Oracle

SQL Reference

Release 3 (8.1.7)

September 2000
Part No. A85397-01

ORACLE

SQL Reference, Release 3 (8.1.7)

Part No. A85397-01

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.
Primary Author: Diana Lorentz

Contributors: Dave Alpern, Vikas Arora, Lance Ashdown, Hermann Baer, Vladimir Barriere, Lucy
Burgess, Souripriya Das, Carolyn Gray, John Haydu, Thuvan Hoang, Wei Hu, Namit Jain, Hakan
Jakobsson, Bob Jenkins, Mark Johnson, Jonathan Klein, Susan Kotsovolos, Vishu Krishnamurthy,
Muralidhar Krishnaprasad, Paul Lane, Geoff Lee, Nina Lewis, Bryn Llewellyn, Phil Locke, David
McElhoes, Jack Melnick, Ari Mozes, Subramanian Muralidhar, Ravi Murthy, Sujatha Muthulingam,
Bruce Olsen, Alla S Pfauntsch, Tom Portfolio, Kevin Quinn, Ananth Raghavan, Den Raphaely, John
Russell, Anant Singh, Rajesh Sivaramasubramaniom, Roger Snowden, Jags Srinivisan, Sankar
Subramanian, Murali Thiyagarajah, Michael Tobie, AhnTuan Tran, Randy Urbano, Andy Witkowski,
Daniel Wong, Aravind Yalamanchi, Qin Yu, Fred Zemke, Mohamed Ziauddin

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark. Other names may be trademarks of their respective owners.

Contents

Y=g (o WO ET o 10 SO0] 1 110 01=1 01 £ xiii
o =) =01 < PSSR XV

1 Introduction

IS0z LI OKe] 0 \V/=] o1 1 0] 0 F- TR 1-5

2 Basic Elements of Oracle SQL

DATALYPES ...ttt bbb bt a e bt bt e e R e e Rt E £ e beeE e e b e R e e bt e R b e bt e bt bt e neeRe e e nnean 2-2
I =T = S 2-33
FOIMAL IMOAEIS ..ottt ettt et e et b s e e b e et et e nbe e 2-41
I L] PSR 2-57
(ST =0 Lo (o Tol0] 11812 0] 0 -SSR 2-59
L070]0 010 0 =T o | £ ST P PR OPP PR PRTR 2-66
DAatabase ODJECLSc.oiiiiiiie ittt bbb bbb bttt ae b b e 2-79
Schema Object Names and QUALITIEISoviiiiiiiic s 2-83
Syntax for Schema Objects and Parts in SQL Statements.........ccccccvvveveveievevieieiese e 2-88

3 Operators

Unary and Binary OPEratorsScccccieiiieiieieieese et ste st st ettt sae e e e esaetassesaesrestesresreses 3-2
e g=Tot=To (=] o (ot OSSOSO PRSPPI 3-2
AFTNMELIC OPEIATOIS ...ocviiiiiiiiiite bbb ettt ettt se bbb b 3-3
(070 o7z 1 (=T g T (o] g J @] o 1= -1 (o] SRS 3-4
(07e] ppl o= g [{o] AW @] 01T -1 (o] £ TN OSSOSO 3-5

Logical Operators: NOT, AND, ORcooiiiiiiie et e 3-11

Set Operators: UNION [ALL], INTERSECT, MINUScccoooiiiiniieiceeseeie e 3-12
Other BUilt-1N OPEIatOrScocv ittt st st eeneere s e aneerenrenns 3-16
USEr-DefiNed OPEIALOIScoiiiiiiieiiie et bbb bbbt ettt b e e st ene e 3-16
Functions

1@ T I U [Tod £] o ST 4-2
N = 1 TSRS 4-14
AACOS bbb bR e Rt AR R R R AR R e Rt R bbb bbbttt tenes 4-14
ADD _IMONTHS .ottt ettt et b et b et e b et e b et en et et nenbenes 4-15
N O 1 OSSPSR 4-16
ASTIN b bbbt R R R AR R Rt b e bbbttt enes 4-16
N N | OSSPSR 4-17
F N AN A TSRS 4-17
AV G b h b bR R e R R R R AR AR bRt R et bbbt bbbt 4-18
BFILENAIME ...ttt bbbttt bttt sttt nn e 4-19
2] 17N A OSSR 4-20
L3 = OO PSSRSO 4-21
CHARTOROWID ..ottt ettt ettt sttt sbene st nnns 4-21
L0 o | ST SRS 4-22
CONC AT ettt et ekt b e e bbbt e b bt e bRt e b e Rt e b et e b et e bt e ket e be st et e s b e be s b ebe b benn e 4-23
CONVERT ittt sttt sttt s b e b s b b e b e Rt be s e e b et e be e e bt e b et e be st et e st e be st ene st rennne 4-24
(01 1 SR SS 4-25
L0 @ 1 TSSOSO 4-26
101 @ 1] o ST TSPS 4-27
(0@ 118] N ST SR SS 4-27
COVAR _PORP . bbb bbbt b et btk ettt e bbb bbb 4-29
COVAR _SAIMP ..ottt sttt b et bbbt et e ettt s et et e bt et st re st nennns 4-31
(LU 1Y 1 I] 1 SRS 4-33
DENSE_RANK bbbttt bbb s bbbt b e bttt e e 4-34
DIEREF ...ttt et bbbt E bRt R bRt R AR R bbbt R bRttt n e tenen 4-35
D101 | SRR 4-36
EMPTY_[B | CILOB ..ottt ettt bbb 4-37
P et R et AR R R R R R bRt R Rt R et Ee st Ee bt renrne 4-38
FIRST _VALUE ..ottt ettt bttt ettt et renenn s 4-38

GREATEST ovvvveeooveoeeeseeeseesesessesesesseessssessessssseesseesessssseessseees s sssssseesss e eesssesessssseessesesssesssssssennnes 4-40
[e1=Y0 =11 N T 4-41
HEXTORAW oo ooveeeeoeee e eseeeeseseeeee s sssseessseee s esssesese e ee s sssseeseseees s sessseeesseeeessesesseeees 4-42
INTTCAP oo eeeeeeeeesee e e e essseeses e e s s s e s st s s s s s e s e e s 4-43
INSTR coovvveeeeeoeeeeeeeeeeeeseeesseeeeee e esesseesss e e e es e e e s st e e s e e e s s e 4-43
INSTRB ovvecoeeeeeeeeeeeeeeeeeeesseeeess e essseessseeese e esseeesee e ee s s s s et s e sss e ee e e ssee e 4-44
LAAG ovvvveeeoveeeeeeeeeeeeseeesseseeeee e esessesess e s e e st e ettt e 4-45
LAST DAY eooeoeveeeeeeoeeeeeeeeeeeeseeeeeeeeeses s sseseesseeee s e esss e e e st s ees s s eseseee s eeees s seeee 4-46
LAST VALUE .oovovvcooooeeeeeeeeeeseeeeoeeesesseesssssseessseeeass s ssssesssseeses s sssseeseseeesesessessseeessesessssessenees 4-47
LEAD ovvoocoooeeeeee e eeseeesseseee e esessesess e e s st e ettt enee 4-49
LEAST oo eeeeeseeesseeeeee e eeseseeses e eses e e s e et et 4-50
LENGTH oot eeeeeeeooeeeeseeeeeeeseeeeseseeses s essseessseeesse s esssessss e ees e sss s eesesesssssseeess e eeessesesseeees 4-51
LENGTHB oo oveveeeeoeeee e eeseesesssseeeeeseessssssesssssees s sssseesss e ee e ssesseeseseeeseeessessseeees e eseesesessenees 4-51
LN e eeeeeeeseeee e eeesse e ettt ettt et 4-52
LOG ovvvveeeeeeeeeeeeeeeeeseeesseeeeeee e eseseeses e e s s e e et e ettt 4-52
LOWIER ... eeeeeveeesseeesseeeeseesessessseee e sssseessss e sss e s e s s ess s eeesesseeees 4-53
LPAD ..o eeeeeeese e seseeeee ettt 4-53
LTRIM oo eeeeeeesseeeeeee e eseseessseesee s sssseessse e s esss e s e s s st eeses e eseseeeseeeeessesseeees 4-54
IMIAKE_REF oo voveeooo e eeseeseesos e sesseesses e sss et s e s s essssees e eeeseesesseeees 4-55
IVIAAX oo eeeeeeesse e s seeee et ettt e e 4-56
IVIIN oo eeeeeseeeee e s eeeses e e s e et e et et r e 4-58
IVIOD ovvveeeooeee e eeseeesseee e sesseeee e e e sttt eene 4-59
MONTHS_BETWEEN ..ocooovovveeeeeooeeeeseeeseeeeeessseesesssseesssssesssesesesssssssssseesesesssseseesessseeesssessssssessenee 4-60
NEW_TIIVIE «oeoovovecoeoeeeeeeeeeeeeeeeeses s essseesssseesse s ssss s eee s essseeseeeesesessessseeeseseesesessenees 4-61
INEXT DAY ooeeeeoveveeeroeeesseeeeseesessesssseeeesseessssssesssssessseseesssssesssseesesseesssssseeseseessesessssssseessesessesesseeees 4-62
NLS_CHARSET DECL_LEN ..coootereoeeeeeeeeoseeeesssseeeeesseeesesssesseesssssseeseseessseseesessseeessssssssssessenee 4-62
NLS_CHARSET D .oooeeeeeeeveeeoooeesesseesssseseosssseesssssssssssseessssesesssssssssseesssessssesssssssseeenssessssssessenees 4-63
NLS_CHARSET NAME ..oooovveoooooeeeeeeeeeeeeseessessssesessssssesssssesssssssssssssssessssssesessessssesssessssssesseoees 4-64
NLS_INITCAP ..o eeeeeveeeeoeeeeeeseeeeeseseess e essseeese e sssseese e s s eseseeee s eeeesesesseeees 4-64
NLS_LOWER .oovevvceeeeoeeeeeeeeeeeeeeeseseeseeseesssssseessssesasessesssssesssseesesssssssssseesessessessssessseeesseeseesesessenees 4-65
IS0 E OO 4-66
NLS_UPPER ..ooovvveceeeeoeesee e eeeseeeeeeseesee e sssseessseeee s essseessesese s sssseeseeeees s sessseeeeseeeesesessenee 4-67
INTILE covoovoveeeeeeeeeeeeseeesseseeses e eeseessssssesee s e essseessseeease e s s s e eee e e e s s ees s ese s eeeseesesserees 4-67
NUMTODSINTERVAL ..o seeeeeeeseessosesessssessssssesssssessssessssssssesssssssssssssssssseesseessssssessseees 4-69

vi

NV L ettt b bR bR R £ E bR £ E R R R £ R R RS £ £ bRt E bbb R et bRt et 4-71
INVL2 et 4-72
PERCENT _RANK .ttt bbbt bbbttt 4-73
POWER ..otttk bbb bbb bbbttt 4-74
RAINK et 4-74
RATIO_TO_REPORT ...ttt bbbttt bbbttt nntas 4-75
RAWTOHEX ...ttt bbb bbbt bbbt bbbt bbbt 4-76
R et r e 4-77
REFTOHEX ...ttt bbb b bbbt bbbttt 4-78
REGR_ (linear regression) FUNCLIONS ..o e 4-78
REPLACE ..ottt h et n e n et 4-85
ROUND (NUMDBEr fFUNCLION)c.oiici et 4-86
ROUND (date TUNCLION)oviiiieiiiiicie bbbt 4-87
ROW_NUMBER ..ottt 4-87
ROWIDTOCHAR ..ottt bbbt b bbbt b bbb bbb b et nnenas 4-89
RPAD .o R E R R bR R R R R bttt 4-89
RTRIM et r R Rt et neen et 4-90
SEGIN bbb bbb R E bR bRt bbbt bbb 4-90
S N bbb bR E b bR R £ R £ Rt R £ bt b et b bbb 4-91
SENH R 4-91
SOUNDEX ..ottt bbbt bbbt b e e bbb b bbbkt b s 4-92
T] TSSOSO OO TP P ST TR PSP SOPPSRPO 4-93
STDDEV ..t 4-93
STDDEV _POP ..kt b et bbbt b bbbkt b s 4-95
STDDEV _SAMP ..ttt bt bbbkttt 4-96
SUBSTR ettt 4-98
SUBSTRB ..ottt bbbt bbbt b e bbbkttt bbb 4-99
SUM bbb bR R R £ R bRttt bbb 4-99
SYS_CONTEXT oottt nren et n e nnanis 4-101
SYS_GUID bbbt b bbbttt bbb 4-105
SYSDIATE ..ot b bbb bbb R bbb bbbt 4-106
TAN R R R Rt 4-107
TANH bbb e b E bbbt 4-107
TO_CHAR (dAte CONVEISTON) ...viuiiviieieieiiieeie ettt sb ettt sttt bbbt sr e n e nnns 4-108

TO DATE ettt ettt ettt e ettt et e teebeeteebeebe et e s besbe et e besbe st et et e s ensereereaaearea 4-110
1 T 1 RSSO 4-111
TO MULTIE BYTE oottt sttt ae et e s te st e b e be s be st et et et et et e e eneessereaneateas 4-112
TO NUMBER ...ttt ettt ettt et te ettt e e besbe st e s besbesbesbeste st et et e s ensessereaneatens 4-112
TO _SINGLE _BYTE oottt sttt e testesbe st st e e b e te s et e s e e eneenanreaneanens 4-113
TRAINSLATE .ottt ettt se st eteebe et e e tesbe s b e s besbesbe st e ste st et esseseenseseereanearens 4-113
TRANSLATE ... USINGcoooiiicc ettt ettt sttt st sttt e nseraeraaaeerea 4-114
TRIM ettt et et e st e R e e R e e Rt R e e R e Re e R e Re Rt et e te e et et e e eneeneereaneane s 4-116
TRUNC (NUMDBET FUNCLION) ..iiiiiice ettt sttt st ne e te e steaneen 4-117
TRUNC (date FUNCLION) ..ottt bbbt 4-117
L1 0 PSS 4-118
UPPER ...ttt sttt st e et h e Ae Rt b et e be b e benbeea et e ae e et eteereeaeareeres 4-118
USER ettt bbb bbbt et e b et et eteeheeheebeebeebeebeebeebeete b e ete e et ereereeaeareatas 4-119
L] 8 1 I A PSS 4-120
VALUE ..ottt e ettt et e be b e et e be b e e b e be et e et et et et et et et eneeteeteerearenrn 4-121
VAR POP ettt sttt ettt te bt et e e be e be b e besbesbesbesbe et et et et ensereereeaeatea 4-122
VAR _SAIMP ettt et r et R e R R R R Rt ettt et e e e e e ene e e aneane s 4-123
VARIANC E ...ttt ettt et e et e e be e be s b e st e be st e st e be st et et e e eseenseseereenearenrs 4-125
WSIZE ..ottt ettt ettt et et ettt ae e ae et e e be e be b e be b et eebeete et et et et eneeteeteaaearea 4-126
ROUND and TRUNC Date FUNCLIONS ..ot e e ene e 4-127
User-Defined FUNCLIONSccooiiiiiiee ettt sttt ene e 4-128

Expressions, Conditions, and Queries

] £=1S1] T] SO SO PP P PP RTUR RPN 5-2
L070] o o 1) A To] o 1SS USROS PSRRI 5-15
(@ LU= g T=TI-TaTo IS U o Yo (U 1= =TSRSS 5-21

About SQL Statements

Summary of SQL STAatEMENTScccvieiiiire e e e enesresresrenes 6-2
Finding the SQL Statement for a Database TasK..........ccccceveiiiiiicc e 6-5

vii

7

SQL Statements:

ALTER CLUSTER to ALTER SYSTEM

8

ALTER CLUSTER ..ot 7-3
ALTER DATABASE ... e s 7-9
ALTER DIMENSION ...t nne 7-34
ALTER FUNGCTION ..ot ene e ene e 7-38
ALTER INDEX .. oo e e 7-40
ALTER JAVA ettt h e e et 7-58
ALTER MATERIALIZED VIEW ... 7-61
ALTER MATERIALIZED VIEW LOG ...t 7-76
ALTER OUTLINE .ot et nne 7-83
ALTER PACKAGE ..ottt et ene e ne e 7-85
ALTER PROCEDURE ...t e e 7-88
ALTER PROFILE ..ot e ettt ane 7-91
ALTER RESOURCE COST ..ottt e ene e 7-95
ALTER ROLE .o e e 7-98
ALTER ROLLBACK SEGMENT ..ottt 7-100
ALTER SEQUENCE ..ottt et e 7-103
ALTER SESSION ..o e 7-105
ALTER SYSTEM ..ot 7-127

SQL Statements:

ALTER TABLE to constraint_clause

viii

ALTER TABLE ... 8-2
ALTER TABLESPACE ... e e 8-67
ALTER TRIGGER ..ot e ettt ane 8-76
ALTER TYPE oo s 8-79
ALTER USER ... e e 8-88
ALTER VIEW .ottt e e et ane 8-94
ANALYZE ..o 8-96
ASSOCIATE STATISTICS ... s 8-110
AUD T Lttt 8-114
CALL e 8-128
COMMENT L e e 8-131
COMMIT et h e eE e r e b e b e e e eneer e 8-133

(oo] gy W= UL) ol = U0 T PSSR 8-136

9 SQL Statements:
CREATE CLUSTER to CREATE SEQUENCE

CREATE CLUSTER ...t ettt sr s 9-3
CREATE CONTEXT oottt nnees 9-13
CREATE CONTROLFILE ..ot 9-15
CREATE DATABASE ...t ettt sre 9-21
CREATE DATABASE LINK ..o 9-28
CREATE DIMENSION ...t e 9-34
CREATE DIRECTORY ..ottt e ettt sne 9-40
CREATE FUNGCTION ..ottt 9-43
CREATE INDEX ..o e s 9-52
CREATE INDEXTYPE ..ot e ettt 9-76
CREATE JAVA ettt et r et R e r e n e s et nn e nn e nn s 9-79
CREATE LIBRARY ..o e e e 9-86
CREATE MATERIALIZED VIEW ..ottt 9-88
CREATE MATERIALIZED VIEW LOG ..o 9-107
CREATE OPERATOR ..o e s 9-115
CREATE OUTLINE ..o e et 9-119
CREATE PACKAGE ..ot ene e 9-122
CREATE PACKAGE BODY ..ot 9-127
CREATE PROCEDURE ...ttt e 9-132
CREATE PROFILE ..ottt e s ene e 9-139
CREATE ROLE ... e e 9-146
CREATE ROLLBACK SEGMENT ..ot 9-149
CREATE SCHEMA ...ttt ettt e ene e 9-152
CREATE SEQUENCE ..ot s 9-155

10 SQL Statements:
CREATE SYNONYM to
DROP ROLLBACK SEGMENT

CREATE SYNONYM ..ottt nn s 10-3
CREATE TABLE ..o e e 10-7
CREATE TABLESPACE ...t e 10-56

CREATE TEMPORARY TABLESPACE ..o 10-63

CREATE TRIGGER ...t e 10-66
CREATE TYPE .ottt e 10-80
CREATE TYPE BODY ..ot e 10-93
CREATE USER ..ot 10-99
CREATE VIEW ..ttt 10-105
DELETE . oo 10-115
DISASSOCIATE STATISTICS ..ot 10-123
DROP CLUSTER ...ttt 10-126
DROP CONTEXT oo 10-128
DROP DATABASE LINK ..o 10-129
DROP DIMENSION ..ot 10-131
DROP DIRECTORY ... e 10-133
DROP FUNCTION .o 10-134
DROP INDEX ...ttt nn s 10-136
DROP INDEXTYPE ... e 10-138
DROP JAVA s 10-140
DROP LIBRARY ..ottt an et 10-142
DROP MATERIALIZED VIEW. ...t 10-143
DROP MATERIALIZED VIEW LOGoociiiiec e 10-145
DROP OPERATOR ...ttt 10-147
DROP OUTLINE ..o e 10-149
DROP PACKAGE ...t 10-150
DROP PROCEDURE ..ottt 10-152
DROP PROFILE ..o e 10-154
DROP ROLE ...ttt 10-156
DROP ROLLBACK SEGMENT ..ottt 10-157

11 SQL Statements:
DROP SEQUENCE to UPDATE

DROP SEQUENCE ...t e e 11-3
DROP SYNONYM L.ttt ane 11-5
DROP TABLE ..ot 11-7
DROP TABLESPACE ... e s 11-10
DROP TRIGGER ..o e e 11-13

DROP TYPE .o s 11-15

DROP TYPE BODY ..ooiiiitiiitiise ettt ettt bttt bbbttt b e bens 11-17
DROP USER ...ttt bbbttt bbb bbb e 11-19
DROP VIEW .ottt bbbttt bbb nenbns 11-21
G I N NI I NSO 11-23
2 = o PSS 11-27
GRAINT Lttt b ettt b et e be e et et e b e e e b e st e b e s e e b e et e b e ebe R e e b e s e et et b et e ebe e ene e 11-31
NS OO 11-51
LOCK TABLE ...ttt bbbt bttt ettt bbbt 11-62
[N @ 7N 6 5 1 i OSSR 11-66
RENAIME ...ttt sttt s b et s bt b et e b et et e e e be st et et e b et e be st e be st e r e st e ne b e renaens 11-71
REVOKE ...ttt et b et bbbtk ekt ekt et bbb b e s bbb re b e 11-73
ROLLBACK ettt st s b et s b et bt b et ettt ettt st et st e b st e s e st enenbenenbens 11-83
SAVEPOINT oottt b e et e e b e et et e besb et e st et e s b et e sbese et e s e e be e ebe e ete e eteneete e 11-86
SELECT @Nd SUBQUETY ...veeeeeeeceeese sttt sttt st e s e eneerenne e 11-88
SET CONSTRAINTIS] ooioiiiee ettt sttt sttt s bbbttt 11-120
SET ROLE ..ottt ettt et bbbt b et b b e bttt 11-122
SET TRANSACTION ittt et b e bbbt bt 11-125
R (0] Vo =B o) - 11 =SOSR 11-129
TRUNGCATE ..ottt a1ttt e bt et e st et e sb et e eb e s e et e seebe e ebe e ebe e ebeseate st ateseeteneas 11-137
UPDATE ..ottt bbb bbb bbbt btk ekt bbbttt 11-141

Syntax Diagrams

Oracle and Standard SQL

Conformance With Standard SQL ...t ebe e reene B-1
Oracle Extensions to Standard SQLcccveiiiiiiiiicce e B-5

Oracle Reserved Words

Xi

Xii

Send Us Your Comments

SQL Reference, Release 3 (8.1.7)
Part No. A85397-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Is the information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

« E-mail - infodev@us.oracle.com
« FAX-(650) 506-7228. Attn: Information Development
« Postal service:

Oracle Corporation

Server Technologies Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

US.A.

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

Xiii

Xiv

Preface

This reference contains a complete description of the Structured Query Language
(SQL) used to manage information in an Oracle database. Oracle SQL is a superset
of the American National Standards Institute (ANSI) and the International
Standards Organization (ISO) SQL92 standard at entry level conformance.

See Also:

« PL/SQL User’s Guide and Reference for information on PL/SQL,
Oracle’s procedural language extension to SQL

« Pro*C/C++ Precompiler Programmer’s Guide, SQL*Module for Ada
Programmer’s Guide, and the Pro*COBOL Precompiler
Programmer’s Guide for detailed descriptions of Oracle
embedded SQL

Features and Functionality

Oracle8i SQL Reference contains information about the features and functionality of
the Oracle8i and the Oracle8i Enterprise Edition products. Oracle8i and Oracle8i
Enterprise Edition have the same basic features. However, several advanced
features are available only with the Enterprise Edition, and some of these are
optional.

See Also: Getting to Know Oracle8i for information about the
differences between Oracle8i and the Oracle8i Enterprise Edition
and the available features and options. That book also describes all
the features that are new in Oracle8i.

XV

Audience

This reference is intended for all users of Oracle SQL.

What's New in Oracle8 /?

Each release of Oracle8i contains new features, many of which are documented
throughout this reference.

See Also: Getting to Know Oracle8i for a description of all features
new to this release

Release 3 (8.1.7)
The following SQL functions are new to this release:

« BITAND on page 4-20
« NVL2on page 4-72

Release 2 (8.1.6)
The following SQL functions are new to this release:

« CORR on page 4-25
. COVAR_POP

. COVAR _SAMP

. CUME_DIST

« DENSE_RANK

« FIRST_VALUE

= LAG

= LAST_VALUE
« LEAD

= NTILE

= NUMTOYMINTERVAL
= NUMTODSINTERVAL
« PERCENT_RANK

XVi

RATIO_TO_REPORT

REGR_ (linear regression) functions
STDDEV_POP

STDDEV_SAMP

VAR_POP

VAR_SAMP

In addition, the following features have been enhanced:

The aggregate functions have expanded functionality. See "Aggregate
Functions" on page 4-6.

When specifying LOB storage parameters, you can now specify caching of
LOBs for read-only purposes. See CREATE TABLE on page 10-7.

The section on Expressions now contains a new expression. See "CASE
Expressions” on page 5-14.

Subqueries can now be unnested. See "Unnesting of Nested Subqueries” on
page 5-28.

Release 8.1.5
The following top-level SQL statements are new to Release 8.1.5:

ALTER DIMENSION on page 7-34
ALTER JAVA on page 7-58

ALTER OUTLINE on page 7-83
ASSOCIATE STATISTICS on page 8-110
CALL on page 8-128

CREATE CONTEXT on page 9-13
CREATE DIMENSION on page 9-34
CREATE INDEXTYPE on page 9-76
CREATE JAVA on page 9-79

CREATE OPERATOR on page 9-115
CREATE OUTLINE on page 9-119
CREATE TEMPORARY TABLESPACE on page 10-63

Xvii

Organization

xViii

« DISASSOCIATE STATISTICS on page 10-123
« DROP CONTEXT on page 10-128

« DROP DIMENSION on page 10-131

« DROP INDEXTYPE on page 10-138

« DROP JAVA on page 10-140

« DROP OPERATOR on page 10-147

« DROP OUTLINE on page 10-149

This reference is divided into the following parts:

Chapter 1, "Introduction”

This chapter defines SQL and describes its history as well as the advantages of
using it to access relational databases.

Chapter 2, "Basic Elements of Oracle SQL"

This chapter describes the basic building blocks of an Oracle database and of
Oracle SQL.

Chapter 3, "Operators"

This chapter describes how to use SQL operators to combine data into expressions
and conditions.

Chapter 4, "Functions”

This chapter describes how to use SQL functions to combine data into expressions
and conditions.

Chapter 5, "Expressions, Conditions, and Queries"

This chapter describes SQL expressions and conditions and discusses the various
ways of extracting information from your database through queries.

Chapter 6, "About SQL Statements"

This chapter lists the various types of SQL statements, and provides a table to help
you find the appropriate SQL statement for your database task.

Chapter 7, "SQL Statements: ALTER CLUSTER to ALTER SYSTEM"
Chapter 8, "SQL Statements: ALTER TABLE to constraint_clause”
Chapter 9, "SQL Statements: CREATE CLUSTER to CREATE SEQUENCE"

Chapter 10, "SQL Statements: CREATE SYNONYM to DROP ROLLBACK
SEGMENT"

Chapter 11, "SQL Statements: DROP SEQUENCE to UPDATE"
These chapters list and describe all Oracle SQL statements in alphabetical order.

Appendix A, "Syntax Diagrams"
This appendix describes how to read the syntax diagrams in this reference.

Appendix B, "Oracle and Standard SQL"
This appendix describes Oracle compliance with ANSI and 1SO standards.

Appendix C, "Oracle Reserved Words"
This appendix lists words that are reserved for internal use by Oracle.

Structural Changes in the Reference in Release 8.1.7

The chapter containing all SQL statements (formerly Chapter 7) has been divided
into four chapters for printing purposes.

The following top-level SQL statements have been revised in Release 8.1.7:

« The two SQL statements GRANTobject_privileges and GRANT
system_privileges_and_roles have been combined into one GRANT
statement. See GRANT on page 11-31.

« The two SQL statements REVOKEschema_object_privileges and REVOKE
system_privileges_and_roles have been combined into one REVOKE

statement. See REVOKE on page 11-73.

« The two SQL statements AUDIT sql_statements and AUDIT
schema_objects have been combined into one AUDIT statement. See AUDIT
on page 8-114.

« Thetwo SQL statements NOAUDITsq!_statements and NOAUDIT
schema_objects have been combined into one NOAUDITstatement. See
NOAUDIT on page 11-66.

Xix

XX

Structural Changes in the Reference in Release 8.1.5

Users familiar with the Release 8.0 documentation will find that the following
sections have been moved or renamed:

The section "Format Models" now appears in Chapter 2 on page 2-41.
Chapter 3 has been divided into several smaller chapters:

« Chapter 3, "Operators"

« Chapter 4, "Functions"

« Chapter 5, "Expressions, Conditions, and Queries". The last section,
"Queries and Subqueries" on page 5-21, provides background for the
syntactic and semantic information in SELECT and subquery on page 11-88.

A new chapter, Chapter 6, "About SQL Statements"”, has been added to help you
find the correct SQL statement for a particular task.

The archive _log clause is no longer a separate section, but has been
incorporated into ALTER SYSTEM on page 7-127.

The deallocate _unused_clause is no longer a separate section, but has
been incorporated into ALTER TABLE on page 8-2, ALTER CLUSTER on
page 7-3, and ALTER INDEX on page 7-40.

The disable_clause is no longer a separate section, but has been
incorporated into CREATE TABLE on page 10-7 and ALTER TABLE on
page 8-2.

The drop_clause is no longer a separate section. It has become the
drop_constraint_clause of the ALTER TABLEstatement (to distinguish it
from the new drop_column_clause of that statement). See ALTER TABLE on
page 8-2.

The enable_clause s no longer a separate section, but has been incorporated
into CREATE TABLE on page 10-7 and ALTER TABLE on page 8-2.

The parallel_clause is no longer a separate section. The clause has been
simplified, and has been incorporated into the various statements where it is
relevant.

The recover_clause is no longer a separate section. Recovery functionality
has been enhanced, and because it is always implemented through the ALTER
DATABASEtatement, it has been incorporated into that section. See ALTER
DATABASE on page 7-9.

« The sections on snapshots and snapshot logs have been moved and renamed.
Snapshot functionality has been greatly enhanced, and these objects are now
called materialized views. See CREATE MATERIALIZED VIEW on page 9-88,
ALTER MATERIALIZED VIEW on page 7-61, DROP MATERIALIZED VIEW
on page 10-143, "CREATE MATERIALIZED VIEW LOG" on page 9-107, ALTER
MATERIALIZED VIEW LOG on page 7-76, and DROP MATERIALIZED VIEW
LOG on page 10-145.

« The section on subgueries has now been combined with the SELECTstatement.
See SELECT and subquery on page 11-88.

Conventions Used in this Reference
This section explains the conventions used in this book including:
« Text
« Syntax Diagrams and Notation
« Code Examples

« Example Data

Text

The text in this reference adheres to the following conventions:

UPPERCASE Uppercase text calls attention to SQL keywords,
filenames, and initialization parameters.

italics Italicized text calls attention to parameters of SQL
statements.

boldface Boldface text calls attention to definitions of terms.

Syntax Diagrams and Notation

Syntax Diagrams This reference uses syntax diagrams to show SQL statements in
Chapter 7 through Chapter 11, and to show other elements of the SQL language in
Chapter 2, “Basic Elements of Oracle SQL”; Chapter 3, “Operators”; Chapter 4,
“Functions”; and Chapter 5, “Expressions, Conditions, and Queries”. These syntax
diagrams use lines and arrows to show syntactic structure, as shown here:

XXi

XXii

WORK
COMMIT O

If you are not familiar with this type of syntax diagram, refer to Appendix A,
“Syntax Diagrams”, for a description of how to read them. This section describes
the components of syntax diagrams and gives examples of how to write SQL
statements. Syntax diagrams are made up of these items:

Keywords Keywords have special meanings in the SQL language. In the syntax
diagrams, keywords appear in UPPERCASE. You must use keywords in your SQL
statements exactly as they appear in the syntax diagram, except that they can be
either uppercase or lowercase. For example, you must use the CREATEkeyword to
begin your CREATE TABLEtatements just as it appears in the CREATE TABLE
syntax diagram.

Parameters Parameters act as placeholders in syntax diagrams. They appear in
lowercase. Parameters are usually names of database objects, Oracle datatype
names, or expressions. When you see a parameter in a syntax diagram, substitute an
object or expression of the appropriate type in your SQL statement. For example, to
write a CREATE TABLEtatement, use the name of the table you want to create,
such as emp, in place of the table parameter in the syntax diagram. (Note that
parameter names appear in italics in the text.)

Code Examples

This reference contains many examples of SQL statements. These examples show
you how to use elements of SQL. The following example shows a CREATE TABLE
statement:

CREATE TABLE accounts
(accno NUMBER,
owner VARCHARZ2(10),
balance NUMBER(7,2));

Code examples appear in a different font than the text.
Examples follow these conventions:

« Keywords, such as CREATEand NUMBERappear in uppercase.

« Names of database objects and their parts, such as accounts and accno ,
appear in lowercase.

« PL/SQL blocks appear in italics. Keywords and parameters in these blocks may
not be documented in this reference unless they are also SQL keywords and
parameters. For more information see PL/SQL User’s Guide and Reference.

Many examples assume the existence of objects that are not created in the example
itself. The examples will not work as expected unless you first create those
underlying objects.

SQL is not case sensitive (except for quoted identifiers), so you need not follow
these conventions when writing your own SQL statements. However, your
statements may be easier for you to read if you do.

Some Oracle tools require you to terminate SQL statements with a special character.
For example, the code examples in this reference were issued through SQL*Plus,
and therefore are terminated with a semicolon (;). If you issue these example
statements to Oracle, you must terminate them with the special character expected
by the Oracle tool you are using.

Example Data

Many examples in this reference operate on sample tables. The definitions of some
of these tables appear in a SQL script available on your distribution medium. On
most operating systems the name of this script is UTLSAMPL.SQL, although its exact
name and location depend on your operating system. This script creates sample
users and creates these sample tables in the schema of the user scott (password
tiger):

CREATE TABLE dept
(deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,
dname VARCHAR2(14),
loc VARCHAR2(13));
CREATE TABLE emp
(empno NUMBER(4) CONSTRAINT pk_emp PRIMARY KEY,
ename VARCHAR2(10),
job VARCHAR2(9),
magr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2) CONSTRAINT fk_deptno REFERENCES dept);
CREATE TABLE bonus
(ename VARCHARZ2(10),

XXili

XXiV

job VARCHARZ2(9),
sal NUMBER,
comm NUMBER);
CREATE TABLE salgrade
(grade NUMBER,
losal NUMBER,
hisal NUMBER);

The script also fills the sample tables with this data:
SELECT * FROM dept;

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

SELECT * FROM emp;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900 JAMES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

SELECT * FROM salgrade;

GRADE LOSAL HISAL
1 700 1200
2 1201 1400
3 1401 2000

4 2001 3000
5 3001 9999

The bonus table does not contain any data.

To perform all the operations of the script, run it when you are logged into Oracle as
the user SYSTEM

XXV

XXVi

1

Introduction

Structured Query Language (SQL) is the set of statements with which all programs
and users access data in an Oracle database. Application programs and Oracle tools
often allow users access to the database without using SQL directly, but these
applications in turn must use SQL when executing the user’s request. This chapter
provides background information on SQL as used by most relational database
systems.

This chapter contains these topics:
« History of SQL

« SQL Standards

« Embedded SQL

« Lexical Conventions

« Tools Support

Introduction 1-1

History of SQL

SQL Standards

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared
Data Banks", in June 1970 in the Association of Computer Machinery (ACM)
journal, Communications of the ACM. Codd’s model is now accepted as the definitive
model for relational database management systems (RDBMS). The language,
Structured English Query Language ("SEQUEL") was developed by IBM
Corporation, Inc., to use Codd’s model. SEQUEL later became SQL (still
pronounced "sequel™). In 1979, Relational Software, Inc. (now Oracle Corporation)
introduced the first commercially available implementation of SQL. Today, SQL is
accepted as the standard RDBMS language.

Oracle Corporation strives to comply with industry-accepted standards and
participates actively in SQL standards committees. Industry-accepted committees
are the American National Standards Institute (ANSI) and the International
Standards Organization (ISO), which is affiliated with the International
Electrotechnical Commission (IEC). Both ANSI and the ISO/IEC have accepted SQL
as the standard language for relational databases. When a new SQL standard is
simultaneously published by these organizations, the names of the standards
conform to conventions used by the organization, but the standards are technically
identical.

The latest SQL standard was adopted in July 1999 and is often called SQL-99. The
formal names of this standard are:

« ANSI X3.135-1999, "Database Language SQL", Parts 1 ("Framework"), 2
("Foundation™), and 5 ("Bindings")

« ISO/IEC 9075:1999, "Database Language SQL", Parts 1 ("Framework"), 2
("Foundation™), and 5 ("Bindings")

SQL-99 replaced the previous version of the standard, commonly known as SQL-92.
SQL-99 is an upward compatible extension of SQL-92, except for a few minor
incompatibilities noted in Annex E of Part 2, "Foundation,” of SQL-99.

SQL-92 defined four levels of compliance: Entry, Transitional, Intermediate, and
Full. A conforming SQL implementation must support at least Entry SQL. Oracle8i
fully supports Entry SQL as outlined in Federal Information Processing Standard
(FIPS) PUB 127-2, and has many features that conform to Transitional, Intermediate,
or Full SQL.

The minimal conformance level for SQL-99 is known as Core. Core SQL-99 is a
superset of SQL-92 Entry Level specification. Oracle8i also is broadly compatible

1-2 SQL Reference

with the SQL-99 Core specification. However, some SQL-99 Core features are not
currently implemented in Oracle8i or differ from the Oracle8i implementation.
Oracle Corporation is committed to fully supporting SQL-99 Core functionality in a
future release, while providing upward compatibility for existing applications.

See Also: Appendix B, "Oracle and Standard SQL" for more
information about Oracle and standard SQL

How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface
to a relational database such as Oracle, and all SQL statements are instructions to
the database. In this SQL differs from general-purpose programming languages like
C and BASIC. Among the features of SQL are the following:

« It processes sets of data as groups rather than as individual units.
« It provides automatic navigation to the data.

« It uses statements that are complex and powerful individually, and that
therefore stand alone. Flow-control statements were not part of SQL originally,
but they are found in the recently accepted optional part of SQL, ISO/IEC 9075-
5: 1996. Flow-control statements are commonly known as "persistent stored
modules" (PSM), and Oracle’s PL/SQL extension to SQL is similar to PSM.

Essentially, SQL lets you work with data at the logical level. You need to be
concerned with the implementation details only when you want to manipulate the
data. For example, to retrieve a set of rows from a table, you define a condition used
to filter the rows. All rows satisfying the condition are retrieved in a single step and
can be passed as a unit to the user, to another SQL statement, or to an application.
You need not deal with the rows one by one, nor do you have to worry about how
they are physically stored or retrieved. All SQL statements use the optimizer, a part
of Oracle that determines the most efficient means of accessing the specified data.
Oracle also provides techniques that you can use to make the optimizer perform its
job better.

SQL provides statements for a variety of tasks, including:
« Querying data
« Inserting, updating, and deleting rows in a table

« Creating, replacing, altering, and dropping objects

Introduction 1-3

« Controlling access to the database and its objects
« Guaranteeing database consistency and integrity

SQL unifies all of the above tasks in one consistent language.

Common Language for All Relational Databases

All major relational database management systems support SQL, so you can
transfer all skills you have gained with SQL from one database to another. In
addition, all programs written in SQL are portable. They can often be moved from
one database to another with very little modification.

Embedded SQL

Embedded SQL refers to the use of standard SQL statements embedded within a
procedural programming language. The embedded SQL statements are
documented in the Oracle precompiler books.

Embedded SQL is a collection of these statements:

« All SQL commands, such as SELECTand INSERT, available with SQL with
interactive tools

« Dynamic SQL execution commands, such as PREPAREnd OPENwhich
integrate the standard SQL statements with a procedural programming
language

Embedded SQL also includes extensions to some standard SQL statements.
Embedded SQL is supported by the Oracle precompilers. The Oracle precompilers
interpret embedded SQL statements and translate them into statements that can be
understood by procedural language compilers.

Each of these Oracle precompilers translates embedded SQL programs into a
different procedural language:

« Pro*C/C++ precompiler

« Pro*COBOL precompiler

« SQL*Module for ADA
See Also: ,SQL*Module for Ada Programmer’s Guide, Pro*C/C++
Precompiler Programmer’s Guide, and Pro*COBOL Precompiler

Programmer’s Guide for a definition of the Oracle precompilers and
the embedded SQL statements

1-4 SQL Reference

Lexical Conventions

Lexical Conventions

Tools Support

The following lexical conventions for issuing SQL statements apply specifically to
Oracle’s implementation of SQL, but are generally acceptable in other SQL
implementations.

When you issue a SQL statement, you can include one or more tabs, carriage
returns, spaces, or comments anywhere a space occurs within the definition of the
statement. Thus, Oracle evaluates the following two statements in the same manner:

SELECT ENAME,SAL*12, MONTHS_BETWEEN(HIREDATE,SYSDATE) FROM EMP;

SELECT ENAME,
SAL * 12,
MONTHS_BETWEEN(HIREDATE, SYSDATE)
FROM EMP;

Case is insignificant in reserved words, keywords, identifiers and parameters.
However, case is significant in text literals and quoted names.

See Also: "Text" on page 2-33 for a syntax description

Most (but not all) Oracle tools support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using
does not support this complete functionality, you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User’s Guide and
Reference.

If you are using Trusted Oracle, see your Trusted Oracle documentation for
information about SQL statements specific to that environment.

Introduction 1-5

Lexical Conventions

1-6 SQL Reference

2

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.
These elements are simplest building blocks of SQL statements. Therefore, before
using the statements described in Chapter 7 through Chapter 11, you should
familiarize yourself with the concepts covered in this chapter, as well as in

Chapter 3, "Operators”, Chapter 4, "Functions", Chapter 5, "Expressions, Conditions,
and Queries", and Chapter 6, "About SQL Statements".

This chapter contains these sections:

Datatypes

Literals

Format Models

Nulls

Pseudocolumns

Comments

Database Objects

Schema Object Names and Qualifiers

Syntax for Schema Objects and Parts in SQL Statements

Basic Elements of Oracle SQL 2-1

Datatypes

Datatypes

Each value manipulated by Oracle has a datatype. A value’s datatype associates a
fixed set of properties with the value. These properties cause Oracle to treat values
of one datatype differently from values of another. For example, you can add values
of NUMBERIatatype, but not values of RAWHatatype.

When you create a table or cluster, you must specify a datatype for each of its
columns. When you create a procedure or stored function, you must specify a
datatype for each of its arguments. These datatypes define the domain of values
that each column can contain or each argument can have. For example, DATE
columns cannot accept the value February 29 (except for a leap year) or the values 2
or 'SHOE’. Each value subsequently placed in a column assumes the column’s
datatype. For example, if you insert '01-JAN-98" into a DATEcolumn, Oracle treats
the '01-JAN-98’ character string as a DATEvalue after verifying that it translates to a
valid date.

Oracle provides a number of built-in datatypes as well as several categories for
user-defined types, as shown in Figure 2-1.

2-2 SQL Reference

Datatypes

Figure 2—-1 Oracle Type Categories

Built-in Datatypes

User-defined type category

4(structured type category
L(object types
4(collection type category

varrays

N7 7 N7 U N

nested tables

4(REFS (to object types) >

The syntax of the Oracle built-in datatypes appears in the next diagram. Table 2-1
summarizes Oracle built-in datatypes. The rest of this section describes these
datatypes as well as the various kinds of user-defined types.

I

Note: The Oracle precompilers recognize other datatypes in embedded
SQL programs. These datatypes are called external datatypes and are
associated with host variables. Do not confuse built-in and user-defined
datatypes with external datatypes. For information on external datatypes,
including how Oracle converts between them and built-in or user-defined
datatypes, see Pro*COBOL Precompiler Programmer’s Guide, Pro*C/C++
Precompiler Programmer’s Guide, and SQL*Module for Ada Programmer’s Guide.

Basic Elements of Oracle SQL 2-3

Datatypes

built-in datatypes:

CHAR 0@
[(D)
Nerar H(O(size)()
| NvARCHAR2 [Oh(size o)

(D(seale)

precision %
NUMBER

LONG

)

i

LONG RAW

L RAW ROz) L,

DATE

B

BLOB

ElEHE

CLOB

BFILE

UROWID

ANSI_supported_types

| BFE

|

The ANSI-supported datatypes appear in the figure that follows. Table 2-2 shows
the mapping of ANSI-supported datatypes to Oracle build-in datatypes.

2-4 SQL Reference

Datatypes

ANSI-supported datatypes:

H cHarRACTER 1 vARYING
- cHar 1 varvinG
- NATIONAL [CHARACTER
- NATIONAL [cHAR
- NATIONAL [CHARACTER |} VARYING
H NaTIoNAL Hf cHAR [VARYING
H NeHAR [VARYING

NUMERIC
DECIMAL

e LOED o
DEC
—| INTEGER

INT
—| SMALLINT
—| FLOAT

—| DOUBLE |->| PRECISION |

|
¥| REAL

Basic Elements of Oracle SQL 2-5

Datatypes

Table 2-1 Built-In Datatype Summary

Code? Built-In Datatype

Description

1 VARCHAR26ize)
1 NVARCHAR2¢ize)
2 NUMBERG,s)

8 LONG

12 DATE

23 RAWGize)

24 LONG RAW

69 ROWID

208 UROWID [(size)]

96 CHAR(size)

Variable-length character string having maximum
length size bytes. Maximum size is 4000, and
minimum is 1. You must specify size for
VARCHAR2

Variable-length character string having maximum
length size characters or bytes, depending on the
choice of national character set. Maximum size is
determined by the number of bytes required to store
each character, with an upper limit of 4000 bytes.
You must specify size for NVARCHAR2

Number having precision p and scale s . The
precision p can range from 1 to 38. The scale s can
range from -84 to 127.

Character data of variable length up to 2 gigabytes,
or 281 -1 bytes.

Valid date range from January 1, 4712 BC to
December 31, 9999 AD.

Raw binary data of length size bytes. Maximum
size is 2000 bytes. You must specify size fora RAW
value.

Raw binary data of variable length up to 2
gigabytes.

Hexadecimal string representing the unique address
of a row in its table. This datatype is primarily for
values returned by the ROWIDpseudocolumn.

Hexadecimal string representing the logical address
of a row of an index-organized table. The optional
size is the size of a column of type UROWIDThe
maximum size and default is 4000 bytes.

Fixed-length character data of length size bytes.
Maximum size is 2000 bytes. Default and
minimum size is 1 byte.

& The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMRunction.

2-6 SQL Reference

Datatypes

Table 2-1 (Cont.) Built-In Datatype Summary

Code? Built-In Datatype Description

96 NCHARGize) Fixed-length character data of length size
characters or bytes, depending on the choice of
national character set. Maximum size is
determined by the number of bytes required to store
each character, with an upper limit of 2000 bytes.
Default and minimum size is 1 character or 1 byte,
depending on the character set.

112 CLOB A character large object containing single-byte
characters. Both fixed-width and variable-width
character sets are supported, both using the CHAR
database character set. Maximum size is 4 gigabytes.

112 NCLOB A character large object containing multibyte
characters. Both fixed-width and variable-width
character sets are supported, both using the NCHAR
database character set. Maximum size is 4 gigabytes.
Stores national character set data.

113 BLOB A binary large object. Maximum size is 4 gigabytes.

114 BFILE Contains a locator to a large binary file stored
outside the database. Enables byte stream 1/0
access to external LOBs residing on the database
server. Maximum size is 4 gigabytes.

@ The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMRunction.

Character Datatypes

Character datatypes store character (alphanumeric) data, which are words and free-
form text, in the database character set or national character set. They are less
restrictive than other datatypes and consequently have fewer properties. For
example, character columns can store all alphanumeric values, but NUMBER
columns can store only numeric values.

Character data is stored in strings with byte values corresponding to one of the
character sets, such as 7-bit ASCII or EBCDIC, specified when the database was
created. Oracle supports both single-byte and multibyte character sets.

These datatypes are used for character data:
« CHAR Datatype
« NCHAR Datatype

Basic Elements of Oracle SQL 2-7

Datatypes

« NVARCHAR?2 Datatype
« VARCHAR?2 Datatype

CHAR Datatype

The CHARdatatype specifies a fixed-length character string. When you create a table
with a CHARcolumn, you supply the column length in bytes. Oracle subsequently
ensures that all values stored in that column have this length. If you insert a value
that is shorter than the column length, Oracle blank-pads the value to column
length. If you try to insert a value that is too long for the column, Oracle returns an
error.

The default length for a CHARcolumn is 1 character and the maximum allowed is
2000 characters. A zero-length string can be inserted into a CHARcolumn, but the
column is blank-padded to 1 character when used in comparisons.

See Also: "Datatype Comparison Rules” on page 2-26 for
information on comparison semantics

Note: To ensure proper data conversion between databases with
different character sets, you must ensure that CHARdata consists of
well-formed strings. See Oracle8i National Language Support Guide
for more information on character set support.

NCHAR Datatype

The NCHARJatatype specifies a fixed-length national character set character string.
When you create a table with an NCHARolumn, you define the column length
either in characters or in bytes. You define the national character set when you
create your database.

If the national character set of the database is fixed width, such as JAI6EUCFIXED,
then you declare the NCHARolumn size as the number of characters desired for the
string length. If the national character set is variable width, such as JA16SJIS, you
declare the column size in bytes. The following statement creates a table with one
NCHARoolumn that can store strings up to 30 characters in length using
JA16EUCFIXED as the national character set:

CREATE TABLE tab1 (coll NCHAR(30));

The column’s maximum length is determined by the national character set
definition. Width specifications of character datatype NCHARefer to the number of

2-8 SQL Reference

Datatypes

characters if the national character set is fixed width and refer to the number of
bytes if the national character set is variable width. The maximum column size
allowed is 2000 bytes. For fixed-width, multibyte character sets, the maximum
length of a column allowed is the number of characters that fit into no more than
2000 bytes.

If you insert a value that is shorter than the column length, Oracle blank-pads the
value to column length. You cannot insert a CHARvalue into an NCHARolumn, nor
can you insert an NCHARralue into a CHARcolumn.

The following example compares the coll column of tabl with national character
set string 'NCHAR literal’;

SELECT * FROM tabl WHERE coll = N'NCHAR literal’;

NVARCHAR?Z Datatype

The NVARCHAR#®&atatype specifies a variable-length national character set character
string. When you create a table with an NVARCHARRolumn, you supply the
maximum number of characters or bytes it can hold. Oracle subsequently stores
each value in the column exactly as you specify it, provided the value does not
exceed the column’s maximum length.

The column’s maximum length is determined by the national character set
definition. Width specifications of character datatype NVARCHAREefer to the
number of characters if the national character set is fixed width and refer to the
number of bytes if the national character set is variable width. The maximum
column size allowed is 4000 bytes. For fixed-width, multibyte character sets, the
maximum length of a column allowed is the number of characters that fit into no
more than 4000 bytes.

The following statement creates a table with one NVARCHAR2olumn of 2000
characters in length (stored as 4000 bytes, because each character takes two bytes)
using JA16EUCFIXED as the national character set:

CREATE TABLE tabl (coll NVARCHAR2(2000));

VARCHAR?2 Datatype

The VARCHARZ2latatype specifies a variable-length character string. When you
create a VARCHARZ2olumn, you supply the maximum number of bytes of data that
it can hold. Oracle subsequently stores each value in the column exactly as you
specify it, provided the value does not exceed the column’s maximum length. If you
try to insert a value that exceeds the specified length, Oracle returns an error.

Basic Elements of Oracle SQL 2-9

Datatypes

You must specify a maximum length for a VARCHAR2olumn. This maximum must
be at least 1 byte, although the actual length of the string stored is permitted to be
zero. The maximum length of VARCHAR®ata is 4000 bytes. Oracle compares
VARCHAR®alues using nonpadded comparison semantics.

See Also: "Datatype Comparison Rules" on page 2-26 for
information on comparison semantics

Note: To ensure proper data conversion between databases with
different character sets, you must ensure that VARCHAR2lata
consists of well-formed strings. See Oracle8i National Language
Support Guide for more information on character set support.

VARCHAR Datatype

The VARCHAR datatype is currently synonymous with the VARCHAR2latatype.
Oracle recommends that you use VARCHARZ2ather than VARCHARIN the future,
VARCHAR might be defined as a separate datatype used for variable-length
character strings compared with different comparison semantics.

NUMBER Datatype

The NUMBERIatatype stores zero, positive, and negative fixed and floating-point
numbers with magnitudes between 1.0 x 103 and 9.9...9 x 10'%° (38 nines followed
by 88 zeroes) with 38 digits of precision. If you specify an arithmetic expression
whose value has a magnitude greater than or equal to 1.0 x 10126 Oracle returns an
error.

Specify a fixed-point number using the following form:
NUMBER(p,s)

where:

« pisthe precision, or the total number of digits. Oracle guarantees the
portability of numbers with precision ranging from 1 to 38.

« Sisthe scale, or the number of digits to the right of the decimal point. The scale
can range from -84 to 127.

Specify an integer using the following form:

2-10 SQL Reference

Datatypes

« NUMBER(p)is a fixed-point number with precision p and scale 0. This is
equivalent to NUMBER(p,0) .

Specify a floating-point number using the following form:
« NUMBER a floating-point number with decimal precision 38. Note that a scale
value is not applicable for floating-point numbers.

See Also: "Floating-Point Numbers" on page 2-12

Scale and Precision

Specify the scale and precision of a fixed-point number column for extra integrity
checking on input. Specifying scale and precision does not force all values to a fixed
length. If a value exceeds the precision, Oracle returns an error. If a value exceeds
the scale, Oracle rounds it.

The following examples show how Oracle stores data using different precisions and
scales.

Actual Data Specified As Stored As
7456123.89 NUMBER 7456123.89
7456123.89 NUMBER(9) 7456124
7456123.89 NUMBER(9,2) 7456123.89
7456123.89 NUMBER(9,1) 7456123.9
7456123.89 NUMBER(6) exceeds precision
7456123.89 NUMBER(7,-2) 7456100
7456123.89 NUMBER(-7,2) exceeds precision

Negative Scale

If the scale is negative, the actual data is rounded to the specified number of places
to the left of the decimal point. For example, a specification of (10,-2) means to
round to hundreds.

Scale Greater than Precision

You can specify a scale that is greater than precision, although it is uncommon. In
this case, the precision specifies the maximum number of digits to the right of the
decimal point. As with all number datatypes, if the value exceeds the precision,
Oracle returns an error message. If the value exceeds the scale, Oracle rounds the

Basic Elements of Oracle SQL 2-11

Datatypes

value. For example, a column defined as NUMBER(4,5) requires a zero for the first
digit after the decimal point and rounds all values past the fifth digit after the
decimal point. The following examples show the effects of a scale greater than
precision:

Actual Data Specified As Stored As
.01234 NUMBER(4,5) .01234
.00012 NUMBER(4,5) .00012
.000127 NUMBER(4,5) .00013
.0000012 NUMBER(2,7) .0000012
.00000123 NUMBER(2,7) .0000012

Floating-Point Numbers

Oracle allows you to specify floating-point numbers, which can have a decimal
point anywhere from the first to the last digit or can have no decimal point at all. A
scale value is not applicable to floating-point numbers, because the number of digits
that can appear after the decimal point is not restricted.

You can specify floating-point numbers with the form discussed in "NUMBER
Datatype" on page 2-10. Oracle also supports the ANSI datatype FLOAT You can
specify this datatype using one of these syntactic forms:

« FLOATSspecifies a floating-point number with decimal precision 38, or binary
precision 126.

« FLOAT(b) specifies a floating-point number with binary precision b. The
precision b can range from 1 to 126. To convert from binary to decimal
precision, multiply b by 0.30103. To convert from decimal to binary precision,
multiply the decimal precision by 3.32193. The maximum of 126 digits of binary
precision is roughly equivalent to 38 digits of decimal precision.

LONG Datatype

LONGCecolumns store variable-length character strings containing up to 2 gigabytes,
or 231-1 bytes. LONGcolumns have many of the characteristics of VARCHAR2
columns. You can use LONCGcolumns to store long text strings. The length of LONG
values may be limited by the memory available on your computer.

2-12 SQL Reference

Datatypes

Note: Oracle Corporation strongly recommends that you convert
LONGcolumns to LOB columns. LOB columns are subject to far
fewer restrictions than LONGcolumns. See "TO_LOB" on page 4-111
for more information.

You can reference LONGcolumns in SQL statements in these places:

SELECTlists
SET clauses of UPDATEstatements
VALUESclauses of INSERT statements

The use of LONGvalues is subject to some restrictions:

A table cannot contain more than one LONGcolumn.
You cannot create an object type with a LONGattribute.

LONGCcolumns cannot appear in integrity constraints (except for NULLand NOT
NULL constraints).

LONGCcolumns cannot be indexed.
A stored function cannot return a LONGvalue.

Within a single SQL statement, all LONCGcolumns, updated tables, and locked
tables must be located on the same database.

LONGcolumns cannot appear in certain parts of SQL statements:

WHERElauses, GROUP B¥lauses, ORDER B¥lauses, or CONNECT B¥lauses or
with the DISTINCT operator in SELECTstatements

The UNIQUEoperator of a SELECTstatement

The column list of a CREATE CLUSTERatement

The CLUSTER:lause of a CREATE MATERIALIZED VIEV§tatement
SQL functions (such as SUBSTRor INSTR)

Expressions or conditions

SELECTIists of queries containing GROUP B¥lauses

SELECTIists of subqueries or queries combined by the UNION INTERSECT or
MINUSset operators

Basic Elements of Oracle SQL 2-13

Datatypes

« SELECTIists of CREATE TABLE. AS SELECTstatements

« SELECTIists in subqueries in INSERT statements

Triggers can use the LONGdatatype in the following manner:

« A SQL statement within a trigger can insert data into a LONCGcolumn.

« If data from a LONGcolumn can be converted to a constrained datatype (such as
CHARand VARCHARR a LONGcolumn can be referenced in a SQL statement
within a trigger.

« Variables in triggers cannot be declared using the LONGdatatype.
« :NEWaNnd :OLDcannot be used with LONGcolumns.

You can use the Oracle Call Interface functions to retrieve a portion of a LONGvalue
from the database.

See Also: Oracle Call Interface Programmer’s Guide

DATE Datatype

The DATEdatatype stores date and time information. Although date and time
information can be represented in both CHARand NUMBERIatatypes, the DATE
datatype has special associated properties. For each DATEvalue, Oracle stores the
following information: century, year, month, day, hour, minute, and second.

If you specify a date value without a time component, the default time is 12:00:00
AM (midnight). If you specify a time value without a date, the default date is the
first day of the current month. The date function SYSDATHEeturns the current date
and time.

