now do this for the other operators substituting for the1 in the second line above and the< in the last
line. Note the order: “less than” is 1, “less than or equal” is 2, “equal” is 3, “greater than or equal” is
4, and “greater than” is 5.

The fieldamopreqcheck is not discussed here; it should always be false for B-tree operators.

The final step is the registration of the “support routine” previously described in our discussion of
pg_am. The OID of this support routine is stored in thepg_amproc table, keyed by the operator class
OID and the support routine number.

First, we need to register the function in PostgreSQL (recall that we put the C code that implements
this routine in the bottom of the file in which we implemented the operator routines):

CREATE FUNCTION complex_abs_cmp(complex, complex)
RETURNS integer
AS ’ PGROOT/src/tutorial/complex’
LANGUAGE C;

SELECT oid, proname FROM pg_proc
WHERE proname = ’complex_abs_cmp’;

oid | proname
--------+-----------------

277997 | complex_abs_cmp
(1 row)

(Again, your OID number will probably be different.)

We can add the new row as follows:

INSERT INTO pg_amproc (amopclaid, amprocnum, amproc)
SELECT opcl.oid, 1, p.oid

FROM pg_opclass opcl, pg_proc p
WHERE

opcamid = (SELECT oid FROM pg_am WHERE amname = ’btree’) AND
opcname = ’complex_abs_ops’ AND
p.proname = ’complex_abs_cmp’;

And we’re done! (Whew.) It should now be possible to create and use B-tree indexes oncomplex

columns.

233

Chapter 18. Index Cost Estimation Functions

Author: Written by Tom Lane (<tgl@sss.pgh.pa.us >) on 2000-01-24

Note: This must eventually become part of a much larger chapter about writing new index access
methods.

Every index access method must provide a cost estimation function for use by the planner/optimizer.
The procedure OID of this function is given in theamcostestimate field of the access method’s
pg_am entry.

Note: Prior to PostgreSQL 7.0, a different scheme was used for registering index-specific cost
estimation functions.

The amcostestimate function is given a list of WHERE clauses that have been determined to be usable
with the index. It must return estimates of the cost of accessing the index and the selectivity of the
WHERE clauses (that is, the fraction of main-table tuples that will be retrieved during the index scan).
For simple cases, nearly all the work of the cost estimator can be done by calling standard routines
in the optimizer; the point of having an amcostestimate function is to allow index access methods to
provide index-type-specific knowledge, in case it is possible to improve on the standard estimates.

Each amcostestimate function must have the signature:

void
amcostestimate (Query *root,

RelOptInfo *rel,
IndexOptInfo *index,
List *indexQuals,
Cost *indexStartupCost,
Cost *indexTotalCost,
Selectivity *indexSelectivity,
double *indexCorrelation);

The first four parameters are inputs:

root

The query being processed.

rel

The relation the index is on.

index

The index itself.

234

Chapter 18. Index Cost Estimation Functions

indexQuals

List of index qual clauses (implicitly ANDed); a NIL list indicates no qualifiers are available.

The last four parameters are pass-by-reference outputs:

*indexStartupCost

Set to cost of index start-up processing

*indexTotalCost

Set to total cost of index processing

*indexSelectivity

Set to index selectivity

*indexCorrelation

Set to correlation coefficient between index scan order and underlying table’s order

Note that cost estimate functions must be written in C, not in SQL or any available procedural lan-
guage, because they must access internal data structures of the planner/optimizer.

The index access costs should be computed in the units used by
src/backend/optimizer/path/costsize.c : a sequential disk block fetch has cost 1.0, a
nonsequential fetch has cost random_page_cost, and the cost of processing one index tuple should
usually be taken as cpu_index_tuple_cost (which is a user-adjustable optimizer parameter).
In addition, an appropriate multiple of cpu_operator_cost should be charged for any comparison
operators invoked during index processing (especially evaluation of the indexQuals themselves).

The access costs should include all disk and CPU costs associated with scanning the index itself, but
NOT the costs of retrieving or processing the main-table tuples that are identified by the index.

The “start-up cost” is the part of the total scan cost that must be expended before we can begin to
fetch the first tuple. For most indexes this can be taken as zero, but an index type with a high start-up
cost might want to set it nonzero.

The indexSelectivity should be set to the estimated fraction of the main table tuples that will be
retrieved during the index scan. In the case of a lossy index, this will typically be higher than the
fraction of tuples that actually pass the given qual conditions.

The indexCorrelation should be set to the correlation (ranging between -1.0 and 1.0) between the
index order and the table order. This is used to adjust the estimate for the cost of fetching tuples from
the main table.

Cost Estimation

A typical cost estimator will proceed as follows:

1. Estimate and return the fraction of main-table tuples that will be visited based on the given
qual conditions. In the absence of any index-type-specific knowledge, use the standard optimizer
function clauselist_selectivity():

*indexSelectivity = clauselist_selectivity(root, indexQuals,
lfirsti(rel->relids));

235

Chapter 18. Index Cost Estimation Functions

2. Estimate the number of index tuples that will be visited during the scan. For many index types
this is the same as indexSelectivity times the number of tuples in the index, but it might be more.
(Note that the index’s size in pages and tuples is available from the IndexOptInfo struct.)

3. Estimate the number of index pages that will be retrieved during the scan. This might be just
indexSelectivity times the index’s size in pages.

4. Compute the index access cost. A generic estimator might do this:

/*
* Our generic assumption is that the index pages will be read
* sequentially, so they have cost 1.0 each, not random_page_cost.
* Also, we charge for evaluation of the indexquals at each index tuple.
* All the costs are assumed to be paid incrementally during the scan.
*/

*indexStartupCost = 0;
*indexTotalCost = numIndexPages +

(cpu_index_tuple_cost + cost_qual_eval(indexQuals)) * numIndexTuples;

5. Estimate the index correlation. For a simple ordered index on a single field, this can be retrieved
from pg_statistic. If the correlation is not known, the conservative estimate is zero (no correla-
tion).

Examples of cost estimator functions can be found insrc/backend/utils/adt/selfuncs.c .

By convention, thepg_proc entry for anamcostestimate function should show

prorettype = 0
pronargs = 8
proargtypes = 0 0 0 0 0 0 0 0

We use zero ("opaque") for all the arguments since none of them have types that are known in pg_type.

236

Chapter 19. GiST Indexes
The information about GIST is at http://GiST.CS.Berkeley.EDU:8000/gist/ with more on
different indexing and sorting schemes at http://s2k-ftp.CS.Berkeley.EDU:8000/personal/jmh/.
And there is more interesting reading at http://epoch.cs.berkeley.edu:8000/ and
http://www.sai.msu.su/~megera/postgres/gist/.

Author: This extraction from an email sent by Eugene Selkov, Jr. (<selkovjr@mcs.anl.gov >)
contains good information on GiST. Hopefully we will learn more in the future and update this
information. - thomas 1998-03-01

Well, I can’t say I quite understand what’s going on, but at least I (almost) succeeded in
porting GiST examples to linux. The GiST access method is already in the postgres tree
(src/backend/access/gist).

Examples at Berkeley5 come with an overview of the methods and demonstrate spatial index mech-
anisms for 2D boxes, polygons, integer intervals and text (see also GiST at Berkeley6). In the box
example, we are supposed to see a performance gain when using the GiST index; it did work for me
but I do not have a reasonably large collection of boxes to check that. Other examples also worked,
except polygons: I got an error doing

test=> CREATE INDEX pix ON polytmp
test-> USING GIST (p:box gist_poly_ops) WITH (ISLOSSY);
ERROR: cannot open pix

(PostgreSQL 6.3 Sun Feb 1 14:57:30 EST 1998)

I could not get sense of this error message; it appears to be something we’d rather ask the devel-
opers about (see also Note 4 below). What I would suggest here is that someone of you linux guys
(linux==gcc?) fetch the original sources quoted above and apply my patch (see attachment) and tell
us what you feel about it. Looks cool to me, but I would not like to hold it up while there are so many
competent people around.

A few notes on the sources:

1. I failed to make use of the original (HP-UX) Makefile and rearranged the Makefile from the ancient
postgres95 tutorial to do the job. I tried to keep it generic, but I am a very poor makefile writer -- just
did some monkey work. Sorry about that, but I guess it is now a little more portable that the original
makefile.

2. I built the example sources right under pgsql/src (just extracted the tar file there). The aforemen-
tioned Makefile assumes it is one level below pgsql/src (in our case, in pgsql/src/pggist).

3. The changes I made to the *.c files were all about #include’s, function prototypes and typecasting.
Other than that, I just threw away a bunch of unused vars and added a couple parentheses to please
gcc. I hope I did not screw up too much :)

4. There is a comment in polyproc.sql:

-- -- there’s a memory leak in rtree poly_ops!!

5. ftp://s2k-ftp.cs.berkeley.edu/pub/gist/pggist/pggist.tgz
6. http://gist.cs.berkeley.edu:8000/gist/

237

Chapter 19. GiST Indexes

-- -- CREATE INDEX pix2 ON polytmp USING RTREE (p poly_ops);

Roger that!! I thought it could be related to a number of PostgreSQL versions back and tried the query.
My system went nuts and I had to shoot down the postmaster in about ten minutes.

I will continue to look into GiST for a while, but I would also appreciate more examples of R-tree
usage.

238

Chapter 20. Triggers
PostgreSQL has various server-side function interfaces. Server-side functions can be written in SQL,
PLPGSQL, TCL, or C. Trigger functions can be written in any of these languages except SQL. Note
that STATEMENT-level trigger events are not supported in the current version. You can currently
specify BEFORE or AFTER on INSERT, DELETE or UPDATE of a tuple as a trigger event.

20.1. Trigger Creation
If a trigger event occurs, the trigger manager (called by the Executor) sets up a TriggerData informa-
tion structure (described below) and calls the trigger function to handle the event.

The trigger function must be defined before the trigger is created as a function taking no arguments
and returning opaque. If the function is written in C, it must use the “version 1” function manager
interface.

The syntax for creating triggers is as follows:

CREATE TRIGGERtrigger [BEFORE | AFTER] [INSERT | DELETE | UPDATE [OR ...]]
ON relation FOR EACH [ROW | STATEMENT]
EXECUTE PROCEDUREprocedure

(args);

where the arguments are:

trigger

The name of the trigger is used if you ever have to delete the trigger. It is used as an argument to
theDROP TRIGGER command.

BEFORE
AFTER

Determines whether the function is called before or after the event.

INSERT
DELETE
UPDATE

The next element of the command determines on what event(s) will trigger the function. Multiple
events can be specified separated by OR.

relation

The relation name determines which table the event applies to.

ROW
STATEMENT

The FOR EACH clause determines whether the trigger is fired for each affected row or before
(or after) the entire statement has completed.

procedure

The procedure name is the function called.

239

Chapter 20. Triggers

args

The arguments passed to the function in the TriggerData structure. The purpose of passing ar-
guments to the function is to allow different triggers with similar requirements to call the same
function.

Also, procedure may be used for triggering different relations (these functions are named as
general trigger functions).

As example of using both features above, there could be a general function that takes as its
arguments two field names and puts the current user in one and the current timestamp in the
other. This allows triggers to be written on INSERT events to automatically track creation of
records in a transaction table for example. It could also be used as a “last updated” function if
used in an UPDATE event.

Trigger functions return HeapTuple to the calling Executor. This is ignored for triggers fired after an
INSERT, DELETE or UPDATE operation but it allows BEFORE triggers to:

• Return NULL to skip the operation for the current tuple (and so the tuple will not be
inserted/updated/deleted).

• Return a pointer to another tuple (INSERT and UPDATE only) which will be inserted (as the new
version of the updated tuple if UPDATE) instead of original tuple.

Note that there is no initialization performed by the CREATE TRIGGER handler. This will be changed
in the future. Also, if more than one trigger is defined for the same event on the same relation, the
order of trigger firing is unpredictable. This may be changed in the future.

If a trigger function executes SQL-queries (using SPI) then these queries may fire triggers again. This
is known as cascading triggers. There is no explicit limitation on the number of cascade levels.

If a trigger is fired by INSERT and inserts a new tuple in the same relation then this trigger will
be fired again. Currently, there is nothing provided for synchronization (etc) of these cases but this
may change. At the moment, there is function funny_dup17() in the regress tests which uses some
techniques to stop recursion (cascading) on itself...

20.2. Interaction with the Trigger Manager
This section describes the low-level details of the interface to a trigger function. This information is
only needed when writing a trigger function in C. If you are using a higher-level function language
then these details are handled for you.

Note: The interface described here applies for PostgreSQL 7.1 and later. Earlier versions passed
the TriggerData pointer in a global variable CurrentTriggerData.

When a function is called by the trigger manager, it is not passed any normal parameters, but it is
passed a “context” pointer pointing to a TriggerData structure. C functions can check whether they
were called from the trigger manager or not by executing the macroCALLED_AS_TRIGGER(fcinfo) ,
which expands to

((fcinfo)->context != NULL && IsA((fcinfo)->context, TriggerData))

240

Chapter 20. Triggers

If this returns TRUE, then it is safe to cast fcinfo->context to typeTriggerData * and make use of
the pointed-to TriggerData structure. The function mustnot alter the TriggerData structure or any of
the data it points to.

struct TriggerData is defined in src/include/commands/trigger.h:

typedef struct TriggerData
{

NodeTag type;
TriggerEvent tg_event;
Relation tg_relation;
HeapTuple tg_trigtuple;
HeapTuple tg_newtuple;
Trigger *tg_trigger;

} TriggerData;

where the members are defined as follows:

type

Always T_TriggerData if this is a trigger event.

tg_event

describes the event for which the function is called. You may use the following macros to exam-
ine tg_event :

TRIGGER_FIRED_BEFORE(tg_event)

returns TRUE if trigger fired BEFORE.

TRIGGER_FIRED_AFTER(tg_event)

Returns TRUE if trigger fired AFTER.

TRIGGER_FIRED_FOR_ROW(event)

Returns TRUE if trigger fired for a ROW-level event.

TRIGGER_FIRED_FOR_STATEMENT(event)

Returns TRUE if trigger fired for STATEMENT-level event.

TRIGGER_FIRED_BY_INSERT(event)

Returns TRUE if trigger fired by INSERT.

TRIGGER_FIRED_BY_DELETE(event)

Returns TRUE if trigger fired by DELETE.

TRIGGER_FIRED_BY_UPDATE(event)

Returns TRUE if trigger fired by UPDATE.

tg_relation

is a pointer to structure describing the triggered relation. Look at src/include/utils/rel.h for details
about this structure. The most interest things are tg_relation->rd_att (descriptor of the relation
tuples) and tg_relation->rd_rel->relname (relation’s name. This is not char*, but NameData. Use
SPI_getrelname(tg_relation) to get char* if you need a copy of name).

241

Chapter 20. Triggers

tg_trigtuple

is a pointer to the tuple for which the trigger is fired. This is the tuple being inserted (if INSERT),
deleted (if DELETE) or updated (if UPDATE). If INSERT/DELETE then this is what you are
to return to Executor if you don’t want to replace tuple with another one (INSERT) or skip the
operation.

tg_newtuple

is a pointer to the new version of tuple if UPDATE and NULL if this is for an INSERT or a
DELETE. This is what you are to return to Executor if UPDATE and you don’t want to replace
this tuple with another one or skip the operation.

tg_trigger

is pointer to structure Trigger defined in src/include/utils/rel.h:

typedef struct Trigger
{

Oid tgoid;
char *tgname;
Oid tgfoid;
int16 tgtype;
bool tgenabled;
bool tgisconstraint;
bool tgdeferrable;
bool tginitdeferred;
int16 tgnargs;
int16 tgattr[FUNC_MAX_ARGS];
char **tgargs;

} Trigger;

where tgname is the trigger’s name, tgnargs is number of arguments in tgargs, tgargs is an array
of pointers to the arguments specified in the CREATE TRIGGER statement. Other members are
for internal use only.

20.3. Visibility of Data Changes
PostgreSQL data changes visibility rule: during a query execution, data changes made by the query
itself (via SQL-function, SPI-function, triggers) are invisible to the query scan. For example, in query

INSERT INTO a SELECT * FROM a;

tuples inserted are invisible for SELECT scan. In effect, this duplicates the database table within itself
(subject to unique index rules, of course) without recursing.

But keep in mind this notice about visibility in the SPI documentation:

Changes made by query Q are visible by queries that are started after query Q, no matter whether they are
started inside Q (during the execution of Q) or after Q is done.

This is true for triggers as well so, though a tuple being inserted (tg_trigtuple) is not visible to queries
in a BEFORE trigger, this tuple (just inserted) is visible to queries in an AFTER trigger, and to queries
in BEFORE/AFTER triggers fired after this!

242

Chapter 20. Triggers

20.4. Examples
There are more complex examples insrc/test/regress/regress.c and incontrib/spi .

Here is a very simple example of trigger usage. Function trigf reports the number of tuples in the
triggered relation ttest and skips the operation if the query attempts to insert NULL into x (i.e - it acts
as a NOT NULL constraint but doesn’t abort the transaction).

#include "executor/spi.h" /* this is what you need to work with SPI */
#include "commands/trigger.h" /* -"- and triggers */

extern Datum trigf(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_V1(trigf);

Datum
trigf(PG_FUNCTION_ARGS)
{

TriggerData *trigdata = (TriggerData *) fcinfo->context;
TupleDesc tupdesc;
HeapTuple rettuple;
char *when;
bool checknull = false;
bool isnull;
int ret, i;

/* Make sure trigdata is pointing at what I expect */
if (!CALLED_AS_TRIGGER(fcinfo))

elog(ERROR, "trigf: not fired by trigger manager");

/* tuple to return to Executor */
if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))

rettuple = trigdata->tg_newtuple;
else

rettuple = trigdata->tg_trigtuple;

/* check for NULLs ? */
if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event) &&

TRIGGER_FIRED_BEFORE(trigdata->tg_event))
checknull = true;

if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
when = "before";

else
when = "after ";

tupdesc = trigdata->tg_relation->rd_att;

/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)

elog(NOTICE, "trigf (fired %s): SPI_connect returned %d", when, ret);

/* Get number of tuples in relation */
ret = SPI_exec("SELECT count(*) FROM ttest", 0);

if (ret < 0)
elog(NOTICE, "trigf (fired %s): SPI_exec returned %d", when, ret);

243

Chapter 20. Triggers

/* count(*) returns int8 as of PG 7.2, so be careful to convert */
i = (int) DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],

SPI_tuptable->tupdesc,
1,
&isnull));

elog (NOTICE, "trigf (fired %s): there are %d tuples in ttest", when, i);

SPI_finish();

if (checknull)
{

(void) SPI_getbinval(rettuple, tupdesc, 1, &isnull);
if (isnull)

rettuple = NULL;
}

return PointerGetDatum(rettuple);
}

Now, compile and create the trigger function:

CREATE FUNCTION trigf () RETURNS OPAQUE AS
’...path_to_so’ LANGUAGE ’C’;

CREATE TABLE ttest (x int4);

vac=> CREATE TRIGGER tbefore BEFORE INSERT OR UPDATE OR DELETE ON ttest
FOR EACH ROW EXECUTE PROCEDURE trigf();
CREATE
vac=> CREATE TRIGGER tafter AFTER INSERT OR UPDATE OR DELETE ON ttest
FOR EACH ROW EXECUTE PROCEDURE trigf();
CREATE
vac=> INSERT INTO ttest VALUES (NULL);
NOTICE:trigf (fired before): there are 0 tuples in ttest
INSERT 0 0

-- Insertion skipped and AFTER trigger is not fired

vac=> SELECT * FROM ttest;
x
-
(0 rows)

vac=> INSERT INTO ttest VALUES (1);
NOTICE:trigf (fired before): there are 0 tuples in ttest
NOTICE:trigf (fired after): there are 1 tuples in ttest

^^^^^^^^
remember what we said about visibility.

INSERT 167793 1
vac=> SELECT * FROM ttest;
x
-
1

244

Chapter 20. Triggers

(1 row)

vac=> INSERT INTO ttest SELECT x * 2 FROM ttest;
NOTICE:trigf (fired before): there are 1 tuples in ttest
NOTICE:trigf (fired after): there are 2 tuples in ttest

^^^^^^^^
remember what we said about visibility.

INSERT 167794 1
vac=> SELECT * FROM ttest;
x
-
1
2
(2 rows)

vac=> UPDATE ttest SET x = null WHERE x = 2;
NOTICE:trigf (fired before): there are 2 tuples in ttest
UPDATE 0
vac=> UPDATE ttest SET x = 4 WHERE x = 2;
NOTICE:trigf (fired before): there are 2 tuples in ttest
NOTICE:trigf (fired after): there are 2 tuples in ttest
UPDATE 1
vac=> SELECT * FROM ttest;
x
-
1
4
(2 rows)

vac=> DELETE FROM ttest;
NOTICE:trigf (fired before): there are 2 tuples in ttest
NOTICE:trigf (fired after): there are 1 tuples in ttest
NOTICE:trigf (fired before): there are 1 tuples in ttest
NOTICE:trigf (fired after): there are 0 tuples in ttest

^^^^^^^^
remember what we said about visibility.

DELETE 2
vac=> SELECT * FROM ttest;
x
-
(0 rows)

245

Chapter 21. Server Programming Interface
TheServer Programming Interface(SPI) gives users the ability to run SQL queries inside user-defined
C functions.

Note: The available Procedural Languages (PL) give an alternate means to build functions that
can execute queries.

In fact, SPI is just a set of native interface functions to simplify access to the Parser, Planner, Optimizer
and Executor. SPI also does some memory management.

To avoid misunderstanding we’ll usefunctionto mean SPI interface functions andprocedurefor user-
defined C-functions using SPI.

Procedures which use SPI are called by the Executor. The SPI calls recursively invoke the Executor
in turn to run queries. When the Executor is invoked recursively, it may itself call procedures which
may make SPI calls.

Note that if during execution of a query from a procedure the transaction is aborted, then control will
not be returned to your procedure. Rather, all work will be rolled back and the server will wait for the
next command from the client. This will probably be changed in future versions.

A related restriction is the inability to execute BEGIN, END and ABORT (transaction control state-
ments). This will also be changed in the future.

If successful, SPI functions return a non-negative result (either via a returned integer value or in
SPI_result global variable, as described below). On error, a negative or NULL result will be returned.

21.1. Interface Functions

SPI_connect

Name
SPI_connect — Connects your procedure to the SPI manager.

Synopsis

int SPI_connect(void)

Inputs

None

246

SPI_connect

Outputs

int

Return status

SPI_OK_CONNECT

if connected

SPI_ERROR_CONNECT

if not connected

Description

SPI_connect opens a connection from a procedure invocation to the SPI manager. You must call
this function if you will need to execute queries. Some utility SPI functions may be called from un-
connected procedures.

If your procedure is already connected,SPI_connect will return an SPI_ERROR_CONNECT er-
ror. Note that this may happen if a procedure which has calledSPI_connect directly calls another
procedure which itself callsSPI_connect . While recursive calls to the SPI manager are permitted
when an SPI query invokes another function which uses SPI, directly nested calls toSPI_connect

andSPI_finish are forbidden.

Usage

Algorithm

SPI_connect performs the following: Initializes the SPI internal structures for query execution and
memory management.

247

SPI_finish

Name
SPI_finish — Disconnects your procedure from the SPI manager.

Synopsis

SPI_finish(void)

Inputs

None

Outputs

int

SPI_OK_FINISH if properly disconnected
SPI_ERROR_UNCONNECTED if called from an un-connected procedure

Description

SPI_finish closes an existing connection to the SPI manager. You must call this function after
completing the SPI operations needed during your procedure’s current invocation.

You may get the error return SPI_ERROR_UNCONNECTED ifSPI_finish is called without hav-
ing a current valid connection. There is no fundamental problem with this; it means that nothing was
done by the SPI manager.

Usage

SPI_finish mustbe called as a final step by a connected procedure, or you may get unpredictable
results! However, you do not need to worry about making this happen if the transaction is aborted via
elog(ERROR). In that case SPI will clean itself up.

Algorithm

SPI_finish performs the following: Disconnects your procedure from the SPI manager and frees all
memory allocations made by your procedure viapalloc since theSPI_connect . These allocations
can’t be used any more! See Memory management.

248

SPI_exec

Name
SPI_exec — Creates an execution plan (parser+planner+optimizer) and executes a query.

Synopsis

SPI_exec(query , tcount)

Inputs

char *query

String containing query plan

int tcount

Maximum number of tuples to return

Outputs

int

SPI_ERROR_UNCONNECTED if called from an un-connected procedure
SPI_ERROR_ARGUMENT if query is NULL ortcount < 0.
SPI_ERROR_UNCONNECTED if procedure is unconnected.
SPI_ERROR_COPY if COPY TO/FROM stdin.
SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn’t occur).

If execution of your query was successful then one of the following (non-negative) values will
be returned:

SPI_OK_UTILITY if some utility (e.g. CREATE TABLE ...) was executed
SPI_OK_SELECT if SELECT (but not SELECT ... INTO!) was executed
SPI_OK_SELINTO if SELECT ... INTO was executed
SPI_OK_INSERT if INSERT (or INSERT ... SELECT) was executed
SPI_OK_DELETE if DELETE was executed
SPI_OK_UPDATE if UPDATE was executed

249

SPI_exec

Description

SPI_exec creates an execution plan (parser+planner+optimizer) and executes the query fortcount
tuples.

Usage

This should only be called from a connected procedure. Iftcount is zero then it executes the query
for all tuples returned by the query scan. Usingtcount > 0 you may restrict the number of tuples
for which the query will be executed (much like a LIMIT clause). For example,

SPI_exec ("INSERT INTO tab SELECT * FROM tab", 5);

will allow at most 5 tuples to be inserted into table. If execution of your query was successful then a
non-negative value will be returned.

Note: You may pass multiple queries in one string or query string may be re-written by RULEs.
SPI_exec returns the result for the last query executed.

The actual number of tuples for which the (last) query was executed is returned in the global variable
SPI_processed (if not SPI_OK_UTILITY). If SPI_OK_SELECT is returned and SPI_processed> 0
then you may use global pointer SPITupleTable *SPI_tuptable to access the result tuples.

SPI_exec may return one of the following (negative) values:

SPI_ERROR_ARGUMENT if query is NULL ortcount < 0.
SPI_ERROR_UNCONNECTED if procedure is unconnected.
SPI_ERROR_COPY if COPY TO/FROM stdin.
SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn’t occur).

Structures

If SPI_OK_SELECT is returned and SPI_processed> 0 then you may use the global pointer SPITu-
pleTable *SPI_tuptable to access the selected tuples.

Structure SPITupleTable is defined in spi.h:

typedef struct
{

MemoryContext tuptabcxt; /* memory context of result table */
uint32 alloced; /* # of alloced vals */
uint32 free; /* # of free vals */
TupleDesc tupdesc; /* tuple descriptor */
HeapTuple *vals; /* tuples */

} SPITupleTable;

250

SPI_exec

vals is an array of pointers to tuples (the number of useful entries is given by SPI_processed). Tu-
pleDesc tupdesc is a tuple descriptor which you may pass to SPI functions dealing with tuples. tupt-
abcxt, alloced, and free are internal fields not intended for use by SPI callers.

Note: Functions SPI_exec , SPI_execp and SPI_prepare change both SPI_processed and
SPI_tuptable (just the pointer, not the contents of the structure). Save these two global variables
into local procedure variables if you need to access the result of one SPI_exec or SPI_execp

across later calls.

SPI_finish frees all SPITupleTables allocated during the current procedure. You can free a partic-
ular result table earlier, if you are done with it, by callingSPI_freetuptable .

251

SPI_prepare

Name
SPI_prepare — Prepares a plan for a query, without executing it yet

Synopsis

SPI_prepare(query , nargs , argtypes)

Inputs

query

Query string

nargs

Number of input parameters ($1 ... $nargs - as in SQL-functions)

argtypes

Pointer to array of type OIDs for input parameter types

Outputs

void *

Pointer to an execution plan (parser+planner+optimizer)

Description

SPI_prepare creates and returns an execution plan (parser+planner+optimizer) but doesn’t execute
the query. Should only be called from a connected procedure.

Usage

When the same or similar query is to be executed repeatedly, it may be advantageous to perform query
planning only once.SPI_prepare converts a query string into an execution plan that can be passed
repeatedly toSPI_execp .

A prepared query can be generalized by writing parameters ($1, $2, etc) in place of what would be
constants in a normal query. The values of the parameters are then specified whenSPI_execp is
called. This allows the prepared query to be used over a wider range of situations than would be
possible without parameters.

Note: However, there is a disadvantage: since the planner does not know the values that will be
supplied for the parameters, it may make worse query planning choices than it would make for a
simple query with all constants visible.

252

SPI_prepare

If the query uses parameters, their number and datatypes must be specified in the call to
SPI_prepare .

The plan returned bySPI_prepare may be used only in current invocation of the procedure since
SPI_finish frees memory allocated for a plan. But seeSPI_saveplan to save a plan for longer.

If successful, a non-null pointer will be returned. Otherwise, you’ll get a NULL plan. In
both cases SPI_result will be set like the value returned by SPI_exec, except that it is set to
SPI_ERROR_ARGUMENT if query is NULL or nargs < 0 or nargs > 0 && argtypes is NULL.

253

SPI_execp

Name
SPI_execp — Executes a plan fromSPI_prepare

Synopsis

SPI_execp(plan ,
values ,
nulls ,
tcount)

Inputs

void *plan

Execution plan

Datum *values

Actual parameter values

char *nulls

Array describing which parameters are NULLs

n indicates NULL (values[] entry ignored)
space indicates not NULL (values[] entry is valid)

int tcount

Number of tuples for which plan is to be executed

Outputs

int

Returns the same value asSPI_exec as well as

SPI_ERROR_ARGUMENT ifplan is NULL or tcount < 0
SPI_ERROR_PARAM ifvalues is NULL andplan was prepared with some parameters.

SPI_tuptable

initialized as inSPI_exec if successful

SPI_processed

initialized as inSPI_exec if successful

254

SPI_execp

Description

SPI_execp executes a plan prepared bySPI_prepare . tcount has the same interpretation as in
SPI_exec .

Usage
If nulls is NULL thenSPI_execp assumes that all parameters (if any) are NOT NULL.

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan is dropped
during your session (by your backend or another process) then the results of SPI_execp for this
plan will be unpredictable.

255

SPI_cursor_open

Name
SPI_cursor_open — Sets up a cursor using a plan created withSPI_prepare

Synopsis

SPI_cursor_open(name,
plan ,
values ,
nulls)

Inputs

char *name

Name for portal, or NULL to let the system select a name

void *plan

Execution plan

Datum *values

Actual parameter values

char *nulls

Array describing which parameters are NULLs

n indicates NULL (values[] entry ignored)
space indicates not NULL (values[] entry is valid)

Outputs

Portal

Pointer to Portal containing cursor, or NULL on error

Description

SPI_cursor_open sets up a cursor (internally, a Portal) that will execute a plan prepared by
SPI_prepare .

Using a cursor instead of executing the plan directly has two benefits. First, the result rows can be
retrieved a few at a time, avoiding memory overrun for queries that return many rows. Second, a Portal
can outlive the current procedure (it can, in fact, live to the end of the current transaction). Returning
the portal name to the procedure’s caller provides a way of returning a rowset result.

256

SPI_cursor_open

Usage

If nulls is NULL thenSPI_cursor_open assumes that all parameters (if any) are NOT NULL.

257

SPI_cursor_find

Name
SPI_cursor_find — Finds an existing cursor (Portal) by name

Synopsis

SPI_cursor_find(name)

Inputs

char *name

Name of portal

Outputs

Portal

Pointer to Portal with given name, or NULL if not found

Description

SPI_cursor_find finds a pre-existing Portal by name. This is primarily useful to resolve a cursor
name returned as text by some other function.

258

SPI_cursor_fetch

Name
SPI_cursor_fetch — Fetches some rows from a cursor

Synopsis

SPI_cursor_fetch(portal ,
forward ,
count)

Inputs

Portalportal

Portal containing cursor

bool forward

True for fetch forward, false for fetch backward

int count

Maximum number of rows to fetch

Outputs

SPI_tuptable

initialized as inSPI_exec if successful

SPI_processed

initialized as inSPI_exec if successful

Description

SPI_cursor_fetch fetches some (more) rows from a cursor. This is equivalent to the SQL com-
mandFETCH .

259

SPI_cursor_move

Name
SPI_cursor_move — Moves a cursor

Synopsis

SPI_cursor_move(portal ,
forward ,
count)

Inputs

Portalportal

Portal containing cursor

bool forward

True for move forward, false for move backward

int count

Maximum number of rows to move

Outputs

None

Description

SPI_cursor_move skips over some number of rows in a cursor. This is equivalent to the SQL com-
mandMOVE .

260

SPI_cursor_close

Name
SPI_cursor_close — Closes a cursor

Synopsis

SPI_cursor_close(portal)

Inputs

Portalportal

Portal containing cursor

Outputs

None

Description

SPI_cursor_close closes a previously created cursor and releases its Portal storage.

Usage

All open cursors are closed implicitly at transaction end.SPI_cursor_close need only be invoked
if it is desirable to release resources sooner.

261

SPI_saveplan

Name
SPI_saveplan — Saves a passed plan

Synopsis

SPI_saveplan(plan)

Inputs

void *query

Passed plan

Outputs

void *

Execution plan location. NULL if unsuccessful.

SPI_result

SPI_ERROR_ARGUMENT if plan is NULL
SPI_ERROR_UNCONNECTED if procedure is un-connected

Description

SPI_saveplan stores a plan prepared bySPI_prepare in safe memory protected from freeing by
SPI_finish or the transaction manager.

In the current version of PostgreSQL there is no ability to store prepared plans in the system catalog
and fetch them from there for execution. This will be implemented in future versions. As an alterna-
tive, there is the ability to reuse prepared plans in the subsequent invocations of your procedure in the
current session. UseSPI_execp to execute this saved plan.

Usage
SPI_saveplan saves a passed plan (prepared bySPI_prepare) in memory protected from freeing
by SPI_finish and by the transaction manager and returns a pointer to the saved plan. You may
save the pointer returned in a local variable. Always check if this pointer is NULL or not either when
preparing a plan or using an already prepared plan in SPI_execp (see below).

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan is dropped
during your session (by your backend or another process) then the results of SPI_execp for this
plan will be unpredictable.

262

SPI_saveplan

263

21.2. Interface Support Functions
The functions described here provide convenient interfaces for extracting information from tuple sets
returned bySPI_exec and other SPI interface functions.

All functions described in this section may be used by both connected and unconnected procedures.

SPI_fnumber

Name
SPI_fnumber — Finds the attribute number for specified attribute name

Synopsis

SPI_fnumber(tupdesc , fname)

Inputs

TupleDesctupdesc

Input tuple description

char * fname

Field name

Outputs

int

Attribute number

Valid one-based index number of attribute
SPI_ERROR_NOATTRIBUTE if the named attribute is not found

Description

SPI_fnumber returns the attribute number for the attribute with name in fname.

Usage

Attribute numbers are 1 based.

If the given fname refers to a system attribute (eg,oid) then the appropriate negative
attribute number will be returned. The caller should be careful to test for exact equality to
SPI_ERROR_NOATTRIBUTE to detect error; testing for result<= 0 is not correct unless system
attributes should be rejected.

264

SPI_fname

Name
SPI_fname — Finds the attribute name for the specified attribute number

Synopsis

SPI_fname(tupdesc , fnumber)

Inputs

TupleDesctupdesc

Input tuple description

int fnumber

Attribute number

Outputs

char *

Attribute name

NULL if fnumber is out of range
SPI_result set to SPI_ERROR_NOATTRIBUTE on error

Description

SPI_fname returns the attribute name for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Returns a newly-allocated copy of the attribute name. (Use pfree() to release the copy when done with
it.)

265

SPI_getvalue

Name
SPI_getvalue — Returns the string value of the specified attribute

Synopsis

SPI_getvalue(tuple , tupdesc , fnumber)

Inputs

HeapTupletuple

Input tuple to be examined

TupleDesctupdesc

Input tuple description

int fnumber

Attribute number

Outputs

char *

Attribute value or NULL if

attribute is NULL
fnumber is out of range (SPI_result set to SPI_ERROR_NOATTRIBUTE)
no output function available (SPI_result set to SPI_ERROR_NOOUTFUNC)

Description

SPI_getvalue returns an external (string) representation of the value of the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

The result is returned as a palloc’d string. (Use pfree() to release the string when done with it.)

266

SPI_getbinval

Name
SPI_getbinval — Returns the binary value of the specified attribute

Synopsis

SPI_getbinval(tuple , tupdesc , fnumber , isnull)

Inputs

HeapTupletuple

Input tuple to be examined

TupleDesctupdesc

Input tuple description

int fnumber

Attribute number

Outputs

Datum

Attribute binary value

bool * isnull

flag for null value in attribute

SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI_getbinval returns the specified attribute’s value in internal form (as a Datum).

Usage

Attribute numbers are 1 based.

267

SPI_getbinval

Algorithm

Does not allocate new space for the datum. In the case of a pass-by- reference datatype, the Datum
will be a pointer into the given tuple.

268

SPI_gettype

Name
SPI_gettype — Returns the type name of the specified attribute

Synopsis

SPI_gettype(tupdesc , fnumber)

Inputs

TupleDesctupdesc

Input tuple description

int fnumber

Attribute number

Outputs

char *

The type name for the specified attribute number

SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI_gettype returns a copy of the type name for the specified attribute, or NULL on error.

Usage

Attribute numbers are 1 based.

Algorithm

Returns a newly-allocated copy of the type name. (Use pfree() to release the copy when done with it.)

269

SPI_gettypeid

Name
SPI_gettypeid — Returns the type OID of the specified attribute

Synopsis

SPI_gettypeid(tupdesc , fnumber)

Inputs

TupleDesctupdesc

Input tuple description

int fnumber

Attribute number

Outputs

OID

The type OID for the specified attribute number

SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI_gettypeid returns the type OID for the specified attribute.

Usage

Attribute numbers are 1 based.

270

SPI_getrelname

Name
SPI_getrelname — Returns the name of the specified relation

Synopsis

SPI_getrelname(rel)

Inputs

Relationrel

Input relation

Outputs

char *

The name of the specified relation

Description

SPI_getrelname returns the name of the specified relation.

Algorithm

Returns a newly-allocated copy of the rel name. (Use pfree() to release the copy when done with it.)

271

21.3. Memory Management
PostgreSQL allocates memory within memorycontexts, which provide a convenient method of man-
aging allocations made in many different places that need to live for differing amounts of time. De-
stroying a context releases all the memory that was allocated in it. Thus, it is not necessary to keep
track of individual objects to avoid memory leaks --- only a relatively small number of contexts have
to be managed.palloc and related functions allocate memory from the “current” context.

SPI_connect creates a new memory context and makes it current.SPI_finish restores the previous
current memory context and destroys the context created bySPI_connect . These actions ensure that
transient memory allocations made inside your procedure are reclaimed at procedure exit, avoiding
memory leakage.

However, if your procedure needs to return an allocated memory object (such as a value of a pass-
by-reference datatype), you can’t allocate the return object usingpalloc , at least not while you are
connected to SPI. If you try, the object will be deallocated duringSPI_finish , and your procedure
will not work reliably!

To solve this problem, useSPI_palloc to allocate your return object.SPI_palloc allocates space
from “upper Executor” memory --- that is, the memory context that was current whenSPI_connect

was called, which is precisely the right context for return values of your procedure.

If called while not connected to SPI,SPI_palloc acts the same as plainpalloc .

Before a procedure connects to the SPI manager, the current memory context is the upper Executor
context, so all allocations made by the procedure viapalloc or by SPI utility functions are made in
this context.

After SPI_connect is called, the current context is the procedure’s private context made by
SPI_connect . All allocations made viapalloc /repalloc or by SPI utility functions (except for
SPI_copytuple , SPI_copytupledesc , SPI_copytupleintoslot , SPI_modifytuple , and
SPI_palloc) are made in this context.

When a procedure disconnects from the SPI manager (viaSPI_finish) the current context is re-
stored to the upper Executor context, and all allocations made in the procedure memory context are
freed and can’t be used any more!

All functions described in this section may be used by both connected and unconnected procedures. In
an unconnected procedure, they act the same as the underlying ordinary backend functions (palloc

etc).