The default date format is specified by the initialization parameter NLS_DATE_
FORMA®Nd is a string such as 'DD-MON-YY’ . This example default date format
includes a two-digit number for the day of the month, an abbreviation of the month
name, and the last two digits of the year. Oracle automatically converts character
values that are in the default date format into DATEvalues when they are used in
date expressions.

To specify a date value that is not in the default format, you must convert a
character or numeric value to a date value with the TO_DATEfunction. In this case,
you must specify the nondefault date format model (sometimes called a "date
mask") to tell Oracle how to interpret the character or numeric value. For example,
the date format model for '17:45:29’ is '"HH24:MI:SS’. The date format model for ’11-
NOV-1999’ is 'DD-MON-YYYY”.

2-14 SQL Reference

Datatypes

See Also:

« "Date Format Models" on page 2-47 for a listing of the elements
of date format models

« "TO_DATE" on page 4-110 for information on converting
character and numeric values into DATEvalues

« "TO_CHAR (date conversion)" on page 4-108 for information
on converting DATE values into strings

« "SYSDATE" on page 4-106 for information on obtaining the
current system date and time.

Date Arithmetic

You can add and subtract number constants as well as other dates from dates.
Oracle interprets number constants in arithmetic date expressions as numbers of
days. For example, SYSDATE+ 1 is tomorrow. SYSDATE 7 is one week ago.
SYSDATE+ (10/1440) is ten minutes from now. Subtracting the hiredate column
of the emptable from SYSDATHEeturns the number of days since each employee
was hired. You cannot multiply or divide DATEvalues.

Oracle provides functions for many common date operations. For example, the
ADD_MONTHfinction lets you add or subtract months from a date. The MONTHS _
BETWEENunction returns the number of months between two dates. The fractional
portion of the result represents that portion of a 31-day month.

Because each date contains a time component, most results of date operations
include a fraction. This fraction means a portion of one day. For example, 1.5 days is
36 hours.

See Also: "Date Functions" on page 4-5 for more information on
date functions

Using Julian Dates

A Julian date is the number of days since January 1, 4712 BC. Julian dates allow
continuous dating from a common reference. You can use the date format model "J"
with date functions TO_DATEand TO_CHARo convert between Oracle DATEvalues
and their Julian equivalents.

Example This statement returns the Julian equivalent of January 1, 1997:

SELECT TO_CHAR(TO_DATE('01-01-1997', 'MM-DD-YYYY’),’J")
FROM DUAL,

Basic Elements of Oracle SQL 2-15

Datatypes

TO_CHAR

2450450

See Also: "Selecting from the DUAL Table" on page 5-28 for a
description of the DUALtable

RAW and LONG RAW Datatypes

The RAWANd LONG RAWWatatypes store data that is not to be interpreted (not
explicitly converted when moving data between different systems) by Oracle. These
datatypes are intended for binary data or byte strings. For example, you can use
LONG RAW store graphics, sound, documents, or arrays of binary data, for which
the interpretation is dependent on the use.

Note: Oracle Corporation strongly recommends that you convert
LONG RAWbHIumns to binary LOB (BLOB columns. LOB columns
are subject to far fewer restrictions than LONGcolumns. See TO_
LOB on page 4-111 for more information.

RAWIs a variable-length datatype like VARCHARZexcept that Net8 (which connects
user sessions to the instance) and the Import and Export utilities do not perform
character conversion when transmitting RAWr LONG RAWata. In contrast, Net8
and Import/Export automatically convert CHARVARCHARZand LONGdata from
the database character set to the user session character set (which you can set with
the NLS_LANGUAGRarameter of the ALTER SESSIONstatement), if the two
character sets are different.

When Oracle automatically converts RAWor LONG RAWata to and from CHARdata,
the binary data is represented in hexadecimal form, with one hexadecimal character
representing every four bits of RAWHata. For example, one byte of RAWHata with
bits 11001011 is displayed and entered as 'CB’.

Large Object (LOB) Datatypes

The built-in LOB datatypes BLOB CLOB and NCLOB(stored internally), and the
BFILE (stored externally), can store large and unstructured data such as text,
image, video, and spatial data up to 4 gigabytes in size.

2-16 SQL Reference

Datatypes

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

LOB columns contain LOB locators that can refer to out-of-line or in-line LOB
values. Selecting a LOB from a table actually returns the LOB’s locator and not the
entire LOB value. The DBMS_LOBackage and Oracle Call Interface (OCI)
operations on LOBs are performed through these locators.

LOBs are similar to LONGand LONG RAMypes, but differ in the following ways:
« LOBs can be attributes of a user-defined datatype (object).

« The LOB locator is stored in the table column, either with or without the actual
LOB value. BLOB NCLOBand CLOBvalues can be stored in separate
tablespaces. BFILE data is stored in an external file on the server.

« When you access a LOB column, the locator is returned.

« A LOB can be up to 4 gigabytes in size. BFILE maximum size is operating
system dependent, but cannot exceed 4 gigabytes.

« LOBs permit efficient, random, piece-wise access to and manipulation of data.
= You can define more than one LOB column in a table.

« With the exception of NCLOByou can define one or more LOB attributes in an
object.

« You can declare LOB bind variables.
« You can select LOB columns and LOB attributes.

« You can insert a new row or update an existing row that contains one or more
LOB columns and/or an object with one or more LOB attributes. (You can set
the internal LOB value to NULL, empty, or replace the entire LOB with data. You
can set the BFILE to NULLor make it point to a different file.)

=« You can update a LOB row/column intersection or a LOB attribute with
another LOB row/column intersection or LOB attribute.

= You can delete a row containing a LOB column or LOB attribute and thereby
also delete the LOB value. Note that for BFILESs, the actual operating system file
is not deleted.

You can access and populate rows of an internal LOB column (a LOB column stored
in the database) simply by issuing an INSERT or UPDATEstatement. However, to
access and populate a LOB attribute that is part of an object type, you must first
initialize the LOB attribute using the EMPTY_CLOBr EMPTY_BLOBunction. You

Basic Elements of Oracle SQL 2-17

Datatypes

can then select the empty LOB attribute and populate it using the DBMS_LOB
package or some other appropriate interface.

See Also: "EMPTY_[B | C]LOB" on page 4-37

The following example creates a table with LOB columns. (It assumes the existence
of tablespace resumes).

CREATE TABLE person_table (name CHAR(40),
resume CLOB,
picture BLOB)
LOB (resume) STORE AS
(TABLESPACE resumes
STORAGE (INITIAL 5M NEXT 5M));

See Also:

« Oracle8i Supplied PL/SQL Packages Reference and Oracle Call
Interface Programmer’s Guide for more information about these
interfaces and LOBs

« Oracle8i Application Developer’s Guide - Large Objects (LOBs) for
information on creating temporary LOBs and on LOB
restrictions

« "TO_LOB" on page 4-111 for more information on converting
LONG columns to LOB columns

BFILE Datatype

The BFILE datatype enables access to binary file LOBs that are stored in file systems
outside the Oracle database. A BFILE column or attribute stores a BFILE locator,
which serves as a pointer to a binary file on the server’s file system. The locator
maintains the directory alias and the filename.

Binary file LOBs do not participate in transactions and are not recoverable. Rather,
the underlying operating system provides file integrity and durability. The
maximum file size supported is 4 gigabytes.

The database administrator must ensure that the file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files. You cannot
modify or replicate such a file. Oracle provides APIs to access file data. The primary
interfaces that you use to access file data are the DBMS_LORpackage and the OCI.

2-18 SQL Reference

Datatypes

See Also:

« Oracle8i Application Developer’s Guide - Large Objects (LOBs) and
Oracle Call Interface Programmer’s Guide for more information
about LOBs.

« CREATE DIRECTORY on page 9-40

BLOB Datatype

The BLOBdatatype stores unstructured binary large objects. BLOBscan be thought
of as bitstreams with no character set semantics. BLOBscan store up to 4 gigabytes
of binary data.

BLOBshave full transactional support. Changes made through SQL, the DBMS_LOB
package, or the OCI participate fully in the transaction. BLOBvalue manipulations
can be committed and rolled back. Note, however, that you cannot save a BLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

CLOB Datatype

The CLOBdatatype stores single-byte character data. Both fixed-width and variable-
width character sets are supported, and both use the CHARdatabase character set.
CLOBscan store up to 4 gigabytes of character data.

CLOBshave full transactional support. Changes made through SQL, the DBMS_LOB
package, or the OCI participate fully in the transaction. CLOBvalue manipulations
can be committed and rolled back. Note, however, that you cannot save a CLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

NCLOB Datatype

The NCLOBdatatype stores multibyte national character set character (NCHARdata.
Both fixed-width and variable-width character sets are supported. NCLOBscan store
up to 4 gigabytes of character text data.

NCLOBshave full transactional support. Changes made through SQL, the DBMS _
LOBpackage, or the OCI participate fully in the transaction. NCLOBvalue
manipulations can be committed and rolled back. Note, however, that you cannot
save an NCLOBlocator in a PL/SQL or OCI variable in one transaction and then use
it in another transaction or session.

Basic Elements of Oracle SQL 2-19

Datatypes

ROWID Datatype

Each row in the database has an address. You can examine a row’s address by
guerying the pseudocolumn ROWID Values of this pseudocolumn are hexadecimal
strings representing the address of each row. These strings have the datatype
ROWIDYou can also create tables and clusters that contain actual columns having
the ROWIDdatatype. Oracle does not guarantee that the values of such columns are
valid rowids.

See Also: "Pseudocolumns" on page 2-59 for more information on
the ROWID pseudocolumn

Restricted Rowids

Beginning with Oracle8, Oracle SQL incorporated an extended format for rowids to
efficiently support partitioned tables and indexes and tablespace-relative data block
addresses (DBAs) without ambiguity.

Character values representing rowids in Oracle7 and earlier releases are called
restricted rowids. Their format is as follows:

block.row.file

where:

block is a hexadecimal string identifying the data block of the datafile
containing the row. The length of this string depends on your
operating system.

row is a four-digit hexadecimal string identifying the row in the data
block. The first row of the block has a digit of 0.

file is a hexadecimal string identifying the database file containing the

row. The first datafile has the number 1. The length of this string
depends on your operating system.

Extended Rowids

The extended ROWIDdatatype stored in a user column includes the data in the
restricted rowid plus a data object number. The data object number is an
identification number assigned to every database segment. You can retrieve the data
object number from data dictionary views USER_OBJECTSBA_OBJECTSand
ALL_OBJECTS Objects that share the same segment (clustered tables in the same
cluster, for example) have the same object number.

2-20 SQL Reference

Datatypes

Extended rowids are stored as base 64 values that can contain the characters A-Z, a-
z, 0-9, as well as the plus sign (+) and forward slash (/). Extended rowids are not
available directly. You can use a supplied package, DBMS_ROWIRQo interpret
extended rowid contents. The package functions extract and provide information
that would be available directly from a restricted rowid, as well as information
specific to extended rowids.

See Also: Oracle8i Supplied PL/SQL Packages Reference for
information on the functions available with the DBMS_ROWID
package and how to use them

Compatibility and Migration
The restricted form of a rowid is still supported in Oracle8i for backward
compatibility, but all tables return rowids in the extended format.

See Also: Oracle8i Migration for information regarding
compatibility and migration issues

UROWID Datatype

Each row in a database has an address. However, the rows of some tables have
addresses that are not physical or permanent, or were not generated by Oracle. For
example, the row addresses of index-organized tables are stored in index leaves,
which can move. Rowids of foreign tables (such as DB2 tables accessed through a
gateway) are not standard Oracle rowids.

Oracle uses "universal rowids" (urowids) to store the addresses of index-organized
and foreign tables. Index-organized tables have logical urowids and foreign tables
have foreign urowids. Both types of urowid are stored in the ROWIDpseudocolumn
(as are the physical rowids of heap-organized tables).

Oracle creates logical rowids based on a table’s primary key. The logical rowids do
not change as long as the primary key does not change. The ROWIDpseudocolumn
of an index-organized table has a datatype of UROWIDYou can access this
pseudocolumn as you would the ROWIDpseudocolumn of a heap-organized (that
is, using the SELECT ROWIBtatement). If you wish to store the rowids of an index-
organized table, you can define a column of type UROWIor the table and retrieve
the value of the ROWIDpseudocolumn into that column.

Basic Elements of Oracle SQL 2-21

Datatypes

Note: Heap-organized tables have physical rowids. Oracle
Corporation does not recommend that you specify a column of
datatype UROWIor a heap-organized table.

See Also:

« Oracle8i Concepts and Oracle8i Performance Guide and Reference
for more information on the UROW!Iatatype and how Oracle
generates and manipulates universal rowids

« "ROWID Datatype" on page 2-20 for a discussion of the address
of database rows

ANSI, DB2, and SQL/DS Datatypes

SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from IBM’s products SQL/DS and DB2. Oracle recognizes the ANSI or
IBM datatype name and records it as the name of the datatype of the column, and
then stores the column’s data in an Oracle datatype based on the conversions
shown in Table 2-2 and Table 2-3.

Table 2-2 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype
CHARACTER(n) CHAR(n)
CHAR(n)

CHARACTER VARYING(n) VARCHAR(N)
CHAR VARYING(n)

NATIONAL CHARACTER(n) NCHAR(n)
NATIONAL CHAR(n)

NCHAR(Nn)

2-22 SQL Reference

Datatypes

Table 2-2 ANSI Datatypes Converted to Oracle Datatypes

NATIONAL CHARACTER NVARCHAR2(n)
VARYING(n)

NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)
NUMERIC(p,s) NUMBER(p,Ss)

DECIMAL(p,s) @

INTEGER NUMBER(38)
INT

SMALLINT

FLOAT(b) P NUMBER
DOUBLE PRECISION

REALY

&The NUMERICGand DECIMALdatatypes can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

bThe FLOATdatatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

‘The DOUBLE PRECISIONiatatype is a floating-point number with binary precision 126.
4The REALdatatype is a floating-point number with a binary precision of 63, or 18 decimal.

Table 2-3 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype
CHARACTER(n) CHAR(n)
VARCHAR(N) VARCHAR(Nn)
LONG VARCHAR(Nn) LONG
DECIMAL(p,s) 2 NUMBER(p,s)
INTEGER NUMBER(38)
SMALLINT

FLOAT(b)b NUMBER

Basic Elements of Oracle SQL 2-23

Datatypes

Table 2-3 SQL/DS and DBZ2 Datatypes Converted to Oracle Datatypes

&The DECIMALdatatype can specify only fixed-point numbers. For this datatype, s defaults to
0.

bThe FLOATdatatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

Do not define columns with these SQL/DS and DB2 datatypes, because they have
no corresponding Oracle datatype:

« GRAPHIC

« LONG VARGRAPHIC
« VARGRAPHIC

« TIME

« TIMESTAMP

Note that data of type TIME and TIMESTAMRPRcan also be expressed as Oracle DATE
data.

User-Defined Type Categories

User-defined datatypes use Oracle built-in datatypes and other user-defined
datatypes as the building blocks of types that model the structure and behavior of
data in applications.

The sections that follow describe the various categories of user-defined types.

See Also:

« Oracle8i Concepts for information about Oracle built-in
datatypes

« CREATE TYPE on page 10-80 and the CREATE TYPE BODY on
page 10-93 for information about creating user-defined types

« Oracle8i Application Developer’s Guide - Fundamentals for
information about using user-defined types

Object Types

Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds
of components:

2-24 SQL Reference

Datatypes

« A name, which identifies the object type uniquely within that schema

« Attributes, which are built-in types or other user-defined types. Attributes
model the structure of the real-world entity

« Methods, which are functions or procedures written in PL/SQL and stored in
the database, or written in a language like C or Java and stored externally.
Methods implement operations the application can perform on the real-world
entity.

REFs

An object identifier (OID) uniquely identifies an object and enables you to
reference the object from other objects or from relational tables. A datatype category
called REFrepresents such references. A REFis a container for an object identifier.
REFs are pointers to objects.

When a REFvalue points to a nonexistent object, the REFis said to be "dangling". A
dangling REFis different from a null REF. To determine whether a REFis dangling
or not, use the predicate IS [NOT DANGLING For example, given table dept with
column mgr whose type is a REFto type emp_t, which has an attribute name:

SELECT t.mgr.name
FROM dept t
WHERE t.mgr IS NOT DANGLING;

Varrays

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
element’s position in the array.

The number of elements in an array is the size of the array. Oracle arrays are of
variable size, which is why they are called varrays. You must specify a maximum
size when you declare the array.

When you declare a varray, it does not allocate space. It defines a type, which you
can use as:

« The datatype of a column of a relational table
« An object type attribute
« APL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (that is, as part of the row data)
or out of line (in a LOB), depending on its size. However, if you specify separate

Basic Elements of Oracle SQL 2-25

Datatypes

storage characteristics for a varray, Oracle will store it out of line, regardless of its
size.

See Also: The varray storage clause of CREATE TABLE on
page 10-32

Nested Tables

A nested table type models an unordered set of elements. The elements may be
built-in types or user-defined types. You can view a nested table as a single-column
table or, if the nested table is an object type, as a multicolumn table, with a column
for each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can
use to declare:

« Columns of a relational table
« Obiject type attributes
« PL/SQL variables, parameters, and function return values

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the
nested table data in a single table, which it associates with the enclosing relational
or object table.

Datatype Comparison Rules

This section describes how Oracle compares values of each datatype.

Number Values

A larger value is considered greater than a smaller one. All negative numbers are
less than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

Date Values

A later date is considered greater than an earlier one. For example, the date
equivalent of '29-MAR-1997’ is less than that of "05-JAN-1998’ and '05-JAN-1998
1:35pm’ is greater than '05-JAN-1998 10:09am’.

Character String Values
Character values are compared using one of these comparison rules:

2-26 SQL Reference

Datatypes

« blank-padded comparison semantics
« honpadded comparison semantics

The following sections explain these comparison semantics. The results of
comparing two character values using different comparison semantics may vary.
The table below shows the results of comparing five pairs of character values using
each comparison semantic. Usually, the results of blank-padded and nonpadded
comparisons are the same. The last comparison in the table illustrates the
differences between the blank-padded and nonpadded comparison semantics.

Blank-Padded Nonpadded
‘ab’ > 'aa’ ‘ab’ > 'aa’

ab’ >'a ‘ab’>'a
‘ab’ >'a’ ‘ab’ >'a’

‘ab’ ="ab’ ‘ab’ ="ab’

‘a = ‘a >

Blank-Padded Comparison Semantics If the two values have different lengths, Oracle
first adds blanks to the end of the shorter one so their lengths are equal. Oracle then
compares the values character by character up to the first character that differs. The
value with the greater character in the first differing position is considered greater.
If two values have no differing characters, then they are considered equal. This rule
means that two values are equal if they differ only in the number of trailing blanks.
Oracle uses blank-padded comparison semantics only when both values in the
comparison are either expressions of datatype CHARNCHARtext literals, or values
returned by the USER function.

Nonpadded Comparison Semantics ~ Oracle compares two values character by character
up to the first character that differs. The value with the greater character in that
position is considered greater. If two values of different length are identical up to
the end of the shorter one, the longer value is considered greater. If two values of
equal length have no differing characters, then the values are considered equal.
Oracle uses nonpadded comparison semantics whenever one or both values in the
comparison have the datatype VARCHAR®r NVARCHAR?2

Basic Elements of Oracle SQL 2-27

Datatypes

Single Characters

Oracle compares single characters according to their numeric values in the database
character set. One character is greater than another if it has a greater numeric value
than the other in the character set. Oracle considers blanks to be less than any
character, which is true in most character sets.

These are some common character sets:

« 7-bit ASCII (American Standard Code for Information Interchange)
« EBCDIC Code (Extended Binary Coded Decimal Interchange Code)
« 1SO 885971 (International Standards Organization)

« JEUC Japan Extended UNIX

Portions of the ASCII and EBCDIC character sets appear in Table 2-4 and Table 2-5.
Note that uppercase and lowercase letters are not equivalent. Also, note that the
numeric values for the characters of a character set may not match the linguistic
sequence for a particular language.

Table 2-4 ASCII Character Set

Symbol Decimal value Symbol Decimal value
blank 32 ; 59
! 33 < 60
34 = 61
35 > 62
$ 36 ? 63
% 37 @ 64
& 38 A-Z 65-90
: 39 [91
(40 \ 92
) 41] 93
* 42 N 94
+ 43 _ 95
, 44 ‘ 96
- 45 a-z 97-122

2-28 SQL Reference

Datatypes

Table 2-4 (Cont.) ASCII Character Set

Symbol Decimal value Symbol Decimal value
46 { 123
/ 47 | 124
0-9 48-57 } 125
58 ~ 126

Table 2-5 EBCDIC Character Set

Symbol Decimal value Symbol Decimal value
blank 64 % 108
¢ 74 _ 109
75 > 110
< 76 ? 111
(77 : 122
+ 78 # 123
| 79 @ 124
& 80 ' 125
! 90 = 126
$ 91 " 127
* 92 a-i 129-137
) 93 jr 145-153
; 94 S-z 162-169
y 95 A-l 193-201
- 96 J-R 209-217
/ 97 S-Z 226-233
Object Values

Object values are compared using one of two comparison functions: MAPand
ORDERBoth functions compare object type instances, but they are quite different
from one another. These functions must be specified as part of the object type.

Basic Elements of Oracle SQL 2-29

Datatypes

See Also: "CREATE TYPE" on page 10-80 and Oracle8i Application
Developer’s Guide - Fundamentals for a description of MAPand ORDER
methods and the values they return

Varrays and Nested Tables
You cannot compare varrays and nested tables in Oracle8i.

Data Conversion

Generally an expression cannot contain values of different datatypes. For example,
an expression cannot multiply 5 by 10 and then add *JAMES’. However, Oracle
supports both implicit and explicit conversion of values from one datatype to
another.

Implicit Data Conversion

Oracle automatically converts a value from one datatype to another when such a
conversion makes sense. Oracle performs conversions in these cases:

« When an INSERT or UPDATEstatement assigns a value of one datatype to a
column of another, Oracle converts the value to the datatype of the column.

« When you use a SQL function or operator with an argument with a datatype
other than the one it accepts, Oracle converts the argument to the accepted
datatype.

« When you use a comparison operator on values of different datatypes, Oracle
converts one of the expressions to the datatype of the other.

Implicit Data Conversion Examples

Text Literal Example The text literal ’10’ has datatype CHAROracle implicitly
converts it to the NUMBERIatatype if it appears in a numeric expression as in the
following statement:

SELECT sal +'10’
FROM emp;

Character and Number Values Example When a condition compares a character
value and a NUMBER value, Oracle implicitly converts the character value to a
NUMBER value, rather than converting the NUMBERalue to a character value. In
the following statement, Oracle implicitly converts '7936’ to 7936:

2-30 SQL Reference

Datatypes

SELECT ename
FROM emp
WHERE empno ='7936";

Date Example In the following statement, Oracle implicitly converts '12-MAR-
1993’ to a DATEvalue using the default date format 'DD-MON-YYYY":

SELECT ename
FROM emp
WHERE hiredate = '12-MAR-1993’;

Rowid Example In the following statement, Oracle implicitly converts the text
literal ' AAAAZBAABAAABVIAAA' to a rowid value:

SELECT ename
FROM emp
WHERE ROWID ="AAAAZSAABAAABVIAAA’;

Explicit Data Conversion

You can also explicitly specify datatype conversions using SQL conversion
functions. Table 2-6 shows SQL functions that explicitly convert a value from one
datatype to another.

Basic Elements of Oracle SQL 2-31

Datatypes

Table 2-6 SQL Functions for Datatype Conversion

LONG/
TO / FROM CHAR NUMBER DATE RAW ROWID LONG RAW LOB
— TO_NUMBER TO_DATE HEXTORAW CHARTO-

CHAR ROWID

— TO_DATE
NUMBER TO_CHAR (number,’

J)
TO_CHAR —

DATE TO_CHAR (date,J’

)
RAW RAWTOHEX —

ROWID- —

ROWID TOCHAR
LONG/ — TO_LOB
LONG RAW
LOB —

Note: You cannot specify LONGand LONG RAWalues in cases in
which Oracle can perform implicit datatype conversion. For
example, LONGand LONG RAWalues cannot appear in expressions
with functions or operators. For information on the limitations on
LONGand LONG RAWatatypes, see "LONG Datatype" on page 2-12.

See Also: "Conversion Functions" on page 4-5

Implicit vs. Explicit Data Conversion

Oracle recommends that you specify explicit conversions rather than rely on
implicit or automatic conversions for these reasons:

« SQL statements are easier to understand when you use explicit datatype
conversion functions.

« Automatic datatype conversion can have a negative impact on performance,
especially if the datatype of a column value is converted to that of a constant
rather than the other way around.

2-32 SQL Reference

Literals

Literals

Text

« Implicit conversion depends on the context in which it occurs and may not
work the same way in every case. For example, implicit conversion from a date
value to a VARCHARZ®alue may return an unexpected year depending on the
value of the NLS_DATE_FORMAparameter.

« Algorithms for implicit conversion are subject to change across software
releases and among Oracle products. Behavior of explicit conversions is more
predictable.

The terms literal and constant value are synonymous and refer to a fixed data
value. For example, 'JACK’, 'BLUE ISLAND’, and *101’ are all character literals;
5001 is a numeric literal. Note that character literals are enclosed in single quotation
marks, which enable Oracle to distinguish them from schema object names.

This section contains these topics:

= Text

« Integer
« Number
« Interval

Many SQL statements and functions require you to specify character and numeric
literal values. You can also specify literals as part of expressions and conditions. You
can specify character literals with the "text ’ notation, national character literals
with the N'text '’ notation, and numeric literals with the integer or number
notation, depending on the context of the literal. The syntactic forms of these
notations appear in the sections that follow.

To specify a datetime or interval datatype as a literal, you must take into account
any optional precisions included in the datatypes. Examples of specifying datetime
and interval datatypes as literals are provided in the relevant sections of
"Datatypes” on page 2-2.

Text specifies a text or character literal. You must use this notation to specify values
whenever ‘text’ or char appear in expressions, conditions, SQL functions, and
SQL statements in other parts of this reference.

The syntax of text is as follows:

Basic Elements of Oracle SQL 2-33

Literals

where

« Nspecifies representation of the literal using the national character set. Text
entered using this notation is translated into the national character set by Oracle
when used.

« cisany member of the user’s character set, except a single quotation mark (’).

« '’ aretwo single quotation marks that begin and end text literals. To represent
one single quotation mark within a literal, enter two single quotation marks.

A text literal must be enclosed in single quotation marks. This reference uses the
terms text literal and character literal interchangeably.

Text literals have properties of both the CHARand VARCHAR2latatypes:

« Within expressions and conditions, Oracle treats text literals as though they
have the datatype CHARby comparing them using blank-padded comparison
semantics.

« Atext literal can have a maximum length of 4000 bytes.
Here are some valid text literals:

'Hello’
'ORACLE.dbs’
’Jackie”s raincoat’
'09-MAR-98’
N’nchar literal’
See Also:
« "Expressions" on page 5-2 for the syntax description of expr

« "Blank-Padded Comparison Semantics" on page 2-27

Integer

You must use the integer notation to specify an integer whenever integer appears
in expressions, conditions, SQL functions, and SQL statements described in other
parts of this reference.

2-34 SQL Reference

Literals

Number

The syntax of integer is as follows:

integer::=

where digit isoneof0,1,2 3,4,5/6,7,8,9.
An integer can store a maximum of 38 digits of precision.

Here are some valid integers:

7
+255

See Also: "Expressions” on page 5-2 for the syntax description of
expr

You must use the number notation to specify values whenever number appears in
expressions, conditions, SQL functions, and SQL statements in other parts of this
reference.

The syntax of number is as follows:

number::=

@)ﬁgﬂ[]
‘O

N ——

where

Basic Elements of Oracle SQL 2-35

Literals

« +or-indicates a positive or negative value. If you omit the sign, a positive
value is the default.

« digit isoneof0,1,2,3,4,56,7,80r09.

« e orE indicates that the number is specified in scientific notation. The digits
after the E specify the exponent. The exponent can range from -130 to 125.

A number can store a maximum of 38 digits of precision.

If you have established a decimal character other than a period (.) with the
initialization parameter NLS_NUMERIC_CHARACTER®uU must specify numeric
literals with ‘text’ notation. In such cases, Oracle automatically converts the text
literal to a numeric value.

For example, if the NLS_NUMERIC_CHARACTERSrameter specifies a decimal
character of comma, specify the number 5.123 as follows:

'5,123’

See Also: ALTER SESSION on page 7-105 and Oracle8i Reference

Here are some valid representations of number :

25
+6.34
0.5
25e-03
-1

See Also: "Expressions" on page 5-2 for the syntax description of
expr

Interval

An interval literal specifies a period of time. You can specify these differences in
terms of years and months, or in terms of days, hours, minutes, and seconds. Oracle
supports two types of interval literals, YEAR TO MONT4thd DAY TO SECONBach
type contains a leading field and may contain a trailing field. The leading field
defines the basic unit of date or time being measured. The trailing field defines the
smallest increment of the basic unit being considered. For example, a YEAR TO
MONTHInterval considers an interval of years to the nearest month. A DAY TO
MINUTEinterval considers an interval of days to the nearest minute.

2-36 SQL Reference

Literals

If you have date data in numeric form, you can use the NUMTOYMINTERVAdr
NUMTODSINTERVAtonversion function to convert the numeric data into interval
literals.

Interval literals are used primarily with analytic functions.

See Also:

« "Analytic Functions" on page 4-8 and Oracle8i Data Warehousing
Guide

= "NUMTODSINTERVAL" on page 4-69 and
"NUMTOYMINTERVAL" on page 4-70

INTERVAL YEAR TO MONTH
Specify YEAR TO MONTIiHterval literals using the following syntax:

O

— INTERVAL |->O{integer)

ol

where

« integer [-integer] specifies integer values for the leading and optional
trailing field of the literal. If the leading field is YEARand the trailing field is
MONTHthe range of integer values for the month field is 0 to 11.

« precision isthe number of digits in the leading field. The valid range of the
leading field precision is 0 to 9 and its default value is 2.

Restriction: The leading field must be a larger time element than the trailing field.

For example, INTERVAL’0-1’ MONTH TO YEARNot valid.

The following INTERVAL YEAR TO MONTHeral indicates an interval of 123 years, 2
months:

INTERVAL ’123-2" YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated
versions:

Basic Elements of Oracle SQL 2-37

Literals

INTERVAL '123-2' YEAR(3) TO indicates an interval of 123 years, 2

MONTH months. You must specify the leading field
precision if it is greater than the default of
2 digits.

INTERVAL '123’ YEAR(3) indicates an interval of 123 years 0 months.

INTERVAL '300' MONTH(3) indicates an interval of 300 months.

INTERVAL '4’ YEAR maps to INTERVAL '4-0' YEAR TO MONTH
and indicates 4 years.

INTERVAL '50' MONTH maps to INTERVAL '4-2° YEAR TO MONTH
and indicates 50 months or 4 years 2
months.

INTERVAL '123' YEAR returns an error, because the default

precision is 2, and '123’ has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTHeral to or from another to
yield another INTERVAL YEAR TO MONTHeral. For example:

INTERVAL ’5-3' YEAR TO MONTH + INTERVAL '20' MONTH TO MONTH =
INTERVAL '6-11' YEAR TO MONTH

2-38 SQL Reference

Literals

INTERVAL DAY TO SECOND
Specify DAY TO SECONiDterval literals using the following syntax:

@

0 leading_precision o

[@(fractionaI_seconds_precisionh
| }>(leading_precision) %

SECOND

MINUTE

ﬁ@{fractional_seconds_precision}%

SECOND

where

« Integer specifies the number of days. If this value contains more digits than
the number specified by the leading precision, Oracle returns an error.

« time_expr specifies a time in the format HH[:MI[:SS[.n]]Jor MI[:SS[.n]] or
SS[.n], where n specifies the fractional part of a second. If n contains more digits
than the number specified by fractional seconds_precision ,then nis
rounded to the number of digits specified by the fractional _seconds
precision value. You can specify time_expr following an integer and a
space only if the leading field is DAY

« leading precision is the number of digits in the leading field. Accepted
values are 0 to 9. The default is 2.

« fractional_seconds_precision is the number of digits in the fractional
part of the SECONDIatetime field. Accepted values are 1 to 9. The default is 6.

Basic Elements of Oracle SQL 2-39

Literals

Restriction: The leading field must be a larger time element than the trailing field.
For example, INTERVAL MINUTE TO DAY¥s not valid. As a result of this restriction,
if SECOND>s the leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:

HOUR 0to 23
MINUTE 0to 59
SECOND 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECONRerals follow,

including some abbreviated versions:

INTERVAL 4 5:12:10.222' DAY (3) 1O

SECON[3)

INTERVAL '4 5:12' DAY TO MINUTE

INTERVAL '400 5’ DAY(3) TO HOUR
INTERVAL '400’ DAY (3)

INTERVAL '11:12:10.2222222' HOUR
TO SECON®D)

INTERVAL ’11:20° HOUR TO MINUTE
INTERVAL '10° HOUR

INTERVAL '10:22' MINUTE TO
SECOND

INTERVAL '10° MINUTE

INTERVAL '4’ DAY

INTERVAL 25’ HOUR

INTERVAL 40’ MINUTE

INTERVAL '120° HOUR(3)
INTERVAL '30.12345' SECOND(2,4)

2-40 SQL Reference

indicates 4 days, 5 hours, 12 minutes,
10 seconds, and 222 thousandths of a
second.

indicates 4 days, 5 hours and 12
minutes.

indicates 400 days 5 hours.
indicates 400 days.

indicates 11 hours, 12 minutes, and
10.2222222 seconds.

indicates 11 hours and 20 minutes.
indicates 10 hours.
indicates 10 minutes 22 seconds.

indicates 10 minutes.
indicates 4 days.
indicates 25 hours.
indicates 40 minutes.
indicates 120 hours

indicates 30.1235 seconds. The
fractional second ’12345’ is rounded to
1235’ because the precision is 4.

Format Models

You can add or subtract one DAY TO SECONiDterval literal from another DAY TO
SECONDiteral. For example.

INTERVAL '20’ DAY - INTERVAL 240" HOUR = INTERVAL '10’ DAY

Format Models

A format model is a character literal that describes the format of DATEor NUMBER
data stored in a character string. When you convert a character string into a date or
number, a format model tells Oracle how to interpret the string. In SQL statements,
you can use a format model as an argument of the TO_CHARind TO_DATE
functions:

« To specify the format for Oracle to use to return a value from the database

« To specify the format for a value you have specified for Oracle to store in the
database

Note: A format model does not change the internal representation
of the value in the database.

For example, the date format model for the string '17:45:29 ’is '"HH24:MI:SS .
The date format model for the string '11-Nov-1999 ’is’DD-Mon-YYYY'. The
number format model for the string '$2,304.25 ’is’$9,999.99 . For lists of date
and number format model elements, see Table 2-7, "Number Format Elements" on
page 2-44 and Table 2-9, "Datetime Format Elements" on page 2-49.

The values of some formats are determined by the value of initialization
parameters. For such formats, you can specify the characters returned by these
format elements implicitly using the initialization parameter NLS_TERRITORYYou
can change the default date format for your session with the ALTER SESSION
statement.

See Also:

« Oracle8i Reference and Oracle8i National Language Support Guide
for information on these parameters

« ALTER SESSION on page 7-105 for information on changing
the values of these parameters

Format of Return Values: Examples You can use a format model to specify the
format for Oracle to use to return values from the database to you.

Basic Elements of Oracle SQL 2-41

Format Models

The following statement selects the commission values of the employees in
Department 30 and uses the TO_CHARunction to convert these commissions into
character values with the format specified by the number format model
’$9,990.99

SELECT ename employee, TO_CHAR(comm, '$9,990.99’) commission
FROM emp
WHERE deptno = 30;

EMPLOYEE COMMISSION

ALLEN $300.00
WARD $500.00
MARTIN $1,400.00
BLAKE

TURNER $0.00
JAMES

Because of this format model, Oracle returns commissions with leading dollar signs,
commas every three digits, and two decimal places. Note that TO_CHAReturns null
for all employees with null in the commcolumn.

The following statement selects the date on which each employee from Department
20 was hired and uses the TO_CHAHRunction to convert these dates to character
strings with the format specified by the date format model 'fmMonth DD, YYYY

SELECT ename, TO_CHAR(Hiredate,'fmMonth DD, YYYY’) hiredate
FROM emp
WHERE deptno = 20;

ENAME HIREDATE

SMITH December 17, 1980
JONES April 2,1981
SCOTT April 19, 1987
ADAMS May 23, 1987
FORD December 3, 1981
LEWIS October 23, 1997

With this format model, Oracle returns the hire dates (as specified by "fm") without
blank padding, two digits for the day, and the century included in the year.

See Also: "Format Model Modifiers" on page 2-54 for a description
of the fm format element

2-42 SQL Reference

Format Models

Supplying the Correct Format Model: Examples When you insert or update a
column value, the datatype of the value that you specify must correspond to the
column’s datatype. You can use format models to specify the format of a value that
you are converting from one datatype to another datatype required for a column.

For example, a value that you insert into a DATEcolumn must be a value of the
DATEdatatype or a character string in the default date format (Oracle implicitly
converts character strings in the default date format to the DATEdatatype). If the
value is in another format, you must use the TO_DATEfunction to convert the value
to the DATEdatatype. You must also use a format model to specify the format of the
character string.

The following statement updates BAKER’s hire date using the TO_DATEfunction
with the format mask 'YYYY MM DD’ to convert the character string 1998 05 20’ to
a DATE value:

UPDATE emp
SET hiredate = TO_DATE('1998 05 20°,’'YYYY MM DD")
WHERE ename = 'BLAKE’;
This remainder of this section describes how to use:
« Number Format Models
« Date Format Models
« Format Model Modifiers
See Also: "TO_CHAR (date conversion)" on page 4-108, "TO_

CHAR (number conversion)" on page 4-109, and "TO_DATE" on
page 4-110

Number Format Models
You can use number format models:

« Inthe TO_CHARunction to translate a value of NUMBERlatatype to VARCHAR2
datatype

« Inthe TO_NUMBERuNction to translate a value of CHARor VARCHAR2latatype
to NUMBERIatatype

All number format models cause the number to be rounded to the specified number
of significant digits. If a value has more significant digits to the left of the decimal

place than are specified in the format, pound signs (#) replace the value. If a positive
value is extremely large and cannot be represented in the specified format, then the

Basic Elements of Oracle SQL 2-43

Format Models

infinity sign (~) replaces the value. Likewise, if a negative value is extremely small
and cannot be represented by the specified format, then the negative infinity sign
replaces the value (-~). This event typically occurs when you are using TO_CHAR
with a restrictive number format string, causing a rounding operation.

Number Format Elements

A number format model is composed of one or more number format elements.
Table 27 lists the elements of a number format model. Examples are shown in
Table 2-8.

Negative return values automatically contain a leading negative sign and positive
values automatically contain a leading space unless the format model contains the
MI, S, or PR format element.

Table 2—-7 Number Format Elements

Element Example Description

,(comma) 9,999 Returns a comma in the specified position. You can specify
multiple commas in a number format model.

Restrictions:
« A comma element cannot begin a number format model.

« A comma cannot appear to the right of a decimal character
or period in a number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified
position.
Restriction: You can specify only one period in a number format
model.

$ $9999 Returns value with a leading dollar sign.

0 0999 Returns leading zeros.

9990 Returns trailing zeros.
9 9999 Returns value with the specified number of digits with a leading

space if positive or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns a
zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number
when the integer part is zero (regardless of "0"s in the format
model).

C C999 Returns in the specified position the ISO currency symbol (the

current value of the NLS_ISO_CURRENCgarameter).

2-44 SQL Reference

Format Models

Table 2—-7 Number Format Elements

Element Example Description

D 99D99 Returns in the specified position the decimal character, which is
the current value of the NLS_NUMERIC_CHARACTHRrameter.
The default is a period (.).

Restriction: You can specify only one decimal character in a
number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.
FM FM90.9 Returns a value with no leading or trailing blanks.
G 9G999 Returns in the specified position the group separator (the

current value of the NLS_NUMERIC_CHARACTERrameter).
You can specify multiple group separators in a number format
model.

Restriction: A group separator cannot appear to the right of a
decimal character or period in a number format model.

L L999 Returns in the specified position the local currency symbol (the
current value of the NLS_CURRENC}arameter).

Ml 9999MI Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last
position of a number format model.

PR 9999PR Returns negative value in <angle brackets>.
Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last
position of a number format model.

RN RN Returns a value as Roman numerals in uppercase.
m m Returns a value as Roman numerals in lowercase.
Value can be an integer between 1 and 3999.

S S9999 Returns negative value with a leading minus sign (-).
Returns positive value with a leading plus sign (+).

9999S Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or
last position of a number format model.

Basic Elements of Oracle SQL 2-45

Format Models

Table 2—-7 Number Format Elements

Element Example Description

™ ™ "Text minimum". Returns (in decimal output) the smallest
number of characters possible. This element is case-insensitive.

The default is TM9, which returns the number in fixed notation
unless the output exceeds 64 characters. If output exceeds 64
characters, Oracle automatically returns the number in scientific
notation.

Restrictions:
« You cannot precede this element with any other element.
« You can follow this element only with 9 or E (only one) or e

(only one).

U U9999 Returns in the specified position the "Euro” (or other) dual
currency symbol (the current value of the NLS_DUAL _
CURRENCarameter).

\4 999v99 Returns a value multiplied by 10" (and if necessary, round it up),
where n is the number of 9's after the "V".

X XXXX Returns the hexadecimal value of the specified number of digits.

XXX If the specified number is not an integer, Oracle rounds it to an

integer.

Restrictions:

« This element accepts only positive values or 0. Negative
values return an error.

« You can precede this element only with 0 (which returns
leading zeroes) or FM. Any other elements return an error.
If you specify neither 0 nor FM with X, the return always
has 1 leading blank.

Table 2-8 shows the results of the following query for different values of number
and ‘fmt’

SELECT TO_CHAR(number, 'fmt’)
FROM DUAL;

Table 2-8 Results of Example Number Conversions

number fmt’ Result
-1234567890 9999999999S '1234567890-'
0 99.99 *.00

2-46 SQL Reference

Format Models

Table 2-8 Results of Example Number Conversions (Cont.)

number fmt’ Result

+0.1 99.99 ok

-0.2 99.99 120

0 90.99 ' 0.00°

+0.1 90.99 '’ 0.10°

-0.2 90.99 '-0.20

0 9999 o

1 9999 v

0 B9999

1 B9999 B

0 B90.99 T
+123.456 999.999 '123.456’
-123.456 999.999 '-123.456’
+123.456 FM999.009 '123.456’
+123.456 9.9EEEE * 1.2E+02’
+1E+123 9.9EEEE ' 1.0E+123’
+123.456 FM9.9EEEE '"1.2E+02’
+123.45 FM999.009 '123.45’
+123.0 FM999.009 '123.00°
+123.45 L999.99 $123.45’
+123.45 FML999.99 '$123.45’

+1234567890 9999999999S '1234567890+

Date Format Models

You can use date format models:

« Inthe TO_DATEfunction to translate a character value that is in a format other
than the default date format into a DATEvalue

Basic Elements of Oracle SQL 2-47

Format Models

« Inthe TO_CHARunNction to translate a DATEvalue that is in a format other than
the default date format into a string (for example, to print the date from an
application)

The default date format is specified either explicitly with the initialization
parameter NLS_DATE_FORMAGr implicitly with the initialization parameter NLS_
TERRITORYFor information on these parameters, see Oracle8i Reference.

You can change the default date format for your session with the ALTER SESSION
statement.

See Also: ALTER SESSION on page 7-105

The total length of a date format model cannot exceed 22 characters.

Date Format Elements

A date format model is composed of one or more date format elements as listed in
Table 2-9.

« For input format models, format items cannot appear twice, and format items
that represent similar information cannot be combined. For example, you
cannot use 'SYYYY’ and 'BC’ in the same format string.

= Some of the date format elements cannot be used in the TO_DATEfunction, as
noted in Table 2-9.

Capitalization of Date Format Elements ~ Capitalization in a spelled-out word,
abbreviation, or Roman numeral follows capitalization in the corresponding format
element. For example, the date format model 'DAY’ produces capitalized words like
"MONDAY’; 'Day’ produces 'Monday’; and 'day’ produces 'monday’.

Punctuation and Character Literals in Date Format Models You can also include these
characters in a date format model:

« Punctuation such as hyphens, slashes, commas, periods, and colons

« Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in
the format model.

2-48 SQL Reference

Format Models

Table 2-9 Datetime Format Elements

Specify in TO_
Element DATE? Meaning

- Yes Punctuation and quoted text is reproduced in the

/ result.

"text"

AD or Yes AD indicator with or without periods.

AD Note: The indicator with periods is supported only if
the NLS_LANGUAGRarameter is set to AMERICAN

AM Yes Meridian indicator with or without periods.

AM. Note: The indicator with periods is supported only if
the NLS_LANGUAGRarameter is set to AMERICAN

BC Yes BC indicator with or without periods.

B.C. Note: The indicator with periods is supported only if
the NLS_LANGUAGRarameter is set to AMERICAN

CC No The first two digits of the century of a four-digit year,

ScC for example, "19’ from 1900’ and ’20’ from ’2001’. "S"
prefixes BC dates with "-".

D Yes Day of week (1-7). This element is used only to validate
a date specified in the TO_DATEfunction.

DAY Yes Name of day, padded with blanks to length of 9
characters. This element is used only to validate a date
specified in the TO_DATEfunction.

DD Yes Day of month (1-31).

DDD Yes Day of year (1-366).

DY Yes Abbreviated name of day. This element is used only to
validate a date specified in the TO_DATEfunction.

E Yes Abbreviated era name (Japanese Imperial, ROC
Official, and Thai Buddha calendars).

EE Yes Full era name (Japanese Imperial, ROC Official, and
Thai Buddha calendars).

HH Yes Hour of day (1-12).

Basic Elements of Oracle SQL 2-49

Format Models

Table 2-9 Datetime Format Elements

Specify in TO_
Element DATE? Meaning

HH12 Yes Hour of day (1-12).

HH24 Yes Hour of day (0-23).

I\ No Week of year (1-52 or 1-53) based on the ISO standard.

IYY No Last 3, 2, or 1 digit(s) of ISO year.

Y

|

IYYY No 4-digit year based on the ISO standard.

J Yes Julian day; the number of days since January 1, 4712
BC. Number specified with ’J’ must be integers.

Mi Yes Minute (0-59).

MM Yes Two-digit numeric abbreviation of month (01-12; JAN =
01)

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to length of 9
characters.

PM No Meridian indicator with or without periods.

P.M. Note: The indicator with periods is supported only if
the NLS_LANGUAGRarameter is set to AMERICAN

Q No Quarter of year (1, 2, 3, 4, JAN-MAR = 1)

RM Yes Roman numeral month (I-XII; JAN = I).

RR Yes Given a year with 2 digits:

« Ifthe year is <50 and the last 2 digits of the current
year are >=50, the first 2 digits of the returned year
are 1 greater than the first two digits of the current
year.

« Ifthe year is >=50 and the last 2 digits of the
current year are <50, the first 2 digits of the
returned year are the same as the first 2 digits of
the current year.

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-
digit, provides the same return as RR. If you don’t want
this functionality, enter the 4-digit year.

SS Yes Second (0-59).

2-50 SQL Reference

Format Models

Table 2-9 Datetime Format Elements

Specify in TO_

Element DATE? Meaning

SSSSS Yes Seconds past midnight (0-86399).

wWw No Week of year (1-53) where week 1 starts on the first day
of the year and continues to the seventh day of the year.

W No Week of month (1-5) where week 1 starts on the first
day of the month and ends on the seventh.

Y. YYY Yes Year with comma in this position.

YEAR No Year, spelled out. "S" prefixes BC dates with "-".

SYEAR

YYYY Yes 4-digit year. "S" prefixes BC dates with "-".

SYYYY

YYY Yes Last 3, 2, or 1 digit(s) of year.

YY

Y

Oracle returns an error if an alphanumeric character is found in the date string
where punctuation character is found in the format string. For example:

TO_CHAR (TO_DATE(0297',MM/YY"), ' MM/YY")

returns an error.

Date Format Elements and National Language Support

The functionality of some date format elements depends on the country and
language in which you are using Oracle. For example, these date format elements
return spelled values:

MONTH

MON
DAY
DY

BC or AD or B.C. or A.D.
AM or PM or A.M or P.M.

Basic Elements of Oracle SQL 2-51

Format Models

The language in which these values are returned is specified either explicitly with
the initialization parameter NLS_DATE_LANGUAG® implicitly with the
initialization parameter NLS_LANGUAGH he values returned by the YEARand
SYEARdate format elements are always in English.

The date format element D returns the number of the day of the week (1-7). The day
of the week that is numbered 1 is specified implicitly by the initialization parameter
NLS_TERRITORY

See Also: Oracle8i Reference and Oracle8i National Language
Support Guide for information on national language support
initialization parameters

ISO Standard Date Format Elements

Oracle calculates the values returned by the date format elements IYYY, IYY, 1Y, I,
and IW according to the ISO standard. For information on the differences between
these values and those returned by the date format elements YYYY, YYY, YY, Y, and
WW, see the discussion of national language support in Oracle8i National Language
Support Guide.

The RR Date Format Element

The RR date format element is similar to the YY date format element, but it
provides additional flexibility for storing date values in other centuries. The RR
date format element allows you to store 21st century dates in the 20th century by
specifying only the last two digits of the year. It will also allow you to store 20th
century dates in the 21st century in the same way if necessary.

If you use the TO_DATHEfunction with the YY date format element, the date value
returned always has the same first 2 digits as the current year. If you use the RR
date format element instead, the century of the return value varies according to the
specified two-digit year and the last two digits of the current year. Table 2-10
summarizes the behavior of the RR date format element.

2-52 SQL Reference

Format Models

Table 2-10 The RR Date Element Format

If the specified two-digit year is

0-49 50-99
If the last two 0-49 The return date has the same The first 2 digits of the return
digits of the first 2 digits as the current date are 1 less than the first 2
current year date. digits of the current date.

are:

50-99 The first 2 digits of the return The return date has the same
date are 1 greater than the first 2 digits as the current

first 2 digits of the current date.
date.

The following examples demonstrate the behavior of the RR date format element.

RR Date Format Examples
Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO_DATE('27-OCT-98’, 'DD-MON-RR") ,'YYYY’) "Year"
FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE(27-OCT-17’, 'DD-MON-RR’) ,’YYYY’) "Year"
FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE(27-OCT-98’, 'DD-MON-RR’) ,'YYYY’) "Year"
FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE(27-OCT-17’, 'DD-MON-RR’) ,'YYYY’) "Year"
FROM DUAL;

Basic Elements of Oracle SQL 2-53

Format Models

Year

2017

Note that the queries return the same values regardless of whether they are issued
before or after the year 2000. The RR date format element allows you to write SQL
statements that will return the same values from years whose first two digits are
different.

Date Format Element Suffixes
Table 2-11 lists suffixes that can be added to date format elements:

Table 2-11 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Restrictions:

. When you add one of these suffixes to a date format element, the return value is
always in English.

« Date suffixes are valid only on output. You cannot use them to insert a date into
the database.

Format Model Modifiers

The FM and FX modifiers, used in format models in the TO_CHARunction, control
blank padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each
subsequent occurrence toggles the effects of the modifier. Its effects are enabled for
the portion of the model following its first occurrence, and then disabled for the
portion following its second, and then reenabled for the portion following its third,
and so on.

FM "Fill mode". This modifier suppresses blank padding in the return value of the
TO_CHARunction:

« Inadate format element of a TO_CHARunction, this modifier suppresses
blanks in subsequent character elements (such as MONTH) and suppresses
leading zeroes for subsequent number elements (such as MI) in a date format

2-54 SQL Reference

Format Models

model. Without FM, the result of a character element is always right padded
with blanks to a fixed length, and leading zeroes are always returned for a
number element. With FM, because there is no blank padding, the length of the
return value may vary.

In a number format element of a TO_CHARunction, this modifier suppresses
blanks added to the left of the number, so that the result is left-justified in the
output buffer. Without FM, the result is always right-justified in the buffer,
resulting in blank-padding to the left of the number.

FX "Format exact". This modifier specifies exact matching for the character
argument and date format model of a TO_DATEfunction:

Punctuation and quoted text in the character argument must exactly match
(except for case) the corresponding parts of the format model.

The character argument cannot have extra blanks. Without FX, Oracle ignores
extra blanks.

Numeric data in the character argument must have the same number of digits
as the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeroes.

When FX is enabled, you can disable this check for leading zeroes by using the
FM modifier as well.

If any portion of the character argument violates any of these conditions, Oracle
returns an error message.

Format Modifier Examples
The following statement uses a date format model to return a character expression:

SELECT TO_CHAR(SYSDATE, fmDDTH’)||’ of '||TO_CHAR

(SYSDATE, 'fmMonth’)||", '|ITO_CHAR(SYSDATE, 'YYYY’) "Ides"
FROM DUAL;

3RD of April, 1998

Note that the statement above also uses the FM modifier. If FM is omitted, the
month is blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, 'DDTH’)|| of ’||

TO_CHAR(SYSDATE, "Month’)|[", |

Basic Elements of Oracle SQL 2-55

Format Models

TO_CHAR(SYSDATE, 'YYYY’) "Ides"
FROM DUAL;

03RD of April , 1998

The following statement places a single quotation mark in the return value by using
a date format model that includes two consecutive single quotation marks:

SELECT TO_CHAR(SYSDATE, 'fmDay’)||"’s Special’ "Menu"
FROM DUAL;

Tuesday’s Special

Two consecutive single quotation marks can be used for the same purpose within a
character literal in a format model.

Table 2-12 shows whether the following statement meets the matching conditions
for different values of char and 'fmt’ using FX (the table named table hasa
column date_column of datatype DATE:

UPDATE table
SET date_column = TO_DATE(char, 'fmt’);

Table 2-12 Matching Character Data and Format Models with the FX Format Model

Modifier
char fmt’ Match or Error?
'15/ JAN /1998’ 'DD-MON-YYYY’ Match
" 15! JAN % /1998’ 'DD-MON-YYYY’ Error
"15/JAN/1998’ 'FXDD-MON-YYYY’ Error
'15-JAN-1998’ 'FXDD-MON-YYYY’ Match
'1-JAN-1998’ 'FXDD-MON-YYYY’ Error
'01-JAN-1998’ 'FXDD-MON-YYYY’ Match
'1-JAN-1998’ 'FXFMDD-MON-YYYY’ Match

2-56 SQL Reference

Nulls

String-to-Date Conversion Rules

Nulls

The following additional formatting rules apply when converting string values to
date values (unless you have used the FX or FXFM modifiers in the format model to
control exact format checking):

« You can omit punctuation included in the format string from the date string if
all the digits of the numerical format elements, including leading zeros, are
specified. In other words, specify 02 and not 2 for two-digit format elements
such as MM, DD, and YY.

« You can omit time fields found at the end of a format string from the date
string.

« If amatch fails between a date format element and the corresponding characters
in the date string, Oracle attempts alternative format elements, as shown in
Table 2-13.

Table 2-13 Oracle Format Matching

Additional Format
Elements to Try in Place of

Original Format Element the Original

‘MM’ '"MON’ and 'MONTH’
'MON 'MONTH’

'MONTH’ 'MON’

YY’ YYYY'

'RR’ 'RRRR’

If a column in a row has no value, then the column is said to be null, or to contain a
null. Nulls can appear in columns of any datatype that are not restricted by NOT
NULLor PRIMARY KEMntegrity constraints. Use a null when the actual value is not
known or when a value would not be meaningful.

Do not use null to represent a value of zero, because they are not equivalent. (Oracle
currently treats a character value with a length of zero as null. However, this may
not continue to be true in future releases, and Oracle recommends that you do not
treat empty strings the same as nulls.) Any arithmetic expression containing a null
always evaluates to null. For example, null added to 10 is null. In fact, all operators
(except concatenation) return null when given a null operand.

Basic Elements of Oracle SQL 2-57

Nulls

Nulls in SQL Functions

All scalar functions (except REPLACENVL and CONCAJreturn null when given a
null argument. You can use the NVL function to return a value when a null occurs.
For example, the expression NVL(COMM,0) returns 0 if COMN& null or the value of
COMNf it is not null.

Most aggregate functions ignore nulls. For example, consider a query that averages
the five values 1000, null, null, null, and 2000. Such a query ignores the nulls and
calculates the average to be (1000+2000)/2 = 1500.

Nulls with Comparison Operators

To test for nulls, use only the comparison operators IS NULL and IS NOT NULL If
you use any other operator with nulls and the result depends on the value of the
null, the result is UNKNOWIBecause null represents a lack of data, a null cannot be
equal or unequal to any value or to another null. However, Oracle considers two
nulls to be equal when evaluating a DECODIExpression.

See Also: "DECODE Expressions" on page 5-13 for syntax and
additional information, see

Oracle also considers two nulls to be equal if they appear in compound keys. That
is, Oracle considers identical two compound keys containing nulls if all the non-
null components of the keys are equal.

Nulls in Conditions

A condition that evaluates to UNKNOWa&¢ts almost like FALSE For example, a
SELECTstatement with a condition in the WHERI[Elause that evaluates to UNKNOWN
returns no rows. However, a condition evaluating to UNKNOW@iffers from FALSE

in that further operations on an UNKNOW®dndition evaluation will evaluate to
UNKNOWNhus, NOT FALSEevaluates to TRUE but NOT UNKNOV¢Maluates to
UNKNOWN

Table 2-14 shows examples of various evaluations involving nulls in conditions. If
the conditions evaluating to UNKNOWWere used in a WHERElause of a SELECT
statement, then no rows would be returned for that query.

2-58 SQL Reference

Pseudocolumns

Table 2-14 Conditions Containing Nulls

If Ais: Condition Evaluates to:
10 alS NULL FALSE

10 alS NOT NULL TRUE

NULL alS NULL TRUE
NULL alS NOT NULL FALSE

10 a = NULL UNKNOWN
10 a != NULL UNKNOWN
NULL a = NULL UNKNOWN
NULL a != NULL UNKNOWN
NULL a=10 UNKNOWN
NULL al=10 UNKNOWN

For the truth tables showing the results of logical expressions containing nulls, see
Table 3-6 on page 3-12, as well as Table 3-7 and Table 3-8.

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table.
You can select from pseudocolumns, but you cannot insert, update, or delete their
values. This section describes these pseudocolumns:

» CURRVAL and NEXTVAL

« LEVEL
« ROWID
« ROWNUM

CURRVAL and NEXTVAL

A sequence is a schema object that can generate unique sequential values. These
values are often used for primary and unique keys. You can refer to sequence values
in SQL statements with these pseudocolumns:

Basic Elements of Oracle SQL 2-59

Pseudocolumns

CURRVAL The CURRVAlIpseudocolumn returns the current value of a
sequence.

NEXTVAL The NEXTVALpseudocolumn increments the sequence and
returns the next value.
You must qualify CURRVAland NEXTVALwith the name of the sequence:

sequence.CURRVAL
sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you
must have been granted either SELECTobiject privilege on the sequence or SELECT
ANY SEQUENCHystem privilege, and you must qualify the sequence with the
schema containing it:

schema.sequence.CURRVAL
schema.sequence.NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the
sequence with a complete or partial name of a database link:

schema.sequence.CURRVAL@dblink
schema.sequence.NEXTVAL@dblink

See Also: "Referring to Objects in Remote Databases” on
page 2-90 for more information on referring to database links

Where to Use Sequence Values
You can use CURRVAIland NEXTVALIn:

« The SELECTIist of a SELECTstatement that is not contained in a subquery;,
materialized view, or view

» The SELECTIist of a subquery in an INSERT statement
« The VALUESclause of an INSERT statement

» The SETclause of an UPDATEstatement

Restrictions: You cannot use CURRVAland NEXTVAL

« Asubquery in a DELETE SELECT or UPDATEstatement
« Aquery of aview or of a materialized view

« A SELECTstatement with the DISTINCT operator

2-60 SQL Reference

Pseudocolumns

« A SELECTstatement with a GROUP B¥lause or ORDER B¥lause

« A SELECTstatement that is combined with another SELECTstatement with the
UNION INTERSECT or MINUSset operator

« The WHERElause of a SELECTstatement
« DEFAULTvalue of a column in a CREATE TABLBr ALTER TABLEstatement
« The condition of a CHECKconstraint

Also, within a single SQL statement that uses CURVALor NEXTVAL. all referenced
LONGecolumns, updated tables, and locked tables must be located on the same
database.

How to Use Sequence Values

When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVALreturns the sequence’s initial
value. Subsequent references to NEXTVALincrement the sequence value by the
defined increment and return the new value. Any reference to CURRVAlalways
returns the sequence’s current value, which is the value returned by the last
reference to NEXTVAL Note that before you use CURRVAIfor a sequence in your
session, you must first initialize the sequence with NEXTVAL

Within a single SQL statement, Oracle will increment the sequence only once per
row. If a statement contains more than one reference to NEXTVALfor a sequence,
Oracle increments the sequence once and returns the same value for all occurrences
of NEXTVAL If a statement contains references to both CURRVAland NEXTVAL
Oracle increments the sequence and returns the same value for both CURRVAIland
NEXTVALregardless of their order within the statement.

A sequence can be accessed by many users concurrently with no waiting or locking.

See Also: CREATE SEQUENCE on page 9-155 for information on
sequences

Finding the current value of a sequence: Example This example selects the
current value of the employee sequence:

SELECT empseq.currval
FROM DUAL;

Inserting sequence values into a table: Example This example increments the
employee sequence and uses its value for a new employee inserted into the
employee table:

Basic Elements of Oracle SQL 2-61

Pseudocolumns

INSERT INTO emp
VALUES (empseq.nextval, 'LEWIS’, 'CLERK’,
7902, SYSDATE, 1200, NULL, 20);

Reusing the current value of a sequence: Example This example adds a new
order with the next order number to the master order table. It then adds suborders
with this number to the detail order table:

INSERT INTO master_order(orderno, customer, orderdate)
VALUES (orderseq.nextval, 'Al’s Auto Shop’, SYSDATE);

INSERT INTO detail_order (orderno, part, quantity)
VALUES (orderseq.currval, 'SPARKPLUG’, 4);

INSERT INTO detail_order (orderno, part, quantity)
VALUES (orderseq.currval, 'FUEL PUMP’, 1);

INSERT INTO detail_order (orderno, part, quantity)
VALUES (orderseq.currval, 'TAILPIPE’, 2);

LEVEL

For each row returned by a hierarchical query, the LEVEL pseudocolumn
returns 1 for a root node, 2 for a child of a root, and so on. A root node is the
highest node within an inverted tree. A child node is any nonroot node. A
parent node is any node that has children. A leaf node is any node without
children. Figure 2-2 shows the nodes of an inverted tree with their LEVEL
values.

2-62 SQL Reference

Pseudocolumns

ROWID

Figure 2-2 Hierarchical Tree

Level 1 plgl%trq X

Level 2 pagﬁi?é/ pagr?i?dt/

vz | G a | | e e

Level 4 child/ child/ child/
leaf leaf leaf

To define a hierarchical relationship in a query, you must use the START WITHand
CONNECT B#lauses.
See also:

« SELECT and subquery on page 11-88 for more information on
using the LEVEL pseudocolumn

« "Hierarchical Queries" on page 5-22 for information on
hierarchical queries in general

For each row in the database, the ROWIDpseudocolumn returns a row’s address.
Oracle8i rowid values contain information necessary to locate a row:

« The data object number of the object

= Which data block in the datafile

« Which row in the data block (first row is 0)

« Which datafile (first file is 1). The file number is relative to the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in
different tables that are stored together in the same cluster can have the same rowid.

Values of the ROWIDpseudocolumn have the datatype ROWIDor UROWID

Basic Elements of Oracle SQL 2-63

Pseudocolumns

ROWNUM

See Also: "ROWID Datatype" on page 2-20 and "UROWID
Datatype" on page 2-21

Rowid values have several important uses:
« They are the fastest way to access a single row.
« They can show you how a table’s rows are stored.

« They are unique identifiers for rows in a table.

You should not use ROWIDas a table’s primary key. If you delete and reinsert a row
with the Import and Export utilities, for example, its rowid may change. If you
delete a row, Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWIDpseudocolumn in the SELECTand WHERIElause
of a query, these pseudocolumn values are not actually stored in the database. You
cannot insert, update, or delete a value of the ROWIDpseudocolumn.

Example This statement selects the address of all rows that contain data for
employees in department 20:

SELECT ROWID, ename
FROM emp
WHERE deptno = 20;

ROWID ENAME

AAAAQYAABAAAEPVAAA SMITH
AAAAQYAABAAAEPVAAD JONES
AAAAqQYAABAAAEPVAAH SCOTT
AAAAqQYAABAAAEPVAAK ADAMS
AAAAQYAABAAAEPVAAM FORD

For each row returned by a query, the ROWNUpseudocolumn returns a number
indicating the order in which Oracle selects the row from a table or set of joined
rows. The first row selected has a ROWNU®Mf 1, the second has 2, and so on.

You can use ROWNUR® limit the number of rows returned by a query, as in this
example:

SELECT * FROM emp WHERE ROWNUM < 10;

2-64 SQL Reference

Pseudocolumns

If an ORDER BY¥lause follows ROWNUM the same query, the rows will be
reordered by the ORDER Blause. The results can vary depending on the way the
rows are accessed. For example, if the ORDER BY¥lause causes Oracle to use an
index to access the data, Oracle may retrieve the rows in a different order than
without the index. Therefore, the following statement will not have the same effect
as the preceding example:

SELECT * FROM emp WHERE ROWNUM < 11 ORDER BY empno;

If you embed the ORDER B¥lause in a subquery and place the ROWNUbbndition in
the top-level query, you can force the ROWNUbBbndition to be applied after the
ordering of the rows. For example, the following query returns the 10 smallest
employee numbers. This is sometimes referred to as a "top-N query":

SELECT * FROM
(SELECT empno FROM emp ORDER BY empno)
WHERE ROWNUM < 11,

In the preceding example, the ROWNUWalues are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by
empno in the subquery.

See Also: Oracle8i Application Developer’s Guide - Fundamentals for
more information about top-N queries

Conditions testing for ROWNUWalues greater than a positive integer are always
false. For example, this query returns no rows:

SELECT * FROM emp
WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUWf 1 and makes the condition false. The
second row to be fetched is now the first row and is also assigned a ROWNUbWf 1
and makes the condition false. All rows subsequently fail to satisfy the condition, so
no rows are returned.

You can also use ROWNUNM assign unique values to each row of a table, as in this
example:

UPDATE tabx
SET coll = ROWNUM;

Basic Elements of Oracle SQL 2-65

Comments

Note: Using ROWNUM a query can affect view optimization. For
more information, see Oracle8i Concepts.

Comments

You can associate comments with SQL statements and schema objects.

Comments Within SQL Statements

Comments within SQL statements do not affect the statement execution, but they
may make your application easier for you to read and maintain. You may want to
include a comment in a statement that describes the statement’s purpose within
your application.

A comment can appear between any keywords, parameters, or punctuation marks
in a statement. You can include a comment in a statement using either of these
means:

« Begin the comment with a slash and an asterisk (/*). Proceed with the text of
the comment. This text can span multiple lines. End the comment with an
asterisk and a slash (*/). The opening and terminating characters need not be
separated from the text by a space or a line break.

« Begin the comment with -- (two hyphens). Proceed with the text of the
comment. This text cannot extend to a new line. End the comment with a line
break.

A SQL statement can contain multiple comments of both styles. The text of a
comment can contain any printable characters in your database character set.

Note: You cannot use these styles of comments between SQL
statements in a SQL script. Use the SQL*Plus REMARKommand for
this purpose. For information on these statements, see SQL*Plus
User’s Guide and Reference.

Example These statements contain many comments:

SELECT ename, sal + NVL(comm, 0), job, loc
/* Select all employees whose compensation is
greater than that of Jones.*/
FROM emp, dept
/*The DEPT table is used to get the department name.*/

2-66 SQL Reference

Comments

WHERE emp.deptno = dept.deptno
AND sal + NVL(comm,0) > /* Subquery: *
(SELECT sal + NLV(comm,0)
[* total compensation is sal + comm */

FROM emp
WHERE ename ="'JONES");
SELECT ename, -- select the name
sal + NVL(comm, 0), -- total compensation
job, --job
loc -- and city containing the office
FROM emp, -- of all employees
dept
WHERE emp.deptno = dept.deptno
AND sal + NVL(comm, 0) > -- whose compensation

-- is greater than
(SELECT sal + NVL(comm,0) -- the compensation
FROM emp
WHERE ename ="'JONES’); -- of Jones.

Comments on Schema Objects

You can associate a comment with a table, view, materialized view, or column using
the COMMENdommand. Comments associated with schema objects are stored in the
data dictionary.

See Also: COMMENT on page 8-131 for a description of
comments

Hints

You can use comments in a SQL statement to pass instructions, or hints, to the
Oracle optimizer. The optimizer uses these hints as suggestions for choosing an
execution plan for the statement.

A statement block can have only one comment containing hints, and that comment
must follow the SELECTUPDATEINSERT, or DELETEkeyword. The syntax below
shows hints contained in both styles of comments that Oracle supports within a
statement block.

{DELETE|INSERT|SELECT|UPDATE} /*+ hint [text] [hint[text]]... */

or
{DELETE|INSERT|SELECT|UPDATE} --+ hint [text] [hint[text]...

Basic Elements of Oracle SQL 2-67

Comments

where:

« DELETE INSERT, SELECT or UPDATESs a DELETE INSERT, SELECTor
UPDATEkeyword that begins a statement block. Comments containing hints
can appear only after these keywords.

« +isaplussign that causes Oracle to interpret the comment as a list of hints. The
plus sign must follow immediately after the comment delimiter (no space is
permitted).

« hint isone of the hints discussed in this section. The space between the plus
sign and the hint is optional. If the comment contains multiple hints, separate
the hints by at least one space.

« text isother commenting text that can be interspersed with the hints.

The syntax and a brief description of each hint appear below. Hints are divided into
functional categories.

See Also: Oracle8i Performance Guide and Reference and Oracle8i
Concepts for more information on hints

Optimization Approaches and Goals Hints

(AL (D)

The ALL_ROWSint explicitly chooses the cost-based approach to optimize a
statement block with a goal of best throughput (that is, minimum total resource
consumption).

(P05 ()

The ALL_ROWSint explicitly chooses the cost-based approach to optimize a
statement block with a goal of best throughput (that is, minimum total resource
consumption).

2-68 SQL Reference

Comments

(F{FrsTrows (7

The FIRST_ROWShint explicitly chooses the cost-based approach to optimize a
statement block with a goal of best response time (minimum resource usage to
return first row).

This hint causes the optimizer to make the following choices:

« Ifanindex scan is available, then the optimizer might choose it over a full table
scan.

« Ifanindex scan is available, then the optimizer might choose a nested loops
join over a sort-merge join whenever the associated table is the potential inner
table of the nested loops.

« Ifanindex scan is made available by an ORDER BY¥Xlause, then the optimizer
might choose it to avoid a sort operation.

EHRELD

The RULEhint explicitly chooses rule-based optimization for a statement block. It
also makes the optimizer ignore other hints specified for the statement block.

Access Method Hints

ﬁ.j.i”dex ﬁ.j (index) ﬁ.j (index)
® ® O

The AND_EQUAILint explicitly chooses an execution plan that uses an access path
that merges the scans on several single-column indexes.

GIEEEI0ICDT010

The CLUSTERhint explicitly chooses a cluster scan to access the specified table. It
applies only to clustered objects.

EHF HDA@AHD

The FULL hint explicitly chooses a full table scan for the specified table.

Basic Elements of Oracle SQL 2-69

Comments

(o Has B Oable o))

The HASHhint explicitly chooses a hash scan to access the specified table. It applies
only to tables stored in a cluster.

T
(FH{BE (D 010}

The INDEX hint explicitly chooses an index scan for the specified table. You can use
the INDEX hint for domain, B*-tree, and bitmap indexes. However, Oracle
recommends using INDEX_COMBINEather than INDEX for bitmap indexes,
because it is a more versatile hint.

T
@ ol 00

The INDEX_ASChint explicitly chooses an index scan for the specified table. If the
statement uses an index range scan, then Oracle scans the index entries in ascending
order of their indexed values.

D)
@ olC O

The INDEX_COMBINEint explicitly chooses a bitmap access path for the table. If
no indexes are given as arguments for the INDEX_COMBINEhint, then the optimizer
uses whatever Boolean combination of bitmap indexes has the best cost estimate for
the table. If certain indexes are given as arguments, then the optimizer tries to use
some Boolean combination of those particular bitmap indexes.

..index .
™ (Ot O

The INDEX_DESChint explicitly chooses an index scan for the specified table. If the
statement uses an index range scan, then Oracle scans the index entries in

2-70 SQL Reference

Comments

descending order of their indexed values. In a partitioned index, the results are in
descending order within each partition.

D)
@ 0lC O

The INDEX_FFS hint causes a fast full index scan to be performed rather than a full
table scan.

T
@ olC Q>

The NO_INDEXhint explicitly disallows a set of indexes for the specified table.

(FLFOM HOAEHDAD

The ROWIDnint explicitly chooses a table scan by rowid for the specified table.

Join Order Hints

(FH{omE ()

The ORDERERiInNt causes Oracle to join tables in the order in which they appear in
the FROMlause.

If you omit the ORDEREInt from a SQL statement performing a join, then the
optimizer chooses the order in which to join the tables. You might want to use the
ORDERERDint to specify a join order if you know something about the number of
rows selected from each table that the optimizer does not. Such information lets you
choose an inner and outer table better than the optimizer could.

GBI O

The STARNhint forces a star query plan to be used, if possible. A star plan has the
largest table in the query last in the join order and joins it with a nested loops join
on a concatenated index. The STARhint applies when there are at least three tables,

Basic Elements of Oracle SQL 2-71

Comments

the large table’s concatenated index has at least three columns, and there are no
conflicting access or join method hints. The optimizer also considers different
permutations of the small tables.

Join Operation Hints

@IEIERI0CDI0L0

The DRIVING_SITE hint forces query execution to be done at a different site than
that selected by Oracle. This hint can be used with either rule-based or cost-based
optimization.

(R ()

For a specific query, place the MERGE_Adr HASH_AJhints into the NOT IN
subquery. MERGE_Aduses a sort-merge anti-join and HASH_AJuses a hash anti-join.

For a specific query, place the HASH_SJor MERGE_Shint into the EXISTS
subquery. HASH_SJuses a hash semi-join and MERGE_Sduses a sort merge semi-
join.

(P HOH@HDAD

The LEADINGhint causes Oracle to use the specified table as the first table in the
join order.

If you specify two or more LEADING hints on different tables, then all of them are
ignored. If you specify the ORDERENRint, then it overrides all LEADINGhints.

2-72 SQL Reference

Comments

TR {0 @O

The USE_HASHint causes Oracle to join each specified table with another row
source with a hash join.

F{sEmERE WD L@ DD

The USE_MERGAiInt causes Oracle to join each specified table with another row
source with a sort-merge join.

EHTER HO- (@D

The USE_NLhint causes Oracle to join each specified table to another row source
with a nested loops join using the specified table as the inner table.

Parallel Execution Hints

Note: Oracle ignores parallel hints on a temporary table.

See Also: CREATE TABLE on page 10-7 and Oracle8i Concepts

parallel_hint

When you use the APPENLhint for INSERT, data is simply appended to a table.
Existing free space in the blocks currently allocated to the table is not used.

If INSERT is parallelized using the PARALLELhint or clause, then append mode is
used by default. You can use NOAPPENID override append mode. The APPEND
hint applies to both serial and parallel insert.

Basic Elements of Oracle SQL 2-73

Comments

The append operation is performed in LOGGINGor NOLOGGIN@ode, depending

on whether the [NQ option is set for the table in question. Use the ALTER TABLE.
[NQLOGGINGstatement to set the appropriate value.

The NOAPPENDint overrides append mode.

= 01CD 010

The NOPARALLELhint overrides a PARALLELspecification in the table clause. In
general, hints take precedence over table clauses.

Restriction: You cannot parallelize a query involving a nested table.

| O
@y

@ olC O

The PARALLELhint lets you specify the desired number of concurrent servers that

can be used for a parallel operation. The hint applies to the INSERT, UPDATEand
DELETEportions of a statement as well as to the table scan portion.

Note: The number of servers that can be used is twice the value in

the PARALLELhint if sorting or grouping operations also take
place.

If any parallel restrictions are violated, then the hint is ignored.

‘ integer

(W

@ PARALLEL_INDEX a table

0,0

The PARALLEL_INDEXhint specifies the desired number of concurrent servers that
can be used to parallelize index range scans for partitioned indexes.

2-74 SQL Reference

Comments

(7 o [\ G asibuion o) ver_sissution o D)(7)

The PQ_DISTRIBUTEhint improves parallel join operation performance. Do this by
specifying how rows of joined tables should be distributed among producer and
consumer query servers. Using this hint overrides decisions the optimizer would
normally make.

Use the EXPLAIN PLANstatement to identify the distribution chosen by the
optimizer. The optimizer ignores the distribution hint if both tables are serial.

See Also: Oracle8i Performance Guide and Reference for the
permitted combinations of distributions for the outer and inner join
tables

D)
—>@->| NOPARALLEL_INDEX F@»@ @»@»

The NOPARALLEL_INDEXint overrides a PARALLELattribute setting on an index
to avoid a parallel index scan operation.

Query Transformation Hints

(FH{ERSE DA (DA

The MERGHint lets you merge a view on a per-query basis.

If a view's query contains a GROUP B¥lause or DISTINCT operator in the SELECT
list, then the optimizer can merge the view's query into the accessing statement only
if complex view merging is enabled. Complex merging can also be used to merge an
IN subquery into the accessing statement if the subquery is uncorrelated.

Complex merging is not cost-based--that is, the accessing query block must include
the MERGHint. Without this hint, the optimizer uses another approach.

Basic Elements of Oracle SQL 2-75

Comments

The NO_EXPANDint prevents the cost-based optimizer from considering OR
expansion for queries having ORconditions or IN -lists in the WHERElause. Usually,
the optimizer considers using ORexpansion and uses this method if it decides that
the cost is lower than not using it.

(P oiERGE (DA DD

The NO_MERGEint causes Oracle not to merge mergeable views.

(o RewRre |

The NOREWRITHInt disables query rewrite for the query block, overriding the
setting of the parameter QUERY_REWRITE_ENABLEDse the NOREWRITHint on

any query block of a request.

DRO

@

The REWRITEhint forces the cost-based optimizer to rewrite a query in terms of
materialized views, when possible, without cost consideration. Use the REWRITE
hint with or without a view list. If you use REWRITEwith a view list and the list
contains an eligible materialized view, then Oracle uses that view regardless of its
cost.

Oracle does not consider views outside of the list. If you do not specify a view list,
then Oracle searches for an eligible materialized view and always uses it regardless
of its cost.

@ STAR_TRANSFORMATION |->@»

The STAR_TRANSFORMATIONNt makes the optimizer use the best plan in which
the transformation has been used. Without the hint, the optimizer could make a
cost-based decision to use the best plan generated without the transformation,
instead of the best plan for the transformed query.

2-76 SQL Reference

Comments

Even if the hint is given, there is no guarantee that the transformation will take
place. The optimizer only generates the subqueries if it seems reasonable to do so. If
no subqueries are generated, then there is no transformed query, and the best plan
for the untransformed query is used, regardless of the hint.

(P {0 (D)

The USE_CONCATint forces combined ORconditions in the WHERElause of a
query to be transformed into a compound query using the UNION ALLset operator.
Generally, this transformation occurs only if the cost of the query using the
concatenations is cheaper than the cost without them.

The USE_CONCAMiInt turns off IN -list processing and ORexpands all disjunctions,
including IN -lists.

Other Hints

T HDABHDAD

The CACHEint specifies that the blocks retrieved for the table are placed at the
most recently used end of the LRU list in the buffer cache when a full table scan is
performed. This option is useful for small lookup tables.

(F{FOEHGHE JDAADAD

The NOCACHRint specifies that the blocks retrieved for the table are placed at the
least recently used end of the LRU list in the buffer cache when a full table scan is
performed. This is the normal behavior of blocks in the buffer cache.

(P {FoImEST ()

If you enabled subquery unnesting with the UNNEST_SUBQUERYrameter, then
the NO_UNNESHiInt turns it off for specific subquery blocks.

Basic Elements of Oracle SQL 2-77

Comments

@ ORDERED_PREDICATES |->@->

The ORDERED_PREDICATHSnNt forces the optimizer to preserve the order of
predicate evaluation, except for predicates used as index keys. Use this hint in the
WHEREIlause of SELECTstatements.

If you do not use the ORDERED_PREDICATHSNt, then Oracle evaluates all
predicates in the order specified by the following rules. Predicates:

Without user-defined functions, type methods, or subqueries are evaluated first,
in the order specified in the WHEREIlause.

With user-defined functions and type methods that have user-computed costs
are evaluated next, in increasing order of their cost.

With user-defined functions and type methods without user-computed costs are
evaluated next, in the order specified in the WHERElause.

Not specified in the WHEREIlause (for example, predicates transitively
generated by the optimizer) are evaluated next.

With subqueries are evaluated last in the order specified in the WHEREIlause.

Note: As mentioned, you cannot use the ORDERED_PREDICATES
hint to preserve the order of predicate evaluation on index keys.

() PusH_PRED | O(able)0 ()

The PUSH_PREDMDint forces pushing of a join predicate into the view.

GIELEI0ICDT00

The NO_PUSH_PREDiInt prevents pushing of a join predicate into the view.

GIEEET O

The PUSH_SUBQint causes non-merged subqueries to be evaluated at the earliest
possible place in the execution plan. Generally, subqueries that are not merged are

2-78 SQL Reference

Database Objects

executed as the last step in the execution plan. If the subquery is relatively
inexpensive and reduces the number of rows significantly, then it improves
performance to evaluate the subquery earlier.

This hint has no effect if the subquery is applied to a remote table or one that is
joined using a merge join.

FO{OmEST (D

Setting the UNNEST_SUBQUER¥ssion parameter to TRUEenables subquery
unnesting. Subquery unnesting unnests and merges the body of the subquery into
the body of the statement that contains it, allowing the optimizer to consider them
together when evaluating access paths and joins.

UNNEST_SUBQUERi¥st verifies if the statement is valid. If the statement is not
valid, then subquery unnesting cannot proceed. The statement must then must pass
a heuristic test.

The UNNESThint checks the subquery block for validity only. If it is valid, then
subqguery unnesting is enabled without Oracle checking the heuristics.

Database Objects

Oracle recognizes objects that are associated with a particular schema and objects
that are not associated with a particular schema, as described in the sections that
follow.

Schema Objects

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a
single schema. Schema objects can be created and manipulated with SQL and
include the following types of objects:

« Clusters

« Database links

« Database triggers
« Dimensions

« External procedure libraries

Basic Elements of Oracle SQL 2-79

Database Objects

« Index-organized tables

« Indexes

« Indextypes

« Java classes, Java resources, Java sources
« Materialized views

« Materialized view logs

« Object tables

« Object types

« Object views

« Operators

« Packages

« Sequences

« Stored functions, stored procedures

« Synonyms

« Tables
« Views
Nonschema Objects

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

« Contexts

« Directories

« Profiles

« Roles

« Rollback segments
« Tablespaces

« Users

In this reference, each type of object is briefly defined in Chapter 7 through
Chapter 11, in the section describing the statement that creates the database object.

2-80 SQL Reference

Database Objects

These statements begin with the keyword CREATEFor example, for the definition
of a cluster, see CREATE CLUSTER on page 9-3.

See Also: Oracle8i Concepts for an overview of database objects

You must provide names for most types of schema objects when you create them.
These names must follow the rules listed in the following sections.

Parts of Schema Objects
Some schema objects are made up of parts that you can or must name, such as:
« Columnsin a table or view
« Index and table partitions and subpartitions
« Integrity constraints on a table

« Packaged procedures, packaged stored functions, and other objects stored
within a package

Partitioned Tables and Indexes

Tables and indexes can be partitioned. When partitioned, these schema objects
consist of a number of parts called partitions, all of which have the same logical
attributes. For example, all partitions in a table share the same column and
constraint definitions, and all partitions in an index share the same index columns.

When you partition a table or index using the range method, you specify a
maximum value for the partitioning key column(s) for each partition. When you
partition a table or index using the hash method, you instruct Oracle to distribute
the rows of the table into partitions based on a system-defined hash function on the
partitioning key column(s). When you partition a table or index using the
composite-partitioning method, you specify ranges for the partitions, and Oracle
distributes the rows in each partition into one or more hash subpartitions based on
a hash function. Each subpartition of a table or index partitioned using the
composite method has the same logical attributes.

Partition-Extended and Subpartition-Extended Table Names

Partition-extended and subpartition-extended table names let you perform some

partition-level and subpartition-level operations, such as deleting all rows from a
partition or subpartition, on only one partition or subpartition. Without extended
table names, such operations would require that you specify a predicate (WHERE

Basic Elements of Oracle SQL 2-81

Database Objects

clause). For range-partitioned tables, trying to phrase a partition-level operation
with a predicate can be cumbersome, especially when the range partitioning key
uses more than one column. For hash partitions and subpartitions, using a predicate
is more difficult still, because these partitions and subpartitions are based on a
system-defined hash function.

Partition-extended table names let you use partitions as if they were tables. An
advantage of this method, which is most useful for range-partitioned tables, is that
you can build partition-level access control mechanisms by granting (or revoking)
privileges on these views to (or from) other users or roles.To use a partition as a
table, create a view by selecting data from a single partition, and then use the view
as a table.

You can specify partition-extended or subpartition-extended table names for the
following DML statements:

» DELETE

= INSERT

« LOCKTABLE
« SELECT

« UPDATE

Note: For application portability and ANSI syntax compliance,
Oracle strongly recommends that you use views to insulate
applications from this Oracle proprietary extension.

Syntax The basic syntax for using partition-extended and subpartition-extended
table names is:

dblink

PARTITION |->@{partition
SUBPARTITION |->@{subpartition

@O (@),

Restrictions Currently, the use of partition-extended and subpartition-extended
table names has the following restrictions:

2-82 SQL Reference

Schema Object Names and Qualifiers

No remote tables; A partition-extended or subpartition-extended table name
cannot contain a database link (dblink) or a synonym that translates to a table
with a dblink. To use remote partitions and subpartitions, create a view at the
remote site that uses the extended table name syntax and then refer to the
remote view.

No synonyms: A partition or subpartition extension must be specified with a
base table. You cannot use synonyms, views, or any other objects.

Example In the following statement, sales is a partitioned table with partition
jan97 . You can create a view of the single partition jan97 , and then use it as if it
were a table. This example deletes rows from the partition.

CREATE VIEW sales_jan97 AS

SELECT * FROM sales PARTITION (jan97);

DELETE FROM sales_jan97 WHERE amount < 0;

Schema Object Names and Qualifiers

This section provides:

Rules for naming schema objects and schema object location qualifiers

Guidelines for naming schema objects and qualifiers

Schema Object Naming Rules
The following rules apply when naming schema objects:

1.

Names must be from 1 to 30 bytes long with these exceptions:
« Names of databases are limited to 8 bytes.

« Names of database links can be as long as 128 bytes.
Names cannot contain quotation marks.

Names are not case sensitive.

A name must begin with an alphabetic character from your database character
set unless surrounded by double quotation marks.

Names can contain only alphanumeric characters from your database character
set and the underscore (), dollar sign ($), and pound sign (#). Oracle strongly
discourages you from using $ and #. Names of database links can also contain
periods (.) and "at" signs (@).

Basic Elements of Oracle SQL 2-83

Schema Object Names and Qualifiers

2-84 SQL Reference

If your database character set contains multibyte characters, Oracle
recommends that each name for a user or a role contain at least one single-byte
character.

Note: You cannot use special characters from European or Asian
character sets in a database name, global database name, or
database link names. For example, characters with an umlaut are
not allowed.

A name cannot be an Oracle reserved word. , lists all Oracle reserved words.

Depending on the Oracle product you plan to use to access a database object,
names might be further restricted by other product-specific reserved words.

See Also:

= Appendix C, "Oracle Reserved Words" for a listing of all Oracle
reserved words

« The manual for the specific product, such as PL/SQL User’s
Guide and Reference, for a list of a product’s reserved words

Do not use the word DUALas a name for an object or part. DUALIs the name of a
dummy table.

The Oracle SQL language contains other words that have special meanings.
These words include datatypes, function names, and keywords (the uppercase
words in SQL statements, such as DIMENSION SEGMENTRLLOCATEDISABLE,
and so forth). These words are not reserved. However, Oracle uses them
internally. Therefore, if you use these words as names for objects and object
parts, your SQL statements may be more difficult to read and may lead to
unpredictable results.

In particular, do not use words beginning with "SYS " as schema object names,
and do not use the names of SQL built-in functions for the names of schema
objects or user-defined functions.

See Also: "Datatypes" on page 2-2 and "SQL Functions" on
page 4-2

Within a namespace, no two objects can have the same name.

Schema Object Names and Qualifiers

10.

The following figure shows the namespaces for schema objects. Each box is a
namespace. Tables and views are in the same namespace. Therefore, a table and
a view in the same schema cannot have the same name. However, tables and
indexes are in different namespaces. Therefore, a table and an index in the same
schema can have the same name.

/ TABLES \ < INDEXES)

VIEWS

CONSTRAINTS
SEQUENCES

PRIVATE SYNONYMS

STAND-ALONE PROCEDURES

STAND-ALONE STORED FUNCTIONS DATABASE TRIGGERS

YA YER

PACKAGES

MATERIALIZED VIEWS/
SNAPSHOTS

\USER—DEFINED TYPES/ < DIMENSIONS)

Each schema in the database has its own namespaces for the objects it contains.
This means, for example, that two tables in different schemas are in different
namespaces and can have the same name.

PRIVATE DATABASE LINKS

)
CLUSTERS)
)
)

A

The following figure shows the namespaces for nonschema objects. Because the
objects in these namespaces are not contained in schemas, these namespaces
span the entire database.

USER
< ROLES) (TABLESPACES >

C PUBLIC SYNONYMS > CROLLBACKSEGMENTS)

(PUBLIC DATABASE LINKS) (PROFILES >

Columns in the same table or view cannot have the same name. However,
columns in different tables or views can have the same name.

Basic Elements of Oracle SQL 2-85

Schema Object Names and Qualifiers

11.

12.

2-86 SQL Reference

Procedures or functions contained in the same package can have the same
name, provided that their arguments are not of the same number and
datatypes. Creating multiple procedures or functions with the same name in the
same package with different arguments is called overloading the procedure or
function.

A name can be enclosed in double quotation marks. Such names can contain
any combination of characters, including spaces, ignoring rules 3 through 7 in
this list. This exception is allowed for portability, but Oracle recommends that
you do not break rules 3 through 7.

If you give a schema object a name enclosed in double quotation marks, you
must use double quotation marks whenever you refer to the object.

Enclosing a name in double quotes allows it to:
« Contain spaces
« Be case sensitive

« Begin with a character other than an alphabetic character, such as a numeric
character

« Contain characters other than alphanumeric characters and _, $, and #
« Beareserved word

By enclosing names in double quotation marks, you can give the following
names to different objects in the same namespace:

emp
"emp"”
"Emp"
"EMP "

Note that Oracle interprets the following names the same, so they cannot be
used for different objects in the same namespace:

emp
EMP
"EMP"

If you give a user or password a quoted name, the name cannot contain
lowercase letters.

Database link names cannot be quoted.

Schema Object Names and Qualifiers

Schema Object Naming Examples
The following examples are valid schema object names:

ename

horse

scott.hiredate

"EVEN THIS & THAT!"
a_very_long_and_valid_name

Although column aliases, table aliases, usernames, and passwords are not objects or
parts of objects, they must also follow these naming rules with these exceptions:

« Column aliases and table aliases exist only for the execution of a single SQL
statement and are not stored in the database, so rule 12 does not apply to them.

« Passwords do not have namespaces, so rule 9 does not apply to them.
« Do not use quotation marks to make usernames and passwords case sensitive.

See Also: CREATE USER on page 10-99 for additional rules for
naming users and passwords

Schema Object Naming Guidelines
Here are several helpful guidelines for naming objects and their parts:
« Use full, descriptive, pronounceable names (or well-known abbreviations).
« Use consistent naming rules.
« Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use
with the objective of making names as descriptive as possible. When in doubt,
choose the more descriptive name, because the objects in the database may be used
by many people over a period of time. Your counterpart ten years from now may
have difficulty understanding a database with a name like pmdd instead of
payment_due_date

Using consistent naming rules helps users understand the part that each table plays
in your application. One such rule might be to begin the names of all tables
belonging to the FINANCEapplication with fin_ .

Use the same names to describe the same things across tables. For example, the
department number columns of the sample employees and departments tables
are both named deptno .

Basic Elements of Oracle SQL 2-87

Syntax for Schema Objects and Parts in SQL Statements

Syntax for Schema Objects and Parts in SQL Statements

This section tells you how to refer to schema objects and their parts in the context of
a SQL statement. This section shows you:

The general syntax for referring to an object
How Oracle resolves a reference to an object
How to refer to objects in schemas other than your own

How to refer to objects in remote databases

The following diagram shows the general syntax for referring to an object or a part:

_
X object)

where:

object is the name of the object.

schema is the schema containing the object. The schema qualifier allows you to
refer to an object in a schema other than your own. You must be granted
privileges to refer to objects in other schemas. If you omit schema, Oracle
assumes that you are referring to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown
with list item 9 on page 2-84. Nonschema objects, also shown with list item 9 on
page 2-84, cannot be qualified with schema because they are not schema
objects. (An exception is public synonyms, which can optionally be qualified
with "PUBLIC". The quotation marks are required.)

part is a part of the object. This identifier allows you to refer to a part of a
schema object, such as a column or a partition of a table. Not all types of objects
have parts.

dblink applies only when you are using Oracle’s distributed functionality.
This is the name of the database containing the object. The dblink qualifier lets
you refer to an object in a database other than your local database. If you omit
dblink , Oracle assumes that you are referring to an object in your local
database. Not all SQL statements allow you to access objects on remote
databases.

You can include spaces around the periods separating the components of the
reference to the object, but it is conventional to omit them.

2-88 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

How Oracle Resolves Schema Object References

When you refer to an object in a SQL statement, Oracle considers the context of the
SQL statement and locates the object in the appropriate namespace. After locating
the object, Oracle performs the statement’s operation on the object. If the named
object cannot be found in the appropriate namespace, Oracle returns an error.

The following example illustrates how Oracle resolves references to objects within
SQL statements. Consider this statement that adds a row of data to a table identified
by the name dept :

INSERT INTO dept
VALUES (50, 'SUPPORT’, 'PARIS’);

Based on the context of the statement, Oracle determines that dept can be:
« Atable in your own schema

« Aview in your own schema

« A private synonym for a table or view

« A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your
own schema before considering hamespaces outside your schema. In this example,
Oracle attempts to resolve the name dept as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonyms. If the object is a private
synonym, Oracle locates the object for which the synonym stands. This object
could be in your own schema, another schema, or on another database. The
object could also be another synonym, in which case Oracle locates the object
for which this synonym stands.

2. If the object is in the namespace, Oracle attempts to perform the statement on
the object. In this example, Oracle attempts to add the row of data to dept . If
the object is not of the correct type for the statement, Oracle returns an error. In
this example, dept must be a table, view, or a private synonym resolving to a
table or view. If dept is a sequence, Oracle returns an error.

3. If the object is not in any namespace searched in thus far, Oracle searches the
namespace containing public synonyms. If the object is in that namespace,
Oracle attempts to perform the statement on it. If the object is not of the correct
type for the statement, Oracle returns an error. In this example, if dept is a
public synonym for a sequence, Oracle returns an error.

Basic Elements of Oracle SQL 2-89

Syntax for Schema Objects and Parts in SQL Statements

Referring to Objects in Other Schemas

To refer to objects in schemas other than your own, prefix the object name with the
schema name:

schema.object

For example, this statement drops the emptable in the schema scott
DROP TABLE scott.emp

Referring to Objects in Remote Databases

To refer to objects in databases other than your local database, follow the object
name with the name of the database link to that database. A database link is a
schema object that causes Oracle to connect to a remote database to access an object
there. This section tells you:

« How to create database links

« How to use database links in your SQL statements

Creating Database Links

You create a database link with the statement CREATE DATABASE LINK on
page 9-28. The statement allows you to specify this information about the database
link:

« The name of the database link

« The database connect string to access the remote database

« The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names When you create a database link, you must specify its name.

Database link names are different from names of other types of objects. They can be
as long as 128 bytes and can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the
database to which the database link refers and the location of that database in the
hierarchy of database names. The following syntax diagram shows the form of the
name of a database link:

2-90 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

dblink::=

. domain I @ connect_descriptor

—(database)

where:

« database should specify nameportion of the global name of the remote
database to which the database link connects. This global name is stored in the
data dictionary of the remote database; you can see this name in the GLOBAL _
NAMEview.

« domain should specify the domain portion of the global name of the remote
database to which the database link connects. If you omit domain from the
name of a database link, Oracle qualifies the database link name with the
domain of your local database as it currently exists in the data dictionary.

« connect_descriptor allows you to further qualify a database link. Using
connect descriptors, you can create multiple database links to the same
database. For example, you can use connect descriptors to create multiple
database links to different instances of the Oracle Parallel Server that access the
same database.

The combination database.domain is sometimes called the "service name".

See Also: Net8 Administrator’s Guide

Username and Password Oracle uses the username and password to connect to the
remote database. The username and password for a database link are optional.

Database Connect String The database connect string is the specification used by Net8
to access the remote database. For information on writing database connect strings,
see the Net8 documentation for your specific network protocol. The database string
for a database link is optional.

Referring to Database Links

Database links are available only if you are using Oracle’s distributed functionality.
When you issue a SQL statement that contains a database link, you can specify the
database link name in one of these forms:

Basic Elements of Oracle SQL 2-91

Syntax for Schema Objects and Parts in SQL Statements

complete is the complete database link name as stored in the data dictionary,
including the database , domain , and optional connect_descriptor
components.

partial is the database and optional connect_descriptor components,
but not the domain component.

Oracle performs these tasks before connecting to the remote database:

1.

If the database link name specified in the statement is partial, Oracle expands
the name to contain the domain of the local database as found in the global
database name stored in the data dictionary. (You can see the current global
database name in the GLOBAL_NAMHata dictionary view.)

Oracle first searches for a private database link in your own schema with the
same name as the database link in the statement. Then, if necessary, it searches
for a public database link with the same name.

« Oracle always determines the username and password from the first
matching database link (either private or public). If the first matching
database link has an associated username and password, Oracle uses it. If it
does not have an associated username and password, Oracle uses your
current username and password.

« If the first matching database link has an associated database string, Oracle
uses it. If not, Oracle searches for the next matching (public) database link.
If no matching database link is found, or if no matching link has an
associated database string, Oracle returns an error.

Oracle uses the database string to access the remote database. After accessing
the remote database, if the value of the GLOBAL_NAMEParameter is true ,
Oracle verifies that the database.domain portion of the database link name
matches the complete global name of the remote database. If this condition is
true, Oracle proceeds with the connection, using the username and password
chosen in Step 2. If not, Oracle returns an error.

If the connection using the database string, username, and password is
successful, Oracle attempts to access the specified object on the remote database
using the rules for resolving object references and referring to objects in other
schemas discussed earlier in this section.

You can disable the requirement that the database.domain portion of the
database link name must match the complete global name of the remote database
by setting to false the initialization parameter GLOBAL_NAMESr the GLOBAL _
NAMESparameter of the ALTER SYSTEMr ALTER SESSIONstatement.

2-92 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

See Also: Oracle8i Distributed Database Systems for more
information on remote name resolution

Referencing Object Type Attributes and Methods

To reference object type attributes or methods in a SQL statement, you must fully
gualify the reference with a table alias. Consider the following example:

CREATE TYPE person AS OBJECT
(ssno VARCHAR(20),
name VARCHAR (10));

CREATE TABLE emptab (pinfo person);

In a SQL statement, reference to the ssno attribute must be fully qualified using a
table alias, as illustrated below:

SELECT e.pinfo.ssno FROM emptab e;

UPDATE emptab e SET e.pinfo.ssno ='510129980’
WHERE e.pinfo.name = 'Mike’;

To reference an object type’s member method that does not accept arguments, you
must provide "empty" parentheses. For example, assume that age is a method in
the person type that does not take arguments. In order to call this method in a SQL
statement, you must provide empty parentheses as shows in this example:

SELECT e.pinfo.age() FROM emptab e
WHERE e.pinfo.name = 'Mike’;

See Also: Oracle8i Concepts for more information on user-defined
datatypes

Basic Elements of Oracle SQL 2-93

Syntax for Schema Objects and Parts in SQL Statements

2-94 SQL Reference

3

Operators

An operator manipulates individual data items and returns a result. The data items
are called operands or arguments. Operators are represented by special characters
or by keywords. For example, the multiplication operator is represented by an
asterisk (*) and the operator that tests for nulls is represented by the keywords IS
NULL

This chapter contains these sections:

Unary and Binary Operators

Precedence

Arithmetic Operators

Concatenation Operator

Comparison Operators

Logical Operators: NOT, AND, OR

Set Operators: UNION [ALL], INTERSECT, MINUS
Other Built-In Operators

User-Defined Operators

Operators 3-1

Unary and Binary Operators

Unary and Binary Operators

The two general classes of operators are:

unary A unary operator operates on only one operand. A unary
operator typically appears with its operand in this format:
operator operand
binary A binary operator operates on two operands. A binary operator

appears with its operands in this format:

operandl operator operand2

Other operators with special formats accept more than two operands. If an operator
is given a null operand, the result is always null. The only operator that does not
follow this rule is concatenation (] |).

Precedence

Precedence is the order in which Oracle evaluates different operators in the same
expression. When evaluating an expression containing multiple operators, Oracle
evaluates operators with higher precedence before evaluating those with lower
precedence. Oracle evaluates operators with equal precedence from left to right
within an expression.

Table 3-1 lists the levels of precedence among SQL operators from high to low.
Operators listed on the same line have the same precedence.

Table 3-1 SQL Operator Precedence

Operator Operation

+, - identity, negation

*/ multiplication, division

+ -l addition, subtraction, concatenation
= 15, <,>,<=,>=, 1S comparison

NULL, LIKE, BETWEEN, IN

NOT exponentiation, logical negation
AND conjunction

OR disjunction

3-2 SQL Reference

Arithmetic Operators

Precedence Example In the following expression, multiplication has a higher
precedence than addition, so Oracle first multiplies 2 by 3 and then adds the result
to 1.

1+2*3
You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION UNION ALL INTERSECT and MINUS),
which combine sets of rows returned by queries, rather than individual data items.
All set operators have equal precedence.

Arithmetic Operators

You can use an arithmetic operator in an expression to negate, add, subtract,
multiply, and divide numeric values. The result of the operation is also a numeric
value. Some of these operators are also used in date arithmetic. Table 3-2 lists
arithmetic operators.

Table 3-2 Arithmetic Operators

Operator Purpose Example
+ - When these denote a positive ~ SELECT * FROM orders
or negative expression, they are WHERE qtysold = -1;
unary operators. SELECT * FROM emp
WHERE -sal < 0;
When they add or subtract, SELECT sal + comm FROM emp
they are binary operators. WHERE SYSDATE - hiredate
> 365;
*/ Multiply, divide. These are UPDATE emp
binary operators. SET sal =sal * 1.1;

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate
double negation or the subtraction of a negative value. The characters -- are used to
begin comments within SQL statements. You should separate consecutive minus
signs with a space or a parenthesis.

Operators 3-3

Concatenation Operator

See Also: "Comments" on page 2-66 for more information on
comments within SQL statements

Concatenation Operator

The concatenation operator manipulates character strings. Table 3-3 describes the
concatenation operator.

Table 3-3 Concatenation Operator

Operator Purpose Example
11 Concatenates SELECT 'Name is’ || ename
character strings. FROM emp;

The result of concatenating two character strings is another character string. If both
character strings are of datatype CHARthe result has datatype CHARand is limited
to 2000 characters. If either string is of datatype VARCHARZ2the result has datatype
VARCHAR2nNd is limited to 4000 characters. Trailing blanks in character strings are
preserved by concatenation, regardless of the strings’ datatypes.

On most platforms, the concatenation operator is two solid vertical bars, as shown
in Table 3-3. However, some IBM platforms use broken vertical bars for this
operator. When moving SQL script files between systems having different character
sets, such as between ASCII and EBCDIC, vertical bars might not be translated into
the vertical bar required by the target Oracle environment. Oracle provides the
CONCATharacter function as an alternative to the vertical bar operator for cases
when it is difficult or impossible to control translation performed by operating
system or network utilities. Use this function in applications that will be moved
between environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a zero-
length character string with another operand always results in the other operand, so
null can result only from the concatenation of two null strings. However, this may
not continue to be true in future versions of Oracle. To concatenate an expression
that might be null, use the NVL function to explicitly convert the expression to a
zero-length string.

See Also: "Character Datatypes" on page 2-7 for more

information on the differences between the CHARand VARCHAR?2
datatypes

3-4 SQL Reference

Comparison Operators

Example This example creates a table with both CHARand VARCHARZ2olumns,
inserts values both with and without trailing blanks, and then selects these values
and concatenates them. Note that for both CHARand VARCHARZ2o0lumns, the
trailing blanks are preserved.

CREATE TABLE tabl (coll VARCHAR2(6), col2 CHAR(6),
col3 VARCHARZ2(6), col4 CHAR(6));

Table created.

INSERT INTO tab1l (coll, col2, col3, cold)
VALUES (abc’,’def ’,’ghi ', 'jkI);

1 row created.

SELECT coll||col2||col3||col4 "Concatenation™
FROM tabl;

Concatenation

abcdef ghi jkl

Comparison Operators

Comparison operators compare one expression with another. The result of such a
comparison can be TRUE FALSE, or UNKNOWN

See Also: "Conditions" on page 5-15 for information on
conditions

Table 3-4 lists comparison operators.

Table 3-4 Comparison Operators

Operator Purpose Example
= Equality test. SELECT *
FROM emp

WHERE sal = 1500;

1= Inequality test. Some forms of the SELECT *
A= inequality operator may be FROM emp
<> unavailable on some platforms. WHERE sal = 1500;

=

Operators 3-5

Comparison Operators

Table 3-4 (Cont.) Comparison Operators
Operator Purpose Example
> "Greater than" and "less than" SELECT * FROM emp
tests. WHERE sal > 1500;
< SELECT * FROM emp
WHERE sal < 1500;
>= "Greater than or equal to" and SELECT * FROM emp
"less than or equal to" tests. WHERE sal >= 1500;
<= SELECT * FROM emp
WHERE sal <= 1500;
IN "Equal to any member of" test. SELECT * FROM emp
Equivalent to "= ANY". WHERE job IN
(CLERK'ANALYSTY);
SELECT * FROM emp
WHERE sal IN
(SELECT sal FROM emp
WHERE deptno = 30);
NOT IN Equivalent to "!I=ALL". Evaluates SELECT * FROM emp
to FALSEif any member of the set WHERE sal NOT IN
is NULL (SELECT sal FROM emp
WHERE deptno = 30);
SELECT * FROM emp
WHERE job NOT IN
(CLERK’, 'ANALYST");
ANY Compares a value to each value in SELECT * FROM emp
SOME a list or returned by a query. Must WHERE sal = ANY
be preceded by =, !=, >, <, <=,>=. (SELECT sal FROM emp
Evaluates to FALSEif the query WHERE deptno = 30);
returns no rows.
ALL Compares a value to every value SELECT * FROM emp
in a list or returned by a query. WHERE sal >=
Must be preceded by =, I=, >, <, ALL (1400, 3000);
<=, >=,
Evaluates to TRUEIf the query
returns no rows.
[NOT] [Not] greater than or equal to x SELECT * FROM emp
BETWEEN x and less than or equal to y. WHERE sal
AND y BETWEEN 2000 AND 3000;

3-6 SQL Reference

Comparison Operators

Table 3-4 (Cont.) Comparison Operators

Operator Purpose Example
EXISTS TRUEIf a subquery returns at least SELECT ename, deptno
one row. FROM dept

WHERE EXISTS
(SELECT * FROM emp
WHERE dept.deptno

= emp.deptno);

x [NOT] LIKE TRUEIf x does [not] match the SELECT * FROM tabl
y pattern y. Within y, the character WHERE coll LIKE

"%" matches any string of zero or 'A CI%E%' ESCAPE '/";
[ESCAPE 'z]] more characters except null. The -

character "_" matches any single

character. Any character,

excepting percent (%) and

underbar (_) may follow ESCAPE

A wildcard character is treated as

a literal if preceded by the

character designated as the escape

character.

See Also: "LIKE
Operator" on page 3-8

IS [NOT] Tests for nulls. This is the only SELECT ename, deptno

NULL operator that you should use to FROM emp
test for nulls. WHERE comm IS NULL;

See Also: "Nulls" on
page 2-57.

Additional information on the NOT INand LIKE operators appears in the sections
that follow.

NOT IN Operator

If any item in the list following a NOT IN operation is null, all rows evaluate to
UNKNOW(dnd no rows are returned). For example, the following statement returns
the string "'TRUE’ for each row:

SELECT 'TRUE’
FROM emp
WHERE deptno NOT IN (5,15);

However, the following statement returns no rows:

Operators 3-7

Comparison Operators

SELECT 'TRUFE’
FROM emp
WHERE deptno NOT IN (5,15,null);

The above example returns no rows because the WHERElause condition evaluates
to:

deptno != 5 AND deptno != 15 AND deptno != null

Because all conditions that compare a null result in a null, the entire expression

results in a null. This behavior can easily be overlooked, especially when the NOT
IN operator references a subquery.

LIKE Operator

The LIKE operator is used in character string comparisons with pattern matching.
The syntax for a condition using the LIKE operator is shown in this diagram:

-NOT [al ESCAPE esc_charh
e v P

charl Specify a value to be compared with a pattern. This value can
have datatype CHARor VARCHAR2
NOT The NOTkeyword logically inverts the result of the condition,

returning FALSEf the condition evaluates to TRUEand TRUEIf it
evaluates to FALSE

char2 Specify the pattern to which charl is compared. The pattern is a
value of datatype CHARor VARCHAR2nNd can contain the special
pattern matching characters % and _.

ESCAPE Specify for esc_char asingle character as the escape character.
The escape character can be used to cause Oracle to interpret % or
_ literally, rather than as a special character.

If you wish to search for strings containing an escape character,
you must specify this character twice. For example, if the escape
character is ’/’, to search for the string ’client/server’, you must
specify, ‘client//server’.

Whereas the equal (=) operator exactly matches one character value to another, the
LIKE operator matches a portion of one character value to another by searching the

3-8 SQL Reference

Comparison Operators

first value for the pattern specified by the second. Note that blank padding is not
used for LIKE comparisons.

With the LIKE operator, you can compare a value to a pattern rather than to a
constant. The pattern must appear after the LIKE keyword. For example, you can
issue the following query to find the salaries of all employees with names beginning
with 'SM’:

SELECT sal

FROM emp
WHERE ename LIKE 'SM%’;

The following query uses the = operator, rather than the LIKE operator, to find the
salaries of all employees with the name 'SM%’:

SELECT sal
FROM emp
WHERE ename = 'SM%’;

The following query finds the salaries of all employees with the name 'SM%’.
Oracle interprets 'SM%’ as a text literal, rather than as a pattern, because it precedes
the LIKE operator:

SELECT sal
FROM emp
WHERE 'SM%' LIKE ename;

Patterns typically use special characters that Oracle matches with different
characters in the value:

« Anunderscore () in the pattern matches exactly one character (as opposed to
one byte in a multibyte character set) in the value.

« A percentsign (%) in the pattern can match zero or more characters (as opposed
to bytes in a multibyte character set) in the value. Note that the pattern "%’
cannot match a null.

Case Sensitivity and Pattern Matching Case is significant in all conditions
comparing character expressions including the LIKE and equality (=) operators.
You can use the UPPERfunction to perform a case-insensitive match, as in this
condition:

UPPER(ename) LIKE 'SM%’

Pattern Matching on Indexed Columns When LIKE is used to search an indexed
column for a pattern, Oracle can use the index to improve the statement’s

Operators 3-9

Comparison Operators

performance if the leading character in the pattern is not "%" or "_". In this case,
Oracle can scan the index by this leading character. If the first character in the
pattern is "%" or "_", the index cannot improve the query’s performance because
Oracle cannot scan the index.

LIKE Operator Examples This condition is true for all ename values beginning
with "MA":

ename LIKE 'MA%’

All of these ename values make the condition TRUE

MARTIN, MA, MARK, MARY

Case is significant, so ename values beginning with "Ma," "ma," and "mA" make the
condition FALSE

Consider this condition:

ename LIKE 'SMITH_’

This condition is true for these ename values:
SMITHE, SMITHY, SMITHS

This condition is false for 'SMITH’, since the special character "_" must match

exactly one character of the ename value.

To search for employees with the pattern ’A_B’ in their name:

SELECT ename
FROM emp
WHERE ename LIKE "%A_B%’' ESCAPE '\;

The ESCAPBEoption identifies the backslash (\) as the escape character. In the
pattern, the escape character precedes the underscore (). This causes Oracle to
interpret the underscore literally, rather than as a special pattern matching
character.

ESCAPE Option Example You can include the actual characters "%" or " " in the
pattern by using the ESCAPEoption. The ESCAPEoption identifies the escape
character. If the escape character appears in the pattern before the character "%" or
" "then Oracle interprets this character literally in the pattern, rather than as a
special pattern matching character.

3-10 SQL Reference

Logical Operators: NOT, AND, OR

Patterns Without % If a pattern does not contain the "%" character, the condition
can be TRUEonly if both operands have the same length.

Example: Consider the definition of this table and the values inserted into it:
CREATE TABLE freds (f CHAR(6), v VARCHAR2(6));

INSERT INTO freds VALUES ('FRED’, 'FRED’);

Because Oracle blank-pads CHARvalues, the value of f is blank-padded to 6 bytes.
v is not blank-padded and has length 4.

Logical Operators: NOT, AND, OR

A logical operator combines the results of two component conditions to produce a
single result based on them or to invert the result of a single condition. Table 3-5
lists logical operators.

Table 3-5 Logical Operators

Operator Function Example
NOT Returns TRUEiIf the following SELECT *
condition is FALSE Returns FROM emp
FALSEIfitis TRUEIfitis WHERE NOT (job IS NULL);
UNKNOWN remains SELECT *
UNKNOWN FROM emp
WHERE NOT
(sal BETWEEN 1000 AND 2000);
AND Returns TRUEIf both SELECT *
component conditions are FROM emp

TRUEReturns FALSEifeither \WHERE job = 'CLERK’
is FALSE Otherwise returns AND deptno = 10;

UNKNOWN

OR Returns TRUEIf either SELECT *
component conditionis TRUE ~ FROM emp
Returns FALSEif both are WHERE job = 'CLERK’
FALSE Otherwise returns OR deptno = 10;
UNKNOWN

For example, in the WHERI[Elause of the following SELECTstatement, the AND
logical operator is used to ensure that only those hired before 1984 and earning
more than $1000 a month are returned:

SELECT *

Operators 3-11

Set Operators: UNION [ALL], INTERSECT, MINUS

NOT Operator

AND Operator

OR Operator

FROM emp
WHERE hiredate < TO_DATE('01-JAN-1984’, 'DD-MON-YYYY’)
AND sal > 1000;

Table 3-6 shows the result of applying the NOToperator to a condition.

Table 3—-6 NOT Truth Table

TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

Table 3—-7 shows the results of combining two expressions with AND

Table 3—7 AND Truth Table

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

Table 3-8 shows the results of combining two expressions with OR

Table 3-8 OR Truth Table

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

Set Operators: UNION [ALL], INTERSECT, MINUS

Set operators combine the results of two component queries into a single result.
Queries containing set operators are called compound queries. Table 3-9 lists SQL

set operators.

3-12 SQL Reference

Set Operators: UNION [ALL], INTERSECT, MINUS

Table 3-9 Set Operators

Operator Returns

UNION All rows selected by either query.

UNION ALL All rows selected by either query, including all duplicates.
INTERSECT All distinct rows selected by both queries.

MINUS All distinct rows selected by the first query but not the second.

All set operators have equal precedence. If a SQL statement contains multiple set
operators, Oracle evaluates them from the left to right if no parentheses explicitly
specify another order.

The corresponding expressions in the select lists of the component queries of a
compound query must match in number and datatype. If component queries select
character data, the datatype of the return values are determined as follows;

« If both queries select values of datatype CHARthe returned values have
datatype CHAR

« If either or both of the queries select values of datatype VARCHAR2he returned
values have datatype VARCHAR2

Set Operator Examples ~ Consider these two queries and their results:

SELECT part
FROM orders_list1;

SPARKPLUG
FUEL PUMP
FUEL PUMP
TAILPIPE

SELECT part
FROM orders_list2;

CRANKSHAFT
TAILPIPE
TAILPIPE

Operators 3-13

Set Operators: UNION [ALL], INTERSECT, MINUS

The following examples combine the two query results with each of the set

operators.