SPI_copytuple

Name
SPI_copytuple — Makes copy of tuple in upper Executor context

Synopsis

SPI_copytuple(tuple)

272

SPI_copytuple

Inputs

HeapTupletuple

Input tuple to be copied

Outputs

HeapTuple

Copied tuple

non-NULL if tuple is not NULL and the copy was successful
NULL only if tuple is NULL

Description

SPI_copytuple makes a copy of tuple in upper Executor context.

Usage

TBD

273

SPI_copytupledesc

Name
SPI_copytupledesc — Makes copy of tuple descriptor in upper Executor context

Synopsis

SPI_copytupledesc(tupdesc)

Inputs

TupleDesctupdesc

Input tuple descriptor to be copied

Outputs

TupleDesc

Copied tuple descriptor

non-NULL if tupdesc is not NULL and the copy was successful
NULL only if tupdesc is NULL

Description

SPI_copytupledesc makes a copy of tupdesc in upper Executor context.

Usage

TBD

274

SPI_copytupleintoslot

Name
SPI_copytupleintoslot — Makes copy of tuple and descriptor in upper Executor context

Synopsis

SPI_copytupleintoslot(tuple , tupdesc)

Inputs

HeapTupletuple

Input tuple to be copied

TupleDesctupdesc

Input tuple descriptor to be copied

Outputs

TupleTableSlot *

Tuple slot containing copied tuple and descriptor

non-NULL if tuple andtupdesc are not NULL and the copy was successful
NULL only if tuple or tupdesc is NULL

Description

SPI_copytupleintoslot makes a copy of tuple in upper Executor context, returning it in the form
of a filled-in TupleTableSlot.

Usage

TBD

275

SPI_modifytuple

Name
SPI_modifytuple — Creates a tuple by replacing selected fields of a given tuple

Synopsis

SPI_modifytuple(rel , tuple , nattrs , attnum , Values , Nulls)

Inputs

Relationrel

Used only as source of tuple descriptor for tuple. (Passing a relation rather than a tuple descriptor
is a misfeature.)

HeapTupletuple

Input tuple to be modified

int nattrs

Number of attribute numbers in attnum array

int * attnum

Array of numbers of the attributes that are to be changed

Datum *Values

New values for the attributes specified

char *Nulls

Which new values are NULL, if any

Outputs

HeapTuple

New tuple with modifications

non-NULL if tuple is not NULL and the modify was successful
NULL only if tuple is NULL

SPI_result

SPI_ERROR_ARGUMENT if rel is NULL or tuple is NULL or natts<= 0 or attnum is NULL
or Values is NULL.
SPI_ERROR_NOATTRIBUTE if there is an invalid attribute number in attnum (attnum<= 0
or> number of attributes in tuple)

276

SPI_modifytuple

Description

SPI_modifytuple creates a new tuple by substituting new values for selected attributes, copying
the original tuple’s attributes at other positions. The input tuple is not modified.

Usage

If successful, a pointer to the new tuple is returned. The new tuple is allocated in upper Executor
context.

277

SPI_palloc

Name
SPI_palloc — Allocates memory in upper Executor context

Synopsis

SPI_palloc(size)

Inputs

Sizesize

Octet size of storage to allocate

Outputs

void *

New storage space of specified size

Description

SPI_palloc allocates memory in upper Executor context.

Usage

TBD

278

SPI_repalloc

Name
SPI_repalloc — Re-allocates memory in upper Executor context

Synopsis

SPI_repalloc(pointer , size)

Inputs

void * pointer

Pointer to existing storage

Sizesize

Octet size of storage to allocate

Outputs

void *

New storage space of specified size with contents copied from existing area

Description

SPI_repalloc re-allocates memory in upper Executor context.

Usage

This function is no longer different from plainrepalloc . It’s kept just for backward compatibility of
existing code.

279

SPI_pfree

Name
SPI_pfree — Frees memory in upper Executor context

Synopsis

SPI_pfree(pointer)

Inputs

void * pointer

Pointer to existing storage

Outputs

None

Description

SPI_pfree frees memory in upper Executor context.

Usage

This function is no longer different from plainpfree . It’s kept just for backward compatibility of
existing code.

280

SPI_freetuple

Name
SPI_freetuple — Frees a tuple allocated in upper Executor context

Synopsis

SPI_freetuple(pointer)

Inputs

HeapTuplepointer

Pointer to allocated tuple

Outputs

None

Description

SPI_freetuple frees a tuple previously allocated in upper Executor context.

Usage

This function is no longer different from plainheap_freetuple . It’s kept just for backward com-
patibility of existing code.

281

SPI_freetuptable

Name
SPI_freetuptable — Frees a tuple set created bySPI_exec or similar function

Synopsis

SPI_freetuptable(tuptable)

Inputs

SPITupleTable *tuptable

Pointer to tuple table

Outputs

None

Description

SPI_freetuptable frees a tuple set created by a prior SPI query function, such asSPI_exec .

Usage

This function is useful if a SPI procedure needs to execute multiple queries and does not want to keep
the results of earlier queries around until it ends. Note that any unfreed tuple sets will be freed anyway
at SPI_finish .

282

SPI_freeplan

Name
SPI_freeplan — Releases a previously saved plan

Synopsis

SPI_freeplan(plan)

Inputs

void *plan

Passed plan

Outputs

int

SPI_ERROR_ARGUMENT if plan is NULL

Description

SPI_freeplan releases a query plan previously returned bySPI_prepare or saved by
SPI_saveplan .

283

Chapter 21. Server Programming Interface

21.4. Visibility of Data Changes
PostgreSQL data changes visibility rule: during a query execution, data changes made by the query
itself (via SQL-function, SPI-function, triggers) are invisible to the query scan. For example, in query

INSERT INTO a SELECT * FROM a

tuples inserted are invisible for SELECT’s scan. In effect, this duplicates the database table within
itself (subject to unique index rules, of course) without recursing.

Changes made by query Q are visible to queries that are started after query Q, no matter whether they
are started inside Q (during the execution of Q) or after Q is done.

21.5. Examples
This example of SPI usage demonstrates the visibility rule. There are more complex examples in
src/test/regress/regress.c and in contrib/spi.

This is a very simple example of SPI usage. The procedure execq accepts an SQL-query in its first
argument and tcount in its second, executes the query using SPI_exec and returns the number of tuples
for which the query executed:

#include "executor/spi.h" /* this is what you need to work with SPI */

int execq(text *sql, int cnt);

int
execq(text *sql, int cnt)
{

char *query;
int ret;
int proc;

/* Convert given TEXT object to a C string */
query = DatumGetCString(DirectFunctionCall1(textout,

PointerGetDatum(sql)));

SPI_connect();

ret = SPI_exec(query, cnt);

proc = SPI_processed;
/*

* If this is SELECT and some tuple(s) fetched -
* returns tuples to the caller via elog (NOTICE).
*/

if (ret == SPI_OK_SELECT && SPI_processed > 0)
{

TupleDesc tupdesc = SPI_tuptable->tupdesc;
SPITupleTable *tuptable = SPI_tuptable;
char buf[8192];
int i,j;

for (j = 0; j < proc; j++)
{

HeapTuple tuple = tuptable->vals[j];

284

Chapter 21. Server Programming Interface

for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
sprintf(buf + strlen (buf), " %s%s",

SPI_getvalue(tuple, tupdesc, i),
(i == tupdesc->natts) ? " " : " |");

elog (NOTICE, "EXECQ: %s", buf);
}

}

SPI_finish();

pfree(query);

return (proc);
}

Now, compile and create the function:

CREATE FUNCTION execq (text, integer) RETURNS integer
AS ’...path_to_so’
LANGUAGE C;

vac=> SELECT execq(’CREATE TABLE a (x INTEGER)’, 0);
execq

0
(1 row)

vac=> INSERT INTO a VALUES (execq(’INSERT INTO a VALUES (0)’,0));
INSERT 167631 1
vac=> SELECT execq(’SELECT * FROM a’,0);
NOTICE:EXECQ: 0 <<< inserted by execq

NOTICE:EXECQ: 1 <<< value returned by execq and inserted by upper INSERT

execq

2
(1 row)

vac=> SELECT execq(’INSERT INTO a SELECT x + 2 FROM a’,1);
execq

1
(1 row)

vac=> SELECT execq(’SELECT * FROM a’, 10);
NOTICE:EXECQ: 0

NOTICE:EXECQ: 1

NOTICE:EXECQ: 2 <<< 0 + 2, only one tuple inserted - as specified

execq

3 <<< 10 is max value only, 3 is real # of tuples
(1 row)

285

Chapter 21. Server Programming Interface

vac=> DELETE FROM a;
DELETE 3
vac=> INSERT INTO a VALUES (execq(’SELECT * FROM a’, 0) + 1);
INSERT 167712 1
vac=> SELECT * FROM a;
x
-
1 <<< no tuples in a (0) + 1
(1 row)

vac=> INSERT INTO a VALUES (execq(’SELECT * FROM a’, 0) + 1);
NOTICE:EXECQ: 0
INSERT 167713 1
vac=> SELECT * FROM a;
x
-
1
2 <<< there was single tuple in a + 1
(2 rows)

-- This demonstrates data changes visibility rule:

vac=> INSERT INTO a SELECT execq(’SELECT * FROM a’, 0) * x FROM a;
NOTICE:EXECQ: 1
NOTICE:EXECQ: 2
NOTICE:EXECQ: 1
NOTICE:EXECQ: 2
NOTICE:EXECQ: 2
INSERT 0 2
vac=> SELECT * FROM a;
x
-
1
2
2 <<< 2 tuples * 1 (x in first tuple)
6 <<< 3 tuples (2 + 1 just inserted) * 2 (x in second tuple)
(4 rows) ^^^^^^^^

tuples visible to execq() in different invocations

286

III. Procedural Languages
This part documents the procedural languages available in the PostgreSQL distribution as well as
general issues concerning procedural languages.

Chapter 22. Procedural Languages

22.1. Introduction
PostgreSQL allows users to add new programming languages to be available for writing functions and
procedures. These are calledprocedural languages(PL). In the case of a function or trigger procedure
written in a procedural language, the database server has no built-in knowledge about how to interpret
the function’s source text. Instead, the task is passed to a special handler that knows the details of the
language. The handler could either do all the work of parsing, syntax analysis, execution, etc. itself,
or it could serve as “glue” between PostgreSQL and an existing implementation of a programming
language. The handler itself is a special programming language function compiled into a shared object
and loaded on demand.

Writing a handler for a new procedural language is described inSection 12.7. Several procedural
languages are available in the standard PostgreSQL distribution, which can serve as examples.

22.2. Installing Procedural Languages
A procedural language must be “installed” into each database where it is to be used. But procedural
languages installed in the template1 database are automatically available in all subsequently created
databases. So the database administrator can decide which languages are available in which databases,
and can make some languages available by default if he chooses.

For the languages supplied with the standard distribution, the shell scriptcreatelang may be used
instead of carrying out the details by hand. For example, to install PL/pgSQL into the template1
database, use

createlang plpgsql template1

The manual procedure described below is only recommended for installing custom languages that
createlang does not know about.

Manual Procedural Language Installation

A procedural language is installed in the database in three steps, which must be carried out by a
database superuser.

1. The shared object for the language handler must be compiled and installed into an appropriate
library directory. This works in the same way as building and installing modules with regular
user-defined C functions does; seeSection 12.5.7.

2. The handler must be declared with the command

CREATE FUNCTIONhandler_function_name ()
RETURNS OPAQUE AS
’ path-to-shared-object ’ LANGUAGE C;

The special return type ofOPAQUEtells the database that this function does not return one of the
defined SQL data types and is not directly usable in SQL statements.

3. The PL must be declared with the command

288

Chapter 22. Procedural Languages

CREATE [TRUSTED] [PROCEDURAL] LANGUAGElanguage-name
HANDLERhandler_function_name ;

The optional key wordTRUSTEDtells whether ordinary database users that have no superuser
privileges should be allowed to use this language to create functions and trigger procedures. Since
PL functions are executed inside the database server, theTRUSTEDflag should only be given for
languages that do not allow access to database server internals or the file system. The languages
PL/pgSQL, PL/Tcl, PL/Perl, and PL/Python are known to be trusted; the languages PL/TclU and
PL/PerlU are designed to provide unlimited functionality shouldnot be marked trusted.

In a default PostgreSQL installation, the handler for the PL/pgSQL language is built and installed into
the “library” directory. If Tcl/Tk support is configured in, the handlers for PL/Tcl and PL/TclU are
also built and installed in the same location. Likewise, the PL/Perl and PL/PerlU handlers are built
and installed if Perl support is configured, and PL/Python is installed if Python support is configured.
Thecreatelang script automatesstep 2andstep 3described above.

Example 22-1. Manual Installation of PL/pgSQL

The following command tells the database server where to find the shared object for the PL/pgSQL
language’s call handler function.

CREATE FUNCTION plpgsql_call_handler () RETURNS OPAQUE AS
’$libdir/plpgsql’ LANGUAGE C;

The command

CREATE TRUSTED PROCEDURAL LANGUAGE plpgsql
HANDLER plpgsql_call_handler;

then defines that the previously declared call handler function should be invoked for functions and
trigger procedures where the language attribute isplpgsql .

289

Chapter 23. PL/pgSQL - SQL Procedural
Language

PL/pgSQL is a loadable procedural language for the PostgreSQL database system.

This package was originally written by Jan Wieck. This documentation was in part written by Roberto
Mello (<rmello@fslc.usu.edu >).

23.1. Overview
The design goals of PL/pgSQL were to create a loadable procedural language that

• can be used to create functions and trigger procedures,

• adds control structures to the SQL language,

• can perform complex computations,

• inherits all user defined types, functions and operators,

• can be defined to be trusted by the server,

• is easy to use.

The PL/pgSQL call handler parses the function’s source text and produces an internal binary instruc-
tion tree the first time the function is called (within any one backend process). The instruction tree
fully translates the PL/pgSQL statement structure, but individual SQL expressions and SQL queries
used in the function are not translated immediately.

As each expression and SQL query is first used in the function, the PL/pgSQL interpreter creates
a prepared execution plan (using the SPI manager’sSPI_prepare andSPI_saveplan functions).
Subsequent visits to that expression or query re-use the prepared plan. Thus, a function with con-
ditional code that contains many statements for which execution plans might be required, will only
prepare and save those plans that are really used during the lifetime of the database connection. This
can provide a considerable savings of parsing activity. A disadvantage is that errors in a specific
expression or query may not be detected until that part of the function is reached in execution.

Once PL/pgSQL has made a query plan for a particular query in a function, it will re-use that plan
for the life of the database connection. This is usually a win for performance, but it can cause some
problems if you dynamically alter your database schema. For example:

CREATE FUNCTION populate() RETURNS INTEGER AS ’
DECLARE

-- Declarations
BEGIN

PERFORM my_function();
END;
’ LANGUAGE ’plpgsql’;

If you execute the above function, it will reference the OID formy_function() in the query plan
produced for the PERFORM statement. Later, if you drop and re-createmy_function() , thenpop-

ulate() will not be able to findmy_function() anymore. You would then have to re-createpop-

ulate() , or at least start a new database session so that it will be compiled afresh.

290

Chapter 23. PL/pgSQL - SQL Procedural Language

Because PL/pgSQL saves execution plans in this way, queries that appear directly in a PL/pgSQL
function must refer to the same tables and fields on every execution; that is, you cannot use a parameter
as the name of a table or field in a query. To get around this restriction, you can construct dynamic
queries using the PL/pgSQL EXECUTE statement --- at the price of constructing a new query plan
on every execution.

Except for input/output conversion and calculation functions for user defined types, anything that can
be defined in C language functions can also be done with PL/pgSQL. It is possible to create complex
conditional computation functions and later use them to define operators or use them in functional
indexes.

23.1.1. Advantages of Using PL/pgSQL

• Better performance (seeSection 23.1.1.1)

• SQL support (seeSection 23.1.1.2)

• Portability (seeSection 23.1.1.3)

23.1.1.1. Better Performance

SQL is the language PostgreSQL (and most other Relational Databases) use as query language. It’s
portable and easy to learn. But every SQL statement must be executed individually by the database
server.

That means that your client application must send each query to the database server, wait for it to
process it, receive the results, do some computation, then send other queries to the server. All this in-
curs inter-process communication and may also incur network overhead if your client is on a different
machine than the database server.

With PL/pgSQL you can group a block of computation and a series of queriesinside the database
server, thus having the power of a procedural language and the ease of use of SQL, but saving lots of
time because you don’t have the whole client/server communication overhead. This can make for a
considerable performance increase.

23.1.1.2. SQL Support

PL/pgSQL adds the power of a procedural language to the flexibility and ease of SQL. With
PL/pgSQL you can use all the data types, columns, operators and functions of SQL.

23.1.1.3. Portability

Because PL/pgSQL functions run inside PostgreSQL, these functions will run on any platform where
PostgreSQL runs. Thus you can reuse code and have less development costs.

23.1.2. Developing in PL/pgSQL

Developing in PL/pgSQL is pretty straight forward, especially if you have developed in other database
procedural languages, such as Oracle’s PL/SQL. Two good ways of developing in PL/pgSQL are:

• Using a text editor and reloading the file withpsql

291

Chapter 23. PL/pgSQL - SQL Procedural Language

• Using PostgreSQL’s GUI Tool: PgAccess

One good way to develop in PL/pgSQL is to simply use the text editor of your choice to create your
functions, and in another console, usepsql (PostgreSQL’s interactive monitor) to load those functions.
If you are doing it this way, it is a good idea to write the function usingCREATE OR REPLACE
FUNCTION . That way you can reload the file to update the function definition. For example:

CREATE OR REPLACE FUNCTION testfunc(INTEGER) RETURNS INTEGER AS ’
....

end;
’ LANGUAGE ’plpgsql’;

While runningpsql, you can load or reload such a function definition file with

\i filename.sql

and then immediately issue SQL commands to test the function.

Another good way to develop in PL/pgSQL is using PostgreSQL’s GUI tool: PgAccess. It does some
nice things for you, like escaping single-quotes, and making it easy to recreate and debug functions.

23.2. Structure of PL/pgSQL
PL/pgSQL is ablock structuredlanguage. The complete text of a function definition must be ablock.
A block is defined as:

[<<label >>]
[DECLARE

declarations]
BEGIN

statements
END;

Any statementin the statement section of a block can be asub-block. Sub-blocks can be used for
logical grouping or to localize variables to a small group of statements.

The variables declared in the declarations section preceding a block are initialized to their default
values every time the block is entered, not only once per function call. For example:

CREATE FUNCTION somefunc() RETURNS INTEGER AS ’
DECLARE

quantity INTEGER := 30;
BEGIN

RAISE NOTICE ”Quantity here is %”,quantity; -- Quantity here is 30
quantity := 50;
--
-- Create a sub-block
--
DECLARE

quantity INTEGER := 80;
BEGIN

RAISE NOTICE ”Quantity here is %”,quantity; -- Quantity here is 80

292

Chapter 23. PL/pgSQL - SQL Procedural Language

END;

RAISE NOTICE ”Quantity here is %”,quantity; -- Quantity here is 50

RETURN quantity;
END;
’ LANGUAGE ’plpgsql’;

It is important not to confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the
database commands for transaction control. PL/pgSQL’s BEGIN/END are only for grouping; they do
not start or end a transaction. Functions and trigger procedures are always executed within a trans-
action established by an outer query --- they cannot start or commit transactions, since PostgreSQL
does not have nested transactions.

23.2.1. Lexical Details

Each statement and declaration within a block is terminated by a semicolon.

All keywords and identifiers can be written in mixed upper- and lower-case. Identifiers are implicitly
converted to lower-case unless double-quoted.

There are two types of comments in PL/pgSQL. A double dash-- starts a comment that extends to
the end of the line. A/* starts a block comment that extends to the next occurrence of*/ . Block
comments cannot be nested, but double dash comments can be enclosed into a block comment and a
double dash can hide the block comment delimiters/* and*/ .

23.3. Declarations
All variables, rows and records used in a block must be declared in the declarations section of the
block. (The only exception is that the loop variable of a FOR loop iterating over a range of integer
values is automatically declared as an integer variable.)

PL/pgSQL variables can have any SQL data type, such asINTEGER, VARCHARandCHAR.