UNION Example The following statement combines the results with the UNION
operator, which eliminates duplicate selected rows. This statement shows that you

must match datatype (using the TO_DATEand TO_NUMBERunctions) when
columns do not exist in one or the other table:

SELECT part, partnum, to_date(null) date_in

FROM orders_listl
UNION

SELECT part, to_number(null), date_in

FROM orders_list2;

PART PARTNUM DATE_IN

SPARKPLUG 3323165

SPARKPLUG 10/24/98

FUEL PUMP 3323162

FUEL PUMP 12/24/99

TAILPIPE 1332999

TAILPIPE 01/01/01
CRANKSHAFT 9394991

CRANKSHAFT 09/12/02

SELECT part

FROM orders_listl
UNION
SELECT part

FROM orders_list2;

SPARKPLUG
FUEL PUMP
TAILPIPE
CRANKSHAFT

UNION ALL Example

The following statement combines the results with the

UNION ALLoperator, which does not eliminate duplicate selected rows:

SELECT part
FROM orders_listl
UNION ALL

3-14 SQL Reference

Set Operators: UNION [ALL], INTERSECT, MINUS

SELECT part
FROM orders_list2;

SPARKPLUG
FUEL PUMP
FUEL PUMP
TAILPIPE
CRANKSHAFT
TAILPIPE
TAILPIPE

Note that the UNIONoperator returns only distinct rows that appear in either result,
while the UNION ALLoperator returns all rows. A part value that appears multiple
times in either or both queries (such as 'FUEL PUMB is returned only once by the
UNIONoperator, but multiple times by the UNION ALLoperator.

INTERSECT Example The following statement combines the results with the
INTERSECT operator, which returns only those rows returned by both queries:

SELECT part

FROM orders_listl
INTERSECT
SELECT part

FROM orders_list2;

TAILPIPE

MINUS Example The following statement combines results with the MINUS
operator, which returns only rows returned by the first query but not by the second:

SELECT part

FROM orders_listl
MINUS
SELECT part

FROM orders_list2;

SPARKPLUG
FUEL PUMP

Operators 3-15

Other Built-In Operators

Other Built-In Operators

Table 3-10 lists other SQL operators.

Table 3-10 Other SQL Operators

Operator Purpose Example
(+) Indicates that the preceding column is the outer join columnina SELECT ename, dname
join. FROM emp, dept
See Also: "Outer Joins" on page 5-25. WHERE dept.deptno =
emp.deptno(+);
PRIOR Evaluates the following expression for the parent row of the SELECT empno, ename,
current row in a hierarchical, or tree-structured, query. Insucha mgr
query, you must use this operator in the CONNECT B¥lause to FROM emp

define the relationship between parent and child rows. You can CONNECT BY
also use this operator in other parts of a SELECTstatement that PRIOR empno =
performs a hierarchical query. The PRIORoperator is a unary mar:

operator and has the same precedence as the unary + and - gr,
arithmetic operators.

See Also: "Hierarchical Queries" on page 5-22.

User-Defined Operators

Like built-in operators, user-defined operators take a set of operands as input and
return a result. However, you create them with the CREATE OPERATGRatement,
and they are identified by names (e.g., MERGE They reside in the same namespace
as tables, views, types, and stand-alone functions.

Once you have defined a new operator, you can use it in SQL statements like any
other built-in operator. For example, you can use user-defined operators in the
select list of a SELECTstatement, the condition of a WHEREIlause, or in ORDER BY
clauses and GROUP B¥lauses. However, you must have EXECUTHBprivilege on the
operator to do so, because it is a user-defined object.

For example, if you define an operator CONTAINS which takes as input a text
document and a keyword and returns 1 if the document contains the specified
keyword, you can then write the following SQL query:

SELECT * FROM emp WHERE contains (resume, 'Oracle and UNIX’) = 1;

See Also: CREATE OPERATOR on page 9-115 and Oracle8i Data
Cartridge Developer’s Guide for more information on user-defined operators

3-16 SQL Reference

A

Functions

Functions are similar to operators in that they manipulate data items and return a
result. Functions differ from operators in the format of their arguments. This format
allows them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

This chapter contains these sections;
« SQL Functions

« User-Defined Functions

Functions 4-1

SQL Functions

SQL Functions

SQL functions are built into Oracle and are available for use in various appropriate
SQL statements. Do not confuse SQL functions with user functions written in PL/
SQL.

If you call a SQL function with an argument of a datatype other than the datatype
expected by the SQL function, Oracle implicitly converts the argument to the
expected datatype before performing the SQL function. If you call a SQL function
with a null argument, the SQL function automatically returns null. The only SQL
functions that do not necessarily follow this behavior are CONCAINVL, and
REPLACE

In the syntax diagrams for SQL functions, arguments are indicated by their
datatypes. When the parameter "function" appears in SQL syntax, replace it with
one of the functions described in this section. Functions are grouped by the
datatypes of their arguments and their return values.

See Also:

« "User-Defined Functions" on page 4-128 for information on user
functions

« Oracle interMedia Audio, Image, and Video User’s Guide and
Reference for information on functions used with Oracle
interMedia

« "Data Conversion" on page 2-30 for implicit conversion of
datatypes

« "Syntax Diagrams and Notation" on page -xxi

The general syntax is as follows:

function::=

single_row_function
aggregate_function
analytic_function

object_reference_function)—

user_defined_function

4-2 SQL Reference

SQL Functions

single_row_function::=

number_function

character_function

date_function

conversion_function

miscelIaneous_single_row_function}

The sections that follow list the built-in SQL functions in each of the groups
illustrated above except user-defined functions. All of the built-in SQL functions are
then described in alphabetical order. User-defined functions are described at the
end of this chapter.

The examples provided with the function descriptions use the empand dept tables
that are part of the scott schema in your sample Oracle database. Many examples
also use a sales table, which has the following contents:

REGION PRODUCT S_DAY S_MONTH S_YEAR S_AMOUNT S_PROFIT

200 1 10 6 1998 77586 586
200 1 26 8 1998 62109 509
200 1 11 11 1998 46632 432
200 1 14 4 1999 15678 278
201 1 9 6 1998 77972 587
201 1 25 8 1998 62418 510
201 1 10 11 1998 46864 433
201 1 13 4 1999 15756 279
200 2 9 6 1998 39087 293.5
200 2 25 8 1998 31310 255
200 2 10 11 1998 23533 216.5
200 2 13 4 1999 7979 139.5
201 2 9 11 1998 23649.5 217
201 2 12 4 1999 8018.5 140
200 3 9 11 1998 15834 144.67
200 3 12 4 1999 5413.33 93.33
201 3 1 4 1999 5440 93.67
200 4 11 4 1999 4131 70.25
201 4 10 4 1999 4151.25 70.5
200 5 10 4 1999 3362 56.4
201 5 5 6 1998 16068 118.2
201 5 21 8 1998 12895.6 102.8
201 5 9 4 1999 3378.4 56.6

Functions 4-3

SQL Functions

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. These functions can appear in select lists, WHERElauses, START WITHlauses,
and CONNECT B¥auses.

Number Functions

Number functions accept numeric input and return numeric values. Most of these
functions return values that are accurate to 38 decimal digits. The transcendental
functions COS COSHEXR LN, LOG SIN, SINH, SQRTTAN and TANHare accurate to
36 decimal digits. The transcendental functions ACOSASIN, ATAN and ATAN2are
accurate to 30 decimal digits. The number functions are:

ABS COSH SIGN

ACOS EXP SIN

ADD_MONTHS FLOOR SINH

ATAN LN SQRT

ATAN2 LOG TAN

BITAND MOD TANH

CEIL POWER TRUNC (number function)
COos ROUND (number function)

Character Functions Returning Character Values

Character functions that return character values, unless otherwise noted, return
values with the datatype VARCHAR2nNd are limited in length to 4000 bytes.
Functions that return values of datatype CHARare limited in length to 2000 bytes. If
the length of the return value exceeds the limit, Oracle truncates it and returns the
result without an error message. The character functions that return character
values are:

4-4 SQL Reference

SQL Functions

CHR NLS_LOWER SUBSTR
CONCAT NLSSORT SUBSTRB
INITCAP NLS_UPPER TRANSLATE
LOWER REPLACE TRIM

LPAD RPAD UPPER
LTRIM RTRIM

NLS_INITCAP SOUNDEX

Character Functions Returning Number Values
The character functions that return number values are:

ASCII INSTRB LENGTHB
INSTR LENGTH

Date Functions

Date functions operate on values of the DATEdatatype. All date functions return a
value of DATEdatatype, except the MONTHS_BETWEHMhction, which returns a
number. The date functions are:

ADD_MONTHS NEW_TIME SYSDATE
LAST DAY NEXT_DAY TRUNC (date function)
MONTHS_BETWEEN ROUND (date function)

Conversion Functions

Conversion functions convert a value from one datatype to another. Generally, the
form of the function names follows the convention datatype TOdatatype . The
first datatype is the input datatype. The second datatype is the output datatype. The
SQL conversion functions are:

Functions 4-5

SQL Functions

CHARTOROWID
CONVERT
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX

ROWIDTOCHAR

TO_CHAR (date
conversion)

TO_CHAR (number
conversion)

TO_DATE

TO_LOB
TO_MULTI_BYTE
TO_NUMBER
TO_SINGLE_BYTE
TRANSLATE ... USING

Miscellaneous Single-Row Functions
The following single-row functions do not fall into any of the other single-row

function categories.

BFILENAME

DUMP

EMPTY_[B | CILOB
GREATEST

LEAST

NLS_CHARSET DECL_LEN

NLS_CHARSET_ID
NLS_CHARSET_NAME
NVL

NVL2

SYS_CONTEXT

SYS_GUID
uID
USER
USERENV
VSIZE

Aggregate Functions

Aggregate functions return a single result row based on groups of rows, rather than
on single rows. Aggregate functions can appear in select lists and in ORDER B¥nd
HAVINGclauses. They are commonly used with the GROUP B¥lause in a SELECT
statement, where Oracle divides the rows of a queried table or view into groups. In

a query containing a GROUP BYlause, the elements of the select list can be

aggregate functions, GROUP B¥xpressions, constants, or expressions involving one
of these. Oracle applies the aggregate functions to each group of rows and returns a

single result row for each group.

If you omit the GROUP B¥lause, Oracle applies aggregate functions in the select list

to all the rows in the queried table or view. You use aggregate functions in the
HAVINGclause to eliminate groups from the output based on the results of the

aggregate functions, rather than on the values of the individual rows of the queried

table or view.

4-6 SQL Reference

SQL Functions

See Also: "GROUP BY Examples" on page 11-105 and the HAVING
clause on page 11-100 for more information on the GROUP B¥lause
and HAVINGclauses in queries and subqueries

Many (but not all) aggregate functions that take a single argument accept these
options:

« DISTINCT causes an aggregate function to consider only distinct values of the
argument expression.

« ALL causes an aggregate function to consider all values, including all
duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If
you specify neither option, the default is ALL.

All aggregate functions except COUNT*) and GROUPINGgnore nulls. You can use
the NVLfunction in the argument to an aggregate function to substitute a value for a
null. COUNThever returns null, but returns either a number or zero. For all the
remaining aggregate functions, if the data set contains no rows, or contains only
rows with nulls as arguments to the aggregate function, then the function returns
null.

You can nest aggregate functions. For example, the following example calculates the
average of the maximum salaries of all the departments in the scott schema:

SELECT AVG(MAX(sal)) FROM emp GROUP BY deptno;

AVG(MAX(SAL))

3616.66667

This calculation evaluates the inner aggregate (MAXsal)) for each group defined by
the GROUP B¥lause (deptno), and aggregates the results again.

The aggregate functions are:

AVG MAX STDDEV_SAMP
CORR MIN SUM

COUNT REGR_ (linear VAR_POP
COVAR_POP regression) functions VAR_SAMP
COVAR_SAMP STDDEV VARIANCE
GROUPING STDDEV_POP

Functions 4-7

SQL Functions

Analytic Functions

Analytic functions compute an aggregate value based on a group of rows. The
group of rows is called a window and is defined by the analytic clause. For each
row, a "sliding" window of rows is defined. The window determines the range of
rows used to perform the calculations for the "current row". Window sizes can be
based on either a physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the
final ORDER BY¥lause. All joins and all WHEREGROUP B¥ind HAVINGclauses are
completed before the analytic functions are processed. Therefore, analytic functions
can appear only in the select list or ORDER B¥lause.

Analytic functions are commonly used to compute cumulative, moving, centered,
and reporting aggregates.

analytic_function =

)

analytic_clause =

query_partition_clause ~ ORDER_BY_clause) 1

query_partition_clause =

—>| PARTITION |->| BY P‘@‘g@’

ORDER_BY_clause::=

M
N\
@ [Eh
DESC
ORDER | BY | (position)
| U)

c_alias

4-8 SQL Reference

SQL Functions

windowing_clause =

UNBOUNDED |—>| PRECEDING UNBOUNDED |—>| FOLLOWING

CURRENT |—>| ROW
PRECEDING

e
FOLLOWING

UNBOUNDED |—>| PRECEDING h

CURRENT |—>| ROW

value_expr

PRECEDING

l FOLLOWING I

|
CURRENT |->| ROW |
value_expr)->| PRECEDING

The keywords and parameters of this syntax are:

analytic _function

Specify the name of an analytic function (see the listings of different types of
analytic functions following this table).

arguments
Analytic functions take 0 to 3 arguments.

analytic_clause

Use analytic_clause OVERclause to indicate that the function operates on a
query result set. That is, it is computed after the FROMWHEREGROUP B¥ind
HAVINGclauses. You can specify analytic functions with this clause in the select list
or ORDER B¥lause. To filter the results of a query based on an analytic function,

nest these functions within the parent query, and then filter the results of the nested
subquery.

Note: You cannot specify any analytic function in any part of the
analytic_clause . That is, you cannot nest analytic functions.
However, you can specify an analytic function in a subquery and
compute another analytic function over it.

Functions 4-9

SQL Functions

query_patrtition_clause

PARTITION BY Use the PARTITION BY clause to partition the query result set into
groups based on one or more value_expr . If you omit this
clause, the function treats all rows of the query result set as a
single group.

You can specify multiple analytic functions in the same query,
each with the same or different PARTITION BY keys.

Note: If the objects being queried have the parallel attribute,
and if you specify an analytic function with the query
partition_clause , then the function computations are
parallelized as well.

value_expr Valid value expressions are constants, columns, nonanalytic
functions, function expressions, or expressions involving any of
these.

ORDER_BY _clause

Use the ORDER BY¥lause to specify how data is ordered within a partition. You can
order the values in a partition on multiple keys, each defined by a value_expr

and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is
especially useful when using functions that rank values, because the second
expression can resolve ties between identical values for the first expression.

Restriction: When used in an analytic function, the ORDER_BY _clause must take
an expression (expr). Position (position) and column aliases (c_alias) are
invalid. Otherwise this ORDER_BY clause is the same as that used to order the
overall query or subquery.

Note: Analytic functions always operate on rows in the order
specified in the ORDER_BY _clause of the function. However, the
ORDER _BY clause of the function does not guarantee the order of
the result. Use the ORDER_BY clause of the query to guarantee
the final result ordering.

4-10 SQL Reference

SQL Functions

See Also:

order_by clause of "SELECT and Subqueries" on

page 11-102 for more information on this clause

ASC| DESC

NULLS FIRST |
NULLS LAST

Specify the ordering sequence (ascending or descending). ASCis
the default.

Specify whether returned rows containing null values should
appear first or last in the ordering sequence.

NULLS LASTis the default for ascending order, and NULLS FIRST
is the default for descending order.

windowing_clause

ROWY RANGE These keywords define for each row a "window" (a physical or

BETWEEN.
AND

logical set of rows) used for calculating the function result. The
function is then applied to all the rows in the window. The
window "slides" through the query result set or partition from top
to bottom.

« ROWSpecifies the window in physical units (rows).
« RANGKEpecifies the window as a logical offset.

You cannot specify this clause unless you have specified the
ORDER _BY clause.

Note: The value returned by an analytic function with a
logical offset is always deterministic. However, the value
returned by an analytic function with a physical offset may
produce nondeterministic results unless the ordering
expression results in a unique ordering. You may have to
specify multiple columns in the ORDER_BY _clause to
achieve this unique ordering.

Use the BETWEEN. ANDclause to specify a start point and end
point for the window. The first expression (before AND defines the
start point and the second expression (after AND defines the end
point.

If you omit BETWEENMNNd specify only one end point, Oracle
considers it the start point, and the end point defaults to the
current row.

Functions 4-11

SQL Functions

UNBOUNDED
PRECEDING

UNBOUNDED
FOLLOWING

Specify UNBOUNDED PRECEDIMEndicate that the window
starts at the first row of the partition. This is the start point
specification and cannot be used as an end point specification.

Specify UNBOUNDED FOLLOWIMGNdicate that the window ends
at the last row of the partition. This is the end point specification
and cannot be used as a start point specification.

CURRENT ROW As a start point, CURRENT RQifecifies that the window begins at

value_expr
PRECEDING

value_expr
FOLLOWING

4-12 SQL Reference

the current row or value (depending on whether you have
specified ROWr RANGErespectively). In this case the end point
cannot be value_expr PRECEDING

As an end point, CURRENT RQ&fecifies that the window ends at
the current row or value (depending on whether you have
specified ROWr RANGErespectively). In this case the start point
cannot be value_expr FOLLOWING

For RANGBEBr ROW

« Ifvalue_expr FOLLOWINGES the start point, then the end
point must be value_expr FOLLOWING

« Ifvalue_expr PRECEDINGSs the end point, then the start
point must be value_expr PRECEDING

If you are defining a logical window defined by an interval of time
in numeric format, you may need to use conversion functions.

See Also: NUMTOYMINTERVAL on page 4-70 and
NUMTODSINTERVAL on page 4-69 for information on
converting numeric times into interval literals

If you specified ROWS

« value_expr isa physical offset. It must be a constant or
expression and must evaluate to a positive numeric value.

« Ifvalue _expr is part of the start point, it must evaluate to a
row before the end point.

SQL Functions

If you specified RANGE

value_expr is alogical offset. It must be a constant or
expression that evaluates to a positive numeric value or an
interval literal.

See Also: "Literals" on page 2-33 for information on interval
literals.

You can specify only one expression in the ORDER _BY _
clause

If value_expr evaluates to a numeric value, the ORDER BY
expr must be a NUMBERr DATEdatatype.

If value_expr evaluates to an interval value, the ORDER BY
expr must be a DATEdatatype.

If you omit the windowing clause entirely, the default is RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW

Analytic functions are commonly used in data warehousing environments. The
analytic functions are:

AVG

CORR
COVAR_POP
COVAR_SAMP
COUNT
CUME_DIST
DENSE_RANK
LAG
FIRST_VALUE
LAST VALUE

LEAD STDDEV

MAX STDDEV_POP
MIN STDDEV_SAMP
NTILE SUM
PERCENT_RANK VAR_POP
RATIO_TO_REPORT VAR_SAMP
RANK VARIANCE
REGR_ (linear

regression) functions

ROW_NUMBER

See Also:

Oracle8i Data Warehousing Guide for more information

on these functions, and for scenarios illustrating their use

Functions 4-13

ABS

Object Reference Functions

Object functions manipulate REFs, which are references to objects of specified object
types. The object reference functions are:

DEREF REF VALUE
MAKE_REF REFTOHEX

See Also: Oracle8i Concepts and Oracle8i Application Developer’s
Guide - Fundamentals for more information about REFs

Alphabetical Listing of SQL Functions

ABS

Syntax

485 (O

Purpose
ABSreturns the absolute value of n.

Example
SELECT ABS(-15) "Absolute” FROM DUAL;

Absolute

ACOS

Syntax

10,040

4-14 SQL Reference

ADD_MONTHS

Purpose

ACOSreturns the arc cosine of n. Inputs are in the range of -1 to 1, and outputs are
in the range of 0 to rtand are expressed in radians.

Example
SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

Arc_Cosine

1.26610367

ADD_MONTHS

Syntax

01016100

Purpose

ADD_MONTH®turns the date d plus n months. The argument n can be any integer.
If d is the last day of the month or if the resulting month has fewer days than the
day component of d, then the result is the last day of the resulting month.
Otherwise, the result has the same day component as d.

Example

SELECT TO_CHAR(
ADD_MONTHS(hiredate,1),
'DD-MON-YYYY’) "Next month"
FROM emp
WHERE ename = 'SMITH’;

Next Month

17-JAN-1981

Functions 4-15

ASClI

ASCI
Syntax
O@ED
Purpose
ASCII returns the decimal representation in the database character set of the first
character of char . If your database character set is 7-bit ASCI|I, this function returns
an ASCII value. If your database character set is EBCDIC Code, this function
returns an EBCDIC value. There is no corresponding EBCDIC character function.
Example
SELECT ASCII('Q’) FROM DUAL;
ASCII(Q’)
81
ASIN
Syntax
0,0:0
Purpose

ASIN returns the arc sine of n. Inputs are in the range of -1 to 1, and outputs are in
the range of -T/2 to /2 and are expressed in radians.

Example
SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

Arc_Sine

.304692654

4-16 SQL Reference

ATAN2

ATAN

Syntax

ATAN (O Q)

Purpose

ATANTreturns the arc tangent of n. Inputs are in an unbounded range, and outputs
are in the range of -1/2 to /2 and are expressed in radians.

Example
SELECT ATAN(.3) "Arc_Tangent’" FROM DUAL;

Arc_Tangent

.291456794

ATANZ2

Syntax

EEaY0Y0 034 @0

Purpose

ATANZ2returns the arc tangent of n and m Inputs are in an unbounded range, and
outputs are in the range of -1tto 1, depending on the signs of n and m and are
expressed in radians. ATAN2Qn,m) is the same as ATANZ n/m)

Example
SELECT ATANZ2(.3, .2) "Arc_Tangent2" FROM DUAL;

Arc_Tangent2

.982793723

Functions 4-17

AVG

AVG

Syntax

| DISTINCT I
ALL

AVG ((

[—>| OVER P@»Canalytic_clausem

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

AVGreturns average value of expr . You can use it as an aggregate or analytic
function.

If you specify DISTINCT, you can specify only the query_partition_clause of
the analytic _clause . The ORDER_BY clause and windowing_clause are not
allowed.

See Also:

« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example
The following example calculates the average salary of all employees in the emp
table:

SELECT AVG(sal) "Average" FROM emp;

Average

2077.21429

Analytic Example

The following example calculates, for each employee in the emptable, the average
salary of the employees reporting to the same manager who were hired in the range
just before through just after the employee:

4-18 SQL Reference

BFILENAME

SELECT mgr, ename, hiredate, sal,
AVG(sal) OVER (PARTITION BY mgr ORDER BY hiredate
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
FROM emp;

MGR ENAME HIREDATE SAL C_MAVG

7566 FORD 03-DEC-81 3000 3000
7566 SCOTT 19-APR-87 3000 3000
7698 ALLEN 20-FEB-81 1600 1425
7698 WARD 22-FEB-81 1250 1450
7698 TURNER 08-SEP-81 1500 1333.33333
7698 MARTIN 28-SEP-81 1250 1233.33333
7698 JAMES 03-DEC-81 950 1100
7782 MILLER 23-JAN-82 1300 1300
7788 ADAMS 23-MAY-87 1100 1100
7839 JONES 02-APR-81 2975 29125
7839 BLAKE 01-MAY-81 2850 2758.33333
7839 CLARK 09-JUN-81 2450 2650
7902 SMITH 17-DEC-80 800 800
KING 17-NOV-81 5000 5000

BFILENAME

Syntax

EERE0101 G000 =D 010

Purpose

BFILENAMEreturns a BFILE locator that is associated with a physical LOB binary
file on the server’s file system. A directory is an alias for a full pathname on the
server’s file system where the files are actually located, and ’filename’ is the name
of the file in the server’s file system.

Neither "directory ' nor ’filename ’ needs to point to an existing object on the file
system at the time you specify BFILENAME However, you must associate a BFILE
value with a physical file before performing subsequent SQL, PL/SQL, DBMS_LOB
package, or OCI operations.

Functions 4-19

BITAND

BITAND

See Also:

« Oracle8i Application Developer’s Guide - Large Objects (LOBs) and
Oracle Call Interface Programmer’s Guide for more information on
LOBs

« CREATE DIRECTORY on page 9-40

Example

INSERT INTO file_tbl
VALUES (BFILENAME (lob_dirl’, imagel.gif’);

Syntax
Purpose

BITAND computes an ANDoperation on the bits of argumentl and argument2 ,
both of which must resolve to nonnegative integers, and returns an integer. This
function is commonly used with the DECODIEEXpression, as illustrated in the
example that follows.

Example
Consider the following table named cars :

MANUFACTURER MODEL OPTIONS

TOYOTA CAMRY 3
TOYOTA COROLLA 5
NISSAN MAXIMA 6

The following example represents each option in each car by individual bits:

SELECT manufacturer, model,
DECODE(BITAND(options, 1), 1, 'Automatic’, 'Stick-shift’),
DECODE(BITAND(options, 2), 2, 'CD’, 'Radio’),
DECODE(BITAND(options, 4), 4, 'ABS’, 'No-ABS’)

FROM catrs;

4-20 SQL Reference

CHARTOROWID

MANUFACTURER MODEL DECODE(BITA DECOD DECODE

TOYOTA CAMRY Automatic CD No-ABS
TOYOTA COROLLA Automatic Radio ABS

NISSAN MAXIMA Stick-shift CD ABS
CEIL
Syntax
0,0:0
Purpose
CEIL returns smallest integer greater than or equal to n.
Example
SELECT CEIL(15.7) "Ceiling" FROM DUAL;
Ceiling
16
CHARTOROWID
Syntax
OEQ
Purpose
CHARTOROWI&»nverts a value from CHARor VARCHAR®2atatype to ROWID
datatype.
Example

SELECT ename FROM emp
WHERE ROWID = CHARTOROWID('AAAATZAABAAACP8BAAQY);

Functions 4-21

CHR

CHR

Syntax

USING |->| NCHAR_CS |-\
L 0!

Purpose

CHRreturns the character having the binary equivalent to n in either the database
character set or the national character set.

If USING NCHAR_C8 not specified, this function returns the character having the
binary equivalent to n as a VARCHAR®Xalue in the database character set.

If USING NCHAR_C$8 specified, this function returns the character having the
binary equivalent to n as a NVARCHARZ®alue in the national character set.

Note: Use of the CHRfunction (either with or without the optional
USING NCHAR_C8lause) results in code that is not portable
between ASCII- and EBCDIC-based machine architectures.

Examples

The following example is run on an ASCII-based machine with the database
character set defined as WE8ISO8859P1:

SELECT CHR(67)||CHR(65)||CHR(84) "Dog" FROM DUAL;
Dog

CAT

SELECT CHR(16705 USING NCHAR_CS) FROM DUAL;
C

A

4-22 SQL Reference

CONCAT

CONCAT

To produce the same results on an EBCDIC-based machine with the
WESEBCDIC1047 character set, the first example above would have to be modified
as follows:

SELECT CHR(195)||CHR(193)||CHR(227) "Dog"

FROM DUAL;
Dog
CAT
Syntax
OGO ()
Purpose

CONCATeturns charl concatenated with char2 . This function is equivalent to the
concatenation operator (] |).

See Also: "Concatenation Operator" on page 3-4 for information
on the CONCADperator

Example
This example uses nesting to concatenate three character strings:

SELECT CONCAT(CONCAT(ename, 'is a’), job) "Job"
FROM emp
WHERE empno = 7900;

JAMES is a CLERK

Functions 4-23

CONVERT

CONVERT

Syntax
DA ED (G o
Purpose

CONVERTonverts a character string from one character set to another.
« The char argument is the value to be converted.

« Thedest char_set argument is the name of the character set to which char is
converted.

« The source _char_set argument is the name of the character set in which
char is stored in the database. The default value is the database character set.

Both the destination and source character set arguments can be either literals or
columns containing the name of the character set.

For complete correspondence in character conversion, it is essential that the
destination character set contains a representation of all the characters defined in
the source character set. Where a character does not exist in the destination
character set, a replacement character appears. Replacement characters can be
defined as part of a character set definition.

Example

SELECT CONVERT('Grof3’, 'US7ASCII", 'WE8HP’)
"Conversion" FROM DUAL;

Conversion

Common character sets include:

« US7ASCII: US 7-bit ASCII character set

« WESDECDEC: West European 8-bit character set

« WE8HP: HP West European Laserjet 8-bit character set

4-24 SQL Reference

CORR

CORR

« F7DEC: DEC French 7-bit character set

« WESEBCDIC500: IBM West European EBCDIC Code Page 500
« WEB8PCB850: IBM PC Code Page 850

« WESISO8859P1: ISO 8859-1 West European 8-bit character set

Syntax

f—)| OVER F@»(analytic_clausem
D@D O

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

CORReturns the coefficient of correlation of a set of number pairs. You can use it as
an aggregate or analytic function.

Both exprl and expr2 are number expressions. Oracle applies the function to the
set of (exprl , expr2) after eliminating the pairs for which either exprl or expr2
is null. Then Oracle makes the following computation:

COVAR_POP(exprl, expr2) / (STDDEV_POP(exprl) * STDDEV_POP(expr2))

The function returns a value of type NUMBERT the function is applied to an empty
set, it returns null.

See Also:

« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example

The following example calculates the coefficient of correlation between the salaries
and commissions of the employees whose manager is 7698 from the emptable:

Functions 4-25

COS

SELECT mgr, CORR(sal, comm) FROM EMP
GROUP BY mgr
HAVING mgr = 7698;

MGR CORR(SAL,COMM)

7698 -.69920974

Analytic Example
The following example returns the cumulative coefficient of correlation of monthly
sales and monthly profits from the sales table for year 1998:

SELECT s_month, CORR(SUM(s_amount), SUM(s_profit))
OVER (ORDER BY s_month) AS CUM_CORR
FROM sales
WHERE s_year=1998
GROUP BY s_month
ORDER BY s_month;

S_MONTH CUM_CORR

8 1
11 .860554259

Correlation functions require more than one row on which to operate, so the first
row in the preceding example has no value calculated for it.

COS

Syntax

ES.0:0:0

Purpose
COSreturns the cosine of n (an angle expressed in radians).

Example

SELECT COS(180 * 3.14159265359/180)
"Cosine of 180 degrees" FROM DUAL;

4-26 SQL Reference

COUNT

Cosine of 180 degrees

-1
COSH
Syntax
00,0
Purpose
COSHeturns the hyperbolic cosine of n.
Example
SELECT COSHY(0) "Hyperbolic cosine of 0" FROM DUAL;
Hyperbolic cosine of 0
1
COUNT

Syntax

OVER |—>{ H(analytic_clausem
© s

| DISTINCT I
ALL

expr

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

COUNTreturns the number of rows in the query. You can use it as an aggregate or
analytic function.

Functions 4-27

COUNT

If you specify DISTINCT, you can specify only the query_partition_clause of
the analytic _clause . The ORDER_BY clause and windowing_clause are not
allowed.

If you specify expr , COUNTreturns the number of rows where expr is not null. You
can count either all rows, or only distinct values of expr .

If you specify the asterisk (*), this function returns all rows, including duplicates
and nulls. COUNThever returns null.

See Also:
« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Examples
SELECT COUNT(*) "Total" FROM emp;

SELECT COUNT(*) "Allstars" FROM emp
WHERE comm > 0;

Allstars

SELECT COUNT(DISTINCT mgr) "Managers" FROM emp;

Managers

4-28 SQL Reference

COVAR_POP

Analytic Example

The following example calculates, for each employee in the emptable, the moving
count of employees earning salaries in the range $50 less than through $150 greater
than the employee’s salary.

SELECT ename, sal,
COUNT(*) OVER (ORDER BY sal RANGE BETWEEN 50 PRECEDING
AND 150 FOLLOWING) AS mov_count

FROM emp;
ENAME SAL MOV_COUNT
SMITH 800 2
JAMES 950 2
ADAMS 1100 3
WARD 1250 3
MARTIN 1250 3
MILLER 1300 3
TURNER 1500 2
ALLEN 1600 1
CLARK 2450 1
BLAKE 2850 4
JONES 2975 3
SCOTT 3000 3
FORD 3000 3
KING 5000 1
COVAR POP
Syntax

OVER H (analytic_clausem
OEOEDL

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

COVAR_POReturns the population covariance of a set of number pairs. You can use
it as an aggregate or analytic function.

Functions 4-29

COVAR_POP

Both exprl and expr2 are number expressions. Oracle applies the function to the
set of (exprl , expr2) pairs after eliminating all pairs for which either exprl or
expr2 is null. Then Oracle makes the following computation:

(SUM(exprl * expr2) - SUM(expr2) * SUM(exprl) /n)/n
where n is the number of (exprl , expr2) pairs where neither exprl nor expr2 is
null.
The function returns a value of type NUMBERI the function is applied to an empty
set, it returns null.

See Also:

« "Aggregate Functions" on page 4-6

« "Expressions"” on page 5-2 for information on valid forms of
expr

Aggregate Example

The following example calculates the population covariance for the amount of sales
and sale profits for each year from the table sales .

SELECT s_year,
COVAR_POP(s_amount, s_profit) AS COVAR_POP,
COVAR_SAMP(s_amount, s_profit) AS COVAR_SAMP
FROM sales GROUP BY s_year;

S_YEAR COVAR_POP COVAR_SAMP

1998 3747965.53 4060295.99
1999 360536.162 400595.736

Analytic Example

The following example calculates cumulative sample covariance of the amount of
sales and sale profits in 1998.

SELECT s_year, s_month, s_day,

COVAR_POP(s_amount, s_profit)

OVER (ORDER BY s_month, s_day) AS CUM_COVP,
COVAR_SAMP(s_amount, s_profit)

OVER (ORDER BY s_month, s_day) AS CUM_COVS
FROM sales
WHERE s_year=1998
ORDER BY s_year, s_month, s_day;

4-30 SQL Reference

COVAR_SAMP

S_YEAR

S MONTH S_DAY CUM_COVP

1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998

COVAR_SAMP

Syntax

(o5 H(DAEEA A0

See Also:

Purpose

0 00 00O OO,

(o]

11
11
11
11
11

5 0

9 4940952.6 7411428.9

9 4940952.6 7411428.9

10 5281752.33 7042336.44

21 6092799.46 7615999.32

25 4938283.61 5761330.88

25 4938283.61 5761330.88

26 4612074.09 5270941.82
9 4556799.53 5063110.59
9 4556799.53 5063110.59

CUM_COVS

10 4014833.65 4379818.52
10 4014833.65 4379818.52
11 3747965.53 4060295.99

CER OGS0

"Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

COVAR_SAMRturns the sample covariance of a set of number pairs. You can use it
as an aggregate or analytic function.

Both exprl and expr2 are number expressions. Oracle applies the function to the
set of (exprl , expr2) pairs after eliminating all pairs for which either exprl or
expr2 is null. Then Oracle makes the following computation:

(SUM(exprl * expr2) - SUM(exprl) * SUM(expr2) / n) / (n-1)

where n is the number of (exprl , expr2) pairs where neither exprl nor expr2 is

null.

Functions 4-31

COVAR_SAMP

The function returns a value of type NUMBERIf the function is applied to an empty
set, it returns null.

See Also:

« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example

The following example calculates the population covariance for the amount of sales
and sale profits for each year from the table sales .

SELECT s_year,
COVAR_POP(s_amount, s_profit) AS COVAR_POP,
COVAR_SAMP(s_amount, s_profit) AS COVAR_SAMP
FROM sales GROUP BY s_year;

S YEAR COVAR_POP COVAR_SAMP

1998 3747965.53 4060295.99
1999 360536.162 400595.736

Analytic Example

The following example calculates cumulative sample covariance of the amount of
sales and sale profits in 1998.

SELECT s_year, s_month, s_day,

COVAR_POP(s_amount, s_profit)

OVER (ORDER BY s_month, s_day) AS CUM_COVP,
COVAR_SAMP(s_amount, s_profit)

OVER (ORDER BY s_month, s_day) AS CUM_COVS
FROM sales
WHERE s_year=1998
ORDER BY s_year, s_month, s_day;

S_YEAR S_MONTH S DAY CUM_COVP CUM_COVS

1998 6 5 0

1998 6 9 4940952.6 7411428.9
1998 6 9 4940952.6 7411428.9
1998 6 10 5281752.33 7042336.44
1998 8 21 6092799.46 7615999.32
1998 8 25 4938283.61 5761330.88

4-32 SQL Reference

CUME_DIST

CUME_DIST

1998 8 25 4938283.61 5761330.88
1998 8 26 4612074.09 5270941.82
1998 11 9 4556799.53 5063110.59
1998 11 9 4556799.53 5063110.59
1998 11 10 4014833.65 4379818.52
1998 11 10 4014833.65 4379818.52
1998 11 11 3747965.53 4060295.99

Syntax

query_partition_clause
CUME_DIST o o OVER [(((ORDER_BY_cIause)-)(:)»

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

CUME_DIST(cumulative distribution) is an analytic function. It computes the
relative position of a specified value in a group of values. For a row R, assuming
ascending ordering, the CUME_DISTof R is the number of rows with values lower
than or equal to the value of R, divided by the number of rows being evaluated (the
entire query result set or a partition). The range of values returned by CUME_DIST
is >0 to <=1. Tie values always evaluate to the same cumulative distribution value.

Example

The following example calculates the salary percentile for each employee within
each job category excluding job categories PRESIDENTand MANAGERror example,
50% of clerks have salaries less than or equal to James.

SELECT job, ename, sal, CUME_DIST()
OVER (PARTITION BY job ORDER BY sal) AS cume_dist
FROM emp
WHERE job NOT IN (MANAGER’, 'PRESIDENT);

JOB ENAME SAL CUME_DIST
ANALYST SCOTT 3000 1
ANALYST FORD 3000 1

Functions 4-33

DENSE_RANK

CLERK SMITH 800 25
CLERK JAMES 950 5
CLERK ADAMS 1100 75
CLERK MILLER 1300 1
SALESMAN WARD 1250 5
SALESMAN MARTIN 1250 5
SALESMAN TURNER 1500 75
SALESMAN ALLEN 1600 1
DENSE _RANK
Syntax

query_partition_clause
DENSE_RANK o o OVER b{(%ORDER_BY_cIause)a(:)»

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

DENSE_RANIs an analytic function. It computes the rank of each row returned
from a query with respect to the other rows, based on the values of the value
exprs inthe ORDER_BY clause. Rows with equal values for the ranking criteria
receive the same rank. The ranks are consecutive integers beginning with 1. The
largest rank value is the number of unique values returned by the query. Rank
values are not skipped in the event of ties.

Example

The following statement selects the department name, employee name, and salary
of all employees who work in the RESEARCIldr SALESdepartment, and then
computes a rank for each unique salary in each of the two departments. The salaries
that are equal receive the same rank. Compare this example with the example for
RANK on page 4-74.

SELECT dname, ename, sal, DENSE_RANK()
OVER (PARTITION BY dname ORDER BY sal) as drank
FROM emp, dept
WHERE emp.deptno = dept.deptno
AND dname IN (SALES’, 'RESEARCH);

4-34 SQL Reference

DEREF

DEREF

DNAME ENAME SAL DRANK
RESEARCH SMITH 800 1
RESEARCH ADAMS 1100 2
RESEARCH JONES 2975 3
RESEARCH FORD 3000 4
RESEARCH SCOTT 3000 4
SALES JAMES 950 1
SALES MARTIN 1250 2
SALES WARD 1250 2
SALES TURNER 1500 3
SALES ALLEN 1600 4
SALES BLAKE 2850 5
Syntax

0 CDL0
Purpose

DERERreturns the object reference of argument expr , where expr must return a
REFto an object. If you do not use this function in a query, Oracle returns the object

ID of the REFinstead, as shown in the example that follows.

See Also:

Example

MAKE_REF on page 4-55

CREATE TYPE emp_type AS OBJECT

(eno NUMBER, ename VARCHAR2(20), salary NUMBER);

CREATE TABLE emp_table OF emp_type
(primary key (eno, ename));

CREATE TABLE dept_table

(dno NUMBER, mgr REF emp_type SCOPE IS emp_table);
INSERT INTO emp_table VALUES (10, 'jack’, 50000);
INSERT INTO dept_table SELECT 10, REF(e) FROM emp_table €;

SELECT mgr FROM dept_table;

MGR

Functions 4-35

DUMP

00002202085928CB5CDF7B61CAE03400400B40DCB15928C35861E761BCE03400400B40DCB1
SELECT DEREF(mgr) from dept_table;

DEREF(MGR)(ENO, ENAME, SALARY)

EMP_TYPE(10, ‘jack’, 50000)

DUMP

Syntax

length
oY Sacical
-0

Purpose

DUMPReturns a VARCHAR®alue containing the datatype code, length in bytes, and
internal representation of expr . The returned result is always in the database
character set. For the datatype corresponding to each code, see Table 2-1 on

page 2-6.

The argument return_fmt specifies the format of the return value and can have
any of the following values:

« 8 returns result in octal notation.

« 10 returns result in decimal notation.

« 16 returns result in hexadecimal notation.
« 17 returns result as single characters.

By default, the return value contains no character set information. To retrieve the
character set name of expr , specify any of the format values above, plus 1000. For
example, a return_fmt of 1008 returns the result in octal, plus provides the
character set name of expr .

The arguments start_position and length combine to determine which
portion of the internal representation to return. The default is to return the entire
internal representation in decimal notation.

4-36 SQL Reference

EMPTY_[B | C]LOB

If expr is null, this function returns a null.

Examples

SELECT DUMP('abc’, 1016)
FROM DUAL;

DUMP('ABC’,1016)

Typ=96 Len=3 CharacterSet=WES8DEC: 61,62,63

SELECT DUMP(ename, 8, 3, 2) "OCTAL"
FROM emp
WHERE ename = 'SCOTT’;

OCTAL

Type=1 Len=5: 117,124

SELECT DUMP(ename, 10, 3, 2) "ASCII"
FROM emp
WHERE ename ='SCOTT’;

ASCII

Type=1 Len=5: 79,84
EMPTY_[B | C]LOB
Syntax
D0
)
Purpose

EMPTY_BLOBNd EMPTY_CLOBeturns an empty LOB locator that can be used to
initialize a LOB variable or in an INSERT or UPDATEstatement to initialize a LOB

Functions 4-37

EXP

column or attribute to EMPTYEMPT Ymeans that the LOB is initialized, but not
populated with data.

You cannot use the locator returned from this function as a parameter to the DBMS_
LOBpackage or the OCI.

Example
INSERT INTO lob_tabl VALUES (EMPTY_BLOB());

UPDATE lob_tabl
SET clob_col = EMPTY_BLOB();

EXP

Syntax

ESO,0:0

Purpose
EXPreturns e raised to the nth power, where e = 2.71828183 ...

Example
SELECT EXP(4) "e to the 4th power" FROM DUAL;

e to the 4th power

54.59815

FIRST_VALUE

Syntax

0LCDIO A 0 T Oy

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

4-38 SQL Reference

FIRST_VALUE

Purpose

FIRST_VALUE s an analytic function. It returns the first value in an ordered set of
values.

You cannot use FIRST_VALUE or any other analytic function for expr . That is, you
can use other built-in function expressions for expr , but you cannot nest analytic
functions.

See Also: "Expressions” on page 5-2 for information on valid
forms of expr

Examples

The following example selects, for each employee in Department 20, the name of
the employee with the highest salary.

SELECT deptno, ename, sal, FIRST_VALUE(ename)
OVER (ORDER BY sal DESC ROWS UNBOUNDED PRECEDING) AS rich_emp
FROM (SELECT * FROM emp WHERE deptno = 20 ORDER BY empno);

DEPTNO ENAME SAL RICH_EMP
20 SCOTT 3000 SCOTT
20 FORD 3000 SCOTT
20 JONES 2975 SCOTT
20 ADAMS 1100 SCOTT
20 SMITH 800 SCOTT

The example illustrates the nondeterministic nature of the FIRST_VALUE function.
Scott and Ford have the same salary, so are in adjacent rows. Scott appears first
because the rows returned by the subquery are ordered by empno. However, if the
rows returned by the subquery are ordered by empno in descending order, as in the
next example, the function returns a different value:

SELECT deptno, ename, sal, FIRST_VALUE(ename)
OVER (ORDER BY sal DESC ROWS UNBOUNDED PRECEDING) AS fv
FROM (SELECT * FROM emp WHERE deptno = 20 ORDER BY empno desc);

DEPTNO ENAME SAL FV
20 FORD 3000 FORD
20 SCOTT 3000 FORD
20 JONES 2975 FORD
20 ADAMS 1100 FORD
20 SMITH 800 FORD

Functions 4-39

FLOOR

The following example shows how to make the FIRST_VALUE function
deterministic by ordering on a unique key.

SELECT deptno, ename, sal, hiredate, FIRST_VALUE(ename)
OVER (ORDER BY sal DESC, hiredate ROWS UNBOUNDED PRECEDING) AS fv
FROM (SELECT * FROM emp WHERE deptno = 20 ORDER BY empno desc);

DEPTNO ENAME SAL HIREDATE FV

20 FORD 3000 03-DEC-81 FORD
20 SCOTT 3000 19-APR-87 FORD
20 JONES 2975 02-APR-81 FORD
20 ADAMS 1100 23-MAY-87 FORD
20 SMITH 800 17-DEC-80 FORD
Syntax
0,0:0
Purpose
FLOORreturns largest integer equal to or less than n.
Example
SELECT FLOOR(15.7) "Floor" FROM DUAL;
Floor
15
Syntax

O
EzzaloN@ 0

4-40 SQL Reference

GROUPING

GROUPING

Purpose

GREATESTeturns the greatest of the list of exprs . All exprs after the first are
implicitly converted to the datatype of the first expr before the comparison. Oracle
compares the exprs using nonpadded comparison semantics. Character
comparison is based on the value of the character in the database character set. One
character is greater than another if it has a higher character set value. If the value
returned by this function is character data, its datatype is always VARCHAR2

See Also: "Datatype Comparison Rules" on page 2-26

Example

SELECT GREATEST (HARRY’, 'HARRIOT’, 'HAROLD")
"Greatest" FROM DUAL,;

Greatest
HARRY
Syntax
OO
Purpose

The GROUPINGunction is applicable only in a SELECTstatement that contains a
GROUP B¥xtension, such as ROLLUPor CUBE These operations produce
superaggregate rows that contain nulls representing the set of all values. You can
use the GROUPINGunction to distinguish a null that represents the set of all values
in a superaggregate row from an actual null.

The expr in the GROUPINGunction must match one of the expressions in the
GROUP BYlause. The function returns a value of 1 if the value of expr in the row is
a null representing the set of all values. Otherwise, it returns zero. The datatype of
the value returned by the GROUPINGunction is Oracle NUMBER

See Also: group by clause of the SELECT statement on
page 11-99 for a discussion of these terms

Functions 4-41

HEXTORAW

Example

In the following example, if the GROUPINGunction returns 1 (indicating a
superaggregate row rather than a data row from the table), the string "All Jobs"
appears instead of the null that would otherwise appear:

SELECT DECODE(GROUPING(dname), 1, 'All Departments’,
dname) AS dname,
DECODE(GROUPING(job), 1, 'All Jobs', job) AS job,
COUNT(*) "Total Empl", AVG(sal) * 12 "Average Sal"
FROM emp, dept
WHERE dept.deptno = emp.deptno
GROUP BY ROLLUP (dname, job);

DNAME JOB Total Empl Average Sa
ACCOUNTING CLERK 1 15600
ACCOUNTING MANAGER 1 29400
ACCOUNTING PRESIDENT 1 60000
ACCOUNTING All Jobs 3 35000
RESEARCH ANALYST 2 36000
RESEARCH CLERK 2 11400
RESEARCH MANAGER 1 35700
RESEARCH All Jobs 5 26100
SALES CLERK 1 11400
SALES MANAGER 1 34200
SALES SALESMAN 4 16800
SALES All Jobs 6 18800
All Departments All Jobs 14 24878.5714
Syntax

OEQ
Purpose

HEXTORAMWbNverts char containing hexadecimal digits to a raw value.

Example

INSERT INTO graphics (raw_column)
SELECT HEXTORAW('7D’) FROM DUAL;

4-42 SQL Reference

INSTR

INITCAP

INSTR

See Also: "RAW and LONG RAW Datatypes" on page 2-16 and
RAWTOHEX on page 4-76

Syntax

LEA0EDI0

Purpose

INITCAP returns char , with the first letter of each word in uppercase, all other
letters in lowercase. Words are delimited by white space or characters that are not
alphanumeric.

Example
SELECT INITCAP(the soap’) "Capitals” FROM DUAL;

Capitals

The Soap

Syntax

O
olchlolC Loy

Purpose
INSTR searches string for substring

« position is an integer indicating the character of string where Oracle begins
the search. If position s negative, Oracle counts and searches backward from
the end of string

Functions 4-43

INSTRB

« occurrence is an integer indicating which occurrence of string Oracle should
search for. The value of occurrence must be positive.

The function returns an integer indicating the position of the character in string
that is the first character of this occurrence. The default values of both position

and occurrence are 1, meaning Oracle begins searching at the first character of
string for the first occurrence of substring . The return value is relative to the
beginning of string , regardless of the value of position , and is expressed in
characters. If the search is unsuccessful (if substring does not appear
occurrence times after the position character of string) the return value is 0.

Examples

SELECT INSTR(CORPORATE FLOOR’,'OR’, 3, 2)
"Instring” FROM DUAL;

Instring

SELECT INSTR(CORPORATE FLOOR',OR’, -3, 2)
"Reversed Instring"
FROM DUAL;

Reversed Instring

INSTRB

Syntax

O
oleDlelC=r L0

Purpose

INSTRB is the same as INSTR, except that position and the return value are
expressed in bytes, rather than in characters. For a single-byte database character
set, INSTRB is equivalent to INSTR.

4-44 SQL Reference

LAG

LAG

See Also: INSTR on page 4-43

Example
This example assumes a double-byte database character set.

SELECT INSTRB('CORPORATE FLOOR’,'OR’,5,2)
"Instring in bytes"
FROM DUAL,

Instring in bytes

Syntax

—>| LAG P@»Cvalue_expr) ‘ ’ @-)| OVER P@{analytic_clause)@—)

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

LAGis an analytic function. It provides access to more than one row of a table at the
same time without a self-join. Given a series of rows returned from a query and a
position of the cursor, LAGprovides access to a row at a given physical offset prior
to that position.

If you do not specify offset , its default is 1. The optional default value is
returned if the offset goes beyond the scope of the window. If you do not specify
default , its default value is null.

You cannot use LAGor any other analytic function for value_expr . That s, you
can use other built-in function expressions for expr , but you cannot nest analytic
functions.

See Also: "Expressions" on page 5-2 for information on valid
forms of expr

Functions 4-45

LAST_DAY

Example

The following example provides, for each salesperson in the emptable, the salary of
the employee hired just before:

SELECT ename, hiredate, sal,
LAG(sal, 1, 0) OVER (ORDER BY hiredate) as prev_sal
FROM emp
WHERE job = 'SALESMAN’;

ENAME HIREDATE SAL PREV_SAL

ALLEN 20-FEB-81 1600 0
WARD 22-FEB-81 1250 1600
TURNER 08-SEP-81 1500 1250
MARTIN 28-SEP-81 1250 1500

LAST_DAY

Syntax

ESEN010%0

Purpose

LAST_DAYreturns the date of the last day of the month that contains d. You might
use this function to determine how many days are left in the current month.

Examples

SELECT SYSDATE,
LAST_DAY(SYSDATE) "Last",
LAST_DAY(SYSDATE) - SYSDATE "Days Left"
FROM DUAL;

SYSDATE Last Days Left

23-0OCT-97 31-OCT-97 8

The following example adds 5 months to the hiredate of each employee to give an
evaluation date:

4-46 SQL Reference

LAST_VALUE

SELECT ename, hiredate, TO_CHAR(
ADD_MONTHS(LAST_DAY (hiredate), 5)) "Eval Date"
FROM emp;

ENAME HIREDATE Eval Date

SMITH 17-DEC-80 31-MAY-81
ALLEN 20-FEB-81 31-JUL-81
WARD 22-FEB-81 31-JUL-81
JONES 02-APR-81 30-SEP-81
MARTIN 28-SEP-81 28-FEB-82
BLAKE 01-MAY-81 31-OCT-81
CLARK 09-JUN-81 30-NOV-81
SCOTT 19-APR-87 30-SEP-87
KING 17-NOV-81 30-APR-82
TURNER 08-SEP-81 28-FEB-82
ADAMS 23-MAY-87 31-OCT-87
JAMES 03-DEC-81 31-MAY-82
FORD 03-DEC-81 31-MAY-82
MILLER 23-JAN-82 30-JUN-82

LAST_VALUE

Syntax

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose
LAST_VALUEis an analytic function. It returns the last value in an ordered set of
values.

You cannot use LAST_VALUEor any other analytic function for expr . That is, you
can use other built-in function expressions for expr , but you cannot nest analytic
functions.

See Also: "Expressions" on page 5-2 for information on valid
forms of expr

Functions 4-47

LAST_VALUE

Examples

The following example returns the hiredate of the employee earning the highest
salary.

SELECT ename, sal, hiredate, LAST_VALUE(hiredate) OVER
(ORDER BY sal
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS Iv
FROM (SELECT * FROM emp WHERE deptno=20 ORDER BY hiredate);

ENAME SAL HIREDATE LV
SMITH 800 17-DEC-80 19-APR-87
ADAMS 1100 23-MAY-87 19-APR-87
JONES 2975 02-APR-81 19-APR-87
FORD 3000 03-DEC-81 19-APR-87
SCOTT 3000 19-APR-87 19-APR-87

This example illustrates the nondeterministic nature of the LAST_VALUEfunction.
Ford and Scott have the same salary, so they are in adjacent rows. Ford appears first
because the rows in the subquery are ordered by hiredate . However, if the rows
are ordered by hiredate in descending order, as in the next example, the function
returns a different value:

SELECT ename, sal, hiredate, LAST_VALUE(hiredate) OVER
(ORDER BY sal
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS Iv

FROM (SELECT * FROM emp WHERE deptno=20 ORDER BY hiredate DESG;
ENAME SAL HIREDATE LV

SMITH 800 17-DEC-80 03-DEC-81

ADAMS 1100 23-MAY-87 03-DEC-81

JONES 2975 02-APR-81 03-DEC-81

SCOTT 3000 19-APR-87 03-DEC-81

FORD 3000 03-DEC-81 03-DEC-81

The following two examples show how to make the LAST_VALUEfunction
deterministic by ordering on a unique key. By ordering within the function by both
salary and hiredate, you can ensure the same result regardless of the ordering in the
subquery.

SELECT ename, sal, hiredate, LAST_VALUE(hiredate) OVER
(ORDER BY sal, hiredate
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS Iv
FROM (SELECT * FROM emp WHERE deptno=20 ORDER BY hiredate);

4-48 SQL Reference

LEAD

LEAD

ENAME SAL HIREDATE LV
SMITH 800 17-DEC-80 19-APR-87
ADAMS 1100 23-MAY-87 19-APR-87
JONES 2975 02-APR-81 19-APR-87
FORD 3000 03-DEC-81 19-APR-87
SCOTT 3000 19-APR-87 19-APR-87
SELECT ename, sal, hiredate, LAST_VALUE(hiredate) OVER

(ORDER BY sal, hiredate

ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS Iv

FROM (SELECT * FROM emp WHERE deptno=20 ORDER BY hiredate DESQ;
ENAME SAL HIREDATE LV
SMITH 800 17-DEC-80 19-APR-87
ADAMS 1100 23-MAY-87 19-APR-87
JONES 2975 02-APR-81 19-APR-87
FORD 3000 03-DEC-81 19-APR-87
SCOTT 3000 19-APR-87 19-APR-87
Syntax

—>| LEAD

P@»Cvalue_expr) ’ ’ @a| OVER F@{analytic_clause)s@—)

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

LEAD:is an analytic function. It provides access to more than one row of a table at
the same time without a self-join. Given a series of rows returned from a query and
a position of the cursor, LEADprovides access to a row at a given physical offset
beyond that position.

If you do not specify offset , its default is 1. The optional default value is
returned if the offset goes beyond the scope of the table. If you do not specify
default , its default value is null.

Functions 4-49

LEAST

You cannot use LEADor any other analytic function for value_expr . Thatis, you
can use other built-in function expressions for value_expr , but you cannot nest
analytic functions.

See Also: "Expressions" on page 5-2 for information on valid
forms of expr

Example

The following example provides, for each employee in the emptable, the hiredate of
the employee hired just after:

SELECT ename, hiredate,
LEAD(hiredate, 1) OVER (ORDER BY hiredate) AS "NextHired"
FROM emp;

ENAME HIREDATE NextHired

SMITH 17-DEC-80 20-FEB-81
ALLEN 20-FEB-81 22-FEB-81
WARD 22-FEB-81 02-APR-81
JONES 02-APR-81 01-MAY-81
BLAKE 01-MAY-81 09-JUN-81
CLARK 09-JUN-81 08-SEP-81
TURNER 08-SEP-81 28-SEP-81
MARTIN 28-SEP-81 17-NOV-81
KING 17-NOV-81 03-DEC-81
JAMES 03-DEC-81 03-DEC-81
FORD 03-DEC-81 23-JAN-82
MILLER 23-JAN-82 19-APR-87
SCOTT 19-APR-87 23-MAY-87
ADAMS 23-MAY-87

LEAST

4-50 SQL Reference

LENGTHB

LENGTH

LENGTHB

Purpose

LEAST returns the least of the list of expr s. All expr s after the first are implicitly
converted to the datatype of the first expr before the comparison. Oracle compares
the expr s using nonpadded comparison semantics. If the value returned by this
function is character data, its datatype is always VARCHARZ2

Example

SELECT LEAST('HARRY',’HARRIOT'HAROLD’) "LEAST"
FROM DUAL,;

HAROLD

Syntax

EEI0ICDI0

Purpose

LENGTHreturns the length of char in characters. If char has datatype CHARthe
length includes all trailing blanks. If char is null, this function returns null.

Example

SELECT LENGTH('CANDIDE’) "Length in characters"
FROM DUAL;

Length in characters

.
Syntax
OFCD0

Functions 4-51

LN

Purpose

LENGTHRBeturns the length of char in bytes. If char is null, this function returns
null. For a single-byte database character set, LENGTHHSs equivalent to LENGTH

Example
This example assumes a double-byte database character set.

SELECT LENGTHB ('CANDIDE’) "Length in bytes"
FROM DUAL,;

Length in bytes

LN

Syntax

Purpose
LN returns the natural logarithm of n, where n is greater than 0.

Example
SELECT LN(95) "Natural log of 95" FROM DUAL;

Natural log of 95

4.55387689

LOG

Syntax

EJL0,010:0:0

4-52 SQL Reference

LPAD

Purpose

LOGreturns the logarithm, base m of n. The base mcan be any positive number
other than 0 or 1 and n can be any positive number.

Example
SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL;

Log base 10 of 100

LOWER

Syntax

| LoweR (O(ehar)))

Purpose

LOWEReturns char , with all letters lowercase. The return value has the same
datatype as the argument char (CHARor VARCHARR

Example

SELECT LOWER('MR. SCOTT MCMILLAN’) "Lowercase"
FROM DUAL;

Lowercase

mr. scott mcmillan

LPAD

Syntax

.char2
T O@EODL OF

Functions 4-53

LTRIM

Purpose

LPADreturns charl , left-padded to length n with the sequence of characters in
char2 ; char2 defaults to a single blank. If charl is longer than n, this function
returns the portion of charl that fits in n.

The argument n is the total length of the return value as it is displayed on your
terminal screen. In most character sets, this is also the number of characters in the
return value. However, in some multibyte character sets, the display length of a
character string can differ from the number of characters in the string.

Example

SELECT LPAD('Page 1',15,.") "LPAD example"
FROM DUAL,;

LPAD example

**x *x *Page 1

LTRIM

Syntax

mo@ Y,

Purpose

LTRIM removes characters from the left of char , with all the leftmost characters
that appear in set removed; set defaults to a single blank. If char is a character
literal, you must enclose it in single quotes. Oracle begins scanning char from its
first character and removes all characters that appear in set until reaching a
character not in set and then returns the result.

Example

SELECT LTRIM(xyxXxyLAST WORD"’,’xy") "LTRIM example"
FROM DUAL;

LTRIM example

XxyLAST WORD

4-54 SQL Reference

MAKE_REF

MAKE_REF

Syntax

1=
view

Purpose

MAKE_REFreates a REFto a row of an object view or a row in an object table
whose object identifier is primary key based.

See Also:

« Oracle8i Application Developer’s Guide - Fundamentals for more
information about object views

« DEREF on page 4-35

Example

CREATE TABLE employee (eno NUMBER, ename VARCHAR2(20),
salary NUMBER, PRIMARY KEY (eno, ename));
CREATE TYPE emp_type AS OBJECT
(eno NUMBER, ename CHAR(20), salary NUMBER);
CREATE VIEW emp_view OF emp_type
WITH OBJECT IDENTIFIER (eno, ename)
AS SELECT * FROM emp;
SELECT MAKE_REF(emp_view, 1, ‘jack’) FROM DUAL;

MAKE_REF(EMP_VIEW,1,'JACK")

000067030A0063420D06EO6F3C0O0C1E03400400B40DCB10000001C26010001000200
2900000000000F0600810100140100002A0007000A8401FEO000001F02C102146A61
636B2020202020202020202020202020202000000000000000000000000000000000
00000000

Functions 4-55

MAX

MAX

Syntax

| DISTINCT I
ALL

ﬂ OVER P@»{analytic_clausem
(expr ())

MAX |5((

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose
MAXreturns maximum value of expr . You can use it as an aggregate or analytic
function.
If you specify DISTINCT, you can specify only the query_partition_clause of
the analytic _clause . The ORDER _BY clause and windowing_clause are not
allowed.

See Also:

« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example
SELECT MAX(sal) "Maximum" FROM emp;

Maximum

Analytic Example
The following example calculates, for each employee, the highest salary of the
employees reporting to the same manager as the employee.

SELECT mgr, ename, sal,
MAX(sal) OVER (PARTITION BY mgr) AS mgr_max
FROM emp;

4-56 SQL Reference

MAX

MGR ENAME SAL MGR_MAX

7566 SCOTT 3000 3000
7566 FORD 3000 3000
7698 ALLEN 1600 1600
7698 WARD 1250 1600
7698 JAMES 950 1600
7698 TURNER 1500 1600
7698 MARTIN 1250 1600
7782 MILLER 1300 1300
7788 ADAMS 1100 1100
7839 JONES 2975 2975
7839 CLARK 2450 2975
7839 BLAKE 2850 2975
7902 SMITH 800 800
KING 5000 5000

If you enclose this query in the parent query with a predicate, you can determine
the employee who makes the highest salary in each department:

SELECT mgr, ename, sal
FROM (SELECT mgr, ename, sal,
MAX(sal) OVER (PARTITION BY mgr) AS rmax_sal
FROM emp)
WHERE sal = rmax_sal;

MGR ENAME SAL
7566 SCOTT 3000
7566 FORD 3000
7698 ALLEN 1600
7782 MILLER 1300
7788 ADAMS 1100
7839 JONES 2975
7902 SMITH 800

KING 5000

Functions 4-57

MIN

MIN

Syntax

DISTINCT

ﬂ OVER P@»Canalytic_clause)%
(expr ())

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

MIN J5((

Purpose

MIN returns minimum value of expr . You can use it as an aggregate or analytic
function.

If you specify DISTINCT, you can specify only the query_partition_clause of
the analytic _clause . The ORDER_BY clause and windowing_clause are not
allowed.

See Also:

« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example
SELECT MIN(hiredate) "Earliest" FROM emp;

Earliest

17-DEC-80

Analytic Example

The following example determines, for each employee, the employees who were
hired on or before the same date as the employee. It then determines the subset of
employees reporting to the same manager as the employee, and returns the lowest
salary in that subset.

SELECT mgr, ename, hiredate, sal,
MIN(sal) OVER(PARTITION BY mgr ORDER BY hiredate

4-58 SQL Reference

MOD

MOD

RANGE UNBOUNDED PRECEDING) as p_cmin

FROM emp;
MGR ENAME HIREDATE SAL P_CMIN
7566 FORD 03-DEC-81 3000 3000
7566 SCOTT 19-APR-87 3000 3000
7698 ALLEN 20-FEB-81 1600 1600
7698 WARD 22-FEB-81 1250 1250
7698 TURNER 08-SEP-81 1500 1250
7698 MARTIN 28-SEP-81 1250 1250
7698 JAMES 03-DEC-81 950 950
7782 MILLER 23-JAN-82 1300 1300
7788 ADAMS 23-MAY-87 1100 1100
7839 JONES 02-APR-81 2975 2975
7839 BLAKE 01-MAY-81 2850 2850
7839 CLARK 09-JUN-81 2450 2450
7902 SMITH 17-DEC-80 800 800
KING 17-NOV-81 5000 5000
Syntax

IE10,0,0,00

Purpose

MODreturns remainder of mdivided by n. Returns mif n is 0.

Example

SELECT MOD(11,4) "Modulus" FROM DUAL;

Modulus

This function behaves differently from the classical mathematical modulus function
when mis negative. The classical modulus can be expressed using the MOCfunction
with this formula:

m - n * FLOOR(m/n)

Functions 4-59

MONTHS_BETWEEN

The following statement illustrates the difference between the MOCfunction and the
classical modulus:

SELECT m, n, MOD(m, n),
m - n * FLOOR(m/n) "Classical Modulus"
FROM test_mod_table;

M N MOD(M,N) Classical Modulus
11 4 3 3
11 -4 3 -1
-11 4 -3 1
-11 -4 -3 -3

See Also: FLOOR on page 4-40

MONTHS_BETWEEN

Syntax

—>| MONTHS_BETWEEN o @ ’ @ o

Purpose

MONTHS_ BETWEE&turns number of months between dates d1 and d2. If d1 is
later than d2, result is positive; if earlier, negative. If d1 and d2 are either the same
days of the month or both last days of months, the result is always an integer.
Otherwise Oracle calculates the fractional portion of the result based on a 31-day
month and considers the difference in time components of d1 and d2.

Example

SELECT MONTHS_BETWEEN
(TO_DATE('02-02-1995'’MM-DD-YYYY"),
TO_DATE('01-01-1995'MM-DD-YYYY’)) "Months"
FROM DUAL;

1.03225806

4-60 SQL Reference

NEW_TIME

NEW_TIME

Syntax

IEAIS OL0:0, D0, OL0

Purpose

NEW_TIMEeturns the date and time in time zone z2 when date and time in time
zone z1 are d. Before using this function, you must set the NLS_DATE_FORMAT
parameter to display 24-hour time.

The arguments z1 and z2 can be any of these text strings:

« AST, ADT: Atlantic Standard or Daylight Time

« BST, BDT: Bering Standard or Daylight Time

« CST, CDT: Central Standard or Daylight Time

« EST, EDT: Eastern Standard or Daylight Time

« GMT: Greenwich Mean Time

« HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.
« MST, MDT: Mountain Standard or Daylight Time

« NST: Newfoundland Standard Time

« PST, PDT: Pacific Standard or Daylight Time

« YST, YDT: Yukon Standard or Daylight Time

Example

The following example returns an Atlantic Standard time, given the Pacific
Standard time equivalent:

ALTER SESSION SET NLS_DATE_FORMAT =
'DD-MON-YYYY HH24:MI:SS,

SELECT NEW_TIME(TO_DATE(
'11-10-99 01:23:45, 'MM-DD-YY HH24:MI:SS’),
'AST’, 'PST’) "New Date and Time" FROM DUAL;

New Date and Time

09-NOV-1999 21:23:45

Functions 4-61

NEXT_DAY

NEXT_DAY

Syntax

IEE 010 0.CL0

Purpose

NEXT_DAMreturns the date of the first weekday named by char that is later than
the date d. The argument char must be a day of the week in the date language of
your session, either the full name or the abbreviation. The minimum number of
letters required is the number of letters in the abbreviated version. Any characters
immediately following the valid abbreviation are ignored. The return value has the
same hours, minutes, and seconds component as the argument d.

Example
This example returns the date of the next Tuesday after March 15, 1998.

SELECT NEXT_DAY('15-MAR-98',TUESDAY") "NEXT DAY"
FROM DUAL,;

NEXT DAY

16-MAR-98

NLS_CHARSET DECL LEN

Syntax
—{ NLS_CHARSET_DECL_LEN |—>@{bytecn
Purpose

NLS_CHARSET_DECL_LEMturns the declaration width (in number of characters)
of an NCHAR olumn. The bytecnt argument is the width of the column. The csid
argument is the character set ID of the column.

4-62 SQL Reference

NLS_CHARSET_ID

Example

SELECT NLS_CHARSET_DECL_LEN
(200, nls_charset_id('jal6eucfixed’))
FROM DUAL;

NLS_CHARSET_DECL_LEN(200,NLS_CHARSET_ID('JA16EUCFIXED’))

100

NLS_CHARSET_ID

Syntax

=00

Purpose

NLS_CHARSET_IDreturns the NS character set ID number corresponding to NLS
character set name, text . The text argument is a run-time VARCHARZalue. The
text value 'CHAR_CSreturns the database character set ID number of the server.
The text value 'NCHAR_CSreturns the national character set ID number of the
server.

Invalid character set names return null.

Example

SELECT NLS_CHARSET_ID(’jal6euc’)
FROM DUAL;

NLS_CHARSET_ID('JA16EUC))

830

See Also: Oracle8i National Language Support Guide for a list of
character set names

Functions 4-63

NLS_CHARSET_NAME

NLS_CHARSET NAME

Syntax

—{ NLS_CHARSET_NAME M@

Purpose

NLS CHARSET_ NAMEturns the name of the NLS character set corresponding to
ID number n. The character set name is returned as a VARCHARZalue in the
database character set.

If nis not recognized as a valid character set 1D, this function returns null.

Example

SELECT NLS_CHARSET_NAME(2)
FROM DUAL:

WESDEC

See Also: Oracle8i National Language Support Guide for a list of
character set IDs

NLS_INITCAP
Syntax
SASCEDSavot
Purpose

NLS_INITCAP returns char , with the first letter of each word in uppercase, all
other letters in lowercase. Words are delimited by white space or characters that are
not alphanumeric. The value of 'nisparam ’ can have this form:

'NLS_SORT = sort’

4-64 SQL Reference

NLS_LOWER

where sort is either a linguistic sort sequence or BINARY. The linguistic sort
sequence handles special linguistic requirements for case conversions. These
requirements can result in a return value of a different length than the char . If you
omit 'nisparam °, this function uses the default sort sequence for your session.

Example

The following examples show how the linguistic sort sequence results in a different
return value from the function:

SELECT NLS_INITCAP
Cijsland’) "InitCap" FROM DUAL;

InitCap

lisland

SELECT NLS_INITCAP
(ijsland’, 'NLS_SORT = XDutch’) "InitCap"
FROM DUAL;

InitCap

1Jsland

See Also: Oracle8i National Language Support Guide for
information on sort sequences

NLS_LOWER
Syntax
DO o,
Purpose

NLS_LOWEReturns char , with all letters lowercase. The 'nisparam ’ can have the
same form and serve the same purpose as in the NLS_INITCAP function.

Example
SELECT NLS_LOWER

Functions 4-65

NLSSORT

NLSSORT

(CITTA", 'NLS_SORT = XGerman’) "Lowercase"

FROM DUAL;
Lower
cita
Syntax
nisparam
20 0 Yo SACACACiCa S
Purpose

7

NLSSORTreturns the string of bytes used to sort char . The value of 'nisparams
can have the form

'NLS_SORT = sort’

where sort is a linguistic sort sequence or BINARY. If you omit 'nisparams ’, this
function uses the default sort sequence for your session. If you specify BINARY, this
function returns char .

Example

This function can be used to specify comparisons based on a linguistic sort
sequence rather than on the binary value of a string:

SELECT ename FROM emp
WHERE NLSSORT (ename, 'NLS_SORT = German’)
> NLSSORT ('S’, 'NLS_SORT = German’) ORDER BY ename;

SMITH
TURNER
WARD

See Also: Oracle8i National Language Support Guide for
information on sort sequences

4-66 SQL Reference

NTILE

NLS_UPPER

NTILE

Syntax

010l CED 60
o

Purpose

NLS_UPPEReturns char , with all letters uppercase. The 'nlsparam ’ can have the
same form and serve the same purpose as in the NLS_INITCAP function.

Example

SELECT NLS_UPPER
('grof3e’, 'NLS_SORT = XGerman’) "Uppercase”
FROM DUAL;

See Also: NLS_INITCAP on page 4-64

Syntax

30 CDIO EEIC CEEETD O

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

NTILE is an analytic function. It divides an ordered dataset into a number of
buckets indicated by expr and assigns the appropriate bucket number to each row.
The buckets are numbered 1 through expr , and expr must resolve to a positive
constant for each partition.

Functions 4-67

NTILE

The number of rows in the buckets can differ by at most 1. The remainder values
(the remainder of number of rows divided by buckets) are distributed 1 per bucket,
starting with bucket 1.

If expr is greater than the number of rows, a number of buckets equal to the
number of rows will be filled, and the remaining buckets will be empty.

You cannot use NTILE or any other analytic function for expr . That is, you can use
other built-in function expressions for expr , but you cannot nest analytic functions.

See Also: "Expressions" on page 5-2 for information on valid
forms of expr

Example

The following example divides the values in the SAL column into 4 buckets. The
SAL column has 14 values, so the two extra values (the remainder of 14 / 4) are
allocated to buckets 1 and 2, which therefore have one more value than buckets 3 or

4.
SELECT ename, sal, NTILE(4) OVER (ORDER BY sal DESC) AS quartile
FROM emp;
ENAME SAL QUARTILE
KING 5000 1
SCOTT 3000 1
FORD 3000 1
JONES 2975 1
BLAKE 2850 2
CLARK 2450 2
ALLEN 1600 2
TURNER 1500 2
MILLER 1300 3
WARD 1250 3
MARTIN 1250 3
ADAMS 1100 4
JAMES 950 4
SMITH 800 4

4-68 SQL Reference

NUMTODSINTERVAL

NUMTODSINTERVAL

Note: This function is restricted to use with analytic functions. It
accepts only numbers as arguments, and returns interval literals.
See "Analytic Functions" on page 4-8 and "Interval" on page 2-36.

Syntax
—>| NUMTODSINTERVAL o ° ‘ ‘ ‘ o
Purpose

NUMTODSINTERVAtonverts n to an INTERVAL DAY TO SECONReral. n can be a
number or an expression resolving to a number. The value for char_expr specifies
the unit of n and must resolve to one of the following string values:

« 'DAY

« ’'HOUR

« 'MINUTE
= ’'SECOND

char_expr is case insensitive. Leading and trailing values within the parentheses
are ignored. By default, precision of the return is 9.

Example

The following example calculates for each employee, the number of employees
hired, by the same manager, within the last 100 days from his/her hiredate:

SELECT mgr, ename, hiredate,
COUNT(*) OVER (PARTITION BY mgr ORDER BY hiredate
RANGE NUMTODSINTERVAL(100, 'day’) PRECEDING) AS t_count
FROM emp;

MGR ENAME HIREDATE T_COUNT

7566 FORD 03-DEC-81 1
7566 SCOTT 19-APR-87 1
7698 ALLEN 20-FEB-81 1
7698 WARD 22-FEB-81 2
7698 TURNER 08-SEP-81 1

Functions 4-69

NUMTOYMINTERVAL

7698 MARTIN 28-SEP-81
7698 JAMES 03-DEC-81
7782 MILLER ~ 23-JAN-82
7788 ADAMS 23-MAY-87
7839 JONES 02-APR-81
7839 BLAKE 01-MAY-81
7839 CLARK 09-JUN-81
7902 SMITH 17-DEC-80
KING 17-NOV-81 1

SN SN AN

NUMTOYMINTERVAL

Note: This function is restricted to use with analytic functions. It
accepts only numbers as arguments, and returns interval literals.
See "Analytic Functions" on page 4-8 and "Interval" on page 2-36.

Syntax
—>| NUMTOYMINTERVAL o Q ‘ ‘ ‘ o
Purpose

NUMTOYMINTERVAlonverts number n to an INTERVAL YEAR TO MONTHeral. n
can be a number or an expression resolving to a number. The value for char_expr
specifies the unit of n, and must resolve to one of the following string values:

« ’'YEAR

« ’'MONTH

char_expr is case insensitive. Leading and trailing values within the parentheses
are ignored. By default, precision of the return is 9.

Example
The following example calculates, for each employee, the total salary of employees
hired in the past one year from his/her hiredate.

SELECT ename, hiredate, sal, SUM(sal) OVER (ORDER BY hiredate
RANGE NUMTOYMINTERVAL(1,'year’) PRECEDING) AS t_sal
FROM emp;

ENAME HIREDATE SAL T_SAL

4-70 SQL Reference

NVL

NVL

SMITH 17-DEC-80 800 800
ALLEN 20-FEB-81 1600 2400
WARD 22-FEB-81 1250 3650
JONES 02-APR-81 2975 6625
BLAKE 01-MAY-81 2850 9475
CLARK 09-JUN-81 2450 11925
TURNER 08-SEP-81 1500 13425
MARTIN 28-SEP-81 1250 14675
KING 17-NOV-81 5000 19675
JAMES 03-DEC-81 950 23625
FORD 03-DEC-81 3000 23625
MILLER 23-JAN-82 1300 24125
SCOTT 19-APR-87 3000 3000
ADAMS 23-MAY-87 1100 4100

Syntax

W DDA

Purpose

If exprl is null, NVLreturns expr2 ;if exprl is not null, NVLreturns exprl . The
arguments exprl and expr2 can have any datatype. If their datatypes are
different, Oracle converts expr2 to the datatype of exprl before comparing them.
The datatype of the return value is always the same as the datatype of exprl ,
unless exprl is character data, in which case the return value’s datatype is

VARCHAR2

Example

SELECT ename, NVL(TO_CHAR(COMM), 'NOT APPLICABLE’)

"COMMISSION" FROM emp
WHERE deptno = 30;

ENAME COMMISSION

ALLEN 300
WARD 500
MARTIN 1400

Functions 4-71

NVL2

BLAKE NOT APPLICABLE
TURNER O
JAMES NOT APPLICABLE

NVL2

Syntax

EE0L G0 CDY6 GO0

Purpose

If exprl is not null, NVL2returns expr2 . If exprl is null, NVL2returns expr3 .
The argument exprl can have any datatype. The arguments expr2 and expr3 can
have any datatypes except LONG

If the datatypes of expr2 and expr3 are different, Oracle converts expr3 to the
datatype of expr2 before comparing them unless expr3 is a null constant. In that
case, a datatype conversion is not necessary.

The datatype of the return value is always the same as the datatype of expr2 ,
unless expr2 is character data, in which case the return value’s datatype is
VARCHAR2

Example

The following example shows whether the income of each employee in department
30 is made up of salary plus commission, or just salary, depending on whether the
commcolumn of empis null or not.

SELECT ename, NVL2(TO_CHAR(COMM), 'SAL & COMM’, 'SAL’) income
FROM emp WHERE deptno = 30;

ENAME INCOME

ALLEN SAL & COMM
WARD SAL & COMM
MARTIN SAL & COMM

BLAKE SAL
TURNER SAL & COMM
JAMES SAL

4-72 SQL Reference

PERCENT_RANK

PERCENT_RANK

Syntax

query_partition_clause
PERCENT_RANK o o OVER b(((ORDER_BY_cIause)-)(:)»

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

PERCENT_RANIS an analytic function, and is similar to the CUME_DIST
(cumulative distribution) function. For a row R, PERCENT_RAN#alculates the rank
of R minus 1, divided by 1 less than the number of rows being evaluated (the entire
query result set or a partition). The range of values returned by PERCENT_RANI¢ 0
to 1, inclusive. The first row in any set has a PERCENT_RANK(0.

Example

The following example calculates, for each employee, the percent rank of the
employee’s salary within the department:

SELECT deptno, ename, sal,
PERCENT_RANK() OVER (PARTITION BY deptno ORDER BY sal DESC) AS pr

FROM emp;

DEPTNO ENAME SAL PR
10 KING 5000 0
10 CLARK 2450 5
10 MILLER 1300 1
20 SCOTT 3000 0
20 FORD 3000 0
20 JONES 2975 5
20 ADAMS 1100 .75
20 SMITH 800 1
30 BLAKE 2850 0
30 ALLEN 1600 2
30 TURNER 1500 4
30 WARD 1250 .6
30 MARTIN 1250 .6
30 JAMES 950 1

Functions 4-73

POWER

POWER
Syntax
0,0.0:0.0
Purpose
POWEReturns mraised to the nth power. The base mand the exponent n can be any
numbers, but if mis negative, n must be an integer.
Example
SELECT POWER(3,2) "Raised" FROM DUAL;
Raised
9
RANK
Syntax

query_partition_clause
RANK o o OVER [(({ORDER_BY_cIause)e(:)»

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

RANKis an analytic function. It computes the rank of each row returned from a
query with respect to the other rows returned by the query, based on the values of
the value_exprs inthe ORDER_BY clause. Rows with equal values for the
ranking criteria receive the same rank. Oracle then adds the number of tied rows to
the tied rank to calculate the next rank. Therefore, the ranks may not be consecutive
numbers.

4-74 SQL Reference

RATIO_TO_REPORT

Example

The following statement ranks the employees within each department based on
their salary and commission. Identical salary values receive the same rank and
cause nonconsecutive ranks. Compare this example with the example for DENSE_
RANK on page 4-34.

SELECT deptno, ename, sal, comm,
RANK() OVER (PARTITION BY deptno ORDER BY sal DESC, comm) as rk

FROM emp;

DEPTNO ENAME

SAL COMM RK

10 KING 5000 1

10 CLARK 2450 2
10 MILLER 1300 3
20 SCOTT 3000 1
20 FORD 3000 1
20 JONES 2975 3
20 ADAMS 1100 4
20 SMITH 800 5
30 BLAKE 2850 1
30 ALLEN 1600 300 2
30 TURNER 1500 0 3
30 WARD 1250 500 4
30 MARTIN 1250 1400 5
30 JAMES 950 6

RATIO_TO_REPORT

Syntax

—{ raTI0_T0_REPORT ((5(expr)5() (@

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Functions 4-75

RAWTOHEX

RAWTOHEX

Purpose

RATIO_TO_REPORTs an analytic function. It computes the ratio of a value to the
sum of a set of values. If expr evaluates to null, the ratio-to-report value also
evaluates to null.

The set of values is determined by the query_partition _clause . If you omit
that clause, the ratio-to-report is computed over all rows returned by the query.

You cannot use RATIO_TO_REPOR®r any other analytic function for expr . That is,
you can use other built-in function expressions for expr , but you cannot nest
analytic functions.

See Also: "Expressions" on page 5-2 for information on valid
forms of expr

Example

The following example calculates the ratio-to-report of each salesperson’s salary to
the total of all salespeople’s salaries:

SELECT ename, sal, RATIO_TO_REPORT(sal) OVER () AS rr
FROM emp
WHERE job = 'SALESMAN’;

ENAME SAL RR
ALLEN 1600 .285714286
WARD 1250 .223214286
MARTIN 1250 .223214286
TURNER 1500 .267857143
Syntax

EUEEIT0YGDY0

Purpose
RAWTOHERONverts raw to a character value containing its hexadecimal equivalent.

4-76 SQL Reference

REF

REF

Example

SELECT RAWTOHEX(raw_column) "Graphics"
FROM graphics;

Graphics

See Also: "RAW and LONG RAW Datatypes" on page 2-16 and
HEXTORAW on page 4-42

Syntax
© ®
Purpose

In a SQL statement, REFtakes as its argument a correlation variable (table alias)
associated with a row of an object table or an object view. A REFvalue is returned
for the object instance that is bound to the variable or row.

Example

CREATE TYPE emp_type AS OBJECT

(eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type

(primary key (eno, ename));
INSERT INTO emp_table VALUES (10, ‘'jack’, 50000);
SELECT REF(e) FROM emp_table e;

REF(E)

0000280209420D2FEABD9400C3E03400400B40DCB1420D2FEABD9300C3E03400400B
40DCB1004049EE0000

See Also: Oracle8i Concepts

Functions 4-77

REFTOHEX

REFTOHEX

Syntax

LEEEI01CDT0

Purpose

REFTOHEXonverts argument expr to a character value containing its hexadecimal
equivalent. expr must return a REF

Example

CREATE TYPE emp_type AS OBJECT

(eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type

(primary key (eno, ename));
CREATE TABLE dept

(dno NUMBER, mgr REF emp_type SCOPE IS emp);
INSERT INTO emp_table VALUES (10, 'jack’, 50000);
INSERT INTO dept SELECT 10, REF(e) FROM emp_table €;
SELECT REFTOHEX(mgr) FROM dept;

REFTOHEX(MGR)

0000220208420D2FEABD9400C3E03400400B40DCB1420D2FEABD9300C3E03400400B
40DCB1

REGR _ (linear regression) functions
The linear regression functions are:
. REGR_SLOPE
« REGR_INTERCEPT
. REGR_COUNT
. REGR_R2
. REGR_AVGX
. REGR_AVGY
. REGR_SXX

4-78 SQL Reference

REGR_ (linear regression) functions

REGR_SLOPE

REGR_INTERCEPT

REGR_COUNT
REGR_R2
= f—)| OVER F@{analytic_clausem
N ey W O Ve Yo Y e Y

REGR_AVGY
REGR_SXX

REGR_SYY

R

REGR_SXY

See Also: "Analytic Functions” on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

The linear regression functions fit an ordinary-least-squares regression line to a set
of number pairs. You can use them as both aggregate and analytic functions.

See Also:

« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Oracle applies the function to the set of (exprl , expr2) pairs after eliminating all
pairs for which either expr1 or expr2 is null. Oracle computes all the regression
functions simultaneously during a single pass through the data.

exprl isinterpreted as a value of the dependent variable (a "y value"), and expr2
is interpreted as a value of the independent variable (an "x value"). Both expressions
must be numbers.

Functions 4-79

REGR_ (linear regression) functions

REGR_SLOPIEeturns the slope of the line. The return value is a number and can
be null. After the elimination of null (exprl , expr2) pairs, it makes the
following computation:

COVAR_POP(exprl, expr2) / VAR_POP(expr2)
REGR_INTERCEPTeturns the y-intercept of the regression line. The return

value is a number and can be null. After the elimination of null (exprl , expr2)
pairs, it makes the following computation:

AVG(exprl) - REGR_SLOPE(exprl, expr2) * AVG(expr2)
REGR_COUNEturns an integer that is the number of non-null number pairs
used to fit the regression line.

REGR_RZeturns the coefficient of determination (also called "R-squared" or
"goodness of fit") for the regression. The return value is a number and can be
null. VAR_POlexprl) and VAR_PORexpr2) are evaluated after the
elimination of null pairs. The return values are:

NULL if VAR_POP(expr2) =0

1if VAR_POP(exprl) =0 and
VAR_POP(expr2) =0

POWER(CORR(exprl,expr),2) if VAR_POP(exprl) >0 and
VAR_POP(expr2 =0

All of the remaining regression functions return a number and can be null:

REGR_AVGHvaluates the average of the independent variable (expr2) of the
regression line. It makes the following computation after the elimination of null
(exprl , expr2) pairs:

AVG(expr2)
REGR_AVG¥valuates the average of the dependent variable (exprl) of the

regression line. It makes the following computation after the elimination of null
(exprl , expr2) pairs:

AVG(exprl)

REGR_SXYREGR_SXXREGR_SY¥re auxiliary functions that are used to compute
various diagnostic statistics.

4-80 SQL Reference

REGR_SXXnakes the following computation after the elimination of null
(exprl , expr2) pairs:

REGR_ (linear regression) functions

REGR_COUNT((exprl, expr2) * VAR_POP(expr2)

« REGR_SYYnakes the following computation after the elimination of null
(exprl , expr2) pairs:
REGR_COUNT(exprl, expr2) * VAR_POP(exprl)

« REGR_SXYnakes the following computation after the elimination of null
(exprl , expr2) pairs:
REGR_COUNT(exprl, expr2) * COVAR_POP(exprl, expr2)

The following examples are based on the sales table, described in COVAR_POP
on page 4-29.

REGR_SLOPENd REGR_INTERCEPExamples

The following example determines the slope and intercept of the regression line for
the amount of sales and sale profits for each year.

SELECT s_year,
REGR_SLOPE(s_amount, s_profit),
REGR_INTERCEPT(s_amount, s_profit)

FROM sales GROUP BY s_year;

S_YEAR REGR_SLOPE REGR_INTER

1998 128.401558 -2277.5684
1999 55.618655 226.855296

The following example determines the cumulative slope and cumulative intercept
of the regression line for the amount of sales and sale profits for each day in 1998:

SELECT s_year, s_month, s_day,

REGR_SLOPE(s_amount, s_profit)

OVER (ORDER BY s_month, s_day) AS CUM_SLOPE,
REGR_INTERCEPT(s_amount, s_profit)

OVER (ORDER BY s_month, s_day) AS CUM_ICPT
FROM sales
WHERE s_year=1998
ORDER BY s_month, s_day;

S YEAR S MONTH S DAY CUM_SLOPE CUM_ICPT

1998 6 5

Functions 4-81

REGR_ (linear regression) functions

1998 6 9 132.093066 401.884833
1998 6 9 132.093066 401.884833
1998 6 10 131.829612 450.65349
1998 8 21 132.963737 -153.5413
1998 8 25 130.681718 -451.47349
1998 8 25 130.681718 -451.47349

1998 8 26 128.76502 -236.50096

1998 11 9 131.499934 -1806.7535
1998 11 9 131.499934 -1806.7535
1998 11 10 130.190972 -2323.3056
1998 11 10 130.190972 -2323.3056
1998 11 11 128.401558 -2277.5684

REGR_COUNHExamples

The following example returns the number of sales transactions in the sales table
that resulted in a profit. (None of the rows for containing a sales amount have a null
inthe s_profit column, so the function returns the total number of rows in the
sales table.)

SELECT REGR_COUNT(s_amount, s_profit) FROM sales;

REGR_COUNT

The following example computes, for each day, the cumulative number of
transactions within each month for the year 1998:

SELECT s_month, s_day,
REGR_COUNT(s_amount,s_profit)
OVER (PARTITION BY s_month ORDER BY s_day)
FROM SALES
WHERE S_YEAR=1998
ORDER BY S_MONTH;

S MONTH S_DAY REGR_COUNT

5

9

9
10
21
25
25
26

0 OODDOD DO
RwwkrAN®OE

4-82 SQL Reference

REGR_ (linear regression) functions

11 9 2
11 9 2
11 10 4
11 10 4
11 11 5

REGR_RZExamples

The following example computes the coefficient of determination of the regression
line for amount of sales and sale profits:

SELECT REGR_R2(s_amount, s_profit) FROM sales;

REGR_R2(S_

.942435028

The following example computes the cumulative coefficient of determination of the
regression line for monthly sales and monthly profits for each month in 1998;

SELECT s_month,
REGR_R2(SUM(s_amount), SUM(s_profit))
OVER (ORDER BY s_month)
FROM SALES
WHERE s_year=1998
GROUP BY s_month
ORDER BY s_month;

S_MONTH REGR_R2(SU

8 1
11 .740553632

REGR_AVG¥nd REGR_AVGExamples

The following example calculates the regression average for the amount of sales and
sale profits for each year:

SELECT s_year,
REGR_AVGY(s_amount, s_profit),
REGR_AVGX(s_amount, s_profit)

FROM sales GROUP BY s_year;

S_YEAR REGR_AVGY(REGR_AVGX(

Functions 4-83

REGR_ (linear regression) functions

1998 41227.5462 338.820769
1999 7330.748 127.725

The following example calculates the cumulative averages for the amount of sales
and sale profits in 1998:

SELECT s_year, s_month, s_day,
REGR_AVGY(s_amount, s_profit)
OVER (ORDER BY s_month, s_day) AS CUM_AMOUNT,
REGR_AVGX(s_amount, s_profit)
OVER (ORDER BY s_month, s_day) AS CUM_PROFIT
FROM sales
WHERE s_year=1998
ORDER BY s_month, s_day;

S_YEAR S_MONTH S_DAY CUM_AMOUNT CUM_PROFIT

1998 6 5 16068 118.2
1998 6 9 44375.6667 332.9
1998 6 9 44375.6667 332.9
1998 6 10 52678.25 396.175
1998 8 21 44721.72 3375
1998 8 25 45333.8 350.357143
1998 8 25 45333.8 350.357143

1998 8 26 47430.7 370.1875
1998 11 9 4189291 332.317
1998 11 9 4189291 332.317
1998 11 10 40777.175 331.055833
1998 11 10 40777.175 331.055833
1998 11 11 41227.5462 338.820769

REGR_SXYREGR_SXXand REGR_SYExamples

The following example computes the REGR_SXYREGR_SXXand REGR_SYY
values for the regression analysis of amount of sales and sale profits for each year:

SELECT s_year,
REGR_SXY(s_amount, s_profit),
REGR_SYY(s_amount, s_profit),
REGR_SXX(s_amount, s_profit)
FROM sales GROUP BY s_year;

S_YEAR REGR_SXY(S REGR_SYY(S REGR_SXX(S

1998 48723551.8 6423698688 379462.311

4-84 SQL Reference

REPLACE

REPLACE

1999 3605361.62 200525751 64822.8841

The following example computes the cumulative REGR_SXYREGR_SXXand
REGR_SY¥tatistics for amount of sales and sale profits for each month-day value

in 1998:

SELECT s_year, s_month, s_day,
REGR_SXY(s_amount, s_profit)
OVER (ORDER BY s_month, s_day) AS CUM_SXY,
REGR_SYY(s_amount, s_profit)
OVER (ORDER BY s_month, s_day) AS CUM_SXY,
REGR_SXX(s_amount, s_profit)
OVER (ORDER BY s_month, s_day) AS CUM_SXX
FROM sales
WHERE s_year=1998
ORDER BY s_month, s_day;

S MONTH S_DAY CUM_SXY CUM_SXY CUM_SXX

S_YEAR
1998 6 5 0 0 0
1998 6 914822857.8 1958007601 112215.26
1998 6 9 14822857.8 1958007601 112215.26
1998 6 10 21127009.3 2785202281 160259.968
1998 8 21 30463997.3 4051329674 229115.08
1998 8 25 34567985.3 4541739739 264520.437
1998 8 25 34567985.3 4541739739 264520.437
1998 8 26 36896592.7 4787971157 286542.049
1998 11 9 45567995.3 6045196901 346524.854
1998 11 9 45567995.3 6045196901 346524.854
1998 11 10 48178003.8 6392056557 370056.411
1998 11 10 48178003.8 6392056557 370056.411
1998 11 11 48723551.8 6423698688 379462.311

Syntax

o o search_string @-)

’ replacement_string

Functions 4-85

ROUND (number function)

Purpose

REPLACEeturns char with every occurrence of search_string replaced with
replacement_string . If replacement_string is omitted or null, all
occurrences of search_string are removed. If search_string is null, char is

returned. This function provides a superset of the functionality provided by the
TRANSLATHunction. TRANSLATEprovides single-character, one-to-one
substitution. REPLACHets you substitute one string for another as well as to
remove character strings.

Example

SELECT REPLACE('JACK and JUE’,'J','BL’) "Changes"
FROM DUAL,;

Changes

BLACK and BLUE

ROUND (number function)

Syntax

070 ASACAVy

Purpose

ROUNDeturns n rounded to mplaces right of the decimal point. If mis omitted, n is
rounded to 0 places. mcan be negative to round off digits left of the decimal point. m
must be an integer.

Examples
SELECT ROUND(15.193,1) "Round" FROM DUAL;

SELECT ROUND(15.193,-1) "Round" FROM DUAL;

4-86 SQL Reference

ROW_NUMBER

ROUND (date function)

Syntax

S0 O ACACAV,Y

Purpose

ROUNDeturns d rounded to the unit specified by the format model fmt . If you omit
fmt , d is rounded to the nearest day.

See Also: "ROUND and TRUNC Date Functions" on page 4-127
for the permitted format models to use in fmt

Example

SELECT ROUND (TO_DATE ('27-OCT-92),'YEAR’)
"New Year" FROM DUAL;

New Year

01-JAN-93

ROW_NUMBER

Syntax

query_partition_clause
ROW_NUMBER o o OVER 1 ((ORDER_BY_cIause)»(:)»

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Functions 4-87

ROW_NUMBER

Purpose

ROW_NUMBE#®Ran analytic function. It assigns a unique number to each row to
which it is applied (either each row in the partition or each row returned by the

query), in the ordered sequence of rows specified in the ORDER_BY clause,
beginning with 1.

You cannot use ROW_NUMBER any other analytic function for expr . That is, you

can use other built-in function expressions for expr , but you cannot nest analytic
functions.

See Also: "Expressions" on page 5-2 for information on valid
forms of expr

Example

For each department in the emptable, the following example assigns numbers to
each row in order of employee’s hire date:

SELECT deptno, ename, hiredate, ROW_NUMBER()
OVER (PARTITION BY deptno ORDER BY hiredate) AS emp_id
FROM emp;

DEPTNO ENAME HIREDATE EMP_ID

10 CLARK 09-JUN-81 1
10 KING 17-NOV-81 2
10 MILLER 23-JAN-82 3
20 SMITH 17-DEC-80 1
20 JONES 02-APR-81 2
20 FORD 03-DEC-81 3
20 SCOTT 19-APR-87 4
20 ADAMS 23-MAY-87 5

30 ALLEN 20-FEB-81 1
30 WARD 22-FEB-81 2
30 BLAKE 01-MAY-81 3
30 TURNER 08-SEP-81 4
30 MARTIN 28-SEP-81 5

30 JAMES 03-DEC-81 6

ROW_NUMBH®Ra nondeterministic function. However, hiredate is a unique key;,
so the results of this application of the function are deterministic.

See Also: FIRST_VALUE on page 4-38 and LAST_VALUE on
page 4-47 for examples of nondeterministic behavior

4-88 SQL Reference

RPAD

ROWIDTOCHAR
Syntax
olcblo
Purpose

RPAD

ROWIDTOCHAgNverts a rowid value to VARCHAR2atatype. The result of this
conversion is always 18 characters long.

Example

SELECT ROWID
FROM offices
WHERE
ROWIDTOCHAR(ROWID) LIKE '%Br1AAB%’;

AAAAZGAABAAABIr1AAB

Syntax

.charz
FBO@E00-L 25 g,

Purpose

RPADreturns charl , right-padded to length n with char2 , replicated as many
times as necessary; char2 defaults to a single blank. If charl is longer than n, this
function returns the portion of charl that fitsin n.

The argument n is the total length of the return value as it is displayed on your
terminal screen. In most character sets, this is also the number of characters in the
return value. However, in some multibyte character sets, the display length of a
character string can differ from the number of characters in the string.

Functions 4-89

RTRIM

RTRIM

SIGN

Example

SELECT RPAD('MORRISON’,12,'ab’) "RPAD example"
FROM DUAL,;

RPAD example

MORRISONabab

Syntax

o L,

Purpose

RTRIMreturns char , with all the rightmost characters that appear in set removed;
set defaults to a single blank. If char is a character literal, you must enclose it in
single quotes. RTRIMworks similarly to LTRIM.

Example

SELECT RTRIM(BROWNINGyxXxy',’xy") "RTRIM e.g."
FROM DUAL;

RTRIM e.g

BROWNINGyxX

See Also: LTRIM on page 4-54

Syntax

| SN O

4-90 SQL Reference

SINH

SIN

SINH

Purpose

If n<0, SIGN returns -1. If n=0, the function returns 0. If n>0, SIGN returns 1.

Example
SELECT SIGN(-15) "Sign" FROM DUAL;

Syntax

Purpose
SIN returns the sine of n (an angle expressed in radians).

Example

SELECT SIN(30 * 3.14159265359/180)
"Sine of 30 degrees" FROM DUAL,;

Sine of 30 degrees

Syntax

ELI0,050

Purpose
SINH returns the hyperbolic sine of n.

Functions 4-91

SOUNDEX

Example
SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL;

Hyperbolic sine of 1

1.17520119

SOUNDEX

Syntax

EL=1 0G0

Purpose

SOUNDEXeturns a character string containing the phonetic representation of char.
This function allows you to compare words that are spelled differently, but sound
alike in English.

The phonetic representation is defined in The Art of Computer Programming, Volume
3: Sorting and Searching, by Donald E. Knuth, as follows:

« Retain the first letter of the string and remove all other occurrences of the
following letters: a, e, h, i, 0, u, w, y.

« Assign numbers to the remaining letters (after the first) as follows:

b,fp,v=1

G0 kasxz=2
d,t=3

1=4

m,n=5

r=6

« If two or more letters with the same number were adjacent in the original name
(before step 1), or adjacent except for any intervening h and w, omit all but the
first.

« Return the first four bytes padded with 0.

Example

SELECT ename
FROM emp

4-92 SQL Reference

STDDEV

WHERE SOUNDEX(ename)
= SOUNDEX('SMYTHE);

SQRT

Syntax

ELlL 0,00

Purpose

SQRTreturns square root of n. The value n cannot be negative. SQRTreturns a "real"
result.

Example
SELECT SQRT(26) "Square root" FROM DUAL,;

Square root

5.09901951

STDDEV

Syntax

| DISTINCT I
ALL

f—)| OVER F@{analytic_clausem
< EO

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Functions 4-93

STDDEV

Purpose

STDDEMWeturns sample standard deviation of expr , a set of numbers. You can use it
as both an aggregate and analytic function. It differs from STDDEV_SAMh that
STDDEMWeturns zero when it has only 1 row of input data, whereas STDDEV_SAMP
returns a null.

Oracle calculates the standard deviation as the square root of the variance defined
for the VARIANCEaggregate function.

If you specify DISTINCT, you can specify only the query_partition_clause of
the analytic_clause . The ORDER_BY clause and windowing_clause are not
allowed.

See Also:

« "Aggregate Functions" on page 4-6, VARIANCE on page 4-125,
and STDDEV_SAMP on page 4-96

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example

SELECT STDDEV(sal) "Deviation"
FROM emp;

Deviation

1182.50322

Analytic Example
The query in the following example returns the cumulative standard deviation of
salary values in Department 30 ordered by hiredate:

SELECT ENAME, SAL, STDDEV(SAL) OVER (ORDER BY HIREDATE)
FROM EMP
WHERE DEPTNO=30;

ENAME SAL STDDEV(SAL

ALLEN 1600 0
WARD 1250 247.487373
BLAKE 2850 841.130192
TURNER 1500 715.308791
MARTIN 1250 666.520817

4-94 SQL Reference

STDDEV_POP

JAMES 950 668.331255

STDDEV_POP

Syntax

f—)| OVER P@{analytic_clausem
STDDEV_POP a @)

See Also: "Analytic Functions” on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

STDDEV_PORomputes the population standard deviation and returns the square
root of the population variance. You can use it as both an aggregate and analytic
function.

The expr is a number expression, and the function returns a value of type NUMBER
This function is same as the square root of the VAR_POHunction. When VAR_POP
returns null, this function returns null.

See Also:

« "Aggregate Functions" on page 4-6 and VAR_POP on
page 4-122

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example
The following example returns the population and sample standard deviations of
profit from sales in the SALEStable.

SELECT STDDEV_POP(s_profit), STDDEV_SAMP(s_profit) FROM sales;
STDDEV_POP STDDEV_SAM

173.975774 177.885831

Functions 4-95

STDDEV_SAMP

Analytic Example
The following example returns the population standard deviations of salaries in the
emptable by department:

SELECT deptno, ename, sal,
STDDEV_POP(sal) OVER (PARTITION BY deptno) AS pop_std

FROM emp;

DEPTNO ENAME SAL POP_STD
10 CLARK 2450 1546.14215
10 KING 5000 1546.14215
10 MILLER 1300 1546.14215
20 SMITH 800 1004.73877
20 ADAMS 1100 1004.73877
20 FORD 3000 1004.73877
20 SCOTT 3000 1004.73877
20 JONES 2975 1004.73877
30 ALLEN 1600 610.100174
30 BLAKE 2850 610.100174
30 MARTIN 1250 610.100174
30 JAMES 950 610.100174
30 TURNER 1500 610.100174
30 WARD 1250 610.100174

STDDEV_SAMP

Syntax

[—>| OVER Wﬁnalytic_clausem
STDDEV_SAMP o)

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

STDDEV_SAMPBomputes the cumulative sample standard deviation and returns the
square root of the sample variance. You can use it as both an aggregate and analytic
function.

4-96 SQL Reference

STDDEV_SAMP

The expr is a number expression, and the function returns a value of type NUMBER
This function is same as the square root of the VAR_SAMPRunction. When VAR _
SAMPreturns null, this function returns null.

See Also:

« "Aggregate Functions" on page 4-6 and VAR_SAMP on
page 4-123

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example
The following example returns the population and sample standard deviations of
profit from sales in the SALEStable.

SELECT STDDEV_POP(s_profit), STDDEV_SAMP(s_profit) FROM sales;

STDDEV_POP STDDEV_SAM

173.975774 177.885831

Analytic Example

The following example returns the sample standard deviation of salaries in the EMP
table by department:

SELECT deptno, ename, hiredate, sal,
STDDEV_SAMP(sal) OVER (PARTITION BY deptno ORDER BY hiredate
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cum_sdev
FROM emp;

DEPTNO ENAME HIREDATE SAL CUM_SDEV

10 CLARK 09-JUN-81 2450

10 KING 17-NOV-81 5000 1803.12229

10 MILLER 23-JAN-82 1300 1893.62967
20 SMITH 17-DEC-80 800

20JONES 02-APR-81 2975 1537.95725
20 FORD 03-DEC-81 3000 1263.01557
20 SCOTT 19-APR-87 3000 1095.8967
20 ADAMS 23-MAY-87 1100 1123.3321
30 ALLEN 20-FEB-81 1600

30 WARD 22-FEB-81 1250 247.487373
30 BLAKE 01-MAY-81 2850 841.130192

Functions 4-97

SUBSTR

SUBSTR

30 TURNER 08-SEP-81 1500 715.308791
30 MARTIN 28-SEP-81 1250 666.520817
30 JAMES 03-DEC-81 950 668.331255

Syntax

EsalolcloloNhcicaty

Purpose
SUBSTRreturns a portion of char , beginning at character m n characters long.

« IfmisOQ, itis treated as 1.

« If mis positive, Oracle counts from the beginning of char to find the first
character.

« If mis negative, Oracle counts backwards from the end of char .

« If nis omitted, Oracle returns all characters to the end of char . If n is less than
1, a null is returned.

Floating-point numbers passed as arguments to SUBSTRare automatically
converted to integers.

SELECT SUBSTR('ABCDEFG’,3,4) "Substring"
FROM DUAL;

Substring

Example 2

SELECT SUBSTR('ABCDEFG’,-5,4) "Substring"
FROM DUAL,;

Substring

4-98 SQL Reference

SUM

SUBSTRB

SUM

Syntax

= O@OO-L L0

Purpose

SUBSTRHSs the same as SUBSTRexcept that the arguments mand n are expressed
in bytes, rather than in characters. For a single-byte database character set,
SUBSTRHSs equivalent to SUBSTR

Floating-point numbers passed as arguments to SUBSTRBare automatically
converted to integers.

Example
Assume a double-byte database character set:

SELECT SUBSTRB('ABCDEFG’,5,4.2)
"Substring with bytes”
FROM DUAL;

Substring with bytes

Syntax

DISTINCT

suM |((

f—)| OVER F@{analytic_clausem
(D20,

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Functions 4-99

SUM

Purpose
SUMreturns sum of values of expr . You can use it as an aggregate or analytic
function.
If you specify DISTINCT, you can specify only the query_partition_clause of
the analytic_clause . The ORDER_BY clause and windowing_clause are not
allowed.

See Also:

« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example
The following example calculates the sum of all salaries in the emptable:

SELECT SUM(sal) "Total"
FROM emp;

Analytic Example

The following example calculates, for each manager, a cumulative total of salaries of
employees who answer to that manager that are equal to or less than the current
salary:

SELECT mgr, ename, sal,
SUM(sal) OVER (PARTITION BY mgr ORDER BY sal
RANGE UNBOUNDED PRECEDING) |_csum

FROM emp;

MGR ENAME SAL L _CSUM
7566 SCOTT 3000 6000
7566 FORD 3000 6000
7698 JAMES 950 950
7698 WARD 1250 3450
7698 MARTIN 1250 3450
7698 TURNER 1500 4950
7698 ALLEN 1600 6550
7782 MILLER 1300 1300

4-100 SQL Reference

SYS_CONTEXT

7788 ADAMS 1100 1100
7839 CLARK 2450 2450
7839 BLAKE 2850 5300
7839 JONES 2975 8275
7902 SMITH 800 800
KING 5000 5000

SYS_CONTEXT

Syntax

O
[575-cove W OHOA e OO 0%

Purpose

SYS_CONTEXTeturns the value of attribute associated with the context
namespace . You can use this function in both SQL and PL/SQL statements. The
context namespace must already have been created, and the associated

attribute and its value must also have been set using the DBMS_SESSIOINet_
context procedure. The namespace must be a valid SQL identifier. The

attribute name can be any string, and it is not case sensitive, but it cannot exceed
30 bytes in length.

The datatype of the return value is VARCHARZThe default maximum size of the
return value is 256 bytes. You can override this default by specifying the optional
length parameter. The valid range of values is 1 to 4000 bytes. (If you specify an
invalid value, Oracle ignores it and uses the default.)

Oracle8i provides a built-in namespace called USERENMvhich describes the current
session. The predefined attributes of namespace USEREN\re listed Table 4-1 on
page 4-102, along with the lengths of their return strings.

Functions 4-101

SYS_CONTEXT

See Also:

« Oracle8i Application Developer’s Guide - Fundamentals for
information on using the application context feature in your
application development

« CREATE CONTEXT on page 9-13 for information on creating
user-defined context namespaces

« Oracle8i Supplied PL/SQL Packages Reference for information on
the DBMS_SESSIONet _context procedure

Examples
The following statement returns the name of the user who logged onto the
database:

SELECT SYS_CONTEXT (USERENV’, 'SESSION_USER’)
FROM DUAL;

SYS_CONTEXT (USERENV’, 'SESSION_USER’)

SCOTT

The following example returns the group number that was set as the value for the
attribute group_no in the PL/SQL package that was associated with the context
hr_apps when hr_apps was created:

SELECT SYS_CONTEXT ('hr_apps’, 'group_no’) "User Group"
FROM DUAL;

User Group

Table 4-1 Predefined Attributes of Namespace USERENV

Return

Length
Attribute Return Value (bytes)
AUTHENTICATION_DATA Data being used to authenticate the login user. For 256

X.503 certificate authenticated sessions, this field
returns the context of the certificate in HEX2 format.

4-102 SQL Reference

SYS_CONTEXT

Table 4-1 Predefined Attributes of Namespace USERENV

Return
Length
Attribute Return Value (bytes)

Note: You can change the return value of the
AUTHENTICATION_DATAttribute using the length
parameter of the syntax. Values of up to 4000 are
accepted. This is the only attribute of USERENV for
which Oracle implements such a change.

AUTHENTICATION_TYPE How the user was authenticated: 30

« DATABASEusername/password authentication

« OS: operating system external user
authentication

« NETWORkKietwork protocol or ANO
authentication

« PROXYOCI proxy connection authentication
BG_JOB_ID Job ID of the current session if it was established by 30

an Oracle background process. Null if the session was
not established by a background process.

CLIENT_INFO Returns up to 64 bytes of user session information 64
that can be stored by an application using the DBMS_
APPLICATION_INFO package.

CURRENT_SCHEMA Name of the default schema being used in the current 30
schema. This value can be changed during the session
with an ALTER SESSION SET CURRENT_SCHEMA

statement.

CURRENT_SCHEMAID Identifier of the default schema being used in the 30
current session.

CURRENT_USER The name of the user whose privilege the current 30
session is under.

CURRENT_USERID User ID of the user whose privilege the current 30

session is under

DB_DOMAIN Domain of the database as specified in the DB_ 256
DOMAINinitialization parameter.

DB_NAME Name of the database as specified in the DB_NAME 30
initialization parameter

Functions 4-103

SYS_CONTEXT

Table 4-1 Predefined Attributes of Namespace USERENV

Return
Length

Attribute Return Value (bytes)

ENTRYID The available auditing entry identifier. You cannot use 30
this option in distributed SQL statements. To use this
keyword in USERENMhe initialization parameter
AUDIT_TRAIL must be set to true .

EXTERNAL_NAME External name of the database user. For SSL 256
authenticated sessions using v.503 certificates, this
field returns the distinguished name (DN) stored in
the user certificate.

FG_JOB_ID Job ID of the current session if it was established by a 30
client foreground process. Null if the session was not
established by a foreground process.

HOST Name of the host machine from which the client has 54
connected.

INSTANCE The instance identification number of the current 30
instance.

IP_ADDRESS IP address of the machine from which the client is 30
connected.

ISDBA TRUE if you currently have the DBA role enabled and 30
FALSE if you do not.

LANG The ISO abbreviation for the language name, a shorter 62
form than the existing 'LANGUAGE’ parameter.

LANGUAGE The language and territory currently used by your 52
session, along with the database character set, in this
form:
language_territory.characterset

NETWORK_PROTOCOL Network protocol being used for communication, as 256
specified in the 'PROTOCGtprotocol ' portion of
the connect string.

NLS_CALENDAR The current calendar of the current session. 62

NLS_CURRENCY The currency of the current session. 62

NLS_DATE_FORMAT The date format for the session. 62

NLS_DATE_LANGUAGE The language used for expressing dates. 62

NLS_SORT BINARY or the linguistic sort basis. 62

4-104 SQL Reference

SYS_GUID

Table 4-1 Predefined Attributes of Namespace USERENV

Return
Length
Attribute Return Value (bytes)
NLS_TERRITORY The territory of the current session. 62
OS_USER Operating system username of the client process that 30
initiated the database session
PROXY_USER Name of the database user who opened the current 30
session on behalf of SESSION_USER
PROXY_USERID Identifier of the database user who opened the 30
current session on behalf of SESSION_USER
SESSION_USER Database user name by which the current user is 30
authenticated. This value remains the same
throughout the duration of the session.
SESSION_USERID Identifier of the database user name by which the 30
current user is authenticated.
SESSIONID The auditing session identifier. You cannot use this 30
option in distributed SQL statements.
TERMINAL The operating system identifier for the client of the 10

current session. In distributed SQL statements, this
option returns the identifier for your local session. In
a distributed environment, this is supported only for
remote SELECTstatements, not for remote INSERT,
UPDATEo or DELETEoperations. (The return length of
this parameter may vary by operating system.)

SYS_GUID

Syntax

(55605 (D0

Purpose

SYS_GUIDgenerates and returns a globally unique identifier (RAWalue) made up
of 16 bytes. On most platforms, the generated identifier consists of a host identifier
and a process or thread identifier of the process or thread invoking the function,
and a nonrepeating value (sequence of bytes) for that process or thread.

Functions 4-105

SYSDATE

SYSDATE

Example
The following examples return the 32-character hexadecimal representation of the
16-byte raw value of the global unique identifier:

CREATE TABLE mytable (coll VARCHAR2(10), col2 RAW(32));
INSERT INTO mytable VALUES ('BOB’, SYS_GUID());
SELECT * FROM mytable;

CoL1 coL2

BOB 5901B85D996C570CE03400400B40DCB1
SELECT SYS_GUID() FROM DUAL;

SYS_GUID()

5901B85D996D570CE03400400B40DCB1

Syntax

Purpose

SYSDATEeturns the current date and time. Requires no arguments. In distributed
SQL statements, this function returns the date and time on your local database. You
cannot use this function in the condition of a CHECKconstraint.

Example

SELECT TO_CHAR
(SYSDATE, 'MM-DD-YYYY HH24:MI:SS")"NOW"
FROM DUAL,;

10-29-1999 20:27:11

4-106 SQL Reference

TANH

TAN

Syntax

02050

Purpose
TANTreturns the tangent of n (an angle expressed in radians).

Example

SELECT TAN(135 * 3.14159265359/180)
"Tangent of 135 degrees" FROM DUAL,;

Tangent of 135 degrees

TANH

Syntax

B 0040

Purpose
TANHreturns the hyperbolic tangent of n.

Example

SELECT TANH(.5) "Hyperbolic tangent of .5"
FROM DUAL;

Hyperbolic tangent of .5

462117157

Functions 4-107

TO_CHAR (date conversion)

TO_CHAR (date conversion)

Syntax

ﬁOO

TO CHAR

Purpose

TO_CHARonverts d of DATEdatatype to a value of VARCHAR2latatype in the
format specified by the date format fmt . If you omit fmt , d is converted to a
VARCHARZalue in the default date format.

0

The 'nisparams ’ specifies the language in which month and day names and
abbreviations are returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language’

If you omit nlsparams , this function uses the default date language for your
session.

See Also: "Format Models" on page 2-41 for information on date
formats

Example

SELECT TO_CHAR(HIREDATE, 'Month DD, YYYY’)
"New date format" FROM emp
WHERE ename = 'BLAKE’;

New date format

May 01,1981

4-108 SQL Reference

TO_CHAR (number conversion)

TO_CHAR (number conversion)

Syntax

ﬁOO

TO CHAR

Purpose

TO_CHARonverts n of NUMBERIatatype to a value of VARCHARZ2latatype, using
the optional number format fmt . If you omit fmt , n is converted to a VARCHAR2
value exactly long enough to hold its significant digits.

0

The 'nisparams ’ specifies these characters that are returned by number format
elements:

« Decimal character

« Group separator

« Local currency symbol

« International currency symbol
This argument can have this form;

'NLS_NUMERIC_CHARACTERS = "dg”
NLS_CURRENCY = "text”
NLS_ISO_CURRENCY = territory ’

The characters d and g represent the decimal character and group separator,
respectively. They must be different single-byte characters. Note that within the
guoted string, you must use two single quotation marks around the parameter
values. Ten characters are available for the currency symbol.

If you omit 'nisparams ’ or any one of the parameters, this function uses the
default parameter values for your session.

See Also: "Format Models" on page 2-41 for information on
number formats

Examples
In this example, the output is blank padded to the left of the currency symbol.