Here are some examples of variable declarations:

user_id INTEGER;
quantity NUMERIC(5);
url VARCHAR;

The general syntax of a variable declaration is:

name [CONSTANT] type [NOT NULL] [{ DEFAULT | := } expression];

The DEFAULT clause, if given, specifies the initial value assigned to the variable when the block is
entered. If the DEFAULT clause is not given then the variable is initialized to the SQL NULL value.

The CONSTANT option prevents the variable from being assigned to, so that its value remains con-
stant for the duration of the block. If NOT NULL is specified, an assignment of a NULL value results
in a runtime error. All variables declared as NOT NULL must have a non-NULL default value speci-
fied.

293

Chapter 23. PL/pgSQL - SQL Procedural Language

The default value is evaluated every time the block is entered. So, for example, assigning ’now’ to a
variable of typetimestamp causes the variable to have the time of the current function call, not when
the function was precompiled.

Examples:

quantity INTEGER DEFAULT 32;
url varchar := ”http://mysite.com”;
user_id CONSTANT INTEGER := 10;

23.3.1. Aliases for Function Parameters

name ALIAS FOR $n ;

Parameters passed to functions are named with the identifiers$1, $2, etc. Optionally, aliases can be
declared for$n parameter names for increased readability. Either the alias or the numeric identifier
can then be used to refer to the parameter value. Some examples:

CREATE FUNCTION sales_tax(REAL) RETURNS REAL AS ’
DECLARE

subtotal ALIAS FOR $1;
BEGIN

return subtotal * 0.06;
END;
’ LANGUAGE ’plpgsql’;

CREATE FUNCTION instr(VARCHAR,INTEGER) RETURNS INTEGER AS ’
DECLARE

v_string ALIAS FOR $1;
index ALIAS FOR $2;

BEGIN
-- Some computations here

END;
’ LANGUAGE ’plpgsql’;

23.3.2. Rowtypes

name tablename %ROWTYPE;

A variable of a composite type is called arow variable (orrowtypevariable). Such a variable can
hold a whole row of a SELECT or FOR query result, so long as that query’s column set matches the
declared type of the variable. The individual fields of the row value are accessed using the usual dot
notation, for examplerowvar.field .

Presently, a row variable can only be declared using the%ROWTYPEnotation; although one might ex-
pect a bare table name to work as a type declaration, it won’t be accepted within PL/pgSQL functions.

294

Chapter 23. PL/pgSQL - SQL Procedural Language

Parameters to a function can be composite types (complete table rows). In that case, the corresponding
identifier $n will be a row variable, and fields can be selected from it, for example$1.user_id .

Only the user-defined attributes of a table row are accessible in a rowtype variable, not OID or other
system attributes (because the row could be from a view). The fields of the rowtype inherit the table’s
field size or precision for data types such aschar(n) .

23.3.3. Records

name RECORD;

Record variables are similar to rowtype variables, but they have no predefined structure. They take
on the actual row structure of the row they are assigned during a SELECT or FOR command. The
substructure of a record variable can change each time it is assigned to. A consequence of this is that
until a record variable is first assigned to,it has nosubstructure, and any attempt to access a field in it
will draw a runtime error.

Note thatRECORDis not a true datatype, only a placeholder. Thus, for example, one cannot declare a
function returningRECORD.

23.3.4. Attributes

Using the%TYPEand %ROWTYPEattributes, you can declare variables with the same data type or
structure as another database item (e.g: a table field).

variable %TYPE

%TYPEprovides the data type of a variable or database column. You can use this to declare vari-
ables that will hold database values. For example, let’s say you have a column nameduser_id

in yourusers table. To declare a variable with the same data type asusers .user_id you write:

user_id users.user_id%TYPE;

By using%TYPEyou don’t need to know the data type of the structure you are referencing, and
most important, if the data type of the referenced item changes in the future (e.g: you change
your table definition of user_id from INTEGER to REAL), you may not need to change your
function definition.

table %ROWTYPE

%ROWTYPEprovides the composite data type corresponding to a whole row of the specified table.
table must be an existing table or view name of the database.

DECLARE
users_rec users%ROWTYPE;
user_id users.user_id%TYPE;

BEGIN
user_id := users_rec.user_id;
...

CREATE FUNCTION does_view_exist(INTEGER) RETURNS bool AS ’
DECLARE

key ALIAS FOR $1;
table_data cs_materialized_views%ROWTYPE;

295

Chapter 23. PL/pgSQL - SQL Procedural Language

BEGIN
SELECT INTO table_data * FROM cs_materialized_views

WHERE sort_key=key;

IF NOT FOUND THEN
RETURN false;

END IF;
RETURN true;

END;
’ LANGUAGE ’plpgsql’;

23.3.5. RENAME

RENAMEoldname TO newname;

Using the RENAME declaration you can change the name of a variable, record or row. This is pri-
marily useful if NEW or OLD should be referenced by another name inside a trigger procedure. See
also ALIAS.

Examples:

RENAME id TO user_id;
RENAME this_var TO that_var;

Note: RENAME appears to be broken as of PostgreSQL 7.2. Fixing this is of low priority, since
ALIAS covers most of the practical uses of RENAME.

23.4. Expressions
All expressions used in PL/pgSQL statements are processed using the server’s regular SQL executor.
Expressions that appear to contain constants may in fact require run-time evaluation (e.g.’now’ for
the timestamp type) so it is impossible for the PL/pgSQL parser to identify real constant values
other than the NULL keyword. All expressions are evaluated internally by executing a query

SELECT expression

using the SPI manager. In the expression, occurrences of PL/pgSQL variable identifiers are replaced
by parameters and the actual values from the variables are passed to the executor in the parameter
array. This allows the query plan for the SELECT to be prepared just once and then re-used for
subsequent evaluations.

The evaluation done by the PostgreSQL main parser has some side effects on the interpretation of
constant values. In detail there is a difference between what these two functions do:

CREATE FUNCTION logfunc1 (TEXT) RETURNS TIMESTAMP AS ’
DECLARE

logtxt ALIAS FOR $1;
BEGIN

296

Chapter 23. PL/pgSQL - SQL Procedural Language

INSERT INTO logtable VALUES (logtxt, ”now”);
RETURN ”now”;

END;
’ LANGUAGE ’plpgsql’;

and

CREATE FUNCTION logfunc2 (TEXT) RETURNS TIMESTAMP AS ’
DECLARE

logtxt ALIAS FOR $1;
curtime timestamp;

BEGIN
curtime := ”now”;
INSERT INTO logtable VALUES (logtxt, curtime);
RETURN curtime;

END;
’ LANGUAGE ’plpgsql’;

In the case oflogfunc1() , the PostgreSQL main parser knows when preparing the plan for the IN-
SERT, that the string’now’ should be interpreted astimestamp because the target field oflogtable

is of that type. Thus, it will make a constant from it at this time and this constant value is then used
in all invocations oflogfunc1() during the lifetime of the backend. Needless to say that this isn’t
what the programmer wanted.

In the case oflogfunc2() , the PostgreSQL main parser does not know what type’now’ should
become and therefore it returns a data value of typetext containing the string’now’ . During the
ensuing assignment to the local variablecurtime , the PL/pgSQL interpreter casts this string to the
timestamp type by calling thetext_out() and timestamp_in() functions for the conversion.
So, the computed timestamp is updated on each execution as the programmer expects.

The mutable nature of record variables presents a problem in this connection. When fields of a record
variable are used in expressions or statements, the data types of the fields must not change between
calls of one and the same expression, since the expression will be planned using the datatype that
is present when the expression is first reached. Keep this in mind when writing trigger procedures
that handle events for more than one table. (EXECUTE can be used to get around this problem when
necessary.)

23.5. Basic Statements
In this section and the following ones, we describe all the statement types that are explicitly under-
stood by PL/pgSQL. Anything not recognized as one of these statement types is presumed to be an
SQL query, and is sent to the main database engine to execute (after substitution for any PL/pgSQL
variables used in the statement). Thus, for example, SQLINSERT, UPDATE, andDELETE com-
mands may be considered to be statements of PL/pgSQL. But they are not specifically listed here.

23.5.1. Assignment

An assignment of a value to a variable or row/record field is written as:

identifier := expression ;

As explained above, the expression in such a statement is evaluated by means of an SQLSELECT
command sent to the main database engine. The expression must yield a single value.

297

Chapter 23. PL/pgSQL - SQL Procedural Language

If the expression’s result data type doesn’t match the variable’s data type, or the variable has a specific
size/precision (as forchar(20)), the result value will be implicitly converted by the PL/pgSQL
interpreter using the result type’s output-function and the variable type’s input-function. Note that
this could potentially result in runtime errors generated by the input function, if the string form of the
result value is not acceptable to the input function.

Examples:

user_id := 20;
tax := subtotal * 0.06;

23.5.2. SELECT INTO

The result of a SELECT command yielding multiple columns (but only one row) can be assigned to
a record variable, rowtype variable, or list of scalar variables. This is done by:

SELECT INTO target expressions FROM ...;

wheretarget can be a record variable, a row variable, or a comma-separated list of simple variables
and record/row fields. Note that this is quite different from PostgreSQL’s normal interpretation of
SELECT INTO, which is that the INTO target is a newly created table. (If you want to create a
table from a SELECT result inside a PL/pgSQL function, use the syntaxCREATE TABLE ... AS
SELECT.)

If a row or a variable list is used as target, the selected values must exactly match the structure of the
target(s), or a runtime error occurs. When a record variable is the target, it automatically configures
itself to the rowtype of the query result columns.

Except for the INTO clause, the SELECT statement is the same as a normal SQL SELECT query and
can use the full power of SELECT.

If the SELECT query returns zero rows, NULLs are assigned to the target(s). If the SELECT query
returns multiple rows, the first row is assigned to the target(s) and the rest are discarded. (Note that
“the first row” is not well-defined unless you’ve used ORDER BY.)

At present, the INTO clause can appear almost anywhere in the SELECT query, but it is recommended
to place it immediately after the SELECT keyword as depicted above. Future versions of PL/pgSQL
may be less forgiving about placement of the INTO clause.

There is a special variable named FOUND of typeboolean that can be used immediately after a
SELECT INTO to check if an assignment had success (that is, at least one row was returned by the
SELECT). For example,

SELECT INTO myrec * FROM EMP WHERE empname = myname;
IF NOT FOUND THEN

RAISE EXCEPTION ”employee % not found”, myname;
END IF;

Alternatively, you can use the IS NULL (or ISNULL) conditional to test for NULLity of a
RECORD/ROW result. Note that there is no way to tell whether any additional rows might have
been discarded.

DECLARE
users_rec RECORD;
full_name varchar;

298

Chapter 23. PL/pgSQL - SQL Procedural Language

BEGIN
SELECT INTO users_rec * FROM users WHERE user_id=3;

IF users_rec.homepage IS NULL THEN
-- user entered no homepage, return "http://"

RETURN ”http://”;
END IF;

END;

23.5.3. Executing an expression or query with no result

Sometimes one wishes to evaluate an expression or query but discard the result (typically because one
is calling a function that has useful side-effects but no useful result value). To do this in PL/pgSQL,
use the PERFORM statement:

PERFORMquery ;

This executes aSELECTquery and discards the result. PL/pgSQL variables are substituted into the
query as usual.

Note: One might expect that SELECT with no INTO clause would accomplish this result, but at
present the only accepted way to do it is PERFORM.

An example:

PERFORM create_mv(”cs_session_page_requests_mv”,”
SELECT session_id, page_id, count(*) AS n_hits,

sum(dwell_time) AS dwell_time, count(dwell_time) AS dwell_count
FROM cs_fact_table
GROUP BY session_id, page_id ”);

23.5.4. Executing dynamic queries

Oftentimes you will want to generate dynamic queries inside your PL/pgSQL functions, that
is, queries that will involve different tables or different datatypes each time they are executed.
PL/pgSQL’s normal attempts to cache plans for queries will not work in such scenarios. To handle
this sort of problem, the EXECUTE statement is provided:

EXECUTEquery-string ;

wherequery-string is an expression yielding a string (of typetext) containing thequery to
be executed. This string is fed literally to the SQL engine.

Note in particular that no substitution of PL/pgSQL variables is done on the query string. The values
of variables must be inserted into the query string as it is constructed.

When working with dynamic queries you will have to face escaping of single quotes in PL/pgSQL.
Please refer to the table inSection 23.11for a detailed explanation that will save you some effort.

299

Chapter 23. PL/pgSQL - SQL Procedural Language

Unlike all other queries in PL/pgSQL, aquery run by an EXECUTE statement is not prepared and
saved just once during the life of the server. Instead, thequery is prepared each time the statement
is run. Thequery-string can be dynamically created within the procedure to perform actions on
variable tables and fields.

The results from SELECT queries are discarded by EXECUTE, and SELECT INTO is not currently
supported within EXECUTE. So, the only way to extract a result from a dynamically-created SELECT
is to use the FOR-IN-EXECUTE form described later.

An example:

EXECUTE ”UPDATE tbl SET ”
|| quote_ident(fieldname)
|| ” = ”
|| quote_literal(newvalue)
|| ” WHERE ...”;

This example shows use of the functionsquote_ident (TEXT) andquote_literal (TEXT). Vari-
ables containing field and table identifiers should be passed to functionquote_ident() . Variables
containing literal elements of the dynamic query string should be passed toquote_literal() . Both
take the appropriate steps to return the input text enclosed in single or double quotes and with any
embedded special characters properly escaped.

Here is a much larger example of a dynamic query and EXECUTE:

CREATE FUNCTION cs_update_referrer_type_proc() RETURNS INTEGER AS ’
DECLARE

referrer_keys RECORD; -- Declare a generic record to be used in a FOR
a_output varchar(4000);

BEGIN
a_output := ”CREATE FUNCTION cs_find_referrer_type(varchar,varchar,varchar)

RETURNS VARCHAR AS ””
DECLARE

v_host ALIAS FOR $1;
v_domain ALIAS FOR $2;
v_url ALIAS FOR $3;

BEGIN ”;

--
-- Notice how we scan through the results of a query in a FOR loop
-- using the FOR <record > construct.
--

FOR referrer_keys IN SELECT * FROM cs_referrer_keys ORDER BY try_order LOOP
a_output := a_output || ” IF v_” || referrer_keys.kind || ” LIKE ”””””

|| referrer_keys.key_string || ””””” THEN RETURN ”””
|| referrer_keys.referrer_type || ”””; END IF;”;

END LOOP;

a_output := a_output || ” RETURN NULL; END; ”” LANGUAGE ””plpgsql””;”;

-- This works because we are not substituting any variables
-- Otherwise it would fail. Look at PERFORM for another way to run functions

EXECUTE a_output;
END;

300

Chapter 23. PL/pgSQL - SQL Procedural Language

’ LANGUAGE ’plpgsql’;

23.5.5. Obtaining result status

GET DIAGNOSTICSvariable = item [, ...] ;

This command allows retrieval of system status indicators. Eachitem is a keyword identifying a
state value to be assigned to the specified variable (which should be of the right data type to receive
it). The currently available status items areROW_COUNT, the number of rows processed by the last
SQL query sent down to the SQL engine; andRESULT_OID, the Oid of the last row inserted by the
most recent SQL query. Note thatRESULT_OIDis only useful after an INSERT query.

23.6. Control Structures
Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL’s
control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.

23.6.1. Returning from a function

RETURNexpression ;

The function terminates and the value ofexpression will be returned to the upper executor. The
expression’s result will be automatically casted into the function’s return type as described for assign-
ments.

The return value of a function cannot be left undefined. If control reaches the end of the top-level
block of the function without hitting a RETURN statement, a runtime error will occur.

23.6.2. Conditionals

IF statements let you execute commands based on certain conditions. PL/pgSQL has four forms of
IF: IF-THEN, IF-THEN-ELSE, IF-THEN-ELSE IF, and IF-THEN-ELSIF-THEN-ELSE.

23.6.2.1. IF-THEN

IF boolean-expression THEN
statements

END IF;

IF-THEN statements are the simplest form of IF. The statements between THEN and END IF will be
executed if the condition is true. Otherwise, they are skipped.

IF v_user_id <> 0 THEN
UPDATE users SET email = v_email WHERE user_id = v_user_id;

END IF;

301

Chapter 23. PL/pgSQL - SQL Procedural Language

23.6.2.2. IF-THEN-ELSE

IF boolean-expression THEN
statements

ELSE
statements

END IF;

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements
that should be executed if the condition evaluates to FALSE.

IF parentid IS NULL or parentid = ””
THEN

return fullname;
ELSE

return hp_true_filename(parentid) || ”/” || fullname;
END IF;

IF v_count > 0 THEN
INSERT INTO users_count(count) VALUES(v_count);
return ”t”;

ELSE
return ”f”;

END IF;

23.6.2.3. IF-THEN-ELSE IF

IF statements can be nested, as in the following example:

IF demo_row.sex = ”m” THEN
pretty_sex := ”man”;

ELSE
IF demo_row.sex = ”f” THEN

pretty_sex := ”woman”;
END IF;

END IF;

When you use this form, you are actually nesting an IF statement inside the ELSE part of an outer IF
statement. Thus you need one END IF statement for each nested IF and one for the parent IF-ELSE.
This is workable but grows tedious when there are many alternatives to be checked.

23.6.2.4. IF-THEN-ELSIF-ELSE

IF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements
...]]

302

Chapter 23. PL/pgSQL - SQL Procedural Language

[ELSE
statements]

END IF;

IF-THEN-ELSIF-ELSE provides a more convenient method of checking many alternatives in one
statement. Formally it is equivalent to nested IF-THEN-ELSE-IF-THEN commands, but only one
END IF is needed.

Here is an example:

IF number = 0 THEN
result := ”zero”;

ELSIF number > 0 THEN
result := ”positive”;

ELSIF number < 0 THEN
result := ”negative”;

ELSE
-- hmm, the only other possibility is that number IS NULL
result := ”NULL”;

END IF;

The final ELSE section is optional.

23.6.3. Simple Loops

With the LOOP, EXIT, WHILE and FOR statements, you can arrange for your PL/pgSQL function to
repeat a series of commands.

23.6.3.1. LOOP

[<<label >>]
LOOP

statements
END LOOP;

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT or
RETURN statement. The optional label can be used by EXIT statements in nested loops to specify
which level of nesting should be terminated.

23.6.3.2. EXIT

EXIT [label] [WHEN expression];

If no label is given, the innermost loop is terminated and the statement following END LOOP is
executed next. Iflabel is given, it must be the label of the current or some outer level of nested loop
or block. Then the named loop or block is terminated and control continues with the statement after
the loop’s/block’s corresponding END.

If WHEN is present, loop exit occurs only if the specified condition is true, otherwise control passes
to the statement after EXIT.

Examples:

303

Chapter 23. PL/pgSQL - SQL Procedural Language

LOOP
-- some computations
IF count > 0 THEN

EXIT; -- exit loop
END IF;

END LOOP;

LOOP
-- some computations
EXIT WHEN count > 0;

END LOOP;

BEGIN
-- some computations
IF stocks > 100000 THEN

EXIT; -- illegal. Can’t use EXIT outside of a LOOP
END IF;

END;

23.6.3.3. WHILE

[<<label >>]
WHILE expression LOOP

statements
END LOOP;

The WHILE statement repeats a sequence of statements so long as the condition expression evaluates
to true. The condition is checked just before each entry to the loop body.

For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
-- some computations here

END LOOP;

WHILE NOT boolean_expression LOOP
-- some computations here

END LOOP;

23.6.3.4. FOR (integer for-loop)

[<<label >>]
FOR name IN [REVERSE] expression .. expression LOOP

statements
END LOOP;

This form of FOR creates a loop that iterates over a range of integer values. The variablename is
automatically defined as type integer and exists only inside the loop. The two expressions giving the
lower and upper bound of the range are evaluated once when entering the loop. The iteration step is
normally 1, but is -1 when REVERSE is specified.