Functions 4-109

TO_DATE

SELECT TO_CHAR(-10000,'L99G999D99MI’) "Amount”
FROM DUAL;

Amount

$10,000.00-

SELECT TO_CHAR(-10000,'L99G999D99MI’,
'NLS_NUMERIC_CHARACTERS =",.”
NLS_CURRENCY = "AusDollars” ') "Amount"

FROM DUAL;

AusDollars10.000,00-

Note: In the optional number format fmt , L designates local
currency symbol and MI designates a trailing minus sign. See
Table 2-7 on page 2-44 for a complete listing of number format
elements.

TO_DATE

Syntax

@ O0ED0

Purpose

TO_DATEconverts char of CHARor VARCHAR2latatype to a value of DATE
datatype. The fmt is a date format specifying the format of char . If you omit fmt ,
char must be in the default date format. If fmt is’J’, for Julian, then char must be
an integer.

The 'nisparams ’ has the same purpose in this function as in the TO_CHARunction
for date conversion.

4-110 SQL Reference

TO_LOB

Do not use the TO_DATEunction with a DATEvalue for the char argument. The
first 2 digits of the returned DATEvalue can differ from the original char ,
depending on fmt or the default date format.

See Also: "Date Format Models" on page 2-47

Example

INSERT INTO bonus (bonus_date)
SELECT TO_DATE(
‘January 15, 1989, 11:00 A.M.’,
'Month dd, YYYY, HH:MI AM.’,
'NLS_DATE_LANGUAGE = American’)
FROM DUAL;

TO_LOB

Syntax

e| TO_LOB F@e(long_column)»@»

Purpose

TO_LOBconverts LONGor LONG RAWalues in the column long _column to LOB
values. You can apply this function only to a LONGor LONG RAWbIumn, and only
in the SELECTIist of a subquery in an INSERT statement.

Before using this function, you must create a LOB column to receive the converted
LONGvalues. To convert LONG, create a CLOBcolumn. To convert LONG RAWY
create a BLOBcolumn.

See Also: INSERT on page 11-51 for information on the subquery
of an INSERT statement

Example
Given the following tables:

CREATE TABLE long_table (n NUMBER, long_col LONG);
CREATE TABLE lob_table (n NUMBER, lob_col CLOB);

use this function to convert LONGto LOB values as follows:

Functions 4-111

TO_MULTI_BYTE

INSERT INTO lob_table
SELECT n, TO_LOB(long_col) FROM long_table;

TO_MULTI_BYTE

Syntax

(T BVE YD)

Purpose

TO_MULTI_BYTEreturns char with all of its single-byte characters converted to
their corresponding multibyte characters. Any single-byte characters in char that
have no multibyte equivalents appear in the output string as single-byte characters.
This function is useful only if your database character set contains both single-byte
and multibyte characters.

TO_NUMBER

Syntax

@ O0ED0,

TO NUMBER char

Purpose

TO_NUMBEBonverts char , a value of CHARor VARCHAR®atatype containing a
number in the format specified by the optional format model fmt , to a value of
NUMBERIatatype.

0

Examples

UPDATE emp SET sal = sal +
TO_NUMBER('100.00’, '9G999D99’)
WHERE ename = 'BLAKE’;

The 'nisparams ’ string in this function has the same purpose as it does in the TO_
CHARfunction for number conversions.

4-112 SQL Reference

TRANSLATE

See Also: "TO_CHAR (number conversion)" on page 4-109

SELECT TO_NUMBER(’-AusDollars100’,'L9G999D99’,
"NLS_NUMERIC_CHARACTERS =",.”
NLS_CURRENCY ="AusDollars”
") "Amount"
FROM DUAL;

Amount

TO_SINGLE_BYTE

Syntax

[70.WeLE BV (D@D

Purpose

TO_SINGLE_BYTEreturns char with all of its multibyte characters converted to
their corresponding single-byte characters. Any multibyte characters in char that
have no single-byte equivalents appear in the output as multibyte characters. This
function is useful only if your database character set contains both single-byte and
multibyte characters.

TRANSLATE

Syntax

[TRANSLATE [O etan) DA DA Orom A OA OO

Purpose

TRANSLATHREeturns char with all occurrences of each character in from replaced
by its corresponding character in to . Characters in char that are not in from are
not replaced. The argument from can contain more characters than fo . In this case,
the extra characters at the end of from have no corresponding characters in fo . If
these extra characters appear in char , they are removed from the return value. You

Functions 4-113

TRANSLATE ... USING

cannot use an empty string for to to remove all characters in from from the return
value. Oracle interprets the empty string as null, and if this function has a null
argument, it returns null.

Examples
The following statement translates a license number. All letters ’ABC...Z’ are
translated to "X’ and all digits 012 . .. 9" are translated to "9’

SELECT TRANSLATE(2KRW229',

'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’,

’9999999999 XX XXX XXX XXX XXX XXX XXX XXXXXX") "License”
FROM DUAL,;

License

9XXX999
The following statement returns a license number with the characters removed and
the digits remaining:

SELECT TRANSLATE('2KRW229',
'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ', '0123456789’)
"Translate example"

FROM DUAL;

Translate example

TRANSLATE ... USING

Syntax

C

HAR_CS
TSI (D) (o) [

Purpose

TRANSLATE.. USINGconverts fext into the character set specified for conversions
between the database character set and the national character set.

The text argument is the expression to be converted.

4-114 SQL Reference

TRANSLATE ... USING

Specifying the USING CHAR_C3rgument converts text into the database
character set. The output datatype is VARCHAR2

Specifying the USING NCHAR_C8rgument converts text into the national
character set. The output datatype is NVARCHAR2

This function is similar to the Oracle CONVERTunction, but must be used instead of
CONVERTT either the input or the output datatype is being used as NCHARor
NVARCHAR2

Examples
The examples below use the following table and table values:

CREATE TABLE t1 (char_col CHAR(20),
nchar_col nchar(20));
INSERT INTO t1
VALUES (Hi’, N'Bye’);
SELECT * FROM t1;

CHAR_COL NCHAR_COL

UPDATE t1 SET

nchar_col = TRANSLATE(char_col USING NCHAR_CS);
UPDATE t1 SET

char_col = TRANSLATE(nchar_col USING CHAR_CYS);
SELECT * FROM t1,

CHAR_COL NCHAR_COL

UPDATE t1 SET

nchar_col = TRANSLATE('deo’ USING NCHAR_CS);
UPDATE t1 SET

char_col = TRANSLATE(N'deo’ USING CHAR_CS);
SELECT * FROM t1,;

CHAR_COL NCHAR_COL

Functions 4-115

TRIM

TRIM

Syntax

<

TRAILING

trim_character

trim_source

Purpose
TRIM enables you to trim leading or trailing characters (or both) from a character
string. If trim_character or trim_source is a character literal, you must

enclose it in single quotes.

If you specify LEADING Oracle removes any leading characters equal to trim_
character

If you specify TRAILING, Oracle removes any trailing characters equal to
trim_character

If you specify BOTHor none of the three, Oracle removes leading and trailing
characters equal to trim_character

If you do not specify trim_character , the default value is a blank space.

If you specify only trim_source , Oracle removes leading and trailing blank
spaces.

The function returns a value with datatype VARCHARZThe maximum length of
the value is the length of trim_source

If either trim_source or trim_character is a null value, then the TRIM
function returns a null value.

This example trims leading and trailing zeroes from a number:

Example

SELECT TRIM (0 FROM 0009872348900) "TRIM Example"
FROM DUAL;

TRIM example

4-116 SQL Reference

TRUNC (date function)

98723489

TRUNC (number function)

Syntax

oamo

Purpose

TRUNGreturns n truncated to mdecimal places. If mis omitted, n is truncated to 0
places. mcan be negative to truncate (make zero) mdigits left of the decimal point.

Example
SELECT TRUNC(15.79,1) "Truncate" FROM DUAL;

Truncate

SELECT TRUNC(15.79,-1) "Truncate” FROM DUAL;

Truncate

TRUNC (date function)

Syntax

oo 2P,

Functions 4-117

uiD

UID

UPPER

Purpose

TRUNGreturns d with the time portion of the day truncated to the unit specified by
the format model fmt . If you omit fmt , d is truncated to the nearest day.

See Also: "ROUND and TRUNC Date Functions" on page 4-127
for the permitted format models to use in fmt

Example

SELECT TRUNC(TO_DATE('27-OCT-92','DD-MON-YY"), 'YEAR’)
"New Year" FROM DUAL;

New Year

01-JAN-92

Syntax
uID

Purpose

UID returns an integer that uniquely identifies the session user (the user who
logged on).

Example
SELECT UID FROM DUAL;

uiD
"""" 19
Syntax

OLCDI0

4-118 SQL Reference

USER

Purpose

UPPERreturns char , with all letters uppercase. The return value has the same
datatype as the argument char .

Example

SELECT UPPER('Large’) "Uppercase”
FROM DUAL;

USER

Syntax

Purpose

USERreturns the name of the session user (the user who logged on) with the
datatype VARCHAR2Oracle compares values of this function with blank-padded
comparison semantics.

In a distributed SQL statement, the UID and USERfunctions identify the user on
your local database. You cannot use these functions in the condition of a CHECK
constraint.

Example
SELECT USER, UID FROM DUAL;

USER uiD

SCOTT 19

Functions 4-119

USERENV

USERENV

Syntax

—J{ USERENV Ie@—(option)a@-)

Purpose

USERENVYeturns information of VARCHARZ2latatype about the current session. This
information can be useful for writing an application-specific audit trail table or for
determining the language-specific characters currently used by your session. You
cannot use USERENVWN the condition of a CHECkeconstraint. Table 4-2 describes the
values for the option argument.

Table 4-2 USERENV Options

Option Return Value

'CLIENT_INFO’ CLIENT_INFO returns up to 64 bytes of user session information that
can be stored by an application using the DBMS_APPLICATION_
INFO package.

Caution: Some commercial applications may be using this
context value. Check the applicable documentation for those
applications to determine what restrictions they may impose on
use of this context area.

Oracle recommends that you use the application context feature or
the SYS_CONTEXTunction with the USEREN\option. These
alternatives are more secure and flexible.

See Also:

- Oracle8i Concepts for information on application context

- CREATE CONTEXT on page 9-13 and SYS_CONTEXT on
page 4-101

'ENTRYID ENTRYIDreturns available auditing entry identifier. You cannot use
this option in distributed SQL statements. To use this keyword in
USERENMhe initialization parameter AUDIT_TRAIL must be set to
true .

'INSTANCE INSTANCEreturns the instance identification number of the current
instance.

4-120 SQL Reference

VALUE

VALUE

Table 4-2 (Cont.) USERENV Options

Option Return Value

ISDBA’ ISDBA returns "'TRUE if you currently have the ISDBA role enabled
and 'FALSE if you do not.

'LANG LANGreturns the 1SO abbreviation for the language name, a shorter
form than the existing 'LANGUAGHEparameter.

'LANGUAGE LANGUAGEeturns the language and territory currently used by your
session along with the database character set in this form:

language_territory.characterset

"SESSIONID’ SESSIONID returns your auditing session identifier. You cannot use
this option in distributed SQL statements.

"TERMINAL TERMINALreturns the operating system identifier for your current
session’s terminal. In distributed SQL statements, this option returns
the identifier for your local session. In a distributed environment,
this is supported only for remote SELECTstatements, not for remote
INSERT, UPDATE or DELETEOperations.

Example
SELECT USERENV(LANGUAGE’) "Language" FROM DUAL;

Language

AMERICAN_AMERICA.WESDEC

Syntax

—>| VALUE P@a(correlation_variable}@»

Purpose

In a SQL statement, VALUEtakes as its argument a correlation variable (table alias)
associated with a row of an object table and returns object instances stored in the
object table. The type of the object instances is the same type as the object table.

Example
CREATE TYPE emp_type AS OBJECT

Functions 4-121

VAR_POP

VAR_POP

(eno NUMBER, ename VARCHARZ2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type

(primary key (eno, ename));
INSERT INTO emp_table VALUES (10, 'jack’, 50000);
SELECT VALUE(e) FROM emp_table e;

VALUE(E)(ENO, ENAME, SALARY)

EMP_TYPE(10, 'jack’, 50000)

Syntax

[—>| OVER |e®—>| analytic_clause %

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose
VAR_PORreturns the population variance of a set of numbers after discarding the
nulls in this set. You can use it as both an aggregate and analytic function.

The expr is a number expression, and the function returns a value of type NUMBER
If the function is applied to an empty set, it returns null. The function makes the
following calculation:

(SUM(expr 2) - SUM(expr) 2/ COUNT(expr)) / COUNT(expr)

See Also:

« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example

The following example returns the population variance of the salaries in the EMP
table:

4-122 SQL Reference

VAR_SAMP

VAR_SAMP

SELECT VAR_POP(sal) FROM emp;

VAR_POP(SAL)

1298434.31

Analytic Example

The following example calculates the cumulative population and sample variances
of the monthly sales in 1998:

SELECT s_month, VAR_POP(SUM(s_amount)) OVER (ORDER BY s_month),
VAR_SAMP(SUM(s_amount)) OVER (ORDER BY s_month)
FROM sales
WHERE s_year =1998
GROUP BY s_month;

S_MONTH VAR_POP(SU VAR_SAMP(S

6 0
8 440588496 881176992
11 538819892 808229838

Syntax

f—)| OVER |—>®e| analytic_clause %

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

VAR _SAMPeturns the sample variance of a set of numbers after discarding the
nulls in this set. You can use it as both an aggregate and analytic function.

The expr is a number expression, and the function returns a value of type NUMBER
If the function is applied to an empty set, it returns null. The function makes the
following calculation;

(SUM(expr 2) - SUM(expr) 2/ COUNT(expr)) / (COUNT(expr) - 1)

Functions 4-123

VAR_SAMP

This function is similar to VARIANCE except that given an input set of one element,
VARIANCEreturns 0 and VAR_SAMPReturns null.

See Also:
« "Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example
The following example returns the sample variance of the salaries in the emptable.

SELECT VAR_SAMP(sal) FROM emp;

VAR_SAMP(SAL)

1398313.87

Analytic Example

The following example calculates the cumulative population and sample variances
of the monthly sales in 1998:

SELECT s_month, VAR_POP(SUM(s_amount)) OVER (ORDER BY s_month),
VAR_SAMP(SUM(s_amount)) OVER (ORDER BY s_month)
FROM sales
WHERE s_year =1998
GROUP BY s_month;

S_MONTH VAR_POP(SU VAR_SAMP(S

6 0
8 440588496 881176992
11 538819892 808229838

4-124 SQL Reference

VARIANCE

VARIANCE

Syntax

[OVER (D) s))

< @0

See Also: "Analytic Functions" on page 4-8 for information on
syntax, semantics, and restrictions

Purpose

VARIANCEtreturns variance of expr . You can use it as an aggregate or analytic
function.

Oracle calculates the variance of expr as follows:
« 0ifthe number of rows in expr =1

« VAR_SAMRf the number of rows in expr >1

If you specify DISTINCT, you can specify only the query_partition_clause of
the analytic _clause . The ORDER_BY clause and windowing_clause are not
allowed.

See Also:

"Aggregate Functions" on page 4-6

« "Expressions" on page 5-2 for information on valid forms of
expr

Aggregate Example
The following example calculates the variance of all salaries in the emptable:

SELECT VARIANCE(sal) "Variance"
FROM emp;

Variance

1389313.87

Functions 4-125

VSIZE

Analytic Example
The query returns the cumulative variance of salary values in Department 30
ordered by hiredate.

SELECT ename, sal, VARIANCE(sal) OVER (ORDER BY hiredate)
FROM emp
WHERE deptno=30;

ENAME SAL VARIANCE(S

ALLEN 1600 0
WARD 1250 61250
BLAKE 2850 707500
TURNER 1500 511666.667
MARTIN 1250 444250
JAMES 950 446666.667
Syntax

0:CDHL0
Purpose

VSIZE returns the number of bytes in the internal representation of expr . If expr is
null, this function returns null.

Example

SELECT ename, VSIZE (ename) "BYTES"
FROM emp
WHERE deptno = 10;

ENAME BYTES

CLARK 5

KING 4

MILLER 6

4-126 SQL Reference

ROUND and TRUNC Date Functions

ROUND and TRUNC Date Functions

Table 4-3 lists the format models you can use with the ROUNRINd TRUNate
functions and the units to which they round and truncate dates. The default model,
'DD’, returns the date rounded or truncated to the day with a time of midnight.

Table 4-3 Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

CcC One greater than the first two digits of a four-digit year.
SCC

SYYYY Year (rounds up on July 1)
YYYY

YEAR

SYEAR

YYY

YY

Y

IYYY I1SO Year
Y

Y

|

Q Quarter (rounds up on the sixteenth day of the second month of the
quarter)

MONTH Month (rounds up on the sixteenth day)
MON

MM

RM

WwW Same day of the week as the first day of the year.

Functions 4-127

User-Defined Functions

Table 4-3 (Cont.) Date Format Models for the ROUND and TRUNC Date Functions

Format Model = Rounding or Truncating Unit

W Same day of the week as the first day of the ISO year.
W Same day of the week as the first day of the month.
DDD Day

DD

J

DAY Starting day of the week

DY

D

HH Hour

HH12

HH24

MI Minute

The starting day of the week used by the format models DAY, DY, and D is specified
implicitly by the initialization parameter NLS_TERRITORY

See Also: Oracle8i Reference and Oracle8i National Language
Support Guide for information on this parameter

User-Defined Functions

You can write user-defined functions in PL/SQL or Java to provide functionality
that is not available in SQL or SQL functions. User functions can appear in a SQL
statement anywhere SQL functions can appear, that is, wherever an expression can
occur.

For example, user functions can be used in the following:

« The select list of a SELECTstatement

« The condition of a WHEREIlause

« CONNECT BBTART WITHORDER B¥and GROUP B¥lauses
« The VALUESclause of an INSERT statement

« The SETclause of an UPDATEstatement

4-128 SQL Reference

User-Defined Functions

See Also:

« CREATE FUNCTION on page 9-43 for information on creating
functions, including restrictions on user-defined functions

« Oracle8i Application Developer’s Guide - Fundamentals for a
complete description on the creation and use of user functions

Prerequisites

User functions must be created as top-level functions or declared with a package
specification before they can be named within a SQL statement.

To use a user function in a SQL expression, you must own or have EXECUTE
privilege on the user function. To query a view defined with a user function, you
must have SELECTprivileges on the view. No separate EXECUTHprivileges are
needed to select from the view.

See Also:

« CREATE FUNCTION on page 9-43 for information on creating
top-level functions

« CREATE PACKAGE on page 9-122 for information on
specifying packaged functions

Name Precedence

Within a SQL statement, the names of database columns take precedence over the
names of functions with no parameters. For example, if user scott creates the
following two objects in his own schema:

CREATE TABLE emp(new_sal NUMBER, ...);
CREATE FUNCTION new_sal RETURN NUMBER IS BEGIN ... END

1

then in the following two statements, the reference to NEW_SAL refers to the
column emp.new_sal :

SELECT new_sal FROM emp;
SELECT emp.new_sal FROM emp;

To access the function new_sal , you would enter:

SELECT scott.new_sal FROM emp;

Here are some sample calls to user functions that are allowed in SQL expressions:

Functions 4-129

User-Defined Functions

circle_area (radius)
payroll.tax_rate (empno)
scott.payroll.tax_rate (dependent, empno)@ny

Example To call the tax_rate user function from schema scott , execute it
against the ss_no and sal columnsintax_table ,and place the results in the
variable income_tax , specify the following:

SELECT scott.tax_rate (ss_no, sal)
INTO income_tax
FROM tax_table
WHERE ss_no = tax_id;

Naming Conventions

If only one of the optional schema or package names is given, the first identifier can
be either a schema name or a package name. For example, to determine whether
PAYROLLin the reference PAYROLLTAX_ RATEs a schema or package name, Oracle
proceeds as follows:

1. Check for the PAYROLLpackage in the current schema.

2. IfaPAYROLLpackage is not found, look for a schema name PAYROLLthat
contains a top-level TAX_RATEfunction. If no such function is found, return an
error.

3. Ifthe PAYROLLpackage is found in the current schema, look for a TAX_RATE
function in the PAYROLLpackage. If no such function is found, return an error.

You can also refer to a stored top-level function using any synonym that you have
defined for it.

4-130 SQL Reference

D

Expressions, Conditions, and Queries

This chapter describes how to combine the values, operators, and functions
described in earlier chapters evaluate to a value.

This chapter includes these sections:
« Expressions
« Conditions

« Queries and Subqueries

Expressions, Conditions, and Queries 5-1

Expressions

Expressions

An expression is a combination of one or more values, operators, and SQL
functions that evaluate to a value. An expression generally assumes the datatype of
its components.

This simple expression evaluates to 4 and has datatype NUMBERthe same datatype
as its components):

2%2
The following expression is an example of a more complex expression that uses
both functions and operators. The expression adds seven days to the current date,

removes the time component from the sum, and converts the result to CHAR
datatype:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

« The select list of the SELECTstatement

= A condition of the WHEREIlause and HAVINGclause

« The CONNECT BBTART WITHand ORDER B¥Xlauses
« The VALUESclause of the INSERT statement

= The SETclause of the UPDATEstatement

For example, you could use an expression in place of the quoted string "smith’ in
this UPDATEstatement SET clause:

SET ename = 'smith’;

This SET clause has the expression LOWERname) instead of the quoted string
'smith "

SET ename = LOWER(ename);

Expressions have several forms, as shown in the following syntax:

5-2 SQL Reference

Expressions

expr::=

simple_expression

compound_expression

!

variable_expression

—(built_in_function_expression

:

—(user_defined_function_expression)—

—(type_constructor_expression

:

CAST_expression

CURSOR_expression

;

—(object_access_expression

I

DECODE_expression

CASE_expression

expression_list

0

See Also: The individual SQL statements in Chapter 7 through

Oracle does not accept all forms of expressions in all parts of all SQL statements.
You must use appropriate expression notation whenever expr appears in
conditions, SQL functions, or SQL statements in other parts of this reference. The
sections that follow describe and provide examples of the various forms of
expressions.

Chapter 11 for information on restrictions on the expressions in that

statement

Simple Expressions

A simple expression specifies column, pseudocolumn, constant, sequence number,
or null.

Expressions, Conditions, and Queries 5-3

Expressions

simple_expression::=

0
view .
snapshot

pseudocolumn

J

HE

text

number

sequence .

NULL

i

D

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation
marks required), in which case it must qualify a public synonym for a table, view, or
materialized view. Qualifying a public synonym with "PUBLIC" is supported only
in data manipulation language (DML) statements, not data definition language
(DDL) statements.

The pseudocolumn can be either LEVEL, ROWIDor ROWNUMOou can use a
pseudocolumn only with a table, not with a view or materialized view. NCHARind
NVARCHARZ2re not valid pseudocolumn datatypes.

See Also: "Pseudocolumns” on page 2-59 for more information on
pseudocolumns

Some valid simple expressions are:

emp.ename

‘this is a text string’

10

N’this is an NCHAR string’

Compound Expressions

A compound expression specifies a combination of other expressions.

5-4 SQL Reference

Expressions

compound_expression::=

(O)

i

PRIOR

§
SleleleTe
0

Note that some combinations of functions are inappropriate and are rejected. For
example, the LENGTHunction is inappropriate within an aggregate function.

Some valid compound expressions are:

(CLARK’ || 'SMITH)

LENGTH(MOOSE) * 57

SQRT(144) + 72
my_fun(TO_CHAR(sysdate,'DD-MMM-YY’)

Variable Expressions

A variable expression specifies a host variable with an optional indicator variable.
Note that this form of expression can appear only in embedded SQL statements or
SQL statements processed in an Oracle Call Interface (OCI) program.

variable_expression::=

INDICATOR
: indicator_variable

Some valid variable expressions are:

:employee_name INDICATOR :employee_name_indicator_var
:department_location

Expressions, Conditions, and Queries 5-5

Expressions

Built-In Function Expressions
A built-in function expression specifies a call to a single-row SQL function.

built_in_function_expression::=

DISTINCT

-
ALL

expr

(
—(function) f—)O

Some valid built-in function expressions are:

LENGTH('BLAKE’)
ROUND(1234.567*43)
SYSDATE

See Also: "SQL Functions" on page 4-2 and "Aggregate
Functions" on page 4-6 for information on built-in functions

Function Expressions
A function expression specifies a call to

« A SQL built-in function (see Chapter 4, "Functions")

« A function in an Oracle-supplied package (see Oracle8i Supplied PL/SQL
Packages Reference).

« A function in a user-defined package or in a standalone user-defined function
(see "User-Defined Functions" on page 4-128)

« A user-defined operator (see CREATE OPERATOR on page 9-115 and Oracle8i
Data Cartridge Developer’s Guide)

The optional expression/subquery list must match attributes of the function,
package, or operator. Only scalar subqueries are supported.

5-6 SQL Reference

Expressions

function_expression::=

.package
. (. function

user_defined_operator

r-
@@EDO)

Some valid user-defined function expressions are:

circle_area(radius)

payroll.tax_rate(empno)
scott.payrol.tax_rate(dependents, empno)@ny
DBMS_LOB.getlength(column_name)

Type Constructor Expressions

A type constructor expression specifies a call to a type constructor. The argument to
the type constructor is any expression or subquery. Only scalar subqueries are
supported.

type_constructor_expression::=

schema .

type_name
subquery

If type_name is an object type, then the expression/subquery list must be an
ordered list, where the first argument is a value whose type matches the first
attribute of the object type, the second argument is a value whose type matches the
second attribute of the object type, and so on. The total number of arguments to the
constructor must match the total number of attributes of the object type.

If type_name is a varray or nested table type, then the expression/subquery list
can contain zero or more arguments. Zero arguments implies construction of an
empty collection. Otherwise, each argument corresponds to an element value whose
type is the element type of the collection type.

Expressions, Conditions, and Queries 5-7

Expressions

If type_name is an object type, a varray, or a nested table type, the maximum
number of arguments it can contain is 1000 minus some overhead.

Expression Example This example shows the use of an expression in the call to a
type constructor.

CREATE TYPE address_t AS OBJECT
(no NUMBER, street CHAR(31), city CHAR(21), state CHAR(3), zip NUMBER);
CREATE TYPE address_book_t AS TABLE OF address_t;
DECLARE
/* Object Type variable initialized via Object Type Constructor */
myaddr address_t = address_t(500, 'Oracle Parkway’, 'Redwood Shores’, 'CA’, 94065);
/* nested table variable initialized to an empty table via a constructor*/
alladdr address_book_t = address_book_t();
BEGIN
/* below is an example of a nested table constructor with two elements
specified, where each element is specified as an object type constructor. */
insert into employee values (666999, address_book_t(address_t(500,
'Oracle Parkway’, 'Redwood Shores’, 'CA’, 94065), address_t(400,
"Mission Street’, 'Fremont’, 'CA’, 94555)));
END;

Subquery Example This example illustrates the use of a subquery in the call to
the type constructor.

CREATE TYPE employee AS OBJECT (
empno NUMBER,
ename VARCHAR2(20));
CREATE TABLE emptbl of EMPLOYEE;
INSERT INTO emptbl VALUES(7377, 'JOHN’);
CREATE TYPE project AS OBJECT (
pname VARCHAR2(25),
empref REF employee);
CREATE TABLE depttbl (dno number, proj project);
INSERT INTO depttbl values(10, project('SQL Extensions’,
(SELECT REF(p) FROM emptbl p
WHERE ename="JOHN")));

CAST Expressions

A CASTexpression converts one built-in datatype or collection-typed value into
another built-in datatype or collection-typed value.

5-8 SQL Reference

Expressions

CAST _expression::=

CASTallows you to convert built-in datatypes or collection-typed values of one type
into another built-in datatype or collection type. You can cast an unnamed operand
(such as a date or the result set of a subquery) or a named collection (such as a
varray or a nested table) into a type-compatible datatype or named collection. The
type_name must be the name of a built-in datatype or collection type and the
operand must be a built-in datatype or must evaluate to a collection value.

For the operand, expr can be either a built-in datatype or a collection type, and
subquery must return a single value of collection type or built-in type. MULTISET
informs Oracle to take the result set of the subquery and return a collection value.
Table 5-1 shows which built-in datatypes can be cast into which other built-in
datatypes. (CASTdoes not support LONGLONG RAWr any of the LOB datatypes.)

Table 5-1 Casting Built-In Datatypes

From/ CHAR, ROWID, NCHAR,
To VARCHAR2 NUMBER DATE RAW UROWID NVARCHAR2
CHAR, X X X X X
VARCHAR?
NUMBER X X
DATE X X
RAW X X
ROWID, UROWID X xa
NCHAR, X X X X X
NVARCHAR?2

8 You cannot cast a UROWIDo a ROWIDif the UROWIzontains the value of a ROWIDof an index-orga-
nized table.

To cast a named collection type into another named collection type, the elements of
both collections must be of the same type.

Expressions, Conditions, and Queries 5-9

Expressions

If the result set of subquery can evaluate to multiple rows, you must specify the
MULTISET keyword. The rows resulting from the subquery form the elements of
the collection value into which they are cast. Without the MULTISET keyword, the
subquery is treated as a scalar subquery, which is not supported in the CAST
expression. In other words, scalar subqueries as arguments of the CASToperator are
not valid in Oracle8i.

Built-In Datatype Examples

SELECT CAST ('1997-10-22' AS DATE) FROM DUAL;
SELECT * FROM t1 WHERE CAST (ROWID AS VARCHAR?2) ='01234’;

Collection Examples The CASTexamples that follow use the following user-
defined types and tables:

CREATE TYPE address_t AS OBJECT
(no NUMBER, street CHAR(31), city CHAR(21), state CHAR(2));
CREATE TYPE address_book_t AS TABLE OF address_t;
CREATE TYPE address_array_t AS VARRAY(3) OF address_t;
CREATE TABLE emp_address (empno NUMBER, no NUMBER, street CHAR(31),
city CHAR(21), state CHAR(2));
CREATE TABLE employees (empno NUMBER, name CHAR(31));
CREATE TABLE dept (dno NUMBER, addresses address_array _t);

This example casts a subquery:

SELECT e.empno, e.name, CAST(MULTISET(SELECT ea.no, ea.street,
ea.city, ea.state
FROM emp_address ea
WHERE ea.empno = e.empno)
AS address_book_t)
FROM employees e;

CASTconverts a varray type column into a nested table:

SELECT CAST(d.addresses AS address_book_t)
FROM deptd
WHERE d.dno = 111;

The following example casts a MULTISET expression with an ORDER B¥lause:

CREATE TABLE projects (empid NUMBER, projname VARCHAR2(10));
CREATE TABLE employees (empid NUMBER, ename VARCHAR2(10));
CREATE TYPE projname_table_type AS TABLE OF VARCHAR2(10);

An example of a MULTISET expression with the above schema is:

5-10 SQL Reference

Expressions

SELECT e.ename, CAST(MULTISET(SELECT p.projname

FROM projects p
WHERE p.empid=e.empid
ORDER BY p.projname)

AS projname_table_type)
FROM employees €;

CURSOR Expressions

A CURSORXpression returns a nested cursor. This form of expression is similar to
the PL/SQL REFcursor.

CURSOR_expression::=

—>| CURSOR @{subquery}@

A nested cursor is implicitly opened when the containing row is fetched from the
parent cursor. The nested cursor is closed only when:

The nested cursor is explicitly closed by the user
The parent cursor is reexecuted

The parent cursor is closed

The parent cursor is cancelled

An error arises during fetch on one of its parent cursors (it is closed as part of
the clean-up)

Restrictions: The following restrictions apply to the CURSORXpression:

Nested cursors can appear only in a SELECTstatement that is not nested in any
other query expression, except when it is a subquery of the CURSORXxpression
itself.

Nested cursors can appear only in the outermost SELECTIist of the query
specification.

Nested cursors cannot appear in views.

You cannot perform BIND and EXECUTEoperations on nested cursors.

Example
SELECT d.deptno, CURSOR(SELECT e.empno, CURSOR(SELECT p.projnum,

p.projname

Expressions, Conditions, and Queries 5-11

Expressions

FROM projects p
WHERE p.empno = e.empno)
FROM TABLE(d.employees) e)
FROM deptd
WHERE d.dno = 605;

Object Access Expressions
An object access expression specifies attribute reference and method invocation.

object_access_expression::=

-argumem
femn g

attribute

column

table_alias

object_table_alias

argument
@ |

The column parameter can be an object or REFcolumn.

When a type’s member function is invoked in the context of a SQL statement, if the
SELFargument is null, Oracle returns null and the function is not invoked.

Examples in this section use the following user-defined types and tables:

CREATE OR REPLACE TYPE employee_t AS OBJECT
(empid NUMBER,
name VARCHAR2(31),
birthdate DATE,
MEMBER FUNCTION age RETURN NUMBER,
PRAGMA RESTRICT_REFERENCES (age, RNPS, WNPS, WNDS)
);

CREATE OR REPLACE TYPE BODY employee_t AS
MEMBER FUNCTION age RETURN NUMBER IS
var NUMBER;
BEGIN
var := TRUNC(MONTHS_BETWEEN(SYSDATE, birthdate) /12);
RETURN(var);
END;
END;

5-12 SQL Reference

Expressions

CREATE TABLE department (dno NUMBER, manager EMPLOYEE_T);

Examples The following examples update and select from the object columns and
method defined above.

UPDATE department d
SET d.manager.empid = 100;

SELECT d.manager.name, d.manager.age()
FROM department d;

DECODE Expressions
A DECODIExpression uses the special DECODEyntax:

DECODE_expression::=

()
N J .default
DD O ED O

To evaluate this expression, Oracle compares expr to each search value one by
one. If expr is equal to a search , Oracle returns the corresponding result . 1f no
match is found, Oracle returns default , or, if default is omitted, returns null. If
expr and search contain character data, Oracle compares them using nonpadded
comparison semantics.

The search , result ,and default values can be derived from expressions.
Oracle evaluates each search value only before comparing it to expr , rather than
evaluating all search values before comparing any of them with expr .
Consequently, Oracle never evaluates a search if a previous search is equal to
expr .

Oracle automatically converts expr and each search value to the datatype of the
first search value before comparing. Oracle automatically converts the return
value to the same datatype as the first result . If the first result has the datatype
CHARor if the first result is null, then Oracle converts the return value to the
datatype VARCHAR2

In a DECODIExpression, Oracle considers two nulls to be equivalent. If expr is null,
Oracle returns the result of the first search that is also null.

The maximum number of components in the DECODExpression, including expr ,
search es, results ,and default s 255.

Expressions, Conditions, and Queries 5-13

Expressions

See Also:

« "Datatype Comparison Rules" on page 2-26 for information on
comparison semantics

« "Data Conversion" on page 2-30 for information on datatype
conversion in general

« "Implicit vs. Explicit Data Conversion" on page 2-32 for
information on the drawbacks of implicit conversion

Example This expression decodes the value deptno . If deptno is 10, the
expression evaluates to ’"ACCOUNTINGif deptno is 20, it evaluates to ’'RESEARCH
etc. If deptno is not 10, 20, 30, or 40, the expression returns 'NONE

DECODE (deptno,10, ’ACCOUNTING,
20, ’/RESEARCH,
30, 'SALES’,
40, 'OPERATION,
'NONE))

CASE Expressions

CASEexpressions let you use IF ... THEN... ELSElogic in SQL statements without
having to invoke procedures. The syntax is:

CASE_expression::=

-ELSE .exprz
—>| CASE |»—(| WHEN |—><condition)—>| THEN |->(exprl)) M END |—>

Oracle searches for the first WHEN. THENpair for which condition s true.

« If Oracle finds such a pair, then the result of the CASEexpression is exprl.

« If Oracle does not find such a pair,
« Ifan ELSEclause is specified, the result of the CASEexpression is expr2.
« Ifno ELSEclause is specified, the result of the CASEexpression in null.

At least one occurrence of exprl or expr2 must be non-null.

5-14 SQL Reference

Conditions

Expression List

Conditions

Note: The maximum number of arguments in a CASE expression
is 255, and each WHEN ... THEN pair counts as two arguments. To
avoid exceeding the limit of 128 choices, you can nest CASE
expressions. That is exprl can itself be a CASE expression.

Example The following statement finds the average salary of all employees in the
EMP table. If an employee’s salary is less than $2000, the CASEexpression uses
$2000 instead.

SELECT AVG(CASE WHEN e.sal > 2000 THEN e.sal ELSE 2000 END) from emp €;

An expression list is a series of expressions separated by a comma. The entire series
is enclosed in parentheses.

expression_list::=

An expression list can contain up to 1000 expressions. Some valid expression lists

are:

(10, 20, 40)
('SCOTT’, 'BLAKE’, 'TAYLOR)
(LENGTH(MOOSE) * 57, -SQRT(144) + 72, 69)

A condition specifies a combination of one or more expressions and logical
operators that evaluates to either TRUE FALSE, or unknown. You must use this
syntax whenever condition appears in SQL statements.

You can use a condition in the WHERI[Elause of these statements:
« DELETE
« SELECT
« UPDATE

Expressions, Conditions, and Queries 5-15

Conditions

You can use a condition in any of these clauses of the SELECT statement:
« WHERE

« STARTWITH

« CONNECT BY

« HAVING

A condition could be said to be of the "logical” datatype, although Oracle does not
formally support such a datatype.

The following simple condition always evaluates to TRUE
1=1
The following more complex condition adds the sal value to the commvalue

(substituting the value 0 for null) and determines whether the sum is greater than
the number constant 2500:

NVL(sal, 0) + NVL(comm, 0) > 2500

Logical operators can combine multiple conditions into a single condition. For
example, you can use the ANDoperator to combine two conditions:

(1=1)AND (5<7)

Here are some valid conditions:

name = 'SMITH’

emp.deptno = dept.deptno

hiredate >'01-JAN-88’

job IN (PRESIDENT’, 'CLERK’, '"ANALYST’)
sal BETWEEN 500 AND 1000

comm IS NULL AND sal = 2000

Conditions can have several forms, as shown in the following syntax.

5-16 SQL Reference

Conditions

condition::=

/(simpIe_comparison_condition}
—Cgroup_comparison_condition)—

membership_condition

range_condition

NULL_condition

EXISTS_condition

LIKE_condition

compound_condition

i

The sections that follow describe the various forms of conditions.

See Also: The description of each statement in Chapter 7 through
Chapter 11 for the restrictions on the conditions in that statement

Simple Comparison Conditions

A simple comparison condition specifies a comparison with expressions or
subquery results.

Expressions, Conditions, and Queries 5-17

Conditions

simple_comparison_condition::=

[op——
D)

d
olololelolelele

See Also: "Comparison Operators" on page 3-5 for information on
comparison operators

Group Comparison Conditions

A group comparison condition specifies a comparison with any or all members in a
list or subquery.

5-18 SQL Reference

Conditions

group_comparison_condition::=

d
olglellolelele

O
=

list

See Also: SELECT and subquery on page 11-88

Membership Conditions
A membership condition tests for membership in a list or subquery:.

membership_condition::=

B
“ subquery o

0
=y

Expressions, Conditions, and Queries 5-19

Conditions

Range Conditions
A range condition tests for inclusion in a range.

range_condition::=

-NOT
D e EEI= CD S LN CDS

NULL Conditions
A NULL condition tests for nulls.

NULL_condition::=

NOT

EEp—]

EXISTS Conditions

An EXISTS condition tests for existence of rows in a subquery.

EXISTS_condition::=

—>| EXISTS F@»{subquery}@»

LIKE Conditions

A LIKE condition specifies a test involving pattern matching.
LIKE_condition::=

[NOT | f_)| ESCAPE (") esc_charm
i —r pw—s

Compound Conditions
A compound condition specifies a combination of other conditions.

5-20 SQL Reference

Queries and Subqueries

compound_condition::=

D@D

AND
h —

Queries and Subqueries

A query is an operation that retrieves data from one or more tables or views. In this
reference, a top-level SELECTstatement is called a query, and a query nested within
another SQL statement is called a subquery.

This section describes some types of queries and subqueries and how to use them.

See Also: SELECT and subquery on page 11-88 for the full syntax
of all the clauses and the semantics of the keywords and
parameters

Creating Simple Queries

The list of expressions that appears after the SELECTkeyword and before the FROM
clause is called the select list. Each expression expr becomes the name of one
column in the set of returned rows, and each table.* becomes a set of columns,
one for each column in the table in the order they were defined when the table was
created. The datatype and length of each expression is determined by the elements
of the expression.

If two or more tables have some column names in common, you must qualify
column names with names of tables. Otherwise, fully qualified column names are
optional. However, it is always a good idea to qualify table and column references
explicitly. Oracle often does less work with fully qualified table and column names.

You can use a column alias, ¢_alias , to label the preceding expression in the select
list so that the column is displayed with a new heading. The alias effectively
renames the select list item for the duration of the query. The alias can be used in
the ORDER BY¥lause, but not other clauses in the query.

Expressions, Conditions, and Queries 5-21

Queries and Subqueries

You can use comments in a SELECTstatement to pass instructions, or hints, to the
Oracle optimizer. The optimizer uses hints to choose an execution plan for the
statement.

See Also: "Hints" on page 2-67 and Oracle8i Performance Guide and
Reference for more information on hints

Hierarchical Queries

If a table contains hierarchical data, you can select rows in a hierarchical order using
the hierarchical query clause:

START | wiTH conditionh
f—)l H K } CONNECT |—>| BY |e(c0ndition>—>

START WITHspecifies the root row(s) of the hierarchy.

CONNECT BYspecifies the relationship between parent rows and child rows of
the hierarchy. Some part of condition =~ must use the PRIORoperator to refer to
the parent row. See the PRIOR operator on page 3-16.

WHERIestricts the rows returned by the query without affecting other rows of
the hierarchy.

Oracle uses the information from the hierarchical query clause clause to form the
hierarchy using the following steps:

1.

5-22 SQL Reference

Oracle selects the root row(s) of the hierarchy—those rows that satisfy the
START WITHondition.

Oracle selects the child rows of each root row. Each child row must satisfy the
condition of the CONNECT B¥ondition with respect to one of the root rows.

Oracle selects successive generations of child rows. Oracle first selects the
children of the rows returned in step 2, and then the children of those children,
and so on. Oracle always selects children by evaluating the CONNECT BY
condition with respect to a current parent row.

If the query contains a WHERElause, Oracle eliminates all rows from the
hierarchy that do not satisfy the condition of the WHEREIlause. Oracle evaluates
this condition for each row individually, rather than removing all the children
of a row that does not satisfy the condition.

Oracle returns the rows in the order shown in Figure 5-1. In the diagram
children appear below their parents.

Queries and Subqueries

Figure 5-1 Hierarchical Queries

ROOT

To find the children of a parent row, Oracle evaluates the PRIORexpression of the
CONNECT B¥ondition for the parent row and the other expression for each row in
the table. Rows for which the condition is true are the children of the parent. The
CONNECT B¥ondition can contain other conditions to further filter the rows
selected by the query. The CONNECT By¥ondition cannot contain a subquery.

If the CONNECT Bvondition results in a loop in the hierarchy, Oracle returns an
error. A loop occurs if one row is both the parent (or grandparent or direct ancestor)
and a child (or a grandchild or a direct descendent) of another row.

See Also: "LEVEL" on page 2-62 for a discussion of how the
LEVEL pseudocolumn operates in a hierarchical query

Sorting Query Results

You can use the ORDER BYlause to order the rows selected by a query. Sorting by
position is useful in the following cases:

« To order by a lengthy select list expression, you can specify its position, rather
than duplicate the entire expression, in the ORDER B¥lause.

« For compound queries (containing set operators UNION INTERSECT MINUS or
UNION ALL), the ORDER BY¥lause must use positions, rather than explicit
expressions. Also, the ORDER B¥lause can appear only in the last component
guery. The ORDER B¥lause orders all rows returned by the entire compound

query.

Expressions, Conditions, and Queries 5-23

Queries and Subqueries

Joins

The mechanism by which Oracle sorts values for the ORDER BY¥lause is specified
either explicitly by the NLS_SORTinitialization parameter or implicitly by the
NLS_LANGUAGHitialization parameter. For information on these parameters, see
Oracle8i National Language Support Guide. You can change the sort mechanism
dynamically from one linguistic sort sequence to another using the ALTER SESSION
statement. You can also specify a specific sort sequence for a single query by using
the NLSSORTunction with the NLS_SORTparameter in the ORDER B¥lause.

A join is a query that combines rows from two or more tables, views, or
materialized views ("snapshots"). Oracle performs a join whenever multiple tables
appear in the query’s FROMIlause. The query’s select list can select any columns
from any of these tables. If any two of these tables have a column name in common,
you must qualify all references to these columns throughout the query with table
names to avoid ambiguity.

Join Conditions

Most join queries contain WHERIElause conditions that compare two columns, each
from a different table. Such a condition is called a join condition. To execute a join,
Oracle combines pairs of rows, each containing one row from each table, for which
the join condition evaluates to TRUE The columns in the join conditions need not
also appear in the select list.

To execute a join of three or more tables, Oracle first joins two of the tables based on
the join conditions comparing their columns and then joins the result to another
table based on join conditions containing columns of the joined tables and the new
table. Oracle continues this process until all tables are joined into the result. The
optimizer determines the order in which Oracle joins tables based on the join
conditions, indexes on the tables, and, in the case of the cost-based optimization
approach, statistics for the tables.

In addition to join conditions, the WHEREIlause of a join query can also contain
other conditions that refer to columns of only one table. These conditions can
further restrict the rows returned by the join query.

Equijoins

An equijoin is a join with a join condition containing an equality operator. An
equijoin combines rows that have equivalent values for the specified columns.
Depending on the internal algorithm the optimizer chooses to execute the join, the
total size of the columns in the equijoin condition in a single table may be limited to

5-24 SQL Reference

Queries and Subqueries

the size of a data block minus some overhead. The size of a data block is specified
by the initialization parameter DB_ BLOCK_SIZE

See Also: "Equijoin Examples" on page 11-108

Self Joins

A self join is a join of a table to itself. This table appears twice in the FROMIlause
and is followed by table aliases that qualify column names in the join condition. To
perform a self join, Oracle combines and returns rows of the table that satisfy the
join condition.

See Also: "Self Join Example" on page 11-110

Cartesian Products

If two tables in a join query have no join condition, Oracle returns their Cartesian
product. Oracle combines each row of one table with each row of the other. A
Cartesian product always generates many rows and is rarely useful. For example,
the Cartesian product of two tables, each with 100 rows, has 10,000 rows. Always
include a join condition unless you specifically need a Cartesian product. If a query
joins three or more tables and you do not specify a join condition for a specific pair,
the optimizer may choose a join order that avoids producing an intermediate
Cartesian product.

Outer Joins

An outer join extends the result of a simple join. An outer join returns all rows that
satisfy the join condition and those rows from one table for which no rows from the
other satisfy the join condition. Such rows are not returned by a simple join. To
write a query that performs an outer join of tables A and B and returns all rows
from A, apply the outer join operator (+) to all columns of B in the join condition.
For all rows in A that have no matching rows in B, Oracle returns null for any select
list expressions containing columns of B.

Outer join queries are subject to the following rules and restrictions:

« The (+) operator can appear only in the WHEREIlause or, in the context of left-
correlation (that is, when specifying the TABLE clause) in the FROMIlause, and
can be applied only to a column of a table or view.

« If A and B are joined by muiltiple join conditions, you must use the (+) operator
in all of these conditions. If you do not, Oracle will return only the rows

Expressions, Conditions, and Queries 5-25

Queries and Subqueries

resulting from a simple join, but without a warning or error to advise you that
you do not have the results of an outer join.

« The (+) operator can be applied only to a column, not to an arbitrary expression.
However, an arbitrary expression can contain a column marked with the (+)
operator.

« A condition containing the (+) operator cannot be combined with another
condition using the ORIlogical operator.

« A condition cannot use the IN comparison operator to compare a column
marked with the (+) operator with an expression.

« A condition cannot compare any column marked with the (+) operator with a
subquery.

If the WHEREIlause contains a condition that compares a column from table B with
a constant, the (+) operator must be applied to the column so that Oracle returns the
rows from table A for which it has generated NULLSs for this column. Otherwise
Oracle will return only the results of a simple join.

In a query that performs outer joins of more than two pairs of tables, a single table
can be the null-generated table for only one other table. For this reason, you cannot
apply the (+) operator to columns of B in the join condition for A and B and the join
condition for B and C.

See Also: SELECT and subquery on page 11-88 for the syntax for
an outer join

Using Subqueries

A subquery answers multiple-part questions. For example, to determine who
works in Taylor’s department, you can first use a subquery to determine the
department in which Taylor works. You can then answer the original question with
the parent SELECTstatement. A subquery in the FROMlause of a SELECT
statement is also called an inline view. A subquery in the WHEREIause of a
SELECTstatement is also called a nested subquery.

A subquery can contain another subquery. Oracle imposes no limit on the number
of subquery levels in the FROMlause of the top-level query. You can nest up to 255
levels of subqueries in the WHERElause.

If tables in a subquery have the same name as tables in the containing statement,
you must prefix any reference to the column of the table from the containing
statement with the table name or alias. To make your statements easier for you to

5-26 SQL Reference

Queries and Subqueries

read, always qualify the columns in a subquery with the name or alias of the table,
view, or materialized view.

Oracle performs a correlated subquery when the subquery references a column
from a table referred to in the parent statement. A correlated subquery is evaluated
once for each row processed by the parent statement. The parent statement can be a
SELECTUPDATE or DELETEstatement.

A correlated subquery answers a multiple-part question whose answer depends on
the value in each row processed by the parent statement. For example, you can use
a correlated subquery to determine which employees earn more than the average
salaries for their departments. In this case, the correlated subquery specifically
computes the average salary for each department.

See Also: "Correlated Subquery Examples" on page 11-118

A scalar subquery returns exactly one column value from one row. You can use a
scalar subquery in place of an expression to specify a value in the VALUES clause of
an INSERT statement or to provide an argument of a type constructor expression or
user-defined function expression.

Use subqueries for the following purposes:

« To define the set of rows to be inserted into the target table of an INSERT or
CREATE TABLEtatement

« To define the set of rows to be included in a view or materialized view
("snapshot) in a CREATE VIEWr CREATE MATERIALIZED VIEVgtatement

« To define one or more values to be assigned to existing rows in an UPDATE
statement

« To provide values for conditions in a WHERElause, HAVINGclause, or START
WITHclause of SELECT UPDATEand DELETEstatements

« To provide a value for a specified column in an INSERT ... VALUESIist (scalar
subqueries only)

« To provide values for arguments of a type constructor expression or a user-
defined function expression (scalar subqueries only)

« To define a table to be operated on by a containing query.

You do this by placing the subquery in the FROMIlause of the containing query
as you would a table name. You may use subqueries in place of tables in this
way as well in INSERT, UDPATEand DELETEstatements.

Expressions, Conditions, and Queries 5-27

Queries and Subqueries

Subqueries so used can employ correlation variables, but only those defined
within the subquery itself, not outer references. Outer references ("left-
correlated subqueries”) are allowed only in the FROMlause of a SELECT
statement.

See Also: table collection_expression on page 11-96

Unnesting of Nested Subqueries

Subqueries are "nested" when they appear in the WHERElause of the parent
statement. When Oracle evaluates a statement with a nested subquery, it must
evaluate the subquery portion multiple times and may overlook some efficient
access paths or joins.

Subquery unnesting unnests and merges the body of the subquery into the body of
the statement that contains it, allowing the optimizer to consider them together
when evaluating access paths and joins. The optimizer can unnest most subqueries,
with some exceptions. Those exceptions include subqueries that contain a CONNECT
BY or START WITHlause, a ROWNUpseudocolumn, one of the set operators, a
nested aggregate function, or a correlated reference to a query block that is not the
subquery’s immediate outer query block.

Assuming no restrictions exist, the optimizer automatically unnests some (but not
all) of the following nested subqueries:

« Uncorrelated IN subqueries

« IN and EXISTS correlated subqueries as long, as they do not contain aggregate
functions or a GROUP BYlause

You can enable extended subquery unnesting by instructing the optimizer to
unnest additional types of subqueries:

« You can unnest an uncorrelated NOT IN subquery by specifying the HASH_AJor
MERGE_Ahint in the subquery.

= You can unnest other subqueries by specifying the UNNESThint in the subquery

See Also: Chapter 2, "Basic Elements of Oracle SQL" for
information on hints

Selecting from the DUAL Table

DUALIs a table automatically created by Oracle along with the data dictionary.
DUALIs in the schema of the user SYS but is accessible by the name DUALto all

5-28 SQL Reference

Queries and Subqueries

users. It has one column, DUMMMdefined to be VARCHAR@), and contains one row
with a value ’X’. Selecting from the DUALtable is useful for computing a constant
expression with the SELECTstatement. Because DUALhas only one row, the
constant is returned only once. Alternatively, you can select a constant,
pseudocolumn, or expression from any table, but the value will be returned as
many times as there are rows in the table.

See Also: "SQL Functions" on page 4-2 for many examples of
selecting a constant value from DUAL

Distributed Queries

Oracle’s distributed database management system architecture allows you to access
data in remote databases using Net8 and an Oracle server. You can identify a
remote table, view, or materialized view by appending @dblink to the end of its
name. The dblink must be a complete or partial name for a database link to the
database containing the remote table, view, or materialized view.

See Also: "Referring to Objects in Remote Databases” on
page 2-90 for more information on referring to database links

Restrictions on Distributed Queries

Distributed queries are currently subject to the restriction that all tables locked by a
FOR UPDATElause and all tables with LONGcolumns selected by the query must be
located on the same database. For example, the following statement will raise an
error:

SELECT emp_ny.*
FROM emp_ny@ny, dept
WHERE emp_ny.deptno = dept.deptno
AND dept.dname = 'ACCOUNTING’
FOR UPDATE OF emp_ny.sal;

The following statement fails because it selects long_column | a LONGvalue, from
the emp_review table on the ny database and locks the emptable on the local
database:

SELECT emp.empno, review.long_column, emp.sal
FROM emp, emp_review@ny review
WHERE emp.empno = emp_review.empno
FOR UPDATE OF emp.sal;

Expressions, Conditions, and Queries 5-29

Queries and Subqueries

In addition, Oracle currently does not support distributed queries that select user-
defined types or object REFs on remote tables.

5-30 SQL Reference

6

About SQL Statements

This chapter describes the various types of Oracle SQL statements, and provides
guidelines for finding the right SQL statement for your task.

This chapter contains these sections:
« Summary of SQL Statements

« Finding the SQL Statement for a Database Task

About SQL Statements 6-1

Summary of SQL Statements

Summary of SQL Statements

The tables in the following sections provide a functional summary of SQL
statements and are divided into these categories:

« Data Definition Language (DDL) Statements

« Data Manipulation Language (DML) Statements
« Transaction Control Statements

« Session Control Statements

« System Control Statements

Data Definition Language (DDL) Statements
Data definition language (DDL) statements enable you to perform these tasks:

= Create, alter, and drop schema objects

« Grant and revoke privileges and roles

« Analyze information on a table, index, or cluster
« Establish auditing options

« Add comments to the data dictionary

The CREATEALTER and DRORommands require exclusive access to the specified
object. For example, an ALTER TABLE statement fails if another user has an open
transaction on the specified table.

The GRANTREVOKEANALYZE AUDIT, and COMMENdommands do not require
exclusive access to the specified object. For example, you can analyze a table while
other users are updating the table.

Oracle implicitly commits the current transaction before and after every DDL
statement.

Many DDL statements may cause Oracle to recompile or reauthorize schema
objects. For information on how Oracle recompiles and reauthorizes schema objects
and the circumstances under which a DDL statement would cause this, see Oracle8i
Concepts.

DDL statements are supported by PL/SQL with the use of the DBMS_SQIpackage.

See Also: Oracle8i Supplied PL/SQL Packages Reference

6-2 SQL Reference

Summary of SQL Statements

Table 6-1 lists the DDL statements.

Table 6-1 Data Definition Language Statements

ALTER CLUSTER
ALTER DATABASE
ALTER DIMENSION
ALTER FUNCTION
ALTER INDEX

ALTER MATERIALIZED VIEW /
SNAPSHOT

ALTER MATERIALIZED VIEW /
SHAPSHOT LOG

ALTER PACKAGE

ALTER PROCEDURE
ALTER PROFILE

ALTER RESOURCE COST
ALTER ROLE

ALTER ROLLBACK SEGMENT
ALTER SEQUENCE
ALTER SNAPSHOT
ALTER SHAPSHOT LOG
ALTER TABLE

ALTER TABLESPACE
ALTER TRIGGER

ALTER TYPE

ALTER USER

ALTER VIEW

ANALYZE

ASSOCIATE STATISTICS
AUDIT

COMMENT

CREATE CLUSTER
CREATE CONTEXT
CREATE CONTROLFILE
CREATE DATABASE
CREATE DATABASE LINK

CREATE DIMENSION
CREATE DIRECTORY
CREATE FUNCTION
CREATE INDEX
CREATE INDEXTYPE
CREATE LIBRARY

CREATE MATERIALIZED VIEW
/ SHAPSHOT

CREATE MATERIALIZED VIEW
/ SNAPSHOT LOG

CREATE OPERATOR
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
CREATE PROFILE
CREATE ROLE

CREATE ROLLBACK SEGMENT
CREATE SCHEMA
CREATE SEQUENCE
CREATE SHAPSHOT
CREATE SNAPSHOT LOG
CREATE SYNONYM
CREATE TABLE

CREATE TABLESPACE

CREATE TEMPORARY
TABLESPACE

CREATE TRIGGER

CREATE TYPE

CREATE USER

CREATE VIEW
DISASSOCIATE STATISTICS
DROP CLUSTER

DROP CONTEXT

DROP DATABASE LINK
DROP DIMENSION
DROP DIRECTORY
DROP FUNCTION
DROP INDEX

DROP INDEXTYPE
DROP LIBRARY

DROP MATERIALIZED VIEW /
SNAPSHOT

DROP MATERIALIZED VIEW /
SNAPSHOT LOG

DROP OPERATOR
DROP PACKAGE
DROP PROCEDURE
DROP PROFILE

DROP ROLE

DROP ROLLBACK SEGMENT
DROP SEQUENCE
DROP SNAPSHOT
DROP SNAPSHOT LOG
DROP SYNONYM
DROP TABLE

DROP TABLESPACE
DROP TRIGGER

DROP TYPE

DROP USER

DROP VIEW

GRANT
NOAUDIT
RENAME
REVOKE

TRUNCATE

About SQL Statements 6-3

Summary of SQL Statements

Data Manipulation Language (DML) Statements

Data manipulation language (DML) statements query and manipulate data in
existing schema objects. These statements do not implicitly commit the current
transaction.

Table 6-2 Data Manipulation Language Statements

Statement
CALL

DELETE
EXPLAIN PLAN
INSERT

LOCK TABLE
SELECT
UPDATE

The CALLand EXPLAIN PLANstatements are supported in PL/SQL only when
executed dynamically. All other DML statements are fully supported in PL/SQL.

Transaction Control Statements
Transaction control statements manage changes made by DML statements.

Table 6—3 Transaction Control Statements

Statement

COMMIT
ROLLBACK
SAVEPOINT

SET TRANSACTION

All transaction control statements except certain forms of the COMMITand
ROLLBACKommands are supported in PL/SQL. For information on the
restrictions, see COMMIT on page 8-133and ROLLBACK on page 11-83.

6-4 SQL Reference

Finding the SQL Statement for a Database Task

Session Control Statements

Session control statements dynamically manage the properties of a user session.
These statements do not implicitly commit the current transaction.

PL/SQL does not support session control statements.

Table 6-4 Session Control Statements

Statement
ALTER SESSION
SET ROLE

System Control Statement

The single system control statement dynamically manages the properties of an
Oracle instance. This statement does not implicitly commit the current transaction.

ALTER SYSTEN not supported in PL/SQL.

Table 6-5 System Control Statement

Statement

ALTER SYSTEM

Embedded SQL Statements

Embedded SQL statements place DDL, DML, and transaction control statements
within a procedural language program. Embedded SQL is supported by the Oracle
precompilers and is documented in the following books:

« Pro*COBOL Precompiler Programmer’s Guide
« Pro*C/C++ Precompiler Programmer’s Guide

« SQL*Module for Ada Programmer’s Guide

Finding the SQL Statement for a Database Task

The particular SQL statement you use to accomplish a given database task is
sometimes obvious and sometimes difficult to predict. For example, you create a
table with the CREATE TABLEtatement. However, you don’t enable a constraint
with the ENABLE CONSTRAINTBtatement, because such a statement doesn’t exist.
Rather, you modify the column options using the ALTER TABLEstatement.

About SQL Statements 6-5

Finding the SQL Statement for a Database Task

This section lists, by database object and task, the appropriate SQL statement to use
to accomplish various database tasks. You can then refer to Chapter 7 through

Chapter 11, for the syntax and semantics of each SQL statement.

Note:

Your ability to use the SQL statements listed in this section

depends on the version and edition of Oracle you are using, as well
as the options you have installed. Be sure to read the detailed
descriptions in Chapter 7 through Chapter 11, before using these

statements.

Database Object /
Task

Operation

SQL Statement

application
application server
auditing

call

checkpoint
clone database

cluster

column

6-6 SQL Reference

allowing to connect as a user
allowing to connect as a user
of database events

limit CPU time for

limit data blocks read

perform explicitly

mount

cluster key, change columns of
extent, allocate for

migrated or chained rows,
identify

parallelism of, change
rename

storage characteristics of, change

tablespace of, change

unused space in, release

add to a table or modify

define

ALTER USER proxy_clause

ALTER USER proxy_clause

CREATE TRIGGER
CPU_PER_CALLparameter
LOGICAL_READS_PER_CALlparameter
ALTER SYSTEM CHECKPOINT

ALTER DATABASE MOUNT

prohibited

ALTER CLUSTER allocate_extent_clause
ANALYZE

ALTER CLUSTER patrallel_clause
prohibited

ALTER CLUSTER
physical_attributes_clause

prohibited

ALTER CLUSTER
deallocate_unused_clause

ALTER TABLE add _column_options
modify_column_options

CREATE TABLE

Finding the SQL Statement for a Database Task

Database Object /
Task

Operation

SQL Statement

commit operation

compilation

constraint

control file

currency symbol

data

data dictionary
data independence

database

drop from a table

generate derived values
automatically

organization of, define

prevent procedure or function
from issuing

avoid run-time of

add to a table or modify

business, enforce

enable, disable, or drop

specify
back up

standby, create

reset for session
frequently used, caching

specify as temporary or
permanent

convert from Oracle7 to Oracle8i
provide

character set of, change

create script for

database character set for, specify
datafiles for, specify

datafiles of, modify

datafiles, establish number of
downgrade to an earlier release

global name of, change

ALTER TABLE drop_column_clause
CREATE TRIGGER

CREATE TABLE
ALTER SESSION

ALTER FUNCTION ... COMPILE

ALTER TABLE add_column_options,
modify_column_options

CREATE TRIGGER

ALTER TABLE enable_disable_clause,
drop_constraint_clause

CREATE TABLE
ALTER DATABASE controlfile_clauses

ALTER DATABASE CREATE STANDBY
CONTROLFILE

ALTER SESSION SET NLS_CURRENCY
ALTER TABLE cache_clause
CREATE TABLE

ALTER DATABASE CONVERT

CREATE SYNONYM

ALTER DATABASE CHARACTER SET
ALTER DATABASE controlfile_clauses
CREATE DATABASE

CREATE DATABASE

ALTER DATABASE

CREATE DATABASE

ALTER DATABASE RESET COMPATIBILITY
ALTER DATABASE RENAME GLOBAL_NAME

About SQL Statements 6-7

Finding the SQL Statement for a Database Task

Database Object /
Task Operation SQL Statement

global name resolution, enable for ALTER SESSION SET GLOBAL_NAMES
the session

instances, establish number of CREATE DATABASE

media recovery, design ALTER DATABASE
general_recovery_clause

media recovery, perform ongoing ALTER DATABASE
managed_recovery clause

mount ALTER DATABASE MOUNT

move a subset to a different ALTER TABLE exchange_partition_clause
Oracle database

national character set for, specify =~ CREATE DATABASE
national character set of, change ALTER DATABASE CHARACTER SET

open ALTER DATABASE OPEN
parallelize recovery of ALTER DATABASE parallel_clause
place in read-only mode ALTER DATABASE OPEN

place in read-write mode ALTER DATABASE OPEN

place in sustained standby ALTER DATABASE

recovery mode general_recovery_clause

prepare to re-create ALTER DATABASE controlfile_clauses
recover ALTER DATABASE recover_clauses
redo log file groups, establish CREATE DATABASE

number of

redo log files for, specify CREATE DATABASE

redo log files of, create or modify ALTER DATABASE
redo log files, establish number of CREATE DATABASE

redo log, choose mode for CREATE DATABASE

upgrade to Oracle8i ALTER DATABASE
database character set specify for a database CREATE DATABASE
database events transparent logging of CREATE TRIGGER
database link close ALTER SESSION

6-8 SQL Reference

Finding the SQL Statement for a Database Task

Database Object /

Task Operation SQL Statement
database security enforce authorizations CREATE TRIGGER
datafile automatic extension of, allow ALTER DATABASE DATAFILE
autoextend_clause
create ALTER DATABASE CREATE DATAFILE
put online ALTER DATABASE DATAFILE ONLINE
reconstruct damaged ALTER DATABASE
general_recovery_clause
reconstruct lost or damaged ALTER DATABASE CREATE DATAFILE
recover specified ALTER DATABASE
general_recovery_clause
replace an old, for recovery ALTER DATABASE CREATE DATAFILE
resize ALTER DATABASE DATAFILE RESIZE
take offline ALTER DATABASE DATAFILE ONLINE/
OFFLINE
begin or end backup of ALTER TABLESPACE ... BACKUP
number of, establish for a CREATE DATABASE
database
online, update instance ALTER SYSTEM check_datafiles _clause
information on
specify for a database CREATE DATABASE
dates format of See Table 2-9, "Date Format Elements" on
page 2-48.
decimal character reset for session ALTER SESSION SET
NLS_NUMERIC_CHARACTERS
dimension add a level, hierarchy, or attribute ALTER DIMENSION ... ADD
to
change the relationships of ALTER DIMENSION
drop a level, hierarchy, or attribute ALTER DIMENSION ... DROP
from
explicitly compile ALTER DIMENSION ... COMPILE

dispatcher processes multi-threaded server, manage MTS_ parameters of ALTER SYSTEM

About SQL Statements 6-9

Finding the SQL Statement for a Database Task

Database Object /

Task Operation SQL Statement
domain index alter ALTER INDEX ... PARAMETERS
rebuild ALTER INDEX rebuild_clause
dump file limit the size of ALTER SESSION SET MAX_DUMP_FILE_SIZE
error messages language in which displayed, ALTER SESSION SET NLS_LANGUAGE
change
function allow to or prevent from ALTER SESSION

committing a transaction
declaration of, change
definition of, change
recompile explicitly

function-based index disable

disabled, re-enable

global names enforce resolution of

hash join operations data blocks for, allocate

in queries, enable or disable

memory for, allocate

index allow DML operations during
rebuilding of

based on a function; see "function-
based index"

based on an indextype; see
"domain index"

collect statistics during rebuilding
of

default attribute values of, change
degree of parallelism for, change

direct-load INSERT operations,
write to a log

6-10 SQL Reference

CREATE OR REPLACE FUNCTION
CREATE OR REPLACE FUNCTION
ALTER FUNCTION

ALTER INDEX ... [rebuild_clause]
DISABLE
ALTER INDEX ... [rebuild_clause]
ENABLE

GLOBAL_NAMESarameter of ALTER SYSTEM

ALTER SESSION SET
HASH_MULTIBLOCK_IO_COUNT

ALTER SESSION SET HASH_JOIN_ENABLED

ALTER SESSION SET HASH_AREA_SIZE
ALTER INDEX rebuild_clause

CREATE INDEX ... column_expression
CREATE INDEX domain_index_clause
ALTER INDEX rebuild_clause

ALTER INDEX partitioning_clauses
ALTER INDEX parallel_clause

ALTER INDEX
physical_attributes_clause

Finding the SQL Statement for a Database Task

Database Object /

Task

Operation

SQL Statement

index partition

extent for, allocate new

key compression, enable

key values, eliminate repetition of
merge block contents of

physical attributes of a partition
of, change

physical attributes of a
subpartition of, change the

physical attributes of, change

re-create
rebuild operations, write to a log

SQL*Loader operations against,
write to a log

store bytes in reverse order
tablespace for, specify

tell Oracle not to use

unused space, release
rename
create-time attributes, change

log direct-load INSERT operations

log SQL*Loader operations
against

move to a different tablespace

physical attributes of, change

physical, logging, or storage
characteristics of, change

re-create

ALTER INDEX allocate_extent_clause
ALTER INDEX rebuild_clause
ALTER INDEX rebuild _clause
ALTER INDEX rebuild_clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX rebuild_clause
ALTER INDEX rebuild_clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX rebuild_clause
ALTER INDEX rebuild_clause

ALTER INDEX ...
UNUSABLE

rebuild_clause]

ALTER INDEX deallocate_unused_clause
ALTER INDEX rebuild_clause
ALTER INDEX rebuild_clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX rebuild _clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX partitioning_clauses

ALTER INDEX rebuild_clause

About SQL Statements 6-11

Finding the SQL Statement for a Database Task

Database Object /
Task

Operation

SQL Statement

index subpartition

index-organized table

indexes

instance

instance recovery

6-12 SQL Reference

remove from the database
specify a tablespace for
split into two partitions
tell Oracle not to use

change a create-time attributes,
change

log direct-load INSERT operations

log SQL*Loader operations
against

move to a different tablespace

physical attributes, change

physical, logging, or storage
characteristics, change

re-create

tablespace for, specify

tell Oracle not to use
characteristics, change

on a cluster

on a nested table storage table
on a partitioned table

on an index-organized table

on columns of a table

on scalar typed object attributes
dynamically modify

make an index extent available to
switch to a different

continue after interruption

ALTER INDEX
ALTER INDEX
ALTER INDEX
ALTER INDEX
ALTER INDEX

partitioning_clauses

rebuild_clause

partitioning_clauses
... UNUSABLE

rebuild_clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX rebuild_clause

ALTER INDEX
physical_attributes_clause

ALTER INDEX partitioning_clauses

ALTER INDEX rebuild_clause
ALTER INDEX rebuild _clause
ALTER INDEX ... UNUSABLE
ALTER TABLE

CREATE INDEX

CREATE INDEX

CREATE INDEX

CREATE INDEX

CREATE INDEX

CREATE INDEX

ALTER SYSTEM

ALTER INDEX allocate_extent_clause

ALTER SESSION SET INSTANCE

ALTER DATABASE
general_recovery_clause

Finding the SQL Statement for a Database Task

Database Object /
Task

Operation

SQL Statement

instances

Java class
Java resource
Java source
licensing

LOB columns

location transparency

materialized view

number of, establish for a
database

force resolution of

force compilation of

force compilation of
changing limits or thresholds

add to a table or modify

provide

automatic refresh, change the
mode or timing of

change from rowid-based to
primary-key-based

degree of parallelism, specify or
change

divide into partitions

LOB storage characteristics,
change

LOB storage characteristics,
specify

log changes to

make eligible for query rewrite

make frequently accessed data
accessible

revalidate

storage characteristics, change

CREATE DATABASE

ALTER JAVA
ALTER JAVA
ALTER JAVA

LICENSE_ parameters of ALTER SYSTEM
ALTER TABLE add_column_options,

modify_column_options,
LOB_storage_clause

CREATE SYNONYM

ALTER MATERIALIZED VIEW
refresh_clause

ALTER MATERIALIZED VIEW

ALTER MATERIALIZED VIEW LOG

ALTER MATERIALIZED VIEW
parallel_clause

ALTER MATERIALIZED VIEW
partitioning_clauses

ALTER MATERIALIZED VIEW
modify_LOB_storage clause

ALTER MATERIALIZED VIEW
LOB_storage_clause

ALTER MATERIALIZED VIEW ...

ALTER MATERIALIZED VIEW ..
REWRITE

ALTER SESSION SET
QUERY_REWRITE_ENABLED

ALTER MATERIALIZED VIEW ...

ALTER MATERIALIZED VIEW ...

ALTER MATERIALIZED VIEW
physical_attributes_clause

About SQL Statements 6-13

LOGGING

. QUERY

CACHE

COMPILE

Finding the SQL Statement for a Database Task

Database Object /
Task Operation

SQL Statement

materialized view log automatic refresh, change the
mode and timing of

change from rowid-based to
primary-key-based

divide into partitions

physical and storage
characteristics, change

save both old and new values

store primary key of changed
rows

store rowid of changed rows
media recovery avoid on startup

from specified redo log file

prepare for

national character set specify for a database

national language change settings for the session
support
nested table update in a view

nested table columns indexing

numbers format

object references. See REFs

online redo log reinitialize

outline assign to a different category
recompile
rename

automatically create and store

6-14 SQL Reference

ALTER MATERIALIZED VIEW LOG

ALTER MATERIALIZED VIEW LOG

ALTER MATERIALIZED VIEW LOG
partitioning_clauses

ALTER MATERIALIZED VIEW LOG ...
physical_attributes_clause

ALTER MATERIALIZED VIEW LOG ...NEW
VALUES

ALTER MATERIALIZED VIEW LOG ... ADD

ALTER MATERIALIZED VIEW LOG ... ADD
ALTER DATABASE DATAFILE END BACKUP

ALTER DATABASE
general_recovery_clause

ALTER DATABASE ARCHIVELOG
CREATE DATABASE
ALTER SESSION SET NLS_ parameters

create an INSTEAD OF trigger
CREATE INDEX

See Table 2-7, "Number Format Elements" on
page 2-44.

ALTER DATABASE CLEAR LOGFILE

ALTER OUTLINE ... CHANGE CATEGORY TO
ALTER OUTLINE ... REBUILD

ALTER OUTLINE ... RENAME

ALTER SESSION SET
CREATE_STORED_OUTLINES

Finding the SQL Statement for a Database Task

Database Object /
Task Operation SQL Statement

use to generate execution plans ALTER SESSION SET USE_STORED_OUTLINES

package avoid run-time compilation ALTER PACKAGE

compile explicitly ALTER PACKAGE
package body avoid run-time compilation ALTER PACKAGE

recompile explicitly ALTER PACKAGE
parallelism specify for a table CREATE TABLE

specify for DML on a table CREATE TABLE
parameter, change the setting for the current ALTER SESSION set_clause
initialization session
parameter, session set or change the setting of ALTER SESSION set _clause
partition add to a table or modify ALTER TABLE

default attributes, change ALTER TABLE

modify_default_attributes _clause

logging characteristics, change ALTER TABLE logging_clause

merge with another partition ALTER TABLE merge_patrtitions_clause

point to data in a nonpartitioned ALTER TABLE exchange_partition_clause

table

real attributes, change ALTER TABLE modify_partition_clause
password complexity of, guarantee PASSWORD_VERIFY_FUNCTIOpNarameter

make unavailable PASSWORD_REUSE_TIMgarameter

number of days account will be PASSWORD_LOCK_TIMpBarameter
locked after failed login attempts,

specify
number of days before reuse, limit PASSWORD_REUSE_TIMgarameter
number of days in grace period, PASSWORD_GRACE_TIMiarameter

specify

number of days usable, limit PASSWORD_LIFE_TIMEparameter
number of times reused, limit PASSWORD_REUSE_M#sArameter

special characters in, allow PASSWORD_VERIFY_FUNCTIOpNarameter

About SQL Statements 6-15

Finding the SQL Statement for a Database Task

Database Object /
Task

Operation

SQL Statement

performance

procedure

profile

recovery

recovery data

redo log

redo log file

6-16 SQL Reference

optimize for index access path

optimize for nested loop joins

specify the optimizer approach for

the session

allow to or prevent from
committing a transaction

avoid run-time compilation
recompile explicitly
resource limit, add to
resource limit, change
resource limit, drop from

distributed, enable or disable

discard

remove changes from
reset sequence of
specify mode of

add

automatically generates names for

clear

drop

enable or disable thread
rename

number of, establish for a
database

archive manually or automatically

number of, establish for a
database

ALTER SESSION SET
OPTIMIZER_INDEX_COST_ADJ

ALTER SESSION SET
OPTIMIZER_INDEX_CACHING

ALTER SESSION SET OPTIMIZER_MODE

ALTER SESSION

ALTER PROCEDURE
ALTER PROCEDURE
ALTER PROFILE
ALTER PROFILE
ALTER PROFILE

ALTER SYSTEM
distributed_recovery_clause

ALTER DATABASE RESETLOGS

ALTER DATABASE OPEN RESETLOGS
ALTER DATABASE OPEN RESETLOGS
CREATE DATABASE

ALTER DATABASE ADD LOGFILE MEMBER

ALTER DATABASE
general_recovery_clause

ALTER DATABASE CLEAR LOGFILE
ALTER DATABASE DROP LOGFILE
ALTER DATABASE ENABLE THREAD
ALTER DATABASE RENAME FILE
CREATE DATABASE

ALTER SYSETM archive_log_clause
CREATE DATABASE

Finding the SQL Statement for a Database Task

Database Object /

Task Operation SQL Statement
specify a path for ALTER SESSION SET LOG_ARCHIVE_DEST n
switch manually ALTER SYSTEM switch_logfile_clause

REFS validate and update ANALYZE

role change authorization required ALTER ROLE

rollback segment

bring online
reduce in size

storage characteristics, change

ALTER ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT

take offline ALTER ROLLBACK SEGMENT
rowid examine query the ROWIDpseudocolumn
extended, interpreting contents DBMS_ROWIDpackage; see Oracle8i Supplied PL/
SQL Packages Reference
schema change during the session ALTER SESSION SET CURRENT_SCHEMA

schema object reference without referencing its ~CREATE SYNONYM

location

reference without referencing its CREATE SYNONYM

owner
specify another name for CREATE SYNONYM
validate structure of ANALYZE

sequence cached sequence values, change ALTER SEQUENCEcache_clause
number of
consecutive order of values, CREATE SEQUENCE ... ORDER
guarantee ALTER SEQUENCE ... ORDER
create CREATE SEQUENCE

determine current value of See "CURRVAL and NEXTVAL" on page 2-59.

CREATE SEQUENCE ... INCREMENT BY
ALTER SEQUENCE ... INCREMENT BY

ALTER SEQUENCE

increment value, set

maximum or minimum value,
eliminate

minimum or maximum value, set CREATE SEQUENCE

ALTER SEQUENCE

About SQL Statements 6-17

Finding the SQL Statement for a Database Task

Database Object /
Task Operation

SQL Statement

preallocate values for faster access CREATE SEQUENCE

restart after a predefined limit

starting value, set
Server processes multi-threaded server, manage
session CPU time for, limit

data blocks read, limit

enable or disable parallel
transactions in

inactive period duration, limit
private SGA space for, limit
resource costs allowed, change

restrict to privileged users

terminate

total elapsed time, limit

total resources for, limit
SGA flush data from shared pool
shared pool flush

snapshot. See "materialized view".

sort operations linguistic sequence, change
standby database activate

recover
statistics on a schema object, collect

on a schema object, delete
on scalar object attributes, collect

subpartition add to a table or modify

6-18 SQL Reference

ALTER SEQUENCE

CREATE SEQUENCE ... CYCLE
ALTER SEQUENCE ... CYCLE

CREATE SEQUENCE

MTS_ parameters of ALTER SYSTEM
CPU_PER_SESSIONparameter
LOGICAL_READS_ PER_SESSIONbarameter
ALTER SESSION

IDLE_TIME parameter
PRIVATE_SGA parameter
ALTER RESOURCE COST

ALTER SYSTEM
restricted_session_clause

ALTER SYSTEM Kkill_session_clause
CONNECT_TIMEparameter
COMPOSITE_LIMIT parameter

ALTER SYSTEM flush_shared_pool_clause
ALTER SYSTEM flush_shared_pool_clause

ALTER SESSION SET NLS_SORT

ALTER DATABASE ACTIVATE STANDBY
DATABASE

ALTER DATABASE recover_clauses
ANALYZE

ANALYZE

ANALYZE

ALTER TABLE

Finding the SQL Statement for a Database Task

Database Object /
Task

Operation

SQL Statement

system resources

table

tablespace

default attributes, change

logging characteristics, change

real attributes, change

enable or disable

allocate space for

characteristics, change

column, drop from table
degree of parallelism, change
logging characteristics, change
make read-only, read-write

migrated or chained rows,
identify

organization, define

partition, point to the contents of
another table

partitioning, specify

rename

unused space of, release

heap or index organized

include in a cluster

replicate asynchronous, maintain
storage characteristics of, set
allow or disallow writing to

datafiles, add or rename

ALTER TABLE
modify_default_attributes _clause,
modify_partition_clause

ALTER TABLE logging_clause

ALTER TABLE
modify_subpartition_clause

RESOURCE_LIMITS parameter of ALTER
SYSTEM

ALTER TABLE allocate_extent_clause

ALTER TABLE
physical_attributes_clause,
modify_storage_clauses

ALTER TABLE drop_column_clause
ALTER TABLE parallel_clause
ALTER TABLE logging_clause
ALTER TABLE

ANALYZE

CREATE TABLE
ALTER TABLE exchange_partition_clause

CREATE TABLE

ALTER TABLE

ALTER TABLE deallocate_unused_clause
CREATE TABLE

CREATE TABLE

CREATE TRIGGER

CREATE TABLE

ALTER TABLESPACE READ WRITE/ONLY

ALTER TABLESPACE datafile/
tempfile _clauses

About SQL Statements 6-19

Finding the SQL Statement for a Database Task

Database Object /
Task Operation SQL Statement

logging characteristics, change ALTER TABLESPACE
minimum extent length, change ALTER TABLESPACE

reconstruct damaged ALTER DATABASE
general_recovery_clause

reconstruct lost or damaged ALTER DATABASE CREATE DATAFILE

recover specified ALTER DATABASE
general_recovery_clause

specifying for a table CREATE TABLE

storage characteristics, change ALTER TABLESPACE

take online or offline ALTER TABLESPACE
user quota on, change ALTER USER
assign to a user CREATE USER

space quota for a user, allocate CREATE USER

tempfile allow for automatic extension of ~ ALTER DATABASE TEMPFILE
resize ALTER DATABASE TEMPFILE
transaction distributed, force commit of ALTER SESSION
distributed, force rollback of ALTER SESSION
trigger enable or disable ALTER TABLE
user authentication, change ALTER USER

database resources limits, change ALTER USER profile_clause

default roles, change ALTER USER

failed attempts to log in, limit FAILED_LOGIN_ATTEMPTS parameter
number of sessions, limit SESSIONS_PER_USERparameter
password, change ALTER USER

resource limits, set CREATE USER

6-20 SQL Reference

Finding the SQL Statement for a Database Task

Database Object /
Task

Operation

SQL Statement

restrict access to Oracle

tablespace quota, allocate

tablespaces, assign

ALTER SYSTEM
restricted_session_clause

CREATE USER
CREATE USER

About SQL Statements 6-21

Finding the SQL Statement for a Database Task

6-22 SQL Reference

v

SQL Statements:

ALTER CLUSTER to ALTER SYSTEM

All SQL statements in this chapter, as well as in Chapters 8 through 11, are
organized into the following sections:

Syntax

Purpose

Prerequisites

Keywords and
Parameters

Examples

The syntax diagrams show the keywords and parameters
that make up the statement.

Caution: Not all keywords and parameters are valid in
all circumstances. Be sure to refer to the "Keywords and
Parameters" section of each statement and clause to
learn about any restrictions on the syntax.

The "Purpose"” section describes the basic uses of the
statement.

The "Prerequisites” section lists privileges you must have
and steps that you must take before using the statement. In
addition to the prerequisites listed, most statements also
require that the database be opened by your instance, unless
otherwise noted.

The "Keywords and Parameters" section describes the
purpose of each keyword and parameter. (The conventions
for keywords and parameters used in this chapter are
explained in the Preface of this reference.) Restrictions and
usage notes also appear in this section.

The "Examples" section shows how to use various clauses
and parameters of the statement.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-1

This chapter contains the following SQL statements:
« ALTER CLUSTER

« ALTER DATABASE

« ALTER DIMENSION

« ALTER FUNCTION

« ALTER INDEX

« ALTERIJAVA

« ALTER MATERIALIZED VIEW

« ALTER MATERIALIZED VIEW LOG
« ALTER OUTLINE

« ALTER PACKAGE

« ALTER PROCEDURE

« ALTER PROFILE

« ALTER RESOURCE COST

« ALTERROLE

« ALTER ROLLBACK SEGMENT

« ALTER SEQUENCE

« ALTER SESSION

« ALTERSYSTEM

7-2 SQL Reference

ALTER CLUSTER

ALTER CLUSTER

Purpose

Use the ALTER CLUSTERtatement to redefine storage and parallelism
characteristics of a cluster.

Note: You cannot use this statement to change the number or the
name of columns in the cluster key, and you cannot change the
tablespace in which the cluster is stored.

See Also:
« CREATE CLUSTER on page 9-3 for information on creating a
cluster

« DROP CLUSTER on page 10-126and DROP TABLE on
page 11-7 for information on removing tables from a cluster

Prerequisites
The cluster must be in your own schema or you must have ALTER ANY CLUSTER

system privilege.

Syntax

m.schema
—>| ALTER |—>| CLUSTER } . o cluster)>

/Cphysical_attributes_clause)—

parallel_clause

allocate_extent_clause
\CdealIocate_unused_clause)—/

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-3

ALTER CLUSTER

physical_attributes_clause =

PCTUSED |—>Cinteger

MAXTRANS |{integer

storage_clause

storage_clause :See storage_clause on page 11-129.

allocate_extent_clause =

—>| ALLOCATE |->| EXTENT }

deallocate_unused_clause

KEEP integer
|

—>| DEALLOCATE |->| UNUSED |

parallel_clause N

NOPARALLEL
(o)
PARALLEL

7-4 SQL Reference

ALTER CLUSTER

Keywords and Parameters

schema

Specify the schema containing the cluster. If you omit schema, Oracle assumes the
cluster is in your own schema.

cluster
Specify the name of the cluster to be altered.

physical_attributes_clause

Use this clause to change the values of the PCTUSEDPCTFREEINITRANS, and
MAXTRAN®arameters of the cluster.

See Also: CREATE CLUSTER on page 9-3 for a description of
these parameters

storage Use the STORAGEIlause to change the storage characteristics for
clause the cluster.

Restriction: You cannot change the values of the storage
parameters INITIAL and MINEXTENTSor a cluster.

See Also: storage_clause on page 11-129

SIZE integer
Use the SIZE clause to specify the number of cluster keys that will be stored in data
blocks allocated to the cluster.

Restriction: You can change the SIZE parameter only for an indexed cluster, not for
a hash cluster.

See Also: CREATE CLUSTER on page 9-3 for a description of the
SIZE parameter

allocate extent clause

Specify the ALLOCATE EXTENTIlause to explicitly allocate a new extent for the
cluster.

Restriction: You can allocate a new extent only for an indexed cluster, not for a hash
cluster.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-5

ALTER CLUSTER

SIZE integer

DATAFILE
" filename

INSTANCE
integer

Use the SIZE parameter to specify the size of the extent in bytes.
Use K or M to specify the extent size in kilobytes or megabytes.

When you explicitly allocate an extent with this clause, Oracle
does not evaluate the cluster’s storage parameters and determine
a new size for the next extent to be allocated (as it does when you
create a table). Therefore, specify SIZE if you do not want Oracle
to use a default value.

Use the DATAFILE parameter to specify one of the datafiles in the
cluster’s tablespace to contain the new extent. If you omit this
parameter, Oracle chooses the datafile.

Use the INSTANCEparameter to make the new extent available to
the specified instance. An instance is identified by the value of its
initialization parameter INSTANCE_NUMBERf you omit
INSTANCE the extent is available to all instances.

Note: Use this parameter only if you are using Oracle with the
Parallel Server option in parallel mode.

deallocate unused_clause

Specify the DEALLOCATE UNUSHause to explicitly deallocate unused space at the
end of the cluster and makes the freed space available for other segments. Only
unused space above the high water mark can be freed.

KEEP integer

See Also:

Use the KEEPparameter to specify the number of bytes above the
high water mark that the cluster will have after deallocation. If the
number of remaining extents is less than MINEXTENTSthen
MINEXTENTSs set to the current number of extents. If the initial
extent becomes smaller than INITIAL |, then INITIAL is set to the
value of the current initial extent. If you omit KEER all unused
space is freed.

ALTER TABLE on page 8-2 for a more complete

description of this clause

parallel_clause

Specify the parallel _clause to change the default degree of parallelism for
gueries and DMLon the cluster.

7-6 SQL Reference

ALTER CLUSTER

Examples

Restriction: If the tables in cluster contain any columns of LOB or user-defined
object type, this statement as well as subsequent INSERT, UPDATEor DELETE
operations on cluster are executed serially without notification.

Note: The syntax of the parallel_clause supersedes syntax
appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior.

NOPARALLEL Specify NOPARALLEIfor serial execution. This is the default.

PARALLEL Specify PARALLELIf you want Oracle to select a degree of
parallelism equal to the number of CPUs available on all
participating instances times the value of the PARALLEL _
THREADS_PER_CPiditialization parameter.

PARALLEL Specification of integer indicates the degree of parallelism,

integer which is the number of parallel threads used in the parallel
operation. Each parallel thread may use one or two parallel
execution servers. Normally Oracle calculates the optimum
degree of parallelism, so it is not necessary for you to specify
integer

See Also: "Notes on the parallel_clause" for CREATE TABLEon
page 10-41

Modifying a Cluster Example The following statement alters the CUSTOMER
cluster in the schema scott

ALTER CLUSTER scott.customer
SIZE 512
STORAGE (MAXEXTENTS 25);

Oracle allocates 512 bytes for each cluster key value. Assuming a data block size of
2 kilobytes, future data blocks within this cluster contain 4 cluster keys per data
block, or 2 kilobytes divided by 512 bytes. The cluster can have a maximum of 25
extents.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-7

ALTER CLUSTER

Deallocating Unused Space Example The following statement deallocates unused
space from the CUSTOMERuster, keeping 30 kilobytes of unused space for future
use:

ALTER CLUSTER scott.customer
DEALLOCATE UNUSED KEEP 30 K;

7-8 SQL Reference

ALTER DATABASE

ALTER DATABASE
Purpose
Use the ALTER DATABASEtatement to modify, maintain, or recover an existing
database.
See Also:

« Oracle8i Administrator’s Guide for more information on using the
ALTER DATABASEtatement for database maintenance

» Oracle8i Administrator’s Guide, Oracle8i Recovery Manager User’s Guide
and Reference, and Oracle8i Backup and Recovery Guide for examples of
performing media recovery

« CREATE DATABASE on page 9-21 for information on creating a
database

Prerequisites
You must have ALTER DATABASEystem privilege.

To specify the RECOVERIause, you must also have the OSDBAole enabled.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-9

ALTER DATABASE

Syntax

—>| ALTER |->| DATABASE }
A recover_clauses)

—(datafiIe/tempfile_clauses)

—(logfile_clauses)
—(controlfile_clauses)

e

—| MOUNT
—| CONVERT

‘-| OPEN

-| ACTIVATE |->| STANDBY |->| DATABASE }

—| RENAME |->| GLOBAL_NAME |->| TO Kdatabase)»—"— .
(M) (M)
N N

O O O O

-| RESET |->| COMPATIBILITY }

RESETLOGS
NORESETLOGS

PUBLIC

ENABLE H THREAD | integer

-| DISABLE |->| THREAD |{imeger}

-| CHARACTER |->| SET Kcharacter_set}

\| NATIONAL |—>| CHARACTER |->| SET |->(character_set)

7-10 SQL Reference

ALTER DATABASE

recover_clauses

general_recovery_ clauseh paraIIeI cIause
RECOVER O

managed_recovery_clause

general_recovery_clause N

f_)l AUTOMATIC h f_)| FROM Wocation)ﬁ

D
ey

USING H BACKUP H CONTROLFILE

STANDBY
DATABASE

TABLESPACE tablespace
K P f_)| CONSISTENT |->| WITH
STANDBY UNTIL CONTROLFILE

DATAFILE |e©—>(fllename

-| TABLESPACE tablespace)

M)
=~
0

H LOGFILE @{fi|ename)@

DEFAULT
—| CONTINUE
\| CANCEL

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-11

ALTER DATABASE

managed_recovery_clause n=

CANCEL

—>| MANAGED |->| STANDBY |->| DATABASE

datafile_tempfile_clauses n=

1
“AS ..fllespec .
| crReATE | DATAFILE))

(| ONLINE

_—
OFFLINE

Oy

integer

—
—(autoextend_clause)
END BACKUP

autoextend_clause

ONLINE

OFFLINE

7-12 SQL Reference

ALTER DATABASE

autoextend_clause

AUTOEXTEND
NEXT integer

1 maxsize_clause

filespec :Seefilespec onpage 11-27.

logfile_clauses

/| ARCHIVELOG

—| NOARCHIVELOG

M)
(N

e } () |
M

1
¥ filespec)

(M)
—[REUSE |
—{ app | LocFiLE | MEMBER [70

logfile_descriptor

—| DROP |->| LOGFILE

logfile_descriptor)

)
- prop 1 LoGFILE H MEMBER

O

f_)| UNRECOVERABLE |->| DATAFILE |-\

UNARCHIVED
k| CLEAR 4 LOGFILE

i intor)
Iogflle_descrlptorj

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-13

ALTER DATABASE

logfile_descriptor n=

O OGOy
‘ filename ‘

controlfile_clauses N

CREATE |—>| STANDBY |->| CONTROLFILE |->| AS |->O{filename

BACKUP |->| CONTROLFILE |->| TO

maxsize_clause =

NOPARALLEL
()
PARALLEL

7-14 SQL Reference

ALTER DATABASE

Keywords and Parameters

database

Specify the name of the database to be altered. The database name can contain only
ASCII characters. If you omit database, Oracle alters the database identified by the
value of the initialization parameter DB_NAMEYou can alter only the database
whose control files are specified by the initialization parameter CONTROL_FILES
The database identifier is not related to the Net8 database specification.

recover_clauses

You can use the following clauses when your instance has the database mounted,
open or closed, and the files involved are not in use.

general_recovery clause

The general_recovery clause lets you design media recovery for the database
or standby database, or for specified tablespaces or files.

Restrictions:
= You can recover the entire database only when the database is closed.
« Your instance must have the database mounted in exclusive mode.

= You can recover tablespaces or datafiles when the database is open or closed,
provided that the tablespaces or datafiles to be recovered are offline.

= You cannot perform media recovery if you are connected to Oracle through the
multi-threaded server architecture.

Note: If you do not have special media requirements, Oracle
Corporation recommends that you use the SQL*Plus RECOVER
statement.

See Also:

« Oracle8i Backup and Recovery Guide for more information on
media recovery

« SQL*Plus User’s Guide and Reference

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-15

ALTER DATABASE

AUTOMATIC

FROM
'location

STANDBY
DATABASE

DATABASE

7-16 SQL Reference

Specify AUTOMATIAf you want Oracle to automatically generate
the name of the next archived redo log file needed to continue the
recovery operation. If the LOG_ARCHIVE_DESTn parameters are
defined, Oracle scans those that are valid and enabled for the first
local destination. It uses that destination in conjunction with LOG_
ARCHIVE_FORMAT0 generate the target redo log filename. If the
LOG_ARCHIVE_DESTn parameters are not defined, Oracle uses
the value of the LOG_ARCHIVE_DESPparameter instead.

If the resulting file is found, Oracle applies the redo contained in
that file. If the file is not found, Oracle prompts you for a filename,
displaying the generated filename as a suggestion.

If you specify neither AUTOMATIChor LOGFILE, Oracle prompts
you for a filename, displaying the generated filename as a
suggestion. You can then accept the generated filename or replace
it with a fully qualified filename. If you know the archived
filename differs from what Oracle would generate, you can save
time by using the LOGFILE clause.

Specify FROMocation to indicate the location from which the
archived redo log file group is read. The value of location = must
be a fully specified file location following the conventions of your
operating system. If you omit this parameter, Oracle assumes the
archived redo log file group is in the location specified by the
initialization parameter LOG_ARCHIVE_DES®r LOG_ARCHIVE_
DEST_1

Specify the STANDBY DATABASEause to recover the standby
database using the control file and archived redo log files copied
from the primary database. The standby database must be
mounted but not open.

Specify the DATABASElause to recover the entire database. This
is the default. You can use this clause only when the database is
closed.

Note: This clause recovers only online datafiles.

« UNTIL: Use the UNTIL clause to specify the duration of the
recovery operation.

ALTER DATABASE

TABLESPACE

DATAFILE

STANDBY
TABLESPACE

STANDBY]
DATAFILE

LOGFILE

CONTINUE

- CANCELindicates cancel-based recovery. This clause
recovers the database until you issue the ALTER DATABASE
RECOVERtatement with the RECOVER CANCElause.

- TIME indicates time-based recovery. This parameter recovers
the database to the time specified by the date. The date must
be a character literal in the format 'YYYY-MM-
DD:HH24:MI:SS’.

- CHANGHNdicates change-based recovery. This parameter
recovers the database to a transaction-consistent state
immediately before the system change number (SCN)
specified by integer.

« USING BACKUP CONTROLFILEpecify this clause if you
want to use a backup control file instead of the current control
file.

Specify the TABLESPACEIlause to recover only the specified
tablespaces. You can use this clause if the database is open or
closed, provided the tablespaces to be recovered are offline.

Specify the DATAFILE clause to recover the specified datafiles.
You can use this clause when the database is open or closed,
provided the datafiles to be recovered are offline.

Specify STANDBY TABLESPACHS reconstruct a lost or damaged
tablespace in the standby database using archived redo log files
copied from the primary database and a control file.

Specify STANDBY DATAFILRo reconstruct a lost or damaged
datafile in the standby database using archived redo log files
copied from the primary database and a control file.

« UNTIL [CONSISTENT WITHCONTROLFILE Specify this
clause if you want the recovery of an old standby datafile or
tablespace to use the current standby database control file.
However, any redo in advance of the standby controlfile will
not be applied. The keywords CONSISTENT WITHire
optional and are provided for semantic clarity.

Specify the LOGFILE clause to continue media recovery by
applying the specified redo log file.

Specify CONTINUERoO continue multi-instance recovery after it has
been interrupted to disable a thread.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-17

ALTER DATABASE

CONTINUE Specify CONTINUEDEFAULT to continue recovery using the redo

DEFAULT log file that Oracle would automatically generate if no other
logfile were specified. This clause is equivalent to specifying
AUTOMATICexcept that Oracle does not prompt for a filename.

CANCEL Specify CANCELto terminate cancel-based recovery.

managed_recovery_clause

The managed_recovery clause specifies automated standby recovery mode.
This mode assumes that the automated standby database is an active component of
an overall standby database architecture. A primary database actively archives its
redo log files to the standby site. As these archived redo logs arrive at the standby
site, they become available for use by a managed standby recovery operation.
Automated standby recovery is restricted to media recovery.

Restrictions: The same restrictions apply as are listed under general_recovery
clause .

See Also: Oracle8i Backup and Recovery Guide for more information
on the parameters of this clause.

TIMEOUT Use the TIMEOUTclause to specify in minutes the wait period of

integer the managed recovery operation. The recovery process waits for
integer minutes for a requested archived log redo to be available
for writing to the automated standby database. If the redo log file
does not become available within that time, the recovery process
terminates with an error message. You can then issue the
statement again to return to automated standby recovery mode.

If you do not specify this clause, the database remains in
automated standby recovery mode until you reissue the statement
with the RECOVER CANCElause or until instance shutdown or

failure.

CANCEL Use the CANCELclause to terminate the managed recovery
operation after applying all the redo in the current archived redo
file.

7-18 SQL Reference

ALTER DATABASE

CANCEL
IMMEDIATE

parallel_clause

Specify CANCEL IMMEDIATEo terminate the managed recovery
operation after applying all the redo in the current archived redo
file or after the next redo log file read, whichever comes first.

Restriction: This clause cannot be issued from the same session
that issued the RECOVER MANAGED STANDBY DATABASE
statement.

Use the PARALLELclause to specify whether the recovery of media will be

parallelized.

Note:

The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior.

NOPARALLEL Specify NOPARALLEIfor serial execution. This is the default.

PARALLEL

PARALLEL
integer

See Also:

Specify PARALLELIf you want Oracle to select a degree of
parallelism equal to the number of CPUs available on all
participating instances times the value of the PARALLEL _
THREADS_PER_CPiditialization parameter.

Specification of integer indicates the degree of parallelism,
which is the number of parallel threads used in the parallel
operation. Each parallel thread may use one or two parallel
execution servers. Normally Oracle calculates the optimum
degree of parallelism, so it is not necessary for you to specify
integer

"Notes on the parallel_clause" for CREATE TABLEon

page 10-41

datafile _tempfile_clauses
The datafile and tempfile clauses let you modify datafiles and tempfiles.

You can use any of the following clauses when your instance has the database
mounted, open or closed, and the files involved are not in use:

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-19

ALTER DATABASE

CREATE
DATAFILE

DATAFILE
" filename

7-20 SQL Reference

Use the CREATE DATAFILEclause to create a new empty datafile
in place of an old one. You can use this clause to re-create a datafile
that was lost with no backup. The *filename * must identify a file
that is or was once part of the database. The filespec specifies
the name and size of the new datafile. If you omit the ASclause,
Oracle creates the new file with the name and size as the file
specified by 'filename

During recovery, all archived redo logs written to since the original
datafile was created must be applied to the new, empty version of
the lost datafile.

Oracle creates the new file in the same state as the old file when it
was created. You must perform media recovery on the new file to
return it to the state of the old file at the time it was lost.

Restriction: You cannot create a new file based on the first datafile
of the SYSTEMablespace.

The DATAFILE clauses affect your database files as follows:

ONLINE Specify ONLINEto bring the datafile online.

OFFLINE Specify OFFLINE to take the datafile offline. If
the database is open, you must perform media
recovery on the datafile before bringing it back
online, because a checkpoint is not performed
on the datafile before it is taken offline.

DRORakes a datafile offline when the database
is in NOARCHIVELO®ode.

RESIZE Specify RESIZE if you want Oracle to attempt to
increase or decrease the size of the datafile to the
specified absolute size in bytes. Use K or M to
specify this size in kilobytes or megabytes. There
is no default, so you must specify a size.

If sufficient disk space is not available for the
increased size, or if the file contains data beyond
the specified decreased size, Oracle returns an
error.

ALTER DATABASE

TEMPFILE
" filename

autoextend
clause

END BACKUP

Use the autoextend_clause to enable or
disable the automatic extension of a datafile. If
you do not specify this clause, datafiles are not
automatically extended.

OFFdisables autoextend if it is turned on. NEXT
and MAXSIZEare set to zero. Values for NEXT
and MAXSIZE must be respecified in further
ALTER DATABASE AUTOEXTEKHatements.

« ONenables autoextend.

« NEXTspecifies in bytes the size of the next
increment of disk space to be automatically
allocated to the datafile when more extents
are required. Use K or M to specify this size
in kilobytes or megabytes. The default is one
data block.

« MAXSIZEspecifies the maximum disk space
allowed for automatic extension of the
datafile.

« UNLIMITED sets no limit on allocating disk
space to the datafile.

Specify END BACKUB avoid media recovery on
database startup after an online tablespace
backup was interrupted by a system failure or
instance failure or SHUTDOWN ABQRT

Caution: Do not use ALTER TABLESPACE. END BACKU
you have restored any of the files affected from a backup.
Media recovery is fully described in Oracle8i Backup and
Recovery Guide.

Lets you resize your temporary datafile or specify the
autoextend _clause , with the same effect as with a permanent

datafile.

Restriction: You cannot specify TEMPFILE unless the database is

open.
DROP

Specify DROP to drop tempfile from the
database. The tablespace remains.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-21

ALTER DATABASE

lodfile _clauses
The logdfile clauses let you add, drop, or modify log files.

ARCHIVELOG Specify ARCHIVELOdf you want the contents of a redo log file
group to be archived before the group can be reused. This mode
prepares for the possibility of media recovery. Use this clause only
after shutting down your instance normally or immediately with
no errors and then restarting it, mounting the database in parallel
server disabled mode.

NOARCHIVELOG Specify NOARCHIVELO® you do not want the contents of a redo
log file group to be archived so that the group can be reused. This
mode does not prepare for recovery after media failure.

Use the ARCHIVELOGlause and NOARCHIVELOG@lause only if your instance has the
database mounted in Oracle Parallel Server disabled mode, but not open.

ADD LOGFILE Use the ADD LOGFILEclause to add one or more redo log file
groups to the specified thread, making them available to the
instance assigned the thread.

THREAD The THREALDxlause is applicable only if you are

integer using Oracle with the Parallel Server option in
parallel mode. integer is the thread number.
The number of threads you can create is limited
by the value of the MAXINSTANCE $®arameter
specified in the CREATE DATABAS§atement.

If you omit THREADthe redo log file group is
added to the thread assigned to your instance.

GROUP The GROURIlause uniquely identifies the redo

integer log file group among all groups in all threads
and can range from 1 to the MAXLOGFILES
value. You cannot add multiple redo log file
groups having the same GROURalue. If you
omit this parameter, Oracle generates its value
automatically. You can examine the GROURalue
for a redo log file group through the dynamic
performance view V$LOG

7-22 SQL Reference

ALTER DATABASE

ADD LOGFILE
MEMBER

DROP LOGFILE

filespec Each filespec specifies a redo log file group
containing one or more members, or copies.

See Also: the syntax description of
filespec in filespec on page 11-27

Use the ADD LOGFILE MEMBEfause to add new members to
existing redo log file groups. Each new member is specified by
'filename . If the file already exists, it must be the same size as
the other group members, and you must specify REUSEIf the file
does not exist, Oracle creates a file of the correct size. You cannot
add a member to a group if all of the group’s members have been
lost through media failure.

You can specify an existing redo log file group in one of these
ways:

GROUP Specify the value of the GROURarameter that
integer identifies the redo log file group.
filename[s] List all members of the redo log file group. You

must fully specify each filename according to
the conventions of your operating system.

Use the DROP LOGFILE clause to drop all members of a redo log
file group. Specify a redo log file group as indicated for the ADD
LOGFILE MEMBERIause.

« Todrop the current log file group, you must first issue an
ALTER SYSTEM SWITCH LOGFILdatement.

See Also: ALTER SYSTEM on page 7-127
« You cannot drop a redo log file group if it needs archiving.

« You cannot drop a redo log file group if doing so would cause
the redo thread to contain less than two redo log file groups.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-23

ALTER DATABASE

DROP LOGFILE
MEMBER

CLEAR LOGFILE

7-24 SQL Reference

Use the DROP LOGFILE MEMBHERwuse to drop one or more redo
log file members. Each ’filename ° must fully specify a member
using the conventions for filenames on your operating system.

« Todrop alog file in the current log, you must first issue an
ALTER SYSTEM SWITCH LOGFIL&atement.

See Also: ALTER SYSTEM on page 7-127

« You cannot use this clause to drop all members of a redo log
file group that contains valid data. To perform this operation,
use the DROP LOGFILElause.

Use the CLEAR LOGFILEclause to reinitialize an online redo log,
optionally without archiving the redo log. CLEAR LOGFILEis
similar to adding and dropping a redo log, except that the
statement may be issued even if there are only two logs for the
thread and also may be issued for the current redo log of a closed
thread.

UNARCHIVED You must specify UNARCHIVEDf you want to
reuse a redo log that was not archived.

Caution: Specifying UNARCHIVEDnakes
backups unusable if the redo log is needed
for recovery.

UNRECOVER- You must specify UNRECOVERABLE DATAFILE

ABLE DATA- you have taken the datafile offline with the

FILE database in ARCHIVELOGNode (that is, you
specified ALTER DATABSE. DATAFILE
OFFLINE without the DROFkeyword), and if the
unarchived log to be cleared is needed to
recover the datafile before bringing it back
online. In this case, you must drop the datafile
and the entire tablespace once the CLEAR
LOGFILE statement completes.

Do not use CLEAR LOGFILEto clear a log needed for media
recovery. If it is necessary to clear a log containing redo after the
database checkpoint, you must first perform incomplete media
recovery. The current redo log of an open thread can be cleared.
The current log of a closed thread can be cleared by switching logs
in the closed thread.

ALTER DATABASE

If the CLEAR LOGFILEstatement is interrupted by a system or
instance failure, then the database may hang. If this occurs, reissue
the statement after the database is restarted. If the failure occurred
because of 1/0 errors accessing one member of a log group, then
that member can be dropped and other members added.

controlfile_clauses

CREATE
STANDBY
CONTROLFILE

BACKUP
CONTROLFILE

Use the CREATE STANDBY CONTROLFIcERuse to create a
control file to be used to maintain a standby database. If the file
already exists, you must specify REUSE

See Also: Oracle8i Standby Database Concepts and
Administration.

Use the BACKUP CONTROLFILEause to back up the current
control file.

TO’filename ' Specify the file to which the control file is backed
up. You must fully specify the filename using
the conventions for your operating system. If the
specified file already exists, you must specify
REUSE

TO TRACE Specify TO TRACEf you want Oracle to write
SQL statements to the database’s trace file rather
than making a physical backup of the control
file. The SQL statements can start up the
database, re-create the control file, and recover
and open the database appropriately, based on
the created control file.

You can copy the statements from the trace file
into a script file, edit the statements as necessary,
and use the database if all copies of the control
file are lost (or to change the size of the control
file).

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-25

ALTER DATABASE

« RESETLOG®dicates that the SQL
statement written to the trace file for starting
the database is ALTER DATABASE OPEN
RESETLOGS

« NORESETLOGIBdicates that the SQL
statement written to the trace file for starting
the database is ALTER DATABASE OPEN
NORESETLOGS

MOUNT

Use the MOUNTIlause to mount the database. Do not use this clause when the
database is mounted.

STANDBY Specify STANDBYto mount the standby database.

DATABASE See Also: Oracle8i Standby Database Concepts and
Administration

CLONE Specify CLONEo mount the clone database.

DATABASE

See Also: Oracle8i Backup and Recovery Guide

CONVERT

Use the CONVERTIlause to complete the conversion of the Oracle7 data dictionary.
After you use this clause, the Oracle7 data dictionary no longer exists in the Oracle
database.

Note: Use this clause only when you are migrating to Oracle8i, and
do not use this clause when the database is mounted.

See Also: Oracle8i Migration

ACTIVATE STANDBY DATABASE

The ACTIVATE STANDBY DATABASHause changes the state of a standby database
to an active database. Do not use this clause when the database is mounted.

See Also: Oracle8i Standby Database Concepts and Administration

7-26 SQL Reference

ALTER DATABASE

OPEN

Use the OPENclause to make the database available for normal use. You must
mount the database before you can open it. You must activate a standby database
before you can open it.

READ ONLY Specify READ ONLYo restrict users to read-only transactions,
preventing them from generating redo logs. You can use this
clause to make a standby database available for queries even
while archive logs are being copied from the primary database
site.

Restrictions:

« You cannot open a database READ ONLYf it is currently
opened READ WRITHy another instance.

« You cannot open a database READ ONLYf it requires recovery.

« You cannot take tablespaces offline while the database is open
READ ONLYHowever, you can take datafiles offline and
online, and you can recover offline datafiles and tablespaces
while the database is open READ ONLY

READ WRITE Specify READ WRITHo open the database in read-write mode,
allowing users to generate redo logs. This is the default.

RESETLOGS Specify RESETLOGSo reset the current log
sequence number to 1 and discards any redo
information that was not applied during
recovery, ensuring that it will never be applied.
This effectively discards all changes that are in
the redo log, but not in the database.

You must specify RESETLOGSo open the
database after performing media recovery with
an incomplete recovery using the RECOVER
clause or with a backup control file. After
opening the database with this clause, you
should perform a complete database backup.

NORESETLOGS Specify NORESETLOGH retain the current stat
of the log sequence number and redo log files.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-27

ALTER DATABASE

Restriction: You can specify RESETLOG&nd NORESETLOG&ly
after performing incomplete media recovery or complete media
recovery with a backup control file. In any other case, Oracle uses
the NORESETLOG&utomatically.

RENAME GLOBAL_NAME

Specify RENAME GLOBAL_NANMiEchange the global name of the database. The
database is the new database name and can be as long as eight bytes. The optional
domain specifies where the database is effectively located in the network hierarchy.
Do not use this clause when the database is mounted.

Note: Renaming your database does not change global references
to your database from existing database links, synonyms, and
stored procedures and functions on remote databases. Changing
such references is the responsibility of the administrator of the
remote databases.

See Also: Oracle8i Distributed Database Systems for more
information on global names

RENAME FILE

Use the RENAME FILEclause to rename datafiles, tempfiles, or redo log file
members. This clause renames only files in the control file. It does not actually
rename them on your operating system. You must specify each filename using the
conventions for filenames on your operating system before specifying this clause.
Do not use this clause when the database is mounted.

RESET COMPATIBILITY

Specify RESET COMPATIBILITY to mark the database to be reset to an earlier
version of Oracle when the database is next restarted. Do not use this clause when
the database is mounted.

Note: RESET COMPATIBILITY works only if you have successfully
disabled Oracle features that affect backward compatibility.

7-28 SQL Reference

ALTER DATABASE

See Also: Oracle8i Migration for more information on
downgrading to an earlier version of Oracle

ENABLE THREAD

In an Oracle Parallel Server environment, specify ENABLE THREAD enable the
specified thread of redo log file groups. The thread must have at least two redo log
file groups before you can enable it. The database must be open.

PUBLIC Specify PUBLIC to make the enabled thread available to any
instance that does not explicitly request a specific thread with the
initialization parameter THREADIf you omit PUBLIC, the thread
is available only to the instance that explicitly requests it with the
initialization parameter THREAD

See Also: Oracle8i Parallel Server Admininstration and Tuning for
more information on enabling and disabling threads.

DISABLE THREAD

Specify DISABLE THREADo disable the specified thread, making it unavailable to
all instances. The database must be open, but you cannot disable a thread if an
instance using it has the database mounted.

See Also: Oracle8i Parallel Server Admininstration and Tuning for
more information on enabling and disabling threads.

CHARACTER SENATIONAL CHARACTER SET

CHARACTER SEdhanges the character set the database uses to store data.
NATIONAL CHARACTER SERhanges the national character set used to store data in
columns specifically defined as NCHARNCLOBor NVARCHARZSpecify
character_set without quotation marks. The database must be open.

Caution: You cannot roll back an ALTER DATABASE CHARACTER
SETor ALTER DATABASE NATIONAL CHARACTER SEfement.
Therefore, you should perform a full backup before issuing either

of these statements.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-29

ALTER DATABASE

Restrictions:

« You must have SYSDBAsystem privilege, and you must start up the database in
restricted mode (for example, with the SQL*Plus STARTUP RESTRICT
command).

« The current character set must be a strict subset of the character set to which
you change. That is, each character represented by a codepoint value in the
source character set must be represented by the same codepoint value in the
target character set.

See Also: Oracle8i National Language Support Guide for a list of
valid character sets

Examples

READ ONLY / READ WRITE Example The first statement below opens the
database in read-only mode. The second statement returns the database to read-
write mode and clears the online redo logs:

ALTER DATABASE OPEN READ ONLY;
ALTER DATABASE OPEN READ WRITE RESETLOGS;

PARALLEL Example The following statement performs tablespace recovery using
parallel recovery processes:

ALTER DATABASE
RECOVER TABLESPACE binky
PARALLEL;

Redo Log File Group Example The following statement adds a redo log file group
with two members and identifies it with a GROURarameter value of 3:

ALTER DATABASE stocks
ADD LOGFILE GROUP 3
('diska:log3.log’ ,
‘diskb:log3.log’) SIZE 50K;

Redo Log File Group Member Example The following statement adds a member
to the redo log file group added in the previous example:

ALTER DATABASE stocks
ADD LOGFILE MEMBER "diskc:log3.log’
TO GROUP 3;

7-30 SQL Reference

ALTER DATABASE

Dropping a Log File Member The following statement drops the redo log file
member added in the previous example:

ALTER DATABASE stocks
DROP LOGFILE MEMBER 'diskc:log3.log’;

Renaming a Log File Member Example The following statement renames a redo
log file member:

ALTER DATABASE stocks
RENAME FILE 'diskb:log3.log’ TO 'diskd:log3.log’;

The above statement only changes the member of the redo log group from one file
to another. The statement does not actually change the name of the file
'diskbk:log3.log’ to 'diskd:log3.log’ . You must perform this operation
through your operating system.

Dropping All Log File Group Members Example The following statement drops all
members of the redo log file group 3:

ALTER DATABASE stocks DROP LOGFILE GROUP 3;

Adding a Redo Log File Group Example The following statement adds a redo log
file group containing three members to thread 5 (in an Oracle Parallel Server
environment) and assigns it a GROURparameter value of 4:

ALTER DATABASE stocks
ADD LOGFILE THREAD 5 GROUP 4
('diska:log4.log’,
‘diskb:log4:log’,
'diskc:log4.log’);

Disabling a Parallel Server Thread Example The following statement disables
thread 5 in an Oracle Parallel Server environment:
ALTER DATABASE stocks

DISABLE THREAD 5;

Enabling a Parallel Server Thread Example The following statement enables
thread 5 in an Oracle Parallel Server, making it available to any Oracle instance that
does not explicitly request a specific thread:

ALTER DATABASE stocks
ENABLE PUBLIC THREAD 5;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-31

ALTER DATABASE

Creating a New Datafile Example The following statement creates a new datafile
'disk2:db1.dat’ based on the file 'disk1:dbl.dat’

ALTER DATABASE
CREATE DATAFILE 'disk1l:dbl.dat’ AS 'disk2:dbl.dat’;

Changing the Global Database Name Example The following statement changes
the global name of the database and includes both the database name and domain:

ALTER DATABASE
RENAME GLOBAL_NAME TO sales.australia.acme.com;

CHARACTER SET Example The following statements change the database
character set and national character set to the WE8ISO8859P1 character set:

ALTER DATABASE dbl CHARACTER SET WE8ISO8859P1,
ALTER DATABASE dbl NATIONAL CHARACTER SET WES8ISO8859P1;

The database name is optional, and the character set name is specified without
guotation marks.