304

Chapter 23. PL/pgSQL - SQL Procedural Language

Some examples of integer FOR loops:

FOR i IN 1..10 LOOP
-- some expressions here

RAISE NOTICE ”i is %”,i;
END LOOP;

FOR i IN REVERSE 10..1 LOOP
-- some expressions here

END LOOP;

23.6.4. Looping Through Query Results

Using a different type of FOR loop, you can iterate through the results of a query and manipulate that
data accordingly. The syntax is:

[<<label >>]
FOR record | row IN select_query LOOP

statements
END LOOP;

The record or row variable is successively assigned all the rows resulting from the SELECT query
and the loop body is executed for each row. Here is an example:

CREATE FUNCTION cs_refresh_mviews () RETURNS INTEGER AS ’
DECLARE

mviews RECORD;
BEGIN

PERFORM cs_log(”Refreshing materialized views...”);

FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY sort_key LOOP

-- Now "mviews" has one record from cs_materialized_views

PERFORM cs_log(”Refreshing materialized view ” || quote_ident(mviews.mv_name) || ”...”);
EXECUTE ”TRUNCATE TABLE ” || quote_ident(mviews.mv_name);
EXECUTE ”INSERT INTO ” || quote_ident(mviews.mv_name) || ” ” || mviews.mv_query;

END LOOP;

PERFORM cs_log(”Done refreshing materialized views.”);
RETURN 1;

end;
’ LANGUAGE ’plpgsql’;

If the loop is terminated by an EXIT statement, the last assigned row value is still accessible after the
loop.

The FOR-IN-EXECUTE statement is another way to iterate over records:

[<<label >>]
FOR record | row IN EXECUTE text_expression LOOP

statements
END LOOP;

305

Chapter 23. PL/pgSQL - SQL Procedural Language

This is like the previous form, except that the source SELECT statement is specified as a string expres-
sion, which is evaluated and re-planned on each entry to the FOR loop. This allows the programmer
to choose the speed of a pre-planned query or the flexibility of a dynamic query, just as with a plain
EXECUTE statement.

Note: The PL/pgSQL parser presently distinguishes the two kinds of FOR loops (integer or record-
returning) by checking whether the target variable mentioned just after FOR has been declared as
a record/row variable. If not, it’s presumed to be an integer FOR loop. This can cause rather un-
intuitive error messages when the true problem is, say, that one has misspelled the FOR variable
name.

23.7. Cursors
Rather than executing a whole query at once, it is possible to set up acursor that encapsulates the
query, and then read the query result a few rows at a time. One reason for doing this is to avoid
memory overrun when the result contains a large number of rows. (However, PL/pgSQL users don’t
normally need to worry about that, since FOR loops automatically use a cursor internally to avoid
memory problems.) A more interesting possibility is that a function can return a reference to a cursor
that it has set up, allowing the caller to read the rows. This provides one way of returning a rowset
from a function.

23.7.1. Declaring Cursor Variables

All access to cursors in PL/pgSQL goes through cursor variables, which are always of the special
datatyperefcursor . One way to create a cursor variable is just to declare it as a variable of type
refcursor . Another way is to use the cursor declaration syntax, which in general is:

name CURSOR [(arguments)] FOR select_query ;

(FORmay be replaced byIS for Oracle compatibility.)arguments , if any, are a comma-separated
list of name datatype pairs that define names to be replaced by parameter values in the given query.
The actual values to substitute for these names will be specified later, when the cursor is opened.

Some examples:

DECLARE
curs1 refcursor;
curs2 CURSOR FOR SELECT * from tenk1;
curs3 CURSOR (key int) IS SELECT * from tenk1 where unique1 = key;

All three of these variables have the datatyperefcursor , but the first may be used with any query,
while the second has a fully specified query alreadybound to it, and the last has a parameterized
query bound to it. (key will be replaced by an integer parameter value when the cursor is opened.)
The variablecurs1 is said to beunboundsince it is not bound to any particular query.

23.7.2. Opening Cursors

Before a cursor can be used to retrieve rows, it must beopened. (This is the equivalent action to the
SQL commandDECLARE CURSOR.) PL/pgSQL has four forms of the OPEN statement, two of
which are for use with unbound cursor variables and the other two for use with bound cursor variables.

306

Chapter 23. PL/pgSQL - SQL Procedural Language

23.7.2.1. OPEN FOR SELECT

OPEN unbound-cursor FOR SELECT ...;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open al-
ready, and it must have been declared as an unbound cursor (that is, as a simplerefcursor variable).
The SELECT query is treated in the same way as other SELECTs in PL/pgSQL: PL/pgSQL variable
names are substituted for, and the query plan is cached for possible re-use.

OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;

23.7.2.2. OPEN FOR EXECUTE

OPEN unbound-cursor FOR EXECUTEquery-string ;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open
already, and it must have been declared as an unbound cursor (that is, as a simplerefcursor vari-
able). The query is specified as a string expression in the same way as for the EXECUTE command.
As usual, this gives flexibility for the query to vary from one run to the next.

OPEN curs1 FOR EXECUTE ”SELECT * FROM ” || quote_ident($1);

23.7.2.3. OPENing a bound cursor

OPEN bound-cursor [(argument_values)];

This form of OPEN is used to open a cursor variable whose query was bound to it when it was
declared. The cursor cannot be open already. A list of actual argument value expressions must appear
if and only if the cursor was declared to take arguments. These values will be substituted into the
query. The query plan for a bound cursor is always considered cacheable --- there is no equivalent of
EXECUTE in this case.

OPEN curs2;
OPEN curs3(42);

23.7.3. Using Cursors

Once a cursor has been opened, it can be manipulated with the statements described here.

These manipulations need not occur in the same function that opened the cursor to begin with. You
can return arefcursor value out of a function and let the caller operate on the cursor. (Internally, a
refcursor value is simply the string name of a Portal containing the active query for the cursor. This
name can be passed around, assigned to otherrefcursor variables, and so on, without disturbing
the Portal.)

307

Chapter 23. PL/pgSQL - SQL Procedural Language

All Portals are implicitly closed at end of transaction. Therefore arefcursor value is useful to
reference an open cursor only until the end of the transaction.

23.7.3.1. FETCH

FETCH cursor INTO target ;

FETCH retrieves the next row from the cursor into a target, which may be a row variable, a record
variable, or a comma-separated list of simple variables, just as for SELECT INTO. As with SELECT
INTO, the special variable FOUND may be checked to see whether a row was obtained or not.

FETCH curs1 INTO rowvar;
FETCH curs2 INTO foo,bar,baz;

23.7.3.2. CLOSE

CLOSE cursor ;

CLOSE closes the Portal underlying an open cursor. This can be used to release resources earlier than
end of transaction, or to free up the cursor variable to be opened again.

CLOSE curs1;

23.8. Errors and Messages
Use the RAISE statement to report messages and raise errors.

RAISE level ’ format ’ [, variable [...]];

Possible levels are DEBUG (write the message into the postmaster log), NOTICE (write the message
into the postmaster log and forward it to the client application) and EXCEPTION (raise an error,
aborting the transaction).

Inside the format string,%is replaced by the next optional argument’s external representation. Write
%%to emit a literal%. Note that the optional arguments must presently be simple variables, not expres-
sions, and the format must be a simple string literal.

Examples:

RAISE NOTICE ”Calling cs_create_job(%)”,v_job_id;

In this example, the value of v_job_id will replace the % in the string.

RAISE EXCEPTION ”Inexistent ID --> %”,user_id;

This will abort the transaction with the given error message.

308

Chapter 23. PL/pgSQL - SQL Procedural Language

23.8.1. Exceptions

PostgreSQL does not have a very smart exception handling model. Whenever the parser,
planner/optimizer or executor decide that a statement cannot be processed any longer, the whole
transaction gets aborted and the system jumps back into the main loop to get the next query from the
client application.

It is possible to hook into the error mechanism to notice that this happens. But currently it is im-
possible to tell what really caused the abort (input/output conversion error, floating-point error, parse
error). And it is possible that the database backend is in an inconsistent state at this point so returning
to the upper executor or issuing more commands might corrupt the whole database.

Thus, the only thing PL/pgSQL currently does when it encounters an abort during execution of a
function or trigger procedure is to write some additional NOTICE level log messages telling in which
function and where (line number and type of statement) this happened. The error always stops execu-
tion of the function.

23.9. Trigger Procedures
PL/pgSQL can be used to define trigger procedures. A trigger procedure is created with theCREATE
FUNCTION command as a function with no arguments and a return type ofOPAQUE. Note that the
function must be declared with no arguments even if it expects to receive arguments specified in
CREATE TRIGGER --- trigger arguments are passed viaTG_ARGV, as described below.

When a PL/pgSQL function is called as a trigger, several special variables are created automatically
in the top-level block. They are:

NEW

Data typeRECORD; variable holding the new database row for INSERT/UPDATE operations in
ROW level triggers.

OLD

Data typeRECORD; variable holding the old database row for UPDATE/DELETE operations in
ROW level triggers.

TG_NAME

Data typename; variable that contains the name of the trigger actually fired.

TG_WHEN

Data typetext ; a string of eitherBEFOREor AFTERdepending on the trigger’s definition.

TG_LEVEL

Data typetext ; a string of eitherROWor STATEMENTdepending on the trigger’s definition.

TG_OP

Data typetext ; a string ofINSERT, UPDATEor DELETEtelling for which operation the trigger
is fired.

TG_RELID

Data typeoid ; the object ID of the table that caused the trigger invocation.

TG_RELNAME

Data typename; the name of the table that caused the trigger invocation.

309

Chapter 23. PL/pgSQL - SQL Procedural Language

TG_NARGS

Data typeinteger ; the number of arguments given to the trigger procedure in theCREATE
TRIGGER statement.

TG_ARGV[]

Data type array oftext ; the arguments from theCREATE TRIGGER statement. The index
counts from 0 and can be given as an expression. Invalid indices (< 0 or>= tg_nargs) result in
a NULL value.

A trigger function must return either NULL or a record/row value having exactly the structure of
the table the trigger was fired for. Triggers fired BEFORE may return NULL to signal the trigger
manager to skip the rest of the operation for this row (ie, subsequent triggers are not fired, and the
INSERT/UPDATE/DELETE does not occur for this row). If a non-NULL value is returned then the
operation proceeds with that row value. Note that returning a row value different from the original
value of NEW alters the row that will be inserted or updated. It is possible to replace single values
directly in NEW and return that, or to build a complete new record/row to return.

The return value of a trigger fired AFTER is ignored; it may as well always return a NULL value. But
an AFTER trigger can still abort the operation by raising an error.

Example 23-1. A PL/pgSQL Trigger Procedure Example

This example trigger ensures that any time a row is inserted or updated in the table, the current user
name and time are stamped into the row. And it ensures that an employee’s name is given and that the
salary is a positive value.

CREATE TABLE emp (
empname text,
salary integer,
last_date timestamp,
last_user text

);

CREATE FUNCTION emp_stamp () RETURNS OPAQUE AS ’
BEGIN

-- Check that empname and salary are given
IF NEW.empname ISNULL THEN

RAISE EXCEPTION ”empname cannot be NULL value”;
END IF;
IF NEW.salary ISNULL THEN

RAISE EXCEPTION ”% cannot have NULL salary”, NEW.empname;
END IF;

-- Who works for us when she must pay for?
IF NEW.salary < 0 THEN

RAISE EXCEPTION ”% cannot have a negative salary”, NEW.empname;
END IF;

-- Remember who changed the payroll when
NEW.last_date := ”now”;
NEW.last_user := current_user;
RETURN NEW;

END;
’ LANGUAGE ’plpgsql’;

310

Chapter 23. PL/pgSQL - SQL Procedural Language

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW EXECUTE PROCEDURE emp_stamp();

23.10. Examples
Here are only a few functions to demonstrate how easy it is to write PL/pgSQL functions. For more
complex examples the programmer might look at the regression test for PL/pgSQL.

One painful detail in writing functions in PL/pgSQL is the handling of single quotes. The function’s
source text inCREATE FUNCTION must be a literal string. Single quotes inside of literal strings
must be either doubled or quoted with a backslash. We are still looking for an elegant alternative. In
the meantime, doubling the single quotes as in the examples below should be used. Any solution for
this in future versions of PostgreSQL will be forward compatible.

For a detailed explanation and examples of how to escape single quotes in different situations, please
seeSection 23.11.1.1.

Example 23-2. A Simple PL/pgSQL Function to Increment an Integer

The following two PL/pgSQL functions are identical to their counterparts from the C language func-
tion discussion. This function receives aninteger and increments it by one, returning the incre-
mented value.

CREATE FUNCTION add_one (integer) RETURNS INTEGER AS ’
BEGIN

RETURN $1 + 1;
END;

’ LANGUAGE ’plpgsql’;

Example 23-3. A Simple PL/pgSQL Function to Concatenate Text

This function receives twotext parameters and returns the result of concatenating them.

CREATE FUNCTION concat_text (TEXT, TEXT) RETURNS TEXT AS ’
BEGIN

RETURN $1 || $2;
END;

’ LANGUAGE ’plpgsql’;

Example 23-4. A PL/pgSQL Function on Composite Type

In this example, we takeEMP(a table) and aninteger as arguments to our function, which returns a
boolean . If the salary field of theEMPtable isNULL, we returnf . Otherwise we compare with that
field with theinteger passed to the function and return theboolean result of the comparison (t or
f). This is the PL/pgSQL equivalent to the example from the C functions.

CREATE FUNCTION c_overpaid (EMP, INTEGER) RETURNS BOOLEAN AS ’
DECLARE

emprec ALIAS FOR $1;
sallim ALIAS FOR $2;

BEGIN
IF emprec.salary ISNULL THEN

RETURN ”f”;

311

Chapter 23. PL/pgSQL - SQL Procedural Language

END IF;
RETURN emprec.salary > sallim;

END;
’ LANGUAGE ’plpgsql’;

23.11. Porting from Oracle PL/SQL

Author: Roberto Mello (<rmello@fslc.usu.edu >)

This section explains differences between Oracle’s PL/SQL and PostgreSQL’s PL/pgSQL languages
in the hopes of helping developers port applications from Oracle to PostgreSQL. Most of the code here
is from the ArsDigita1 Clickstream module2 that I ported to PostgreSQL when I took an internship
with OpenForce Inc.3 in the Summer of 2000.

PL/pgSQL is similar to PL/SQL in many aspects. It is a block structured, imperative language (all
variables have to be declared). PL/SQL has many more features than its PostgreSQL counterpart, but
PL/pgSQL allows for a great deal of functionality and it is being improved constantly.

23.11.1. Main Differences

Some things you should keep in mind when porting from Oracle to PostgreSQL:

• No default parameters in PostgreSQL.

• You can overload functions in PostgreSQL. This is often used to work around the lack of default
parameters.

• Assignments, loops and conditionals are similar.

• No need for cursors in PostgreSQL, just put the query in the FOR statement (see example below)

• In PostgreSQL youneedto escape single quotes. SeeSection 23.11.1.1.

23.11.1.1. Quote Me on That: Escaping Single Quotes

In PostgreSQL you need to escape single quotes inside your function definition. This can lead to quite
amusing code at times, especially if you are creating a function that generates other function(s), as in
Example 23-6. One thing to keep in mind when escaping lots of single quotes is that, except for the
beginning/ending quotes, all the others will come in even quantity.

Table 23-1gives the scoop. (You’ll love this little chart.)

Table 23-1. Single Quotes Escaping Chart

No. of Quotes Usage Example Result

1. http://www.arsdigita.com
2. http://www.arsdigita.com/asj/clickstream
3. http://www.openforce.net

312

Chapter 23. PL/pgSQL - SQL Procedural Language

No. of Quotes Usage Example Result

1 To begin/terminate
function bodies

CREATE FUNC-

TION foo() RE-

TURNS INTE-

GER AS ’...’

LAN-

GUAGE ’plpgsql’;

as is

2 In assignments,
SELECTs, to delimit
strings, etc.

a_output := ”Blah”;

SE-

LECT * FROM users WHERE f_name=”foobar”;

SELECT * FROM

users WHERE

f_name=’foobar’;

4 When you need two
single quotes in your
resulting string without
terminating that string.

a_output := a_output || ” AND name LIKE ””foo-

bar”” AND ...”

AND name LIKE

’foobar’ AND ...

6 When you want double
quotes in your resulting
stringand terminate
that string.

a_output := a_output || ” AND name LIKE ””foo-

bar”””

AND name LIKE

’foobar’

10 When you want two
single quotes in the
resulting string (which
accounts for 8 quotes)
and terminate that
string (2 more). You
will probably only need
that if you were using a
function to generate
other functions (like in
Example 23-6).

a_output := a_output || ” if v_” || re-

fer-

rer_keys.kind || ” like ””””” || re-

fer-

rer_keys.key_string || ””””” then re-

turn ””” || re-

fer-

rer_keys.referrer_type || ”””; end if;”;

if v_<...> like

”<...>” then

return ”<...>”;

end if;

23.11.2. Porting Functions

Example 23-5. A Simple Function

Here is an Oracle function:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name IN varchar, v_version IN var-
char)
RETURN varchar IS
BEGIN

IF v_version IS NULL THEN
RETURN v_name;

END IF;
RETURN v_name || ’/’ || v_version;

END;
/
SHOW ERRORS;

313

Chapter 23. PL/pgSQL - SQL Procedural Language

Let’s go through this function and see the differences to PL/pgSQL:

• PostgreSQL does not have named parameters. You have to explicitly alias them inside your func-
tion.

• Oracle can haveIN , OUT, and INOUT parameters passed to functions. TheINOUT, for example,
means that the parameter will receive a value and return another. PostgreSQL only has “IN” pa-
rameters and functions can return only a single value.

• The RETURNkey word in the function prototype (not the function body) becomesRETURNSin
PostgreSQL.

• On PostgreSQL functions are created using single quotes as delimiters, so you have to escape single
quotes inside your functions (which can be quite annoying at times; seeSection 23.11.1.1).

• The /show errors command does not exist in PostgreSQL.

So let’s see how this function would look when ported to PostgreSQL:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(VARCHAR, VARCHAR)
RETURNS VARCHAR AS ’
DECLARE

v_name ALIAS FOR $1;
v_version ALIAS FOR $2;

BEGIN
IF v_version IS NULL THEN

return v_name;
END IF;
RETURN v_name || ”/” || v_version;

END;
’ LANGUAGE ’plpgsql’;

Example 23-6. A Function that Creates Another Function

The following procedure grabs rows from aSELECTstatement and builds a large function with the
results inIF statements, for the sake of efficiency. Notice particularly the differences in cursors,FOR

loops, and the need to escape single quotes in PostgreSQL.

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
CURSOR referrer_keys IS

SELECT * FROM cs_referrer_keys
ORDER BY try_order;

a_output VARCHAR(4000);
BEGIN

a_output := ’CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host IN VAR-
CHAR, v_domain IN VARCHAR,
v_url IN VARCHAR) RETURN VARCHAR IS BEGIN’;

FOR referrer_key IN referrer_keys LOOP
a_output := a_output || ’ IF v_’ || referrer_key.kind || ’ LIKE ”’ ||

referrer_key.key_string || ”’ THEN RETURN ”’ || referrer_key.referrer_type ||
”’; END IF;’;

END LOOP;

a_output := a_output || ’ RETURN NULL; END;’;

314

Chapter 23. PL/pgSQL - SQL Procedural Language

EXECUTE IMMEDIATE a_output;
END;
/
show errors

Here is how this function would end up in PostgreSQL:

CREATE FUNCTION cs_update_referrer_type_proc() RETURNS INTEGER AS ’
DECLARE

referrer_keys RECORD; -- Declare a generic record to be used in a FOR
a_output varchar(4000);

BEGIN
a_output := ”CREATE FUNCTION cs_find_referrer_type(VARCHAR,VARCHAR,VARCHAR)

RETURNS VARCHAR AS ””
DECLARE

v_host ALIAS FOR $1;
v_domain ALIAS FOR $2;
v_url ALIAS FOR $3;

BEGIN ”;

--
-- Notice how we scan through the results of a query in a FOR loop
-- using the FOR <record > construct.
--

FOR referrer_keys IN SELECT * FROM cs_referrer_keys ORDER BY try_order LOOP
a_output := a_output || ” IF v_” || referrer_keys.kind || ” LIKE ”””””

|| referrer_keys.key_string || ””””” THEN RETURN ”””
|| referrer_keys.referrer_type || ”””; END IF;”;

END LOOP;

a_output := a_output || ” RETURN NULL; END; ”” LANGUAGE ””plpgsql””;”;

-- This works because we are not substituting any variables
-- Otherwise it would fail. Look at PERFORM for another way to run functions

EXECUTE a_output;
END;
’ LANGUAGE ’plpgsql’;

Example 23-7. A Procedure with a lot of String Manipulation and OUT Parameters

The following Oracle PL/SQL procedure is used to parse a URL and return several elements (host,
path and query). It is an procedure because in PL/pgSQL functions only one value can be returned
(seeSection 23.11.3). In PostgreSQL, one way to work around this is to split the procedure in three
different functions: one to return the host, another for the path and another for the query.

CREATE OR REPLACE PROCEDURE cs_parse_url(
v_url IN VARCHAR,
v_host OUT VARCHAR, -- This will be passed back
v_path OUT VARCHAR, -- This one too
v_query OUT VARCHAR) -- And this one

is
a_pos1 INTEGER;
a_pos2 INTEGER;

begin

315

Chapter 23. PL/pgSQL - SQL Procedural Language

v_host := NULL;
v_path := NULL;
v_query := NULL;
a_pos1 := instr(v_url, ’//’); -- PostgreSQL doesn’t have an instr function

IF a_pos1 = 0 THEN
RETURN;

END IF;
a_pos2 := instr(v_url, ’/’, a_pos1 + 2);
IF a_pos2 = 0 THEN

v_host := substr(v_url, a_pos1 + 2);
v_path := ’/’;
RETURN;

END IF;

v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
a_pos1 := instr(v_url, ’?’, a_pos2 + 1);

IF a_pos1 = 0 THEN
v_path := substr(v_url, a_pos2);
RETURN;

END IF;

v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
v_query := substr(v_url, a_pos1 + 1);

END;
/
show errors;

Here is how this procedure could be translated for PostgreSQL:
CREATE OR REPLACE FUNCTION cs_parse_url_host(VARCHAR) RETURNS VARCHAR AS ’
DECLARE

v_url ALIAS FOR $1;
v_host VARCHAR;
v_path VARCHAR;
a_pos1 INTEGER;
a_pos2 INTEGER;
a_pos3 INTEGER;

BEGIN
v_host := NULL;
a_pos1 := instr(v_url,”//”);

IF a_pos1 = 0 THEN
RETURN ””; -- Return a blank

END IF;

a_pos2 := instr(v_url,”/”,a_pos1 + 2);
IF a_pos2 = 0 THEN

v_host := substr(v_url, a_pos1 + 2);
v_path := ”/”;
RETURN v_host;

END IF;

v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
RETURN v_host;

END;
’ LANGUAGE ’plpgsql’;

316

Chapter 23. PL/pgSQL - SQL Procedural Language

Note: PostgreSQL does not have an instr function, so you can work around it using a combina-
tion of other functions. I got tired of doing this and created my own instr functions that behave
exactly like Oracle’s (it makes life easier). See the Section 23.11.6 for the code.

23.11.3. Procedures

Oracle procedures give a little more flexibility to the developer because nothing needs to be explicitly
returned, but it can be through the use ofINOUT or OUTparameters.

An example:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
a_running_job_count INTEGER;
PRAGMA AUTONOMOUS_TRANSACTION;➊

BEGIN
LOCK TABLE cs_jobs IN EXCLUSIVE MODE;➋

SELECT count(*) INTO a_running_job_count
FROM cs_jobs
WHERE end_stamp IS NULL;

IF a_running_job_count > 0 THEN
COMMIT; -- free lock ➌

raise_application_error(-20000, ’Unable to create a new job: a job is cur-
rently running.’);

END IF;

DELETE FROM cs_active_job;
INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

BEGIN
INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, sysdate);
EXCEPTION WHEN dup_val_on_index THEN NULL; -- don’t worry if it al-

ready exists ➍

END;
COMMIT;

END;
/
show errors

Procedures like this can be easily converted into PostgreSQL functions returning anINTEGER. This
procedure in particular is interesting because it can teach us some things:

➊ There is nopragma statement in PostgreSQL.

➋ If you do aLOCK TABLEin PL/pgSQL, the lock will not be released until the calling transaction
is finished.

➌ You also cannot have transactions in PL/pgSQL procedures. The entire function (and other func-
tions called from therein) is executed in a transaction and PostgreSQL rolls back the results if
something goes wrong. Therefore only oneBEGIN statement is allowed.

317

Chapter 23. PL/pgSQL - SQL Procedural Language

➍ The exception when would have to be replaced by anIF statement.

So let’s see one of the ways we could port this procedure to PL/pgSQL:

CREATE OR REPLACE FUNCTION cs_create_job(INTEGER) RETURNS INTEGER AS ’
DECLARE

v_job_id ALIAS FOR $1;
a_running_job_count INTEGER;
a_num INTEGER;
-- PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
LOCK TABLE cs_jobs IN EXCLUSIVE MODE;
SELECT count(*) INTO a_running_job_count
FROM cs_jobs
WHERE end_stamp IS NULL;

IF a_running_job_count > 0
THEN

-- COMMIT; -- free lock
RAISE EXCEPTION ”Unable to create a new job: a job is currently running.”;

END IF;

DELETE FROM cs_active_job;
INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

SELECT count(*) into a_num
FROM cs_jobs
WHERE job_id=v_job_id;
IF NOT FOUND THEN -- If nothing was returned in the last query

-- This job is not in the table so lets insert it.
INSERT INTO cs_jobs(job_id, start_stamp) VALUES (v_job_id, sysdate());
RETURN 1;

ELSE
RAISE NOTICE ”Job already running.”; ➊

END IF;

RETURN 0;
END;
’ LANGUAGE ’plpgsql’;

➊ Notice how you can raise notices (or errors) in PL/pgSQL.

23.11.4. Packages

Note: I haven’t done much with packages myself, so if there are mistakes here, please let me
know.

318

Chapter 23. PL/pgSQL - SQL Procedural Language

Packages are a way Oracle gives you to encapsulate PL/SQL statements and functions into one entity,
like Java classes, where you define methods and objects. You can access these objects/methods with a
“ . ” (dot). Here is an example of an Oracle package from ACS 4 (the ArsDigita Community System4):

CREATE OR REPLACE PACKAGE BODY acs
AS

FUNCTION add_user (
user_id IN users.user_id%TYPE DEFAULT NULL,
object_type IN acs_objects.object_type%TYPE DEFAULT ’user’,
creation_date IN acs_objects.creation_date%TYPE DEFAULT sysdate,
creation_user IN acs_objects.creation_user%TYPE DEFAULT NULL,
creation_ip IN acs_objects.creation_ip%TYPE DEFAULT NULL,

...
) RETURN users.user_id%TYPE
IS

v_user_id users.user_id%TYPE;
v_rel_id membership_rels.rel_id%TYPE;

BEGIN
v_user_id := acs_user.new (user_id, object_type, creation_date,

creation_user, creation_ip, email, ...
RETURN v_user_id;

END;
END acs;
/
show errors

We port this to PostgreSQL by creating the different objects of the Oracle package as functions with
a standard naming convention. We have to pay attention to some other details, like the lack of default
parameters in PostgreSQL functions. The above package would become something like this:

CREATE FUNCTION acs__add_user(INTEGER,INTEGER,VARCHAR,DATETIME,INTEGER,INTEGER,...)
RETURNS INTEGER AS ’
DECLARE

user_id ALIAS FOR $1;
object_type ALIAS FOR $2;
creation_date ALIAS FOR $3;
creation_user ALIAS FOR $4;
creation_ip ALIAS FOR $5;
...
v_user_id users.user_id%TYPE;
v_rel_id membership_rels.rel_id%TYPE;

BEGIN
v_user_id := acs_user__new(user_id,object_type,creation_date,creation_user,creation_ip, ...);
...

RETURN v_user_id;
END;
’ LANGUAGE ’plpgsql’;

4. http://www.arsdigita.com/doc/

319

Chapter 23. PL/pgSQL - SQL Procedural Language

23.11.5. Other Things to Watch For

23.11.5.1. EXECUTE

The PostgreSQL version ofEXECUTE works nicely, but you have to remember to use
quote_literal(TEXT) andquote_string(TEXT) as described inSection 23.5.4. Constructs of
the typeEXECUTE ”SELECT * from $1”; will not work unless you use these functions.

23.11.5.2. Optimizing PL/pgSQL Functions

PostgreSQL gives you two function creation modifiers to optimize execution:iscachable (function
always returns the same result when given the same arguments) andisstrict (function returns
NULL if any argument is NULL). Consult theCREATE FUNCTION reference for details.

To make use of these optimization attributes, you have to use theWITH modifier in yourCREATE
FUNCTION statement. Something like:

CREATE FUNCTION foo(...) RETURNS INTEGER AS ’
...
’ LANGUAGE ’plpgsql’
WITH (isstrict, iscachable);

23.11.6. Appendix

23.11.6.1. Code for my instr functions

--
-- instr functions that mimic Oracle’s counterpart
-- Syntax: instr(string1,string2,[n],[m]) where [] denotes optional params.
--
-- Searches string1 beginning at the nth character for the mth
-- occurrence of string2. If n is negative, search backwards. If m is
-- not passed, assume 1 (search starts at first character).
--
-- by Roberto Mello (rmello@fslc.usu.edu)
-- modified by Robert Gaszewski (graszew@poland.com)
-- Licensed under the GPL v2 or later.
--

CREATE FUNCTION instr(VARCHAR,VARCHAR) RETURNS INTEGER AS ’
DECLARE

pos integer;
BEGIN

pos:= instr($1,$2,1);
RETURN pos;

END;
’ LANGUAGE ’plpgsql’;

CREATE FUNCTION instr(VARCHAR,VARCHAR,INTEGER) RETURNS INTEGER AS ’
DECLARE

string ALIAS FOR $1;

320

Chapter 23. PL/pgSQL - SQL Procedural Language

string_to_search ALIAS FOR $2;
beg_index ALIAS FOR $3;
pos integer NOT NULL DEFAULT 0;
temp_str VARCHAR;
beg INTEGER;
length INTEGER;
ss_length INTEGER;

BEGIN
IF beg_index > 0 THEN

temp_str := substring(string FROM beg_index);
pos := position(string_to_search IN temp_str);

IF pos = 0 THEN
RETURN 0;

ELSE
RETURN pos + beg_index - 1;

END IF;
ELSE

ss_length := char_length(string_to_search);
length := char_length(string);
beg := length + beg_index - ss_length + 2;

WHILE beg > 0 LOOP
temp_str := substring(string FROM beg FOR ss_length);

pos := position(string_to_search IN temp_str);

IF pos > 0 THEN
RETURN beg;

END IF;

beg := beg - 1;
END LOOP;
RETURN 0;

END IF;
END;
’ LANGUAGE ’plpgsql’;

--
-- Written by Robert Gaszewski (graszew@poland.com)
-- Licensed under the GPL v2 or later.
--
CREATE FUNCTION instr(VARCHAR,VARCHAR,INTEGER,INTEGER) RETURNS INTEGER AS ’
DECLARE

string ALIAS FOR $1;
string_to_search ALIAS FOR $2;
beg_index ALIAS FOR $3;
occur_index ALIAS FOR $4;
pos integer NOT NULL DEFAULT 0;
occur_number INTEGER NOT NULL DEFAULT 0;
temp_str VARCHAR;
beg INTEGER;
i INTEGER;
length INTEGER;
ss_length INTEGER;

BEGIN
IF beg_index > 0 THEN

321

Chapter 23. PL/pgSQL - SQL Procedural Language

beg := beg_index;
temp_str := substring(string FROM beg_index);

FOR i IN 1..occur_index LOOP
pos := position(string_to_search IN temp_str);

IF i = 1 THEN
beg := beg + pos - 1;

ELSE
beg := beg + pos;

END IF;

temp_str := substring(string FROM beg + 1);
END LOOP;

IF pos = 0 THEN
RETURN 0;

ELSE
RETURN beg;

END IF;
ELSE

ss_length := char_length(string_to_search);
length := char_length(string);
beg := length + beg_index - ss_length + 2;

WHILE beg > 0 LOOP
temp_str := substring(string FROM beg FOR ss_length);
pos := position(string_to_search IN temp_str);

IF pos > 0 THEN
occur_number := occur_number + 1;

IF occur_number = occur_index THEN
RETURN beg;

END IF;
END IF;

beg := beg - 1;
END LOOP;

RETURN 0;
END IF;

END;
’ LANGUAGE ’plpgsql’;

322

Chapter 24. PL/Tcl - Tcl Procedural Language
PL/Tcl is a loadable procedural language for the PostgreSQL database system that enables the Tcl
language to be used to write functions and trigger procedures.

This package was originally written by Jan Wieck.

24.1. Overview
PL/Tcl offers most of the capabilities a function writer has in the C language, except for some restric-
tions.

The good restriction is that everything is executed in a safe Tcl interpreter. In addition to the limited
command set of safe Tcl, only a few commands are available to access the database via SPI and to
raise messages viaelog() . There is no way to access internals of the database backend or to gain
OS-level access under the permissions of the PostgreSQL user ID, as a C function can do. Thus, any
unprivileged database user may be permitted to use this language.

The other, implementation restriction is that Tcl procedures cannot be used to create input/output
functions for new data types.

Sometimes it is desirable to write Tcl functions that are not restricted to safe Tcl --- for example,
one might want a Tcl function that sends mail. To handle these cases, there is a variant of PL/Tcl
called PL/TclU (for untrusted Tcl). This is the exact same language except that a full Tcl interpreter
is used.If PL/TclU is used, it must be installed as an untrusted procedural languageso that only
database superusers can create functions in it. The writer of a PL/TclU function must take care that
the function cannot be used to do anything unwanted, since it will be able to do anything that could
be done by a user logged in as the database administrator.

The shared object for the PL/Tcl and PL/TclU call handlers is automatically built and installed in the
PostgreSQL library directory if Tcl/Tk support is specified in the configuration step of the installation
procedure. To install PL/Tcl and/or PL/TclU in a particular database, use thecreatelang script, for
examplecreatelang pltcl dbname or createlang pltclu dbname.

24.2. Description

24.2.1. PL/Tcl Functions and Arguments

To create a function in the PL/Tcl language, use the standard syntax

CREATE FUNCTIONfuncname (argument-types) RETURNS return-type AS ’
PL/Tcl function body

’ LANGUAGE ’pltcl’;

PL/TclU is the same, except that the language should be specified as’pltclu’ .

The body of the function is simply a piece of Tcl script. When the function is called, the argument
values are passed as variables$1 ... $n to the Tcl script. The result is returned from the Tcl code in
the usual way, with areturn statement. For example, a function returning the greater of two integer
values could be defined as:

CREATE FUNCTION tcl_max (integer, integer) RETURNS integer AS ’
if {$1 > $2} {return $1}

323

Chapter 24. PL/Tcl - Tcl Procedural Language

return $2
’ LANGUAGE ’pltcl’ WITH (isStrict);

Note the clauseWITH (isStrict) , which saves us from having to think about NULL input val-
ues: if a NULL is passed, the function will not be called at all, but will just return a NULL result
automatically.

In a non-strict function, if the actual value of an argument is NULL, the corresponding$n variable
will be set to an empty string. To detect whether a particular argument is NULL, use the function
argisnull . For example, suppose that we wanted tcl_max with one null and one non-null argument
to return the non-null argument, rather than NULL:

CREATE FUNCTION tcl_max (integer, integer) RETURNS integer AS ’
if {[argisnull 1]} {

if {[argisnull 2]} { return_null }
return $2

}
if {[argisnull 2]} { return $1 }
if {$1 > $2} {return $1}
return $2

’ LANGUAGE ’pltcl’;

As shown above, to return a NULL value from a PL/Tcl function, executereturn_null . This can
be done whether the function is strict or not.

Composite-type arguments are passed to the procedure as Tcl arrays. The element names of the array
are the attribute names of the composite type. If an attribute in the passed row has the NULL value, it
will not appear in the array! Here is an example that defines the overpaid_2 function (as found in the
older PostgreSQL documentation) in PL/Tcl:

CREATE FUNCTION overpaid_2 (EMP) RETURNS bool AS ’
if {200000.0 < $1(salary)} {

return "t"
}
if {$1(age) < 30 && 100000.0 < $1(salary)} {

return "t"
}
return "f"

’ LANGUAGE ’pltcl’;

There is not currently any support for returning a composite-type result value.

24.2.2. Data Values in PL/Tcl

The argument values supplied to a PL/Tcl function’s script are simply the input arguments converted
to text form (just as if they had been displayed by a SELECT statement). Conversely, thereturn

command will accept any string that is acceptable input format for the function’s declared return type.
So, the PL/Tcl programmer can manipulate data values as if they were just text.

324

Chapter 24. PL/Tcl - Tcl Procedural Language

24.2.3. Global Data in PL/Tcl

Sometimes it is useful to have some global status data that is held between two calls to a procedure
or is shared between different procedures. This is easily done since all PL/Tcl procedures executed
in one backend share the same safe Tcl interpreter. So, any global Tcl variable is accessible to all
PL/Tcl procedure calls, and will persist for the duration of the SQL client connection. (Note that
PL/TclU functions likewise share global data, but they are in a different Tcl interpreter and cannot
communicate with PL/Tcl functions.)

To help protect PL/Tcl procedures from unintentionally interfering with each other, a global array is
made available to each procedure via theupvar command. The global name of this variable is the
procedure’s internal name and the local name isGD. It is recommended thatGDbe used for private
status data of a procedure. Use regular Tcl global variables only for values that you specifically intend
to be shared among multiple procedures.

An example of usingGDappears in thespi_execp example below.

24.2.4. Database Access from PL/Tcl

The following commands are available to access the database from the body of a PL/Tcl procedure:

spi_exec ?-count n? ?-array name? query ?loop-body ?

Execute an SQL query given as a string. An error in the query causes an error to be raised.
Otherwise, the command’s return value is the number of rows processed (selected, inserted,
updated, or deleted) by the query, or zero if the query is a utility statement. In addition, if the
query is a SELECT statement, the values of the selected columns are placed in Tcl variables as
described below.

The optional-count value tellsspi_exec the maximum number of rows to process in the
query. The effect of this is comparable to setting up the query as a cursor and then sayingFETCH

n.

If the query is a SELECT statement, the values of the SELECT’s result columns are placed into
Tcl variables named after the columns. If the-array option is given, the column values are
instead stored into the named associative array, with the SELECT column names used as array
indexes.

If the query is a SELECT statement and noloop-body script is given, then only the first row
of results are stored into Tcl variables; remaining rows, if any, are ignored. No store occurs if the
SELECT returns no rows (this case can be detected by checking the result ofspi_exec). For
example,

spi_exec "SELECT count(*) AS cnt FROM pg_proc"

will set the Tcl variable$cnt to the number of rows in the pg_proc system catalog.

If the optionalloop-body argument is given, it is a piece of Tcl script that is executed once
for each row in the SELECT result (note:loop-body is ignored if the given query is not
a SELECT). The values of the current row’s fields are stored into Tcl variables before each
iteration. For example,

spi_exec -array C "SELECT * FROM pg_class" {
elog DEBUG "have table $C(relname)"

}

325

Chapter 24. PL/Tcl - Tcl Procedural Language

will print a DEBUG log message for every row of pg_class. This feature works similarly to other
Tcl looping constructs; in particularcontinue andbreak work in the usual way inside the loop
body.

If a field of a SELECT result is NULL, the target variable for it is “unset” rather than being set.

spi_prepare query typelist

Prepares and saves a query plan for later execution. The saved plan will be retained for the life
of the current backend.

The query may usearguments, which are placeholders for values to be supplied whenever the
plan is actually executed. In the query string, refer to arguments by the symbols$1 ... $n. If
the query uses arguments, the names of the argument types must be given as a Tcl list. (Write
an empty list fortypelist if no arguments are used.) Presently, the argument types must be
identified by the internal type names shown in pg_type; for exampleint4 not integer .

The return value fromspi_prepare is a query ID to be used in subsequent calls tospi_execp .
Seespi_execp for an example.

spi_execp ?-count n? ?-array name? ?-nulls string ? queryid ?value-list ?

?loop-body ?

Execute a query previously prepared withspi_prepare . queryid is the ID returned by
spi_prepare . If the query references arguments, avalue-list must be supplied: this is
a Tcl list of actual values for the arguments. This must be the same length as the argument type
list previously given tospi_prepare . Omit value-list if the query has no arguments.

The optional value for-nulls is a string of spaces and’n’ characters tellingspi_execp which
of the arguments are NULLs. If given, it must have exactly the same length as thevalue-list .
If it is not given, all the argument values are non-NULL.

Except for the way in which the query and its arguments are specified,spi_execp works just
like spi_exec . The -count , -array , and loop-body options are the same, and so is the
result value.

Here’s an example of a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(integer, integer) RETURNS integer AS ’
if {![info exists GD(plan)]} {

prepare the saved plan on the first call
set GD(plan) [spi_prepare \\

"SELECT count(*) AS cnt FROM t1 WHERE num >= \\$1 AND num <= \\$2" \\
[list int4 int4]]

}
spi_execp -count 1 $GD(plan) [list $1 $2]
return $cnt

’ LANGUAGE ’pltcl’;

Note that each backslash that Tcl should see must be doubled when we type in the function, since
the main parser processes backslashes too in CREATE FUNCTION. We need backslashes inside
the query string given tospi_prepare to ensure that the$n markers will be passed through to
spi_prepare as-is, and not replaced by Tcl variable substitution.

spi_lastoid

Returns the OID of the row inserted by the lastspi_exec ’d or spi_execp ’d query, if that query
was a single-row INSERT. (If not, you get zero.)

326

Chapter 24. PL/Tcl - Tcl Procedural Language

quote string

Duplicates all occurrences of single quote and backslash characters in the given string. This may
be used to safely quote strings that are to be inserted into SQL queries given tospi_exec or
spi_prepare . For example, think about a query string like

"SELECT ’$val’ AS ret"

where the Tcl variable val actually containsdoesn’t . This would result in the final query string

SELECT ’doesn’t’ AS ret

which would cause a parse error duringspi_exec or spi_prepare . The submitted query
should contain

SELECT ’doesn”t’ AS ret

which can be formed in PL/Tcl as

"SELECT ’[quote $val]’ AS ret"

One advantage ofspi_execp is that you don’t have to quote argument values like this, since the
arguments are never parsed as part of an SQL query string.

elog level msg

Emit a log or error message. Possible levels areDEBUG, NOTICE, ERROR, andFATAL. DEBUG

andNOTICE simply emit the given message into the postmaster log (and send it to the client
too, in the case ofNOTICE). ERRORraises an error condition: further execution of the function is
abandoned, and the current transaction is aborted.FATAL aborts the transaction and causes the
current backend to shut down (there is probably no good reason to use this error level in PL/Tcl
functions, but it’s provided for completeness).

24.2.5. Trigger Procedures in PL/Tcl

Trigger procedures can be written in PL/Tcl. As is customary in PostgreSQL, a procedure that’s to be
called as a trigger must be declared as a function with no arguments and a return type ofopaque .

The information from the trigger manager is passed to the procedure body in the following variables:

$TG_name

The name of the trigger from the CREATE TRIGGER statement.

$TG_relid

The object ID of the table that caused the trigger procedure to be invoked.

$TG_relatts

A Tcl list of the table field names, prefixed with an empty list element. So looking up an element
name in the list with Tcl’slsearch command returns the element’s number starting with 1 for
the first column, the same way the fields are customarily numbered in PostgreSQL.

$TG_when

The stringBEFOREor AFTERdepending on the type of trigger call.

$TG_level

The stringROWor STATEMENTdepending on the type of trigger call.

327

Chapter 24. PL/Tcl - Tcl Procedural Language

$TG_op

The stringINSERT, UPDATEor DELETEdepending on the type of trigger call.

$NEW

An associative array containing the values of the new table row for INSERT/UPDATE actions,
or empty for DELETE. The array is indexed by field name. Fields that are NULL will not appear
in the array!

$OLD

An associative array containing the values of the old table row for UPDATE/DELETE actions,
or empty for INSERT. The array is indexed by field name. Fields that are NULL will not appear
in the array!

$args

A Tcl list of the arguments to the procedure as given in the CREATE TRIGGER statement. These
arguments are also accessible as$1 ... $n in the procedure body.

The return value from a trigger procedure can be one of the stringsOKor SKIP , or a list as returned by
thearray get Tcl command. If the return value isOK, the operation (INSERT/UPDATE/DELETE)
that fired the trigger will proceed normally.SKIP tells the trigger manager to silently suppress the
operation for this row. If a list is returned, it tells PL/Tcl to return a modified row to the trigger
manager that will be inserted instead of the one given in $NEW (this works for INSERT/UPDATE
only). Needless to say that all this is only meaningful when the trigger is BEFORE and FOR EACH
ROW; otherwise the return value is ignored.

Here’s a little example trigger procedure that forces an integer value in a table to keep track of the
number of updates that are performed on the row. For new rows inserted, the value is initialized to 0
and then incremented on every update operation:

CREATE FUNCTION trigfunc_modcount() RETURNS OPAQUE AS ’
switch $TG_op {

INSERT {
set NEW($1) 0

}
UPDATE {

set NEW($1) $OLD($1)
incr NEW($1)

}
default {

return OK
}

}
return [array get NEW]

’ LANGUAGE ’pltcl’;

CREATE TABLE mytab (num integer, description text, modcnt integer);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount(’modcnt’);

Notice that the trigger procedure itself does not know the column name; that’s supplied from the
trigger arguments. This lets the trigger procedure be re-used with different tables.

328

Chapter 24. PL/Tcl - Tcl Procedural Language

24.2.6. Modules and the unknown command

PL/Tcl has support for auto-loading Tcl code when used. It recognizes a special table,
pltcl_modules , which is presumed to contain modules of Tcl code. If this table exists, the module
unknown is fetched from the table and loaded into the Tcl interpreter immediately after creating the
interpreter.

While theunknown module could actually contain any initialization script you need, it normally de-
fines a Tcl “unknown” procedure that is invoked whenever Tcl does not recognize an invoked proce-
dure name. PL/Tcl’s standard version of this procedure tries to find a module inpltcl_modules that
will define the required procedure. If one is found, it is loaded into the interpreter, and then execution is
allowed to proceed with the originally attempted procedure call. A secondary tablepltcl_modfuncs

provides an index of which functions are defined by which modules, so that the lookup is reasonably
quick.

The PostgreSQL distribution includes support scripts to maintain these tables:pltcl_loadmod,
pltcl_listmod, pltcl_delmod, as well as source for the standard unknown module
share/unknown.pltcl . This module must be loaded into each database initially to support the
autoloading mechanism.

The tablespltcl_modules andpltcl_modfuncs must be readable by all, but it is wise to make
them owned and writable only by the database administrator.

24.2.7. Tcl Procedure Names

In PostgreSQL, one and the same function name can be used for different functions as long as the
number of arguments or their types differ. Tcl, however, requires all procedure names to be distinct.
PL/Tcl deals with this by making the internal Tcl procedure names contain the object ID of the
procedure’s pg_proc row as part of their name. Thus, PostgreSQL functions with the same name and
different argument types will be different Tcl procedures too. This is not normally a concern for a
PL/Tcl programmer, but it might be visible when debugging.

329

Chapter 25. PL/Perl - Perl Procedural
Language

PL/Perl is a loadable procedural language that enables the Perl1 programming language to be used to
write PostgreSQL functions.

25.1. Overview
Normally, PL/Perl is installed as a “trusted” programming language namedplperl . In this setup,
certain Perl operations are disabled to preserve security. In general, the operations that are restricted
are those that interact with the environment. This includes file handle operations,require , anduse

(for external modules). There is no way to access internals of the database backend or to gain OS-
level access under the permissions of the PostgreSQL user ID, as a C function can do. Thus, any
unprivileged database user may be permitted to use this language.

Sometimes it is desirable to write Perl functions that are not restricted --- for example, one might want
a Perl function that sends mail. To handle these cases, PL/Perl can also be installed as an “untrusted”
language (usually namedplperlu). In this case the full Perl language is available. The writer of a
PL/PerlU function must take care that the function cannot be used to do anything unwanted, since it
will be able to do anything that could be done by a user logged in as the database administrator. Note
that the database system allows only database superusers to create functions in untrusted languages.

25.2. Building and Installing PL/Perl
If the --with-perl option was supplied to theconfigure script, the PostgreSQL build process
will attempt to build the PL/Perl shared library and install it in the PostgreSQL library directory.

On most platforms, since PL/Perl is a shared library, thelibperl library must be a shared library
also. At the time of this writing, this is almost never the case in prebuilt Perl packages. If this difficulty
arises in your situation, a message like this will appear during the build to point out this fact:

*** Cannot build PL/Perl because libperl is not a shared library.

*** You might have to rebuild your Perl installation. Refer to

*** the documentation for details.

If you see this, you will have to re-build and install Perl manually to be able to build PL/Perl. During
the configuration process for Perl, request a shared library.

After having reinstalled Perl, change to the directorysrc/pl/plperl in the PostgreSQL source tree
and issue the commands

gmake clean
gmake all
gmake install

to complete the build and installation of the PL/Perl shared library.

To install PL/Perl and/or PL/PerlU in a particular database, use thecreatelang script, for example
createlang plperl dbname or createlang plperlu dbname.

1. http://www.perl.com

330

Chapter 25. PL/Perl - Perl Procedural Language

Tip: If a language is installed into template1 , all subsequently created databases will have the
language installed automatically.

25.3. Description

25.3.1. PL/Perl Functions and Arguments

To create a function in the PL/Perl language, use the standard syntax

CREATE FUNCTIONfuncname (argument-types) RETURNS return-type AS ’
PL/Perl function body

’ LANGUAGE plperl;

PL/PerlU is the same, except that the language should be specified asplperlu .

The body of the function is ordinary Perl code. Arguments and results are handled as in any other
Perl subroutine: arguments are passed in@_, and a result value is returned withreturn or as the
last expression evaluated in the function. For example, a function returning the greater of two integer
values could be defined as:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS ’
if ($_[0] > $_[1]) { return $_[0]; }
return $_[1];

’ LANGUAGE plperl;

If a NULL is passed to a function, the argument value will appear as “undefined” in Perl. The above
function definition will not behave very nicely with NULL inputs (in fact, it will act as though they
are zeroes). We could addWITH (isStrict) to the function definition to make PostgreSQL do
something more reasonable: if a NULL is passed, the function will not be called at all, but will just
return a NULL result automatically. Alternatively, we could check for undefined inputs in the function
body. For example, suppose that we wanted perl_max with one null and one non-null argument to
return the non-null argument, rather than NULL:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS ’
my ($a,$b) = @_;
if (! defined $a) {

if (! defined $b) { return undef; }
return $b;

}
if (! defined $b) { return $a; }
if ($a > $b) { return $a; }
return $b;

’ LANGUAGE plperl;

As shown above, to return a NULL from a PL/Perl function, return an undefined value. This can be
done whether the function is strict or not.

Composite-type arguments are passed to the function as references to hashes. The keys of the hash
are the attribute names of the composite type. Here is an example:

331

Chapter 25. PL/Perl - Perl Procedural Language

CREATE TABLE employee (
name text,
basesalary integer,
bonus integer

);

CREATE FUNCTION empcomp(employee) RETURNS integer AS ’
my ($emp) = @_;
return $emp->{”basesalary”} + $emp->{”bonus”};

’ LANGUAGE plperl;

SELECT name, empcomp(employee) FROM employee;

There is not currently any support for returning a composite-type result value.

Tip: Because the function body is passed as an SQL string literal to CREATE FUNCTION, you
have to escape single quotes and backslashes within your Perl source, typically by doubling them
as shown in the above example. Another possible approach is to avoid writing single quotes by
using Perl’s extended quoting functions (q[] , qq[] , qw[]).

Here is an example of a function that will not work because file system operations are not allowed for
security reasons:

CREATE FUNCTION badfunc() RETURNS integer AS ’
open(TEMP, ">/tmp/badfile");
print TEMP "Gotcha!\n";
return 1;

’ LANGUAGE plperl;

The creation of the function will succeed, but executing it will not.

Note that if the same function was created by a superuser using languageplperlu , execution would
succeed.

25.3.2. Data Values in PL/Perl

The argument values supplied to a PL/Perl function’s script are simply the input arguments converted
to text form (just as if they had been displayed by a SELECT statement). Conversely, thereturn

command will accept any string that is acceptable input format for the function’s declared return type.
So, the PL/Perl programmer can manipulate data values as if they were just text.

25.3.3. Database Access from PL/Perl

Access to the database itself from your Perl function can be done via an experimental module
DBD::PgSPI 2 (also available at CPAN mirror sites3). This module makes available a DBI-compliant
database-handle named$pg_dbh that can be used to perform queries with normal DBI syntax.

PL/Perl itself presently provides only one additional Perl command:

2. http://www.cpan.org/modules/by-module/DBD/APILOS/
3. http://www.cpan.org/SITES.html

332

Chapter 25. PL/Perl - Perl Procedural Language

elog level , msg

Emit a log or error message. Possible levels areDEBUG, NOTICE, andERROR. DEBUGandNOTICE

simply emit the given message into the postmaster log (and send it to the client too, in the case
of NOTICE). ERRORraises an error condition: further execution of the function is abandoned, and
the current transaction is aborted.

25.3.4. Missing Features

PL/Perl functions cannot call each other directly (because they are anonymous subroutines inside
Perl). There’s presently no way for them to share global variables, either.

PL/Perl cannot currently be used to write trigger functions.

DBD::PgSPI or similar capability should be integrated into the standard PostgreSQL distribution.

333

Chapter 26. PL/Python - Python Procedural
Language

26.1. Introduction
The PL/Python procedural language allows PostgreSQL functions to be written in the Python1 lan-
guage.

The current version of PL/Python functions as a trusted language only; access to the file system
and other local resources is disabled. Specifically, PL/Python uses the Python restricted execution
environment, further restricts it to prevent the use of the fileopen call, and allows only modules
from a specific list to be imported. Presently, that list includes: array, bisect, binascii, calendar, cmath,
codecs, errno, marshal, math, md5, mpz, operator, pcre, pickle, random, re, regex, sre, sha, string,
StringIO, struct, time, whrandom, and zlib.

In the current version, any database error encountered while running a PL/Python function will result
in the immediate termination of that function by the server. It is not possible to trap error conditions
using Pythontry ... catch constructs. For example, a syntax error in an SQL statement passed
to theplpy.execute() call will terminate the function. This behavior may be changed in a future
release.

26.2. Installation
To build PL/Python, the--with-python option needs to be specified when runningconfigure .
If after building and installing you have a file calledplpython.so (possibly a different extension),
then everything went well. Otherwise you should have seen a notice like this flying by:

*** Cannot build PL/Python because libpython is not a shared library.
*** You might have to rebuild your Python installation. Refer to
*** the documentation for details.

That means you have to rebuild (part of) your Python installation to supply this shared library.

The catch is that the Python distribution or the Python maintainers do not provide any direct way
to do this. The closest thing we can offer you is the information in Python FAQ 3.302. On some
operating systems you don’t really have to build a shared library, but then you will have to convince
the PostgreSQL build system of this. Consult theMakefile in thesrc/pl/plpython directory for
details.

26.3. Using PL/Python
There are sample functions inplpython_function.sql . The Python code you write gets trans-
formed into a function. E.g.,

CREATE FUNCTION myfunc(text) RETURNS text AS
’return args[0]’
LANGUAGE ’plpython’;

1. http://www.python.org
2. http://www.python.org/doc/FAQ.html#3.30

334

Chapter 26. PL/Python - Python Procedural Language

gets transformed into

def __plpython_procedure_myfunc_23456():
return args[0]

where 23456 is the Oid of the function.

If you do not provide a return value, Python returns the defaultNone which may or may not be what
you want. The language module translates Python’s None into SQL NULL.

PostgreSQL function variables are available in the globalargs list. In themyfunc example,args[0]

contains whatever was passed in as the text argument. Formyfunc2(text, integer) , args[0]

would contain thetext variable andargs[1] the integer variable.

The global dictionary SD is available to store data between function calls. This variable is private static
data. The global dictionary GD is public data, available to all python functions within a backend. Use
with care.

Each function gets its own restricted execution object in the Python interpreter, so that global data and
function arguments frommyfunc are not available tomyfunc2 . The exception is the data in the GD
dictionary, as mentioned above.

When a function is used in a trigger, the dictionary TD contains transaction related values. The trigger
tuples are inTD["new"] and/orTD["old"] depending on the trigger event.TD["event"] contains
the event as a string (INSERT, UPDATE, DELETE, orUNKNOWN). TD["when"] contains one of (BEFORE,
AFTER, or UNKNOWN). TD["level"] contains one ofROW, STATEMENT, or UNKNOWN. TD["name"]

contains the trigger name, andTD["relid"] contains the relation id of the table on which the
trigger occurred. If the trigger was called with arguments they are available inTD["args"][0] to
TD["args"][(n -1)] .

If the trigger “when” isBEFORE, you may returnNone or "OK" from the Python function to indicate
the tuple is unmodified,"SKIP" to abort the event, or"MODIFIED" to indicate you’ve modified the
tuple.

The PL/Python language module automatically imports a Python module calledplpy . The functions
and constants in this module are available to you in the Python code asplpy. foo . At presentplpy

implements the functionsplpy.error("msg") , plpy.fatal("msg") , plpy.debug("msg") ,
andplpy.notice("msg") . They are mostly equivalent to callingelog(LEVEL, "msg") , where
LEVEL is DEBUG, ERROR, FATAL or NOTICE.plpy.error andplpy.fatal actually raise a
Python exception which, if uncaught, causes the PL/Python module to callelog(ERROR, msg)

when the function handler returns from the Python interpreter. Long jumping out of the Python
interpreter is probably not good.raise plpy.ERROR("msg") andraise plpy.FATAL("msg")

are equivalent to callingplpy.error or plpy.fatal .

Additionally, the plpy module provides two functions calledexecute and prepare . Calling
plpy.execute with a query string, and an optional limit argument, causes that query to be run, and
the result returned in a result object. The result object emulates a list or dictionary object. The result
object can be accessed by row number, and field name. It has these additional methods:nrows()

which returns the number of rows returned by the query, andstatus which is theSPI_exec return
variable. The result object can be modified.

rv = plpy.execute("SELECT * FROM my_table", 5)

returns up to 5 rows from my_table. Ff my_table has a column my_field it would be accessed as

foo = rv[i]["my_field"]

335

Chapter 26. PL/Python - Python Procedural Language

The second functionplpy.prepare is called with a query string, and a list of argument types if you
have bind variables in the query.

plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1", ["text"])

text is the type of the variable you will be passing as $1. After preparing you use the function
plpy.execute to run it.

rv = plpy.execute(plan, ["name"], 5)

The limit argument is optional in the call toplpy.execute .

When you prepare a plan using the PL/Python module it is automatically saved. Read the SPI docu-
mentation (Chapter 21) for a description of what this means. The take home message is if you do

plan = plpy.prepare("SOME QUERY")
plan = plpy.prepare("SOME OTHER QUERY")

you are leaking memory, as I know of no way to free a saved plan. The alternative of using unsaved
plans it even more painful (for me).

336

Bibliography
Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are avail-
able at the University of California, Berkeley, Computer Science Department web site1

SQL Reference Books

Judith Bowman, Sandra Emerson, and Marcy Darnovsky,The Practical SQL Handbook: Using Struc-
tured Query Language, Third Edition, Addison-Wesley, ISBN 0-201-44787-8, 1996.

C. J. Date and Hugh Darwen,A Guide to the SQL Standard: A user’s guide to the standard database
language SQL, Fourth Edition, Addison-Wesley, ISBN 0-201-96426-0, 1997.

C. J. Date,An Introduction to Database Systems, Volume 1, Sixth Edition, Addison-Wesley, 1994.

Ramez Elmasri and Shamkant Navathe,Fundamentals of Database Systems, 3rd Edition, Addison-
Wesley, ISBN 0-805-31755-4, August 1999.

Jim Melton and Alan R. Simon,Understanding the New SQL: A complete guide, Morgan Kaufmann,
ISBN 1-55860-245-3, 1993.

Jeffrey D. Ullman,Principles of Database and Knowledge: Base Systems, Volume 1, Computer Sci-
ence Press, 1988.

PostgreSQL-Specific Documentation

Stefan Simkovics,Enhancement of the ANSI SQL Implementation of PostgreSQL, Department of
Information Systems, Vienna University of Technology, November 29, 1998.

Discusses SQL history and syntax, and describes the addition ofINTERSECTandEXCEPTcon-
structs into PostgreSQL. Prepared as a Master’s Thesis with the support of O. Univ. Prof. Dr.
Georg Gottlob and Univ. Ass. Mag. Katrin Seyr at Vienna University of Technology.

A. Yu and J. Chen, The POSTGRES Group,The Postgres95 User Manual, University of California,
Sept. 5, 1995.

Zelaine Fong,The design and implementation of the POSTGRES query optimizer2, University of
California, Berkeley, Computer Science Department.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
2. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/UCB-MS-zfong.pdf

337

Bibliography

Proceedings and Articles

Nels Olson,Partial indexing in POSTGRES: research project, University of California, UCB Engin
T7.49.1993 O676, 1993.

L. Ong and J. Goh, “A Unified Framework for Version Modeling Using Production Rules in a
Database System”,ERL Technical Memorandum M90/33, University of California, April, 1990.

L. Rowe and M. Stonebraker, “The POSTGRES data model3”, Proc. VLDB Conference, Sept. 1987.

P. Seshadri and A. Swami, “Generalized Partial Indexes4 ”, Proc. Eleventh International Conference
on Data Engineering, 6-10 March 1995, IEEE Computer Society Press, Cat. No.95CH35724,
1995, p. 420-7.

M. Stonebraker and L. Rowe, “The design of POSTGRES5”, Proc. ACM-SIGMOD Conference on
Management of Data, May 1986.

M. Stonebraker, E. Hanson, and C. H. Hong, “The design of the POSTGRES rules system”, Proc.
IEEE Conference on Data Engineering, Feb. 1987.

M. Stonebraker, “The design of the POSTGRES storage system6”, Proc. VLDB Conference, Sept.
1987.

M. Stonebraker, M. Hearst, and S. Potamianos, “A commentary on the POSTGRES rules system7”,
SIGMOD Record 18(3), Sept. 1989.

M. Stonebraker, “The case for partial indexes8”, SIGMOD Record 18(4), Dec. 1989, p. 4-11.

M. Stonebraker, L. A. Rowe, and M. Hirohama, “The implementation of POSTGRES9”, Transactions
on Knowledge and Data Engineering 2(1), IEEE, March 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On Rules, Procedures, Caching and Views
in Database Systems10”, Proc. ACM-SIGMOD Conference on Management of Data, June 1990.

3. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-13.pdf
4. http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z
5. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M85-95.pdf
6. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-06.pdf
7. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-82.pdf
8. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf
9. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-34.pdf
10. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-36.pdf

338

Index

Symbols
$libdir, 180

.odbc.ini,77

A
aggregate functions

extending,203

ApplixWare,79

arrays,196

B
BLOB

(See large object)

BSD/OS,190

C
C++,38

configure,330

COPY

with libpq, 16

D
data types

extending,195

Digital UNIX

(See Tru64 UNIX)

dynamic_library_path,180

E
elog,327, 332

embedded SQL

in C, 67

environment variables,19

error message,6

escaping binary strings,9

escaping strings,8

F
FETCH

embedded SQL,71

FreeBSD,190

function,174

internal,179

SQL,174

H
HP-UX, 190

I
input function,195

iODBC, 76

IRIX, 190

L
large object,30

libperl, 330

libpgtcl, 45

libpq, 1

libpq++,38

libpq-fe.h,6

libpq-int.h,6, 21

Linux, 190

N
NetBSD,191

nonblocking connection,3, 12

notice processor,18

NOTIFY, 15, 55

O
ODBC,76

odbc.sql,77

OpenBSD,191

Oracle,71, 312

output function,195

overloading,192

339

Index

P

Perl,330

PGDATABASE,19

PGHOST,19

PGPASSWORD,19

PGPORT,19

pgtcl

closing,58

connecting,46, 48, 49, 50, 51, 53

creating,56

delete,63

export,65

import,64

notify, 55

opening,57

positioning,61, 62

reading,59

writing, 60

PGUSER,19

pg_config,21, 189

pg_conndefaults,49

pg_connect,46, 48, 50, 51, 53

pg_lo_close,58

pg_lo_creat,56

pg_lo_export,65

pg_lo_import,64

pg_lo_lseek,61

pg_lo_open,57

pg_lo_read,59

pg_lo_tell,62

pg_lo_unlink,63

pg_lo_write,60

PIC,189

PL/Perl,330

PL/pgSQL,290

PL/Python,334

PL/SQL,312

PL/Tcl, 323

Python,334

R

range table,206

rules,205

and views,207

S
SETOF,174

(See Also function)

sliced bread

(See TOAST)

Solaris,191

SPI

allocating space,278, 279, 280, 281, 282,

283

connecting,246, 252, 254, 262

copying tuple descriptors,274

copying tuples,272, 275

cursors,256, 258, 259, 260, 261

decoding tuples,264, 265, 266, 267, 269,

270, 271

disconnecting,248

executing,249

modifying tuples,276

SPI_connect,246

SPI_copytuple,272

SPI_copytupledesc,274

SPI_copytupleintoslot,275

SPI_cursor_close,261

SPI_cursor_fetch,259

SPI_cursor_find,258

SPI_cursor_move,260

SPI_cursor_open,256

SPI_exec,249

SPI_execp,254

SPI_finish,248

SPI_fname,265

SPI_fnumber,264

SPI_freeplan,283

SPI_freetuple,281

SPI_freetuptable,282

SPI_getbinval,267

SPI_getrelname,271

SPI_gettype,269

SPI_gettypeid,270

SPI_getvalue,266

spi_lastoid,326

SPI_modifytuple,276

SPI_palloc,278

SPI_pfree,280

SPI_prepare,252

SPI_repalloc,279

SPI_saveplan,262

SSL,7

340

Index

T
Tcl, 45, 323

threads

with libpq, 20

TOAST,30

and user-defined types,196

triggers

in PL/Tcl, 327

Tru64 UNIX, 191

U
unixODBC,76

UnixWare,191

V
views

updating,214

341

	PostgreSQL 7.2 Programmer's Guide
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Preface
	1. What is PostgreSQL?
	2. A Short History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. Documentation Resources
	4. Terminology and Notation
	5. Bug Reporting Guidelines
	5.1. Identifying Bugs
	5.2. What to report
	5.3. Where to report bugs

	6. Y2K Statement

	I. Client Interfaces
	Chapter 1. libpq C Library
	1.1. Introduction
	1.2. Database Connection Functions
	1.3. Command Execution Functions
	1.3.1. Main Routines
	1.3.2. Escaping strings for inclusion in SQL queries
	1.3.3. Escaping binary strings for inclusion in SQL queries
	1.3.4. Retrieving SELECT Result Information
	1.3.5. Retrieving SELECT Result Values
	1.3.6. Retrieving NonSELECT Result Information

	1.4. Asynchronous Query Processing
	1.5. The FastPath Interface
	1.6. Asynchronous Notification
	1.7. Functions Associated with the COPY Command
	1.8. libpq Tracing Functions
	1.9. libpq Control Functions
	1.10. Environment Variables
	1.11. Threading Behavior
	1.12. Building Libpq Programs
	1.13. Example Programs

	Chapter 2. Large Objects
	2.1. Introduction
	2.2. Implementation Features
	2.3. Interfaces
	2.3.1. Creating a Large Object
	2.3.2. Importing a Large Object
	2.3.3. Exporting a Large Object
	2.3.4. Opening an Existing Large Object
	2.3.5. Writing Data to a Large Object
	2.3.6. Reading Data from a Large Object
	2.3.7. Seeking on a Large Object
	2.3.8. Closing a Large Object Descriptor
	2.3.9. Removing a Large Object

	2.4. Serverside Builtin Functions
	2.5. Accessing Large Objects from Libpq

	Chapter 3. libpq++ C++ Binding Library
	3.1. Introduction
	3.2. Control and Initialization
	3.2.1. Environment Variables

	3.3. libpq++ Classes
	3.3.1. Connection Class: PgConnection
	3.3.2. Database Class: PgDatabase

	3.4. Database Connection Functions
	3.5. Query Execution Functions
	3.5.1. Main Routines
	3.5.2. Retrieving SELECT Result Information
	3.5.3. Retrieving SELECT Result Values
	3.5.4. Retrieving NonSELECT Result Information

	3.6. Asynchronous Notification
	3.7. Functions Associated with the COPY Command

	Chapter 4. pgtcl Tcl Binding Library
	4.1. Introduction
	4.2. Loading pgtcl into your application
	4.3. pgtcl Command Reference Information
	pgconnect
	Name
	Synopsis
	Inputs (new style)
	Inputs (old style)
	Outputs

	Description
	Usage

	pgdisconnect
	Name
	Synopsis
	Inputs
	Outputs

	Description

	pgconndefaults
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgexec
	Name
	Synopsis
	Inputs
	Outputs

	Description

	pgresult
	Name
	Synopsis
	Inputs
	Options

	Outputs

	Description

	pgselect
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglisten
	Name
	Synopsis
	Inputs
	Outputs

	Description

	pglocreat
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloopen
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloclose
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloread
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglowrite
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglolseek
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglotell
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglounlink
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloimport
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloexport
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	Chapter 5. libpgeasy Simplified C Library
	Chapter 6. ecpg Embedded SQL in C
	6.1. Why Embedded SQL?
	6.2. The Concept
	6.3. How To Use ecpg
	6.3.1. Preprocessor
	6.3.2. Library
	6.3.3. Error handling

	6.4. Limitations
	6.5. Porting From Other RDBMS Packages
	6.6. For the Developer
	6.6.1. The Preprocessor
	6.6.2. A Complete Example
	6.6.3. The Library

	Chapter 7. ODBC Interface
	7.1. Introduction
	7.2. Installation
	7.3. Configuration Files
	7.4. Windows Applications
	7.4.1. Writing Applications

	7.5. ApplixWare
	7.5.1. Configuration
	7.5.2. Common Problems
	7.5.3. Debugging ApplixWare ODBC Connections
	7.5.4. Running the ApplixWare Demo
	7.5.5. Useful Macros

	Chapter 8. JDBC Interface
	8.1. Setting up the JDBC Driver
	8.1.1. Getting the Driver
	8.1.2. Setting up the Class Path
	8.1.3. Preparing the Database for JDBC

	8.2. Using the Driver
	8.2.1. Importing JDBC
	8.2.2. Loading the Driver
	8.2.3. Connecting to the Database
	8.2.4. Closing the Connection

	8.3. Issuing a Query and Processing the Result
	8.3.1. Using the Statement or PreparedStatement Interface
	8.3.2. Using the ResultSet Interface

	8.4. Performing Updates
	8.5. Creating and Modifying Database Objects
	8.6. Storing Binary Data
	8.7. PostgreSQL Extensions to the JDBC API
	8.7.1. Accessing the Extensions
	8.7.1.1. Class org.postgresql.Connection
	8.7.1.1.1. Methods

	8.7.1.2. Class org.postgresql.Fastpath
	8.7.1.2.1. Methods

	8.7.1.3. Class org.postgresql.fastpath.FastpathArg
	8.7.1.3.1. Constructors

	8.7.2. Geometric Data Types
	8.7.3. Large Objects
	8.7.3.1. Class org.postgresql.largeobject.LargeObject
	8.7.3.1.1. Variables
	8.7.3.1.2. Methods

	8.7.3.2. Class org.postgresql.largeobject.LargeObjectManager
	8.7.3.2.1. Variables
	8.7.3.2.2. Methods

	8.8. Using the driver in a multithreaded or a servlet environment
	8.9. Further Reading

	Chapter 9. PyGreSQL Python Interface
	9.1. The pg Module
	9.1.1. Constants

	9.2. pg Module Functions
	connect
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description
	Examples

	getdefhost
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdefhost
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getdefport
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdefport
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getdefopt
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdefopt
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getdeftty
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdeftty
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getdefbase
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdefbase
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	9.3. Connection object: pgobject
	query
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	reset
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	close
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	fileno
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getnotify
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	inserttable
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	putline
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getline
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	endcopy
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	locreate
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getlo
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	loimport
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	9.4. Database wrapper class: DB
	pkey
	Name
	Synopsis
	Parameters
	Return Type

	Description

	getdatabases
	Name
	Synopsis
	Parameters
	Return Type

	Description

	gettables
	Name
	Synopsis
	Parameters
	Return Type

	Description

	getattnames
	Name
	Synopsis
	Parameters
	Return Type

	Description

	get
	Name
	Synopsis
	Parameters
	Return Type

	Description

	insert
	Name
	Synopsis
	Parameters
	Return Type

	Description

	update
	Name
	Synopsis
	Parameters
	Return Type

	Description

	clear
	Name
	Synopsis
	Parameters
	Return Type

	Description

	delete
	Name
	Synopsis
	Parameters
	Return Type

	Description

	9.5. Query result object: pgqueryobject
	getresult
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	dictresult
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	listfields
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	fieldname
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	fieldnum
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	ntuples
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	9.6. Large Object: pglarge
	open
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	close
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	read
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	write
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	seek
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	tell
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	unlink
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	size
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	export
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	9.7. DBAPI Interface

	II. Server Programming
	Chapter 10. Architecture
	10.1. PostgreSQL Architectural Concepts

	Chapter 11. Extending SQL: An Overview
	11.1. How Extensibility Works
	11.2. The PostgreSQL Type System
	11.3. About the PostgreSQL System Catalogs

	Chapter 12. Extending SQL: Functions
	12.1. Introduction
	12.2. Query Language (SQL) Functions
	12.2.1. Examples
	12.2.2. SQL Functions on Base Types
	12.2.3. SQL Functions on Composite Types
	12.2.4. SQL Functions Returning Sets

	12.3. Procedural Language Functions
	12.4. Internal Functions
	12.5. C Language Functions
	12.5.1. Dynamic Loading
	12.5.2. Base Types in CLanguage Functions
	12.5.3. Version0 Calling Conventions for CLanguage Functions
	12.5.4. Version1 Calling Conventions for CLanguage Functions
	12.5.5. Composite Types in CLanguage Functions
	12.5.6. Writing Code
	12.5.7. Compiling and Linking DynamicallyLoaded Functions

	12.6. Function Overloading
	12.7. Procedural Language Handlers

	Chapter 13. Extending SQL: Types
	Chapter 14. Extending SQL: Operators
	14.1. Introduction
	14.2. Example
	14.3. Operator Optimization Information
	14.3.1. COMMUTATOR
	14.3.2. NEGATOR
	14.3.3. RESTRICT
	14.3.4. JOIN
	14.3.5. HASHES
	14.3.6. SORT1 and SORT2

	Chapter 15. Extending SQL: Aggregates
	Chapter 16. The Rule System
	16.1. Introduction
	16.2. What is a Query Tree?
	16.2.1. The Parts of a Query tree

	16.3. Views and the Rule System
	16.3.1. Implementation of Views in PostgreSQL
	16.3.2. How SELECT Rules Work
	16.3.3. View Rules in NonSELECT Statements
	16.3.4. The Power of Views in PostgreSQL
	16.3.4.1. Benefits

	16.3.5. What about updating a view?

	16.4. Rules on INSERT, UPDATE and DELETE
	16.4.1. Differences from View Rules
	16.4.2. How These Rules Work
	16.4.2.1. A First Rule Step by Step

	16.4.3. Cooperation with Views

	16.5. Rules and Permissions
	16.6. Rules versus Triggers

	Chapter 17. Interfacing Extensions To Indexes
	17.1. Introduction
	17.2. Access Methods
	17.3. Access Method Strategies
	17.4. Access Method Support Routines
	17.5. Operator Classes
	17.6. Creating the Operators and Support Routines

	Chapter 18. Index Cost Estimation Functions
	Chapter 19. GiST Indexes
	Chapter 20. Triggers
	20.1. Trigger Creation
	20.2. Interaction with the Trigger Manager
	20.3. Visibility of Data Changes
	20.4. Examples

	Chapter 21. Server Programming Interface
	21.1. Interface Functions
	SPIconnect
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIfinish
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIexec
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Structures

	SPIprepare
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIexecp
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIcursoropen
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIcursorfind
	Name
	Synopsis
	Inputs
	Outputs

	Description

	SPIcursorfetch
	Name
	Synopsis
	Inputs
	Outputs

	Description

	SPIcursormove
	Name
	Synopsis
	Inputs
	Outputs

	Description

	SPIcursorclose
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIsaveplan
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	21.2. Interface Support Functions
	SPIfnumber
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIfname
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIgetvalue
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIgetbinval
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIgettype
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIgettypeid
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIgetrelname
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Algorithm

	21.3. Memory Management
	SPIcopytuple
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIcopytupledesc
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIcopytupleintoslot
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPImodifytuple
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIpalloc
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIrepalloc
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIpfree
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIfreetuple
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIfreetuptable
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIfreeplan
	Name
	Synopsis
	Inputs
	Outputs

	Description

	21.4. Visibility of Data Changes
	21.5. Examples

	III. Procedural Languages
	Chapter 22. Procedural Languages
	22.1. Introduction
	22.2. Installing Procedural Languages

	Chapter 23. PL/pgSQL SQL Procedural Language
	23.1. Overview
	23.1.1. Advantages of Using PL/pgSQL
	23.1.1.1. Better Performance
	23.1.1.2. SQL Support
	23.1.1.3. Portability

	23.1.2. Developing in PL/pgSQL

	23.2. Structure of PL/pgSQL
	23.2.1. Lexical Details

	23.3. Declarations
	23.3.1. Aliases for Function Parameters
	23.3.2. Rowtypes
	23.3.3. Records
	23.3.4. Attributes
	23.3.5. RENAME

	23.4. Expressions
	23.5. Basic Statements
	23.5.1. Assignment
	23.5.2. SELECT INTO
	23.5.3. Executing an expression or query with no result
	23.5.4. Executing dynamic queries
	23.5.5. Obtaining result status

	23.6. Control Structures
	23.6.1. Returning from a function
	23.6.2. Conditionals
	23.6.2.1. IFTHEN
	23.6.2.2. IFTHENELSE
	23.6.2.3. IFTHENELSE IF
	23.6.2.4. IFTHENELSIFELSE

	23.6.3. Simple Loops
	23.6.3.1. LOOP
	23.6.3.2. EXIT
	23.6.3.3. WHILE
	23.6.3.4. FOR (integer forloop)

	23.6.4. Looping Through Query Results

	23.7. Cursors
	23.7.1. Declaring Cursor Variables
	23.7.2. Opening Cursors
	23.7.2.1. OPEN FOR SELECT
	23.7.2.2. OPEN FOR EXECUTE
	23.7.2.3. OPENing a bound cursor

	23.7.3. Using Cursors
	23.7.3.1. FETCH
	23.7.3.2. CLOSE

	23.8. Errors and Messages
	23.8.1. Exceptions

	23.9. Trigger Procedures
	23.10. Examples
	23.11. Porting from Oracle PL/SQL
	23.11.1. Main Differences
	23.11.1.1. Quote Me on That: Escaping Single Quotes

	23.11.2. Porting Functions
	23.11.3. Procedures
	23.11.4. Packages
	23.11.5. Other Things to Watch For
	23.11.5.1. EXECUTE
	23.11.5.2. Optimizing PL/pgSQL Functions

	23.11.6. Appendix
	23.11.6.1. Code for my instr functions

	Chapter 24. PL/Tcl Tcl Procedural Language
	24.1. Overview
	24.2. Description
	24.2.1. PL/Tcl Functions and Arguments
	24.2.2. Data Values in PL/Tcl
	24.2.3. Global Data in PL/Tcl
	24.2.4. Database Access from PL/Tcl
	24.2.5. Trigger Procedures in PL/Tcl
	24.2.6. Modules and the unknown command
	24.2.7. Tcl Procedure Names

	Chapter 25. PL/Perl Perl Procedural Language
	25.1. Overview
	25.2. Building and Installing PL/Perl
	25.3. Description
	25.3.1. PL/Perl Functions and Arguments
	25.3.2. Data Values in PL/Perl
	25.3.3. Database Access from PL/Perl
	25.3.4. Missing Features

	Chapter 26. PL/Python Python Procedural Language
	26.1. Introduction
	26.2. Installation
	26.3. Using PL/Python

	Bibliography
	SQL Reference Books
	PostgreSQLSpecific Documentation
	Proceedings and Articles

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	L
	N
	O
	P
	R
	S
	T
	U
	V