Resizing a Datafile Example The following statement attempts to change the size
of datafile 'disk1:dbl.dat’

ALTER DATABASE

DATAFILE 'disk1:dbl.dat’ RESIZE 10 M;
Clearing a Log File The following statement clears a log file:
ALTER DATABASE

CLEAR LOGFILE 'disk3:log.dbf’;

Database Recovery Examples The following statement performs complete
recovery of the entire database, letting Oracle generate the name of the next
archived redo log file needed:

ALTER DATABASE
RECOVER AUTOMATIC DATABASE;
The following statement explicitly names a redo log file for Oracle to apply:
ALTER DATABASE
RECOVER LOGFILE 'diska:arch0006.arc’;
The following statement performs time-based recovery of the database:
ALTER DATABASE

7-32 SQL Reference

ALTER DATABASE

RECOVER AUTOMATIC UNTIL TIME '1998-10-27:14:00:00’;

Oracle recovers the database until 2:00 pm on October 27, 1998.
The following statement recovers the tablespace user5 :
ALTER DATABASE

RECOVER TABLESPACE user5;

The following statement recovers the standby datafile /finance/stbs_21.f ,
using the corresponding datafile in the original standby database, plus all relevant
archived logs and the current standby database control file:

ALTER DATABASE
RECOVER STANDBY DATAFILE ’ffinance/stbs_21.f'
UNTIL CONTROLFILE;

Managed Standby Database Examples The following statement recovers the
standby database in automated standby recovery mode:

ALTER DATABASE
RECOVER MANAGED STANDBY DATABASE;

The following statement puts the database in automated standby recovery mode.
The managed recovery process will wait up to 60 minutes for the next archive log:

ALTER DATABASE
RECOVER MANAGED STANDBY DATABASE TIMEOUT 60;
If each subsequent log arrives within 60 minutes of the last log, recovery continues
indefinitely or until manually terminated.
The following statement terminates the managed recovery operation:
ALTER DATABASE
RECOVER MANAGED STANDBY DATABASE CANCEL IMMEDIATE;

The managed recovery operation terminates before the next group of redo is read
from the current redo log file. Media recovery ends in the "middle" of applying redo
from the current redo log file.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-33

ALTER DIMENSION

ALTER DIMENSION

Purpose

Use the ALTER DIMENSIONstatement to change the hierarchical relationships or

dimension attributes of a dimension.

See Also: CREATE DIMENSION on page 9-34 for more

information on dimensions

Prerequisites
The dimension must be in your schema or you must have the ALTER ANY
DIMENSIONSsystem privilege to use this statement.
A dimension is always altered under the rights of the owner.

Syntax

m.schema
—>| ALTER |->| DIMENSION | ‘ «(dimension)>

level_clause

|
L ADD

;)
hierarchy_clause)

attribute_clause

=m0

DROP

HIERARCHY |{hierarchy)]

ATTRIBUTE

\| COMPILE

7-34 SQL Reference

ALTER DIMENSION

level clause :=

level_column
()
N

Ievel_table)»@»(level_column

hierarchy_clause

-join_clause
—{ HIERARCHY Khierarchy)»@-(child_level)»—q cHib 1 oF |{parent_|eve|)) A @

join_clause =

child_key_column

REFERENCES |—><parent_level

dependent_column

(X

N\
dependent_column

ATTRIBUTE DETERMINES

Keywords and Parameters

The following keywords and parameters have meaning unique to ALTER
DIMENSION The remaining keywords and parameters have the same functionality
that they have in the CREATE DIMENSIONtatement.

See Also: CREATE DIMENSION on page 9-34

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-35

ALTER DIMENSION

Example

schema

Specify the schema of the dimension you want to modify. If you do not specify
schema, Oracle assumes the dimension is in your own schema.

dimension
Specify the name of the dimension. This dimension must already exist.

ADD
The ADDclauses let you add a level, hierarchy, or attribute to the dimension.
Adding one of these elements does not invalidate any existing materialized view.

Oracle processes ADD LEVELclauses prior to any other ADDclauses.

DROP

The DROP clauses let you drop a level, hierarchy, or attribute from the dimension.
Any level, hierarchy, or attribute you specify must already exist.

Restriction: If any attributes or hierarchies reference a level, you cannot drop the
level until you either drop all the referencing attributes and hierarchies or specify
CASCADE

CASCADE Specify CASCADEHf you want Oracle to drop any attributes or
hierarchies that reference the level, along with the level itself.

RESTRICT Specify RESTRICTif you want to prevent Oracle from dropping a
level that is referenced by any attributes or hierarchies. This is the
default.

COMPILE

Specify COMPILEto explicitly recompile an invalidated dimension. Oracle
automatically compiles a dimension when you issue an ADDclause or DROR:lause.
However, if you alter an object referenced by the dimension (for example, if you
drop and then re-create a table referenced in the dimension), the dimension will be
invalidated, and you must recompile it explicitly.

Modifying a Dimension Example This example modifies the time dimension:

ALTER DIMENSION time
DROP HIERARCHY week_month;

7-36 SQL Reference

ALTER DIMENSION

ALTER DIMENSION time
DROP ATTRIBUTE cur_date;
ALTER DIMENSION time
ADD LEVEL day IS time_tab.t_day
ADD ATTRIBUTE day DETERMINES t_holiday;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-37

ALTER FUNCTION

ALTER FUNCTION

Purpose

Prerequisites

Syntax

Use the ALTER FUNCTIONMtatement to recompile an invalid standalone stored
function. Explicit recompilation eliminates the need for implicit run-time
recompilation and prevents associated run-time compilation errors and
performance overhead.

The ALTER FUNCTIONMtatement is similar to ALTER PROCEDURE on page 7-88.
For information on how Oracle recompiles functions and procedures, see Oracle8i
Concepts.

Note: This statement does not change the declaration or definition
of an existing function. To redeclare or redefine a function, use the
CREATE FUNCTIOBtatement with the OR REPLACElause; see
CREATE FUNCTION on page 9-43.

The function must be in your own schema or you must have ALTER ANY
PROCEDURS§ystem privilege.

m.schema -DEBUG
| ALTER |->| FUNCTION } . {function)->| COMPILE

Keywords and Parameters

schema

Specify the schema containing the function. If you omit schema, Oracle assumes
the function is in your own schema.

function
Specify the name of the function to be recompiled.

7-38 SQL Reference

ALTER FUNCTION

Example

COMPILE

Specify COMPILEto cause Oracle to recompile the function. The COMPILEkeyword
is required. If Oracle does not compile the function successfully, you can see the
associated compiler error messages with the SQL*Plus command SHOW ERRORS

DEBUG

Specify DEBUGO instruct the PL/SQL compiler to generate and store the code for
use by the PL/SQL debugger.

Recompiling a Function Example To explicitly recompile the function get_bal
owned by the user merriweather , issue the following statement:

ALTER FUNCTION merriweather.get_bal
COMPILE;

If Oracle encounters no compilation errors while recompiling get_bal , get bal
becomes valid. Oracle can subsequently execute it without recompiling it at run
time. If recompiling get_bal results in compilation errors, Oracle returns an error,
and get_bal remains invalid.

Oracle also invalidates all objects that depend upon get_bal . If you subsequently
reference one of these objects without explicitly recompiling it first, Oracle
recompiles it implicitly at run time.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-39

ALTER INDEX

ALTER INDEX

Purpose
Use the ALTER INDEXstatement to change or rebuild an existing index.

See Also: CREATE INDEX on page 9-52 for information on
creating an index
Prerequisites

The index must be in your own schema or you must have ALTER ANY INDEX
system privilege.

Schema object privileges are granted on the parent index, not on individual index
partitions or subpartitions.

You must have tablespace quota to modify, rebuild, or split an index partition or to
modify or rebuild an index subpartition.

7-40 SQL Reference

ALTER INDEX

Syntax

schema
DN

deallocate_unused_clause

allocate_extent_clause

physical_attributes_clause)—
OO OO
—| RENAME H TO |—><new_index_name>—

partitioning_clauses

ﬂ

deallocate_unused_clause N

KEEP integer

—>| DEALLOCATE |->| UNUSED }

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-41

ALTER INDEX

allocate_extent_clause

DATAFILE |->O{fi|ename

INSTANCE |{integer

—>| ALLOCATE |->| EXTENT }

parallel_clause =

NOPARALLEL
()
PARALLEL

physical_attributes_clause

PCTFREE integer

PCTUSED |—><integer

INITRANS

integer

MAXTRANS |->(integer

storage_clause

7-42 SQL Reference

ALTER INDEX

storage_clause : See storage_clause

rebuild_clause

PARTITION |{partition

SUBPARTITION |{subpartition

REBUILD

| NOREVERSE I

PARAMETERS

compression_clause =

A]
COMPRESS
NOCOMPRESS

partitioning_clauses =

{modify_defauIt_attributes_clause%
—(rename_partition/subpartition_clause)—
\Cmodify_subpartition_clause)—

rebuild_parameters

on page 11-129.

parallel_clause

—| TABLESPACE |{tab|espace)—

/_)_—| COMPUTE |->| STATISTICS |—

—(physical_attributes_clause)—

LOGGING
l NOLOGGING '

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-43

ALTER INDEX

modify _default_attributes_clause n=

FOR |->| PARTITION Kpartitionh

—>| MODIFY |->| DEFAULT |->| ATTRIBUTES } ﬂ

physical_attributes_clause

TABLESPACE
| LOGGING q
NOLOGGING

modify partition_clause

tablespace

DEFAULT

Il

physical_attributes_clause
LOGGING
l NOLOGGING '

deallocate_unused_clause

—>| MODIFY |—>| PARTITION |{partition)+

allocate_extent_clause

—| COALESCE
\| UNUSABLE

rename_partition / subpartition_clause =
PARTITION
l SUBPARTITION '

drop_partition_clause =

current_name)e| TO |—>Cnew_name>—>

—>| DROP |->| PARTITION |{partition_name}>

7-44 SQL Reference

ALTER INDEX

split_partition_clause =

— sPLIT [PaRTITION |(partition_name_old)-f AT |—>@—><value_list>—>@->
[a| INTO index_partition_description}s@e(index_panition_descrpitionm parallel_clause

index_partition_description =

segment_attributes_clause

compression_clause

—(_partition)
—>| PARTITION \

modify_subpartition_clause

allocate_extent_clause

al MODIFY |->| SUBPARTITION |—><subpartition

deallocate_unused_clause

Keywords and Parameters

schema

Specify the schema containing the index. If you omit schema, Oracle assumes the
index is in your own schema.

index
Specify the name of the index to be altered.

Restrictions:

« Ifindex isadomain index, you can specify only the PARAMETERS8ause, the
RENAMElause, or the rebuild_clause (with or without the PARAMETERS
clause). No other clauses are valid.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-45

ALTER INDEX

« You cannot alter or rename a domain index that is marked LOADINGor
FAILED. If an index is marked FAILED, the only clause you can specify is
REBUILD.

See Also: Oracle8i Data Cartridge Developer’s Guide for information
on the LOADINGand FAILED states of domain indexes

deallocate _unused_clause

The deallocate _unused clause lets you explicitly deallocate unused space at
the end of the index and makes the freed space available for other segments in the
tablespace. Only unused space above the high water mark can be freed.

If index is range-partitioned or hash-partitioned, Oracle deallocates unused space
from each index partition. If index is a local index on a composite-partitioned
table, Oracle deallocates unused space from each index subpartition.

Restrictions:
= You cannot specify this clause for an index on a temporary table.

« You cannot specify this clause and also specify the rebuild_clause

See Also: ALTER TABLE on page 8-2 for more information on this
clause

KEEP integer = The KEEPclause lets you specify the number of bytes above the
high water mark that the index will have after deallocation. If the
number of remaining extents are less than MINEXTENTSthen
MINEXTENTSs set to the current number of extents. If the initial
extent becomes smaller than INITIAL |, then INITIAL is set to the
value of the current initial extent. If you omit KEER all unused
space is freed.

See Also: ALTER TABLE on page 8-2 for a complete
description of this clause

allocate _extent_clause

The allocate _extent clause lets you explicitly allocate a new extent for the
index. For a local index on a hash-partitioned table, Oracle allocates a new extent
for each partition of the index.

Restriction: You cannot specify this clause for an index on a temporary table or for
a range-partitioned or composite-partitioned index.

7-46 SQL Reference

ALTER INDEX

SIZE integer

DATAFILE
'filename ’

INSTANCE
integer

Specify the size of the extent in bytes. Use K or M to specify the
extent size in kilobytes or megabytes. If you omit SIZE , Oracle
determines the size based on the values of the index’s storage
parameters.

Specify one of the datafiles in the index’s tablespace to contain the
new extent. If you omit DATAFILE, Oracle chooses the datafile.

Use the INSTANCEclause to make the new extent available to the
specified instance. An instance is identified by the value of its
initialization parameter INSTANCE_NUMBERf you omit this
parameter, the extent is available to all instances. Use this
parameter only if you are using Oracle with the Parallel Server
option in parallel mode.

Explicitly allocating an extent with this clause does not change the values of the
NEXTand PCTINCREASEtorage parameters, so does not affect the size of the next
extent to be allocated.

parallel_clause

Use the PARALLELclause to change the default degree of parallelism for queries
and DML on the index.

Restriction: You cannot specify this clause for an index on a temporary table.

Note:

The syntax of the parallel _clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior.

NOPARALLEL Specify NOPARALLEIfor serial execution. This is the default.

PARALLEL

Specify PARALLELIf you want Oracle to select a degree of
parallelism equal to the number of CPUs available on all
participating instances times the value of the PARALLEL _
THREADS_ PER_CPiditialization parameter.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-47

ALTER INDEX

PARALLEL Specification of integer indicates the degree of parallelism,
integer which is the number of parallel threads used in the parallel
operation. Each parallel thread may use one or two parallel
execution servers. Normally Oracle calculates the optimum
degree of parallelism, so it is not necessary for you to specify
integer
See Also: "Notes on the parallel_clause" for CREATE TABLEon
page 10-41

physical_attributes_clause

Use the physical_attributes clause to change the values of parameters for a
nonpartitioned index, all partitions and subpartitions of a partitioned index, a
specified partition, or all subpartitions of a specified partition.

See Also: the physical attributes parameters in CREATE TABLE on
page 10-7

Restrictions:

= You cannot specify this clause for an index on a temporary table.

= You cannot specify the PCTUSEDparameter when altering an index.

= You cannot change the value of the PCTFREEparameter for the index as a
whole (ALTER INDEX or for a partition (ALTER INDEX... MODIFY PARTITION.
You can specify PCTFREHN all other forms of the ALTER INDEXstatement.

storage _
clause

LOGGING
NOLOGGING

7-48 SQL Reference

Use the storage _clause to change the storage parameters for a
nonpartitioned index, index partition, or all partitions of a
partitioned index, or default values of these parameters for a
partitioned index.

See Also: storage clause on page 11-129

Use LOGGINGor NOLOGGINGo specify whether subsequent
Direct Loader (SQL*Loader) and direct-load INSERT operations
against a nonpartitioned index, a range or hash index partition, or
all partitions or subpartitions of a composite-partitioned index
will be logged (LOGGING or not logged (NOLOGGINEIN the redo
log file.

ALTER INDEX

In NOLOGGIN@ode, data is modified with minimal logging (to
mark new extents invalid and to record dictionary changes).

When applied during media recovery, the extent invalidation
records mark a range of blocks as logically corrupt, because the
redo data is not logged. Therefore, if you cannot afford to lose this
index, you must take a backup after the operation in NOLOGGING
mode.

If the database is run in ARCHIVELOGNode, media recovery from
a backup taken before an operation in LOGGINGmMode will re-
create the index. However, media recovery from a backup taken
before an operation in NOLOGGIN@ode will not re-create the
index.

An index segment can have logging attributes different from those
of the base table and different from those of other index segments
for the same base table.

Restriction: You cannot specify this clause for an index on a
temporary table.

See Also: Oracle8i Concepts and the Oracle8i Parallel Server
Concepts for more information about LOGGINGand parallel
DML

RECOVERABLE These keywords are deprecated and have been replaced with

|
UNRECOVER-

ABLE

rebuild_clause

LOGGINGand NOLOGGINGespectively. Although RECOVERABLE
and UNRECOVERABIL&te supported for backward compatibility,
Oracle Corporation strongly recommends that you use the
LOGGINGand NOLOGGING&eywords.

RECOVERABLIE not a valid keyword for creating partitioned
tables or LOB storage characteristics. UNRECOVERABLIE not a
valid keyword for creating partitioned or index-organized tables.
Also, it can be specified only with the ASsubquery clause of
CREATE INDEX

Use the rebuild clause to re-create an existing index or one of its partitions or
subpartitions. For a function-based index, this clause also enables the index. If the
function on which the index is based does not exist, the rebuild statement will fail.

Restrictions:

« You cannot rebuild an index on a temporary table.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-49

ALTER INDEX

« You cannot rebuild an entire partitioned index. You must rebuild each partition
or subpartition, as described below.

= You cannot also specify the deallocate _unused_clause in this statement.

« You cannot change the value of the PCTFREEparameter for the index as a
whole (ALTER INDEX or for a partition (ALTER INDEX... MODIFY PARTITION.
You can specify PCTFREHN all other forms of the ALTER INDEXstatement.

PARTITION
partition

SUBPARTITION
subpatrtition

REVERSH
NOREVERSE

7-50 SQL Reference

Use the PARTITION clause to rebuild one partition of an index.
You can also use this clause to move an index partition to another
tablespace or to change a create-time physical attribute.

Restriction: You cannot specify this clause for a local index on a
composite-partitioned table. Instead, use the REBUILD
SUBPARTITIONCclause.

See Also: Oracle8i Administrator’s Guide for more information
about partition maintenance operations

Use the SUBPARTITIONCclause to rebuild one subpartition of an
index. You can also use this clause to move an index subpartition
to another tablespace. If you do not specify TABLESPACEthe
subpartition is rebuilt in the same tablespace.

Restrictions: The only parameters you can specify for a
subpartition are TABLESPACENd the parallel_clause

Indicate whether the bytes of the index block are stored in reverse
order:

« REVERSKHETtores the bytes of the index block in reverse order
and excludes the rowid when the index is rebuilt.

« NOREVERSHores the bytes of the index block without
reversing the order when the index is rebuilt. Rebuilding a
REVERSENdex without the NOREVERSEeyword produces a
rebuilt, reverse-keyed index.

Restrictions:

« You cannot reverse a bitmap index or an index-organized
table.

« You cannot specify REVERSEBr NOREVERSHr a partition or
subpartition.

ALTER INDEX

TABLESPACE
tablespace

COMPRESS

NOCOMPRESS

ONLINE

COMPUTE
STATISTICS

Specify the tablespace where the rebuilt index, index partition, or
index subpartition will be stored. The default is the default
tablespace where the index or partition resided before you rebuilt
it.

Specify COMPRES® enable key compression, which eliminates
repeated occurrence of key column values. Use integer to specify
the prefix length (number of prefix columns to compress).

« For unique indexes, the range of valid prefix length values is
from 1 to the number of key columns minus 1. The default
prefix length is the number of key columns minus 1.

« For nonunique indexes, the range of valid prefix length values
is from 1 to the number of key columns. The default prefix
length is number of key columns.

Oracle compresses only nonpartitioned indexes that are
nonunique or unique indexes of at least two columns.

Restriction: You cannot specify COMPRESHr a bitmap index.

Specify NOCOMPRESS disable key compression. This is the
default.

Specify ONLINE to allow DML operations on the table or partition
during rebuilding of the index.

Restrictions:

« You cannot specify ONLINE when rebuilding the secondary
index of an index-organized table.

« Parallel DML is not supported during online index building.
If you specify ONLINE and then issue parallel DML
statements, Oracle returns an error.

Specify COMPUTE STATISTICSf you want to collect statistics at
relatively little cost during the rebuilding of an index. These
statistics are stored in the data dictionary for ongoing use by the
optimizer in choosing a plan of execution for SQL statements.

The types of statistics collected depend on the type of index you
are rebuilding.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-51

ALTER INDEX

Note: If you create an index using another index (instead of a
table), the original index might not provide adequate
statistical information. Therefore, Oracle generally uses the
base table to compute the statistics, which will improve the
statistics but may negatively affect performance.

Additional methods of collecting statistics are available in PL/
SQL packages and procedures.

See Also: Oracle8i Supplied PL/SQL Packages Reference

LOGGING] Specify whether the ALTER INDEX... REBUILD operation will be
NOLOGGING logged.

PARAMETERS
The PARAMETERS8ause applies only to domain indexes. This clause specifies the
parameter string for altering the index (or, in the rebuild _clause , rebuilding the

index). The maximum length of the parameter string is 1000 characters. This string
is passed uninterpreted to the appropriate indextype routine.

Restrictions:
= You cannot specify this clause for any indexes other than domain indexes.
« The parameter string is passed to the appropriate routine only if index is not
marked UNUSABLE
See Also:

« Oracle8i Data Cartridge Developer’s Guide for more information
on indextype routines

« CREATE INDEX on page 9-52 for more information on domain
indexes

ENABLE

ENABLEapplies only to a function-based index that has been disabled because a
user-defined function used by the index was dropped or replaced. This clause
enables such an index if these conditions are true:

« The function is currently valid

« The signature of the current function matches the signature of the function
when the index was created

7-52 SQL Reference

ALTER INDEX

« The function is currently marked as DETERMINISTIC

Restriction: You cannot specify any other clauses of ALTER INDEXin the same
statement with ENABLE

DISABLE

DISABLE applies only to a function-based index. This clause enables you to disable
the use of a function-based index. You might want to do so, for example, while
working on the body of the function. Afterward you can either rebuild the index or
specify another ALTER INDEXstatement with the ENABLEkeyword.

UNUSABLE

Specify UNUSABLEo mark the index or index partition(s) or index subpartition(s)
UNUSABLEAnN unusable index must be rebuilt, or dropped and re-created, before it
can be used. While one partition is marked UNUSABLEthe other partitions of the
index are still valid. You can execute statements that require the index if the
statements do not access the unusable partition. You can also split or rename the
unusable partition before rebuilding it.

Restriction: You cannot specify this clause for an index on a temporary table.

RENAME TO

Use the RENAMElause to rename index to new_index_name . The new_index_
nameis a single identifier and does not include the schema name.

COALESCE

Specify COALESCHo instruct Oracle to merge the contents of index blocks where
possible to free blocks for reuse.

Restriction: You cannot specify this clause for an index on a temporary table.

See Also: Oracle8i Administrator’s Guide for more information on
space management and coalescing indexes

partitioning_clauses

The partitioning clauses of the ALTER INDEXstatement are valid only for
partitioned indexes.

Restrictions:

= You cannot specify any of these clauses for an index on a temporary table.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-53

ALTER INDEX

« You can combine several operations on the base index into one ALTER INDEX
statement (except RENAMENd REBUILD), but you cannot combine partition
operations with other partition operations or with operations on the base index.

modify_default_attributes clause
Specify new values for the default attributes of a partitioned index.

Restriction: The only attribute you can specify for an index on a hash-partitioned or
composite-partitioned table is TABLESPACE

TABLESPACE Specify the default tablespace for new partitions of an index or
subpartitions of an index partition.

LOGGING] Specify the default logging attribute of a partitioned index or an
NOLOGGING index partition.

FOR Use the FOR PARTITIONCclause to specify the default attributes
PARTITION for the subpartitions of a partition of a local index on a composite-
partition partitioned table.

modify_partition_clause

Use the modify_partition_clause to modify the real physical attributes,
logging attribute, or storage characteristics of index partition partition or its
subpartitions.

Restriction: You cannot specify the physical attributes clause for an index
on a hash-partitioned table.

Note: If the index is a local index on a composite-partitioned
table, the changes you specify here will override any attributes
specified earlier for the subpartitions of index, as well as establish
default values of attributes for future subpartitions of that partition.
To change the default attributes of the partition without overriding
the attributes of subpartitions, use ALTER TABLE.. MODIFY
DEFAULT ATTRIBUTES OF PARTITION

rename_partition | subpartition_clause

Use the rename_partition or rename_subpartition to rename index
partition or subpartition to new_name.

7-54 SQL Reference

ALTER INDEX

Examples

drop_patrtition_clause

Use the drop_partition_clause to remove a partition and the data in it from a
partitioned global index. When you drop a partition of a global index, Oracle marks
the index’s next partition UNUSABLEYou cannot drop the highest partition of a
global index.

split_partition_clause
Use the split_partition _clause to split a partition of a global partitioned
index into two partitions, adding a new partition to the index.

Splitting a partition marked UNUSABLEesults in two partitions, both marked
UNUSABLEYou must rebuild the partitions before you can use them.

Splitting a usable partition results in two partitions populated with index data. Both
new partitions are usable.

AT (value_ Specify the new noninclusive upper bound for split

list) partition_1 . The value_list must evaluate to less than the
presplit partition bound for partition_name_old and greater
than the partition bound for the next lowest partition (if there is
one).

INTO index_ Specify (optionally) the name and physical attributes of each of

partition_ the two partitions resulting from the split.

description

modify_subpartition_clause

Use the modify_subpatrtition_clause to mark UNUSABLEbr allocate or
deallocate storage for a subpartition of a local index on a composite-partitioned
table. All other attributes of such a subpartition are inherited from partition-level
default attributes.

Modifying Real Attributes Example This statement alters Scott’s customer index
so that future data blocks within this index use 5 initial transaction entries and an
incremental extent of 100 kilobytes:

ALTER INDEX scott.customer
INITRANS 5
STORAGE (NEXT 100K);

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-55

ALTER INDEX

If the scott.customer index is partitioned, this statement also alters the default
attributes of future partitions of the index. New partitions added in the future will
use 5 initial transaction entries and an incremental extent of 100K.

Dropping an Index Partition Example The following statement drops index
partition ix_antarctica
ALTER INDEX sales_area_ix

DROP PARTITION ix_antarctica;

Modifying Default Attributes Example This statement alters the default attributes
of local partitioned index sales_ix3 . New partitions added in the future will use
5 initial transaction entries and an incremental extent of 100K:

ALTER INDEX sales_ix3
MODIFY DEFAULT ATTRIBUTES INITRANS 5 STORAGE (NEXT 100K);
Marking an Index Unusable Example The following statement marks the odx_
acctno index as UNUSABLE
ALTER INDEX idx_acctno UNUSABLE;
Marking a Partition Unusable Example The following statement marks partition
idx_feb96 ofindexidx_acctno as UNUSABLE
ALTER INDEX idx_acctno MODIFY PARTITION idx_feb96 UNUSABLE;
Changing MAXEXTENTS Example The following statement changes the

maximum number of extents for partition brix_ny and changes the logging
attribute:

ALTER INDEX branch_ix MODIFY PARTITION brix_ny

STORAGE(MAXEXTENTS 30) LOGGING;
Disabling Parallel Queries Example The following statement sets the parallel
attributes for index artist_ix so that scans on the index will not be parallelized:
ALTER INDEX artist_ix NOPARALLEL;
Rebuilding a Partition Example The following statement rebuilds partition p063
in index artist_ix . The rebuilding of the index partition will not be logged:
ALTER INDEX artist_ix

REBUILD PARTITION p063 NOLOGGING;

Renaming an Index Example The following statement renames an index:

7-56 SQL Reference

ALTER INDEX

ALTER INDEX emp_ix1 RENAME TO employee_ix1;

Renaming an Index Partition Example The following statement renames an index
partition:
ALTER INDEX employee_ix1 RENAME PARTITION emp_ix1_p3

TO employee_ix1_p3;

Splitting a Partition Example The following statement splits partition partnum_
iXx_p6 in partitioned index partnum_ix into parthum_ix_p5 and partnum_ix_
p6:

ALTER INDEX partnum_ix
SPLIT PARTITION partnum_ix_p6 AT (5001)
INTO (PARTITION partnum_ix_p5 TABLESPACE ts017 LOGGING,
PARTITION partnum_ix_p6 TABLESPACE ts004);

The second partition retains the name of the old partition.

Storing Index Blocks in Reverse Order Example The following statement rebuilds
index emp_ix so that the bytes of the index block are stored in REVERSErder:
ALTER INDEX emp_ix REBUILD REVERSE;

Collecting Index Statistics Example The following statement collects statistics on

the nonpartitioned emp_indx index:
ALTER INDEX emp_indx REBUILD COMPUTE STATISTICS;

The type of statistics collected depends on the type of index you are rebuilding.

See Also: Oracle8i Concepts.

PARALLEL Example The following statement causes the index to be rebuilt from
the existing index by using parallel execution processes to scan the old and to build
the new index:

ALTER INDEX emp_idx
REBUILD
PARALLEL;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-57

ALTER JAVA

ALTER JAVA
Purpose
Use the ALTER JAVAstatement to force the resolution of a Java class schema object
or compilation of a Java source schema object. (You cannot call the methods of a
Java class before all its external references to Java names are associated with other
classes.)
See Also: Oracle8i Java Stored Procedures Developer’s Guide for more
information on resolving Java classes and compiling Java sources
Prerequisites
The Java source or class must be in your own schema, or you must have the ALTER
ANY PROCEDURIgstem privilege. You must also have the EXECUTEbbject
privilege on Java classes.
Syntax

SOURCE M (schema)
- . (object_name)»
-CLASS

RESOLVER l COMPILE '
RESOLVE
invoker_rights_clause

invoker_rights_clause

C

URRENT_USER
AUTHID H
DEFINER

7-58 SQL Reference

ALTER JAVA

Keywords and Parameters

JAVA SOURCE
Use ALTER JAVA SOURCH® compile a Java source schema object.

JAVA CLASS
Use ALTER JAVA CLASSo resolve a Java class schema object.

object_name

Specify a previously created Java class or source schema object. Use double
guotation marks to preserve lower- or mixed-case names.

RESOLVER

The RESOLVERIause lets you specify how schemas are searched for referenced
fully specified Java names, using the mapping pairs specified when the Java class or
source was created.

See Also: CREATE JAVA on page 9-79

RESOLVH COMPILE
RESOLVEnd COMPILEare synonymous keywords. They let you specify that
Oracle should attempt to resolve the primary Java class schema object.

=« When applied to a class, resolution of referenced names to other class schema
objects occurs.

« When applied to a source, source compilation occurs.

invoker_rights_clause

The invoker_rights_clause lets you specify whether the methods of the class
execute with the privileges and in the schema of the user who defined it or with the
privileges and in the schema of CURRENT_USER

This clause also determines how Oracle resolves external names in queries, DML
operations, and dynamic SQL statements in the member functions and procedures
of the type.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-59

ALTER JAVA

AUTHID Specify CURRENT_USER you want the methods of the class to
CURRENT_USERxecute with the privileges of CURRENT_USERhis clause is the
default and creates an "invoker-rights class."

This clause also specifies that external names in queries, DML
operations, and dynamic SQL statements resolve in the schema of
CURRENT_USERXxternal names in all other statements resolve in
the schema in which the methods reside.

AUTHID Specify DEFINERif you want the methods of the class to execute
DEFINER with the privileges of the user who defined it.

This clause also specifies that external names resolve in the
schema where the methods reside.

See Also:

« Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals for information on how CURRENT_USER
determined

« Oracle8i Java Stored Procedures Developer’s Guide

Example

Resolving a Java Class Example The following statement forces the resolution of
aJava class:

ALTER JAVA CLASS "Agent"
RESOLVER (("/homel/java/bin/*" scott)(* public))
RESOLVE;

7-60 SQL Reference

ALTER MATERIALIZED VIEW

ALTER MATERIALIZED VIEW

Purpose

Prerequisites

A materialized view is a database object that contains the results of a query of one
or more tables. Use the ALTER MATERIALIZED VIEWstatement to modify an
existing materialized view in one or more of the following ways:

« To change its storage characteristics
« To change its refresh method, mode, or time
« To alter its structure so that it is a different type of materialized view

« Toenable or disable query rewrite.

Note: The keyword SNAPSHOTs supported in place of
MATERIALIZED VIEWfor backward compatibility.

The tables in the query are called master tables (a replication term) or detail tables
(a data warehouse term). This reference uses "master tables" for consistency. The
databases containing the master tables are called the master databases.

See Also:

« CREATE MATERIALIZED VIEW on page 9-88for more
information on creating materialized views

« Oracle8i Replication for information on materialized views in a
replication environment

« Oracle8i Data Warehousing Guide for information on
materialized views in a data warehousing environment

The privileges required to alter a materialized view should be granted directly, as
follows:

The materialized view must be in your own schema, or you must have the ALTER
ANY MATERIALIZED VIEWsystem privilege.

To enable a materialized view for query rewrite:

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-61

ALTER MATERIALIZED VIEW

7-62 SQL Reference

If all of the master tables in the materialized view are in your schema, you must
have the QUERY REWRITfrivilege.

If any of the master tables are in another schema, you must have the GLOBAL
QUERY REWRITHrivilege.

If the materialized view is in another user’s schema, both you and the owner of
that schema must have the appropriate QUERY REWRITgrivilege, as described
in the preceding two items. In addition, the owner of the materialized view
must have SELECTaccess to any master tables that the materialized view
owner does not own.

See Also: Oracle8i Replication and Oracle8i Data Warehousing Guide

ALTER MATERIALIZED VIEW

Syntax

MATERIALIZED o VIEW h
(materialized_view / snapshot>—>

,Cphysical_attributes_clause%
(M)
N

LOB_storage_clause

M
N
modify_LOB_storage_clause

partitioning_clauses
e N
parallel_clause

LOGGING

| NOLOGGING I
CACHE

| NOCACHE I

Ie| USING |—>| INDEX |—>Cphysical_attributes_clauseh
ENABLE

| DISABLE I

COMPILE

CONSIDER |->| FRESH }—J

QUERY |->| REWRITE

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-63

ALTER MATERIALIZED VIEW

LOB_storage_clause
modify_LOB_storage_clause
partitioning_clauses

parallel_clause =

NOPARALLEL
(o)
PARALLEL

allocate_extent_clause n=

: See ALTER TABLE on page 8-2.
: See ALTER TABLE on page 8-2.
: See ALTER TABLE on page 8-2.

INSTANCE |{integer

—>| ALLOCATE |—>| EXTENT }

refresh_clause

COMPLETE

S

dat
e

—| WITH |->| PRIMARY |->| KEY }

DEFAULT |->| MASTER |->| ROLLBACK |->| SEGMENT
-usme
MASTER |->| ROLLBACK |->| SEGMENT |—><ro||back_se

gment J

7-64 SQL Reference

ALTER MATERIALIZED VIEW

physical_attributes_clause

PCTFREE |->(imeger

PCTUSED |—>Cinteger

INITRANS |—><integer

MAXTRANS |{integer

storage_clause

storage_clause

Keywords and Parameters

: See the storage_clause

on page 11-129.

schema

Specify the schema containing the materialized view. If you omit schema, Oracle
assumes the materialized view is in your own schema.

materialized view
Specify the name of the materialized view to be altered.

physical_attributes clause

Specify new values for the PCTFREEPCTUSEDINITRANS, and MAXTRANS
parameters (or, when used in the USING INDEXclause, for the INITRANS and
MAXTRAN@®arameters only) and the storage characteristics for the materialized
view.

See Also:

« ALTER TABLE on page 8-2 for information on the PCTFREE
PCTUSEDINITRANS, and MAXTRAN®arameters

« Storage clause on page 11-129 for information about
storage characteristics

LOB_storage_clause

The LOB_storage clause lets you specify the LOB storage characteristics.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-65

ALTER MATERIALIZED VIEW

See Also: ALTER TABLE on page 8-2 for information about
specifying the parameters of this clause

modify LOB_storage clause

The modify_LOB_storage_clause lets you modify the physical attributes of the
LOB attribute lob_item or LOB object attribute.

See Also: ALTER TABLE on page 8-2 for information about
specifying the parameters of this clause

partitioning_clauses

The syntax and general functioning of the partitioning clauses for materialized
views is the same as for partitioned tables.

See Also: ALTER TABLE on page 8-2

Restrictions:

« You cannot use the LOB_storage clause or modify LOB_storage
clause when modifying a materialized view.

« If you attempt to drop, truncate, or exchange a materialized view partition,
Oracle raises an error.

Note: If you wish to keep the contents of the materialized view
synchronized with those of the master table, Oracle Corporation
recommends that you manually perform a complete refresh of all
materialized views dependent on the table after dropping or
truncating a table partition.

MODIFY PARTITION UNUSABLE LOCAL INDEXES

Use this clause to mark UNUSABLEII the local index partitions
associated with partition

MODIFY PARTITION REBUILD UNUSABLE LOCAL INDEXES

Use this clause to rebuild the unusable local index partitions
associated with partition

7-66 SQL Reference

ALTER MATERIALIZED VIEW

parallel_clause

The parallel_clause lets you change the default degree of parallelism for the
materialized view.

Note: The syntax of the parallel_clause supersedes syntax
appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior.

NOPARALLEL Specify NOPARALLEIfor serial execution. This is the default.

PARALLEL Specify PARALLELIf you want Oracle to select a degree of
parallelism equal to the number of CPUs available on all
participating instances times the value of the PARALLEL _
THREADS_PER_CPiditialization parameter.

PARALLEL Specification of integer indicates the degree of parallelism,

integer which is the number of parallel threads used in the parallel
operation. Each parallel thread may use one or two parallel
execution servers. Normally Oracle calculates the optimum
degree of parallelism, so it is not necessary for you to specify
integer

See Also: "Notes on the parallel_clause" for CREATE TABLEon
page 10-41

LOGGINGE NOLOGGING
Specify or change the logging characteristics of the materialized view.

See Also: ALTER TABLE on page 8-2 for information about logging
characteristics

allocate extent clause

The allocate _extent clause lets you explicitly allocate a new extent for the
materialized view.

See Also: ALTER TABLE on page 8-2

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-67

ALTER MATERIALIZED VIEW

CACHE NOCACHE

For data that will be accessed frequently, CACHEspecifies that the blocks retrieved
for this table are placed at the most recently used end of the LRU list in the buffer
cache when a full table scan is performed. This attribute is useful for small lookup
tables. NOCACHZEpecifies that the blocks are placed at the least recently used end of
the LRU list.

See Also: ALTER TABLE on page 8-2 for information about
specifying CACHEbr NOCACHE

USING INDEX

Use this clause to change the value of INITRANS, MAXTRANSInd STORAGE
parameters for the index Oracle uses to maintain the materialized view’s data.

Restriction: You cannot specify the PCTUSEDr PCTFREEparameters in this clause.

refresh_clause

Use the refresh_clause to change the default method and mode and the default
times for automatic refreshes. If the contents of a materialized view’s master tables
are modified, the data in the materialized view must be updated to make the
materialized view accurately reflect the data currently in its master table(s). This
clause lets you schedule the times and specify the method and mode for Oracle to
refresh the materialized view.

Note: This clause only sets the default refresh options. For
instructions on actually implementing the refresh, refer to Oracle8i
Replication and Oracle8i Data Warehousing Guide.

FAST Specify FAST for incremental refresh method, which performs the
refresh according to the changes that have occurred to the master
tables. The changes are stored either in the materialized view log
associated with the master table (for conventional DML changes)
or in the direct loader log (for direct-load INSERT operations).

7-68 SQL Reference

ALTER MATERIALIZED VIEW

COMPLETE

FORCE

ON COMMIT

For both conventional DML changes and for direct-path loads,
other conditions may restrict the eligibility of a materialized view
for fast refresh.

See Also:

- Oracle8i Replication for restrictions on fast refresh in
replication environments

- Oracle8i Data Warehousing Guide for restrictions on fast
refresh in data warehouse environments

Restrictions:

« When you specify FAST refresh at create time, Oracle verifies
that the materialized view you are creating is eligible for fast
refresh. When you change the refresh method to FASTin an
ALTER MATERIALIZED VIEWstatement, Oracle does not
perform this verification. If the materialized view is not
eligible for fast refresh, Oracle will return an error when you
attempt to refresh this view.

« Materialized views are not eligible for fast refresh if the
defining query contains an analytic function.

See Also: "Analytic Functions" on page 4-8

Specify COMPLETEor the complete refresh method, which is
implemented by executing the materialized view’s defining query.
If you request a complete refresh, Oracle performs a complete
refresh even if a fast refresh is possible.

Specify FORCHf, when a refresh occurs, you want Oracle to
perform a fast refresh if one is possible or a complete refresh
otherwise.

Specify ON COMMITTF you want a fast refresh to occur whenever
Oracle commits a transaction that operates on a master table of the
materialized view.

Restriction: This clause is supported only for materialized join
views and single-table materialized aggregate views.

See Also: Oracle8i Replication and Oracle8i Data Warehousing
Guide

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-69

ALTER MATERIALIZED VIEW

ON DEMAND

START WITH

NEXT

Specify ON DEMANiD you want the materialized view to be
refreshed on demand by calling one of the three DBMS_MVIEW
refresh procedures. If you omit both ON COMMI&nd ON DEMAND
ON DEMANIS the default.

See Also:

- Oracle8i Supplied PL/SQL Packages Reference for information
on these procedures

- Oracle8i Data Warehousing Guide on the types of materialized
views you can create by specifying REFRESH ON DEMAND

Note: If you specify ON COMMI®r ON DEMANDou cannot
also specify START WITHor NEXT

Specify START WITHdate to indicate a date for the first
automatic refresh time.

Specify NEXTto indicate a date expression for calculating the
interval between automatic refreshes.

Both the START WITHand NEXTvalues must evaluate to a time in the future. If you
omit the START WITHvalue, Oracle determines the first automatic refresh time by
evaluating the NEXTexpression with respect to the creation time of the materialized
view. If you specify a START WITHvalue but omit the NEXTvalue, Oracle refreshes
the materialized view only once. If you omit both the START WITHand NEXT
values, or if you omit the refresh_clause entirely, Oracle does not automatically
refresh the materialized view.

WITH PRIMARY Specify WITH PRIMARY KEYo change a rowid materialized view

KEY

7-70 SQL Reference

to a primary key materialized view. Primary key materialized
views allow materialized view master tables to be reorganized
without affecting the materialized view’s ability to continue to fast
refresh. The master table must contain an enabled primary key
constraint.

See Also: Oracle8i Replication for detailed information about
primary key materialized views

ALTER MATERIALIZED VIEW

USING
ROLLBACK
SEGMENT

Specify USING ROLLBACK SEGMEMmchange the remote rollback
segment to be used during materialized view refresh, where
rollback segment is the name of the rollback segment to be

used.

See Also: Oracle8i Replication for information on changing the
local materialized view rollback segment using the DBMS_
REFRESHbackage

DEFAULT

MASTER..
rollback _
segment

QUERY REWRITE
Use this clause to determine whether the materialized view is eligible to be used for

query rewrite.

ENABLE

Specify DEFAULTIf you want Oracle to choose
the rollback segment to use. If you specify
DEFAULTyou cannot specify rollback
segment .

Specify the remote rollback segment to be used
at the remote master for the individual
materialized view. (To change the local
materialized view rollback segment, use the
DBMS_REFRESphckage, described in Oracle8i
Replication.)

The master rollback segment is stored on a per-
materialized-view basis and is validated during
materialized view creation and refresh. If the
materialized view is complex, the master
rollback segment, if specified, is ignored.

Specify ENABLEto enable the materialized view for query rewrite.

See Also: Oracle8i Data Warehousing Guide for more
information on query rewrite.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-71

ALTER MATERIALIZED VIEW

Restrictions:

« If the materialized view is in an invalid or unusable state, it is
not eligible for query rewrite in spite of the ENABLEmode.

« You cannot enable query rewrite if the materialized view was
created totally or in part from a view.

« You can enable query rewrite only if all user-defined functions
in the materialized view are DETERMINISTIC.

See Also: CREATE FUNCTION on page 9-43

« You can enable query rewrite only if expressions in the
statement are repeatable. For example, you cannot include
CURRENT_TIMBr USER

See Also: Oracle8i Data Warehousing Guide

DISABLE Specify DISABLE if you do not want the materialized view to be
eligible for use by query rewrite. (If a materialized view is in the
invalid state, it is not eligible for use by query rewrite, whether or
not it is disabled.) However, a disabled materialized view can be
refreshed.

COMPILE

Specify COMPILEto explicitly revalidate a materialized view. If an object upon
which the materialized view depends is dropped or altered, the materialized view
remains accessible, but it is invalid for query rewrite. You can use this clause to
explicitly revalidate the materialized view to make it eligible for query rewrite.

If the materialized view fails to revalidate, it cannot be refreshed or used for query
rewrite.

CONSIDER FRESH

CONSIDER FRESHirects Oracle to consider the materialized view fresh and
therefore eligible for query rewrite in the TRUSTEDor STALE_TOLERATEDnodes.
Because Oracle cannot guarantee the freshness of the materialized view, query
rewrite in ENFORCEIode is not supported. This clause also sets the staleness state
of the materialized view to UNKNOWNhe staleness state is displayed in the
STALENESS olumn of the ALL_MVIEWS DBA_MVIEWSand USER_MVIEWS@ata
dictionary views.

This clause is useful after performing partition maintenance operations against the
master table. Such operations would otherwise render the materialized view

7-72 SQL Reference

ALTER MATERIALIZED VIEW

Examples

ineligible for fast refresh, and eligible for query rewrite only in STALE_ TOLERATED
mode.

Note: A materialized view is stale if changes have been made to the
contents of any of its master tables. This clause directs Oracle to
assume that the materialized view is fresh and that no such changes
have been made. Therefore, actual updates to those tables pending
refresh are purged with respect to the materialized view.

See Also: Oracle8i Data Warehousing Guide for more information on
query rewrite and the implications of performing partition
maintenance operations on master tables

Automatic Refresh Example The following statement changes the default refresh
method for the hq_emp materialized view to FAST.

CREATE MATERIALIZED VIEW hg_emp
REFRESH COMPLETE
START WTIH SYSDATE NEXT SYSDATE +1/4096
AS SELECT * FROM hg_emp;

ALTER MATERIALIZED VIEW hg_emp
REFRESH FAST;

The next automatic refresh of the materialized view will be a fast refresh provided it
is a simple materialized view and its master table has a materialized view log that
was created before the materialized view was created or last refreshed.

Because the REFRESHIlause does not specify START WITHor NEXTvalues, the
refresh intervals established by the REFRESHIlause when the hq_emp materialized
view was created or last altered are still used.

NEXT Example The following statement stores a new interval between automatic
refreshes for the branch_emp materialized view:

ALTER MATERIALIZED VIEW branch_emp
REFRESH NEXT SYSDATE+7;

Because the REFRESHIlause does not specify a START WITHvalue, the next
automatic refresh occurs at the time established by the START WITHand NEXT

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-73

ALTER MATERIALIZED VIEW

values specified when the branch_emp materialized view was created or last
altered.

At the time of the next automatic refresh, Oracle refreshes the materialized view,
evaluates the NEXTexpression SYSDATE?7 to determine the next automatic refresh
time, and continues to refresh the materialized view automatically once a week.

Because the REFRESHIlause does not explicitly specify a refresh method, Oracle
continues to use the refresh method specified by the REFRESHIlause of the CREATE
MATERIALIZED VIEWor most recent ALTER MATERIALIZED VIEWstatement.

Complete Refresh Example The following statement specifies a new refresh
method, a new next refresh time, and a new interval between automatic refreshes of
the sf_emp materialized view:

ALTER MATERIALIZED VIEW sf_emp
REFRESH COMPLETE
START WITH TRUNC(SYSDATE+1) + 9/24
NEXT SYSDATE+7;

The START WITHvalue establishes the next automatic refresh for the materialized
view to be 9:00 a.m. tomorrow. At that point, Oracle performs a complete refresh of
the materialized view, evaluates the NEXTexpression, and subsequently refreshes
the materialized view every week.

Enabling Query Rewrite Example The following statement enables query rewrite
on the materialized view mv1and implicitly revalidates it.

ALTER MATERIALIZED VIEW mv1
ENABLE QUERY REWRITE;

Rollback Segment Examples The following statement changes the remote master
rollback segment used during materialized view refresh to master_seg

ALTER MATERIALIZED VIEW inventory
REFRESH USING MASTER ROLLBACK SEGMENT master_seg;
The following statement changes the remote master rollback segment used during
materialized view refresh to one chosen by Oracle:
ALTER MATERIALIZED VIEW sales
REFRESH USING DEFAULT MASTER ROLLBACK SEGMENT;

Primary Key Example The following statement changes a rowid materialized view
to a primary key materialized view:

7-74 SQL Reference

ALTER MATERIALIZED VIEW

ALTER MATERIALIZED VIEW emp_rs
REFRESH WITH PRIMARY KEY;

COMPILE Example The following statement revalidates the materialized view
store_mv :

ALTER MATERIALIZED VIEW store_mv COMPILE;

Modifying Refresh Method Example The following statement changes the refresh
method of materialized view store_mv to FAST,

ALTER MATERIALIZED VIEW store_mv REFRESH FAST;
CONSIDER FRESH Example The following statement instructs Oracle that
materialized view mv1 should be considered fresh. This statement allows mv1 to be

eligible for query rewrite in TRUSTEDmMode even after you have performed
partition maintenance operations on the master tables of mvZ1l:

ALTER MATERIALIZED VIEW mv1l CONSIDER FRESH;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-75

ALTER MATERIALIZED VIEW LOG

ALTER MATERIALIZED VIEW LOG

Purpose

Use the ALTER MATERIALIZED VIEW LOGtatement to alter the storage
characteristics, refresh mode or time, or type of an existing materialized view log. A
materialized view log is a table associated with the master table of a materialized
view.

Note: The keyword SNAPSHOTs supported in place of
MATERIALIZED VIEWfor backward compatibility.

See Also:

« ALTER MATERIALIZED VIEW on page 7-61 for more
information on materialized views, including refreshing them

« CREATE MATERIALIZED VIEW on page 9-88 for a description
of the various types of materialized views

Prerequisites

Only the owner of the master table or a user with the SELECTprivilege for the
master table can alter a materialized view log.

See Also: Oracle8i Replication for detailed information about the
prerequisites for ALTER MATERIALIZED VIEW LOG

7-76 SQL Reference

ALTER MATERIALIZED VIEW LOG

Syntax

MATERIALIZED H VIEW

,Cphysical_attributes_clause)

partitioning_clauses
parallel_clause

]
NOLOGGING

INCLUDING

(table)»

l filter_column '

| EXCLUDING I

physical_attributes_clause =

PCTUSED |—>Cinteger

INITRANS

integer

MAXTRANS |{integer

storage_clause

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-77

ALTER MATERIALIZED VIEW LOG

storage_clause : See storage_clause on page 11-129.
partitioning_clauses : See ALTER TABLE on page 8-2.

allocate_extent_clause n=

—>| ALLOCATE |->| EXTENT }

parallel_clause =
NOPARALLEL
()
PARALLEL

Keywords and Parameters

schema

Specify the schema containing the master table. If you omit schema, Oracle
assumes the materialized view log is in your own schema.

table

Specify the name of the master table associated with the materialized view log to be
altered.

physical_attributes_clause

The physical_attributes clause lets you change the value of PCTFREE
PCTUSEDINITRANS, and MAXTRAN®arameters for the table, the partition, the
overflow data segment, or the default characteristics of a partitioned table.

7-78 SQL Reference

ALTER MATERIALIZED VIEW LOG

See Also: CREATE TABLE on page 10-7 and the "Materialized View
Storage Example" on page 7-81 for a description of these
parameters

partitioning_clauses

The syntax and general functioning of the partitioning clauses is the same as for the
ALTER TABLEstatement

Restrictions:

« You cannot use the LOB_storage clause or modify LOB_storage
clause when modifying a materialized view log.

« Ifyou attempt to drop, truncate, or exchange a materialized view log partition,
Oracle raises an error.

See Also: ALTER TABLE on page 8-2

parallel_clause

The parallel_clause lets you specify whether parallel operations will be
supported for the materialized view log.

Note: The syntax of the parallel_clause supersedes syntax
appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior.

NOPARALLEL Specify NOPARALLEIfor serial execution. This is the default.

PARALLEL Specify PARALLELIf you want Oracle to select a degree of
parallelism equal to the number of CPUs available on all
participating instances times the value of the PARALLEL _
THREADS_ PER_CPiditialization parameter.

PARALLEL Specification of integer indicates the degree of parallelism,

integer which is the number of parallel threads used in the parallel
operation. Each parallel thread may use one or two parallel
execution servers. Normally Oracle calculates the optimum
degree of parallelism, so it is not necessary for you to specify
integer

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-79

ALTER MATERIALIZED VIEW LOG

See Also: "Notes on the parallel_clause" for CREATE TABLEon
page 10-41

LOGGING | NOLOGGING
Specify the logging attribute of the materialized view log.

See Also: ALTER TABLE on page 8-2 for information about
specifying this attribute

allocate _extent clause

The allocate_extent clause lets you explicitly allocate a new extent for the
materialized view log.

See Also: ALTER TABLE on page 8-2

CACHE | NOCACHE

For data that will be accessed frequently, CACHEspecifies that the blocks retrieved
for this log are placed at the most recently used end of the LRU list in the buffer
cache when a full table scan is performed. This attribute is useful for small lookup
tables. NOCACHZEpecifies that the blocks are placed at the least recently used end of
the LRU list.

See Also: ALTER TABLE on page 8-2 for information about
specifying CACHEbr NOCACHE

ADD

The ADDclause lets you augment the materialized view log so that it records the
primary key values or rowid values when rows in the materialized view master
table are updated. This clause can also be used to record additional filter columns.

To stop recording any of this information, you must first drop the materialized view
log and then re-create it. Dropping the materialized view log and then re-creating it
forces each of the existing materialized views that depend on the master table to
complete refresh on its next refresh.

PRIMARY KEY Specify PRIMARY KEYTf you want the primary-key values of all
rows that are updated to be recorded in the materialized view log.

ROWID Specify ROWIDIf you want the rowid values of all rows that are
updated to be recorded in the materialized view log.

7-80 SQL Reference

ALTER MATERIALIZED VIEW LOG

Examples

filter Specify the columns whose values you want to be recorded in the
column(s) materialized view log for all rows that are updated. Filter columns
are non-primary-key columns referenced by materialized views.

Restriction: You can specify only one PRIMARY KEYone ROWIDand one filter
column list per materialized view log. Therefore, if any of these three values were
specified at create time (either implicitly or explicitly), you cannot specify those
values in this ALTERstatement.

See Also:

« CREATE MATERIALIZED VIEW on page 9-88 for information
on explicit and implicit inclusion of materialized view log
values

« Oracle8i Replication for more information about filter columns

NEW VALUES

The NEW VALUESause lets you specify whether Oracle saves both old and new
values in the materialized view log. The value you set in this clause applies to all
columns in the log, not only to primary key, rowid, or filter columns you may have
added in this statement.

INCLUDING Specify INCLUDING to save both new and old values in the log. If
this log is for a table on which you have a single-table
materialized aggregate view, and if you want the materialized
view to be eligible for fast refresh, you must specify INCLUDING.

EXCLUDING Specify EXCLUDINGo disable the recording of new values in the
log. You can use this clause to avoid the overhead of recording
new values. However, do not use this clause if you have a fast-
refreshable single-table materialized aggregate view defined on
this table.

Materialized View Storage Example The following statement changes the
MAXEXTENTSalue of a materialized view log:

ALTER MATERIALIZED VIEW LOG ON dept
STORAGE MAXEXTENTS 50;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-81

ALTER MATERIALIZED VIEW LOG

PRIMARY KEY Example The following statement alters an existing rowid
materialized view log to also record primary key information:

ALTER MATERIALIZED VIEW LOG ON sales
ADD PRIMARY KEY;

7-82 SQL Reference

ALTER OUTLINE

ALTER OUTLINE

Purpose

Use the ALTER OUTLINEstatement to rename a stored outline, reassign it to a
different category, or regenerate it by compiling the outline’s SQL statement and
replacing the old outline data with the outline created under current conditions.

See Also: CREATE OUTLINE on page 9-119 and Oracle8i Performance
Guide and Reference for more information on outlines

Prerequisites
To modify an outline, you must have the ALTER ANY OUTLINEBystem privilege.

Syntax

REBUILD

| ALTER |->| OUTLINE |->(out|ine RENAME |->| TO |-><new_out|ine_name)

CHANGE |->| CATEGORY |->| TO Knew_category_name)J

Keywords and Parameters

outline
Specify the name of the outline to be modified.

REBUILD

Specify REBUILDto regenerate the execution plan for outline using current
conditions.

RENAME T@ew _outline_name
Use the RENAME T@lause to specify an outline name to replace outline

CHANGE CATEGORY méw _category name

Use the CHANGE CATEGORY dl@use to specify the name of the category into
which the outline will be moved.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-83

ALTER OUTLINE

Example

ALTER OUTLINE Example The following statement regenerates a stored outline
called salaries by compiling the outline’s text and replacing the old outline data
with the outline created under current conditions.

ALTER OUTLINE salaries REBUILD;

7-84 SQL Reference

ALTER PACKAGE

ALTER PACKAGE

Purpose

Use the ALTER PACKAGHRtatement to explicitly recompile a package specification,
body, or both. Explicit recompilation eliminates the need for implicit run-time
recompilation and prevents associated run-time compilation errors and
performance overhead.

Because all objects in a package are stored as a unit, the ALTER PACKAGREtatement
recompiles all package objects together. You cannot use the ALTER PROCEDURE
statement or ALTER FUNCTIONtatement to recompile individually a procedure or
function that is part of a package.

Note: This statement does not change the declaration or definition
of an existing package. To redeclare or redefine a package, use the
CREATE PACKAGE or the CREATE PACKAGE BODY on

page 9-122 statement with the OR REPLACElause.

Prerequisites
For you to modify a package, the package must be in your own schema or you must
have ALTER ANY PROCEDURYstem privilege.
Syntax
==
°
| ALTER |—>| PACKAGE } (package)->| COMPILE } O

Keywords and Parameters

schema

Specify the schema containing the package. If you omit schema, Oracle assumes the
package is in your own schema.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-85

ALTER PACKAGE

package
Specify the name of the package to be recompiled.

COMPILE

You must specify COMPILEto recompile the package specification or body. The
COMPILEkeyword is required.

If recompiling the package results in compilation errors, Oracle returns an error and
the body remains invalid. You can see the associated compiler error messages with
the SQL*Plus command SHOW ERRORS

SPECIFICATION

Specify SPECIFICATION to recompile only the package specification, regardless of
whether it is invalid. You might want to recompile a package specification to check
for compilation errors after modifying the specification.

When you recompile a package specification, Oracle invalidates any local objects
that depend on the specification, such as procedures that call procedures or
functions in the package. The body of a package also depends on its specification. If
you subsequently reference one of these dependent objects without first explicitly
recompiling it, Oracle recompiles it implicitly at run time.

BODY

Specify BODYto recompile only the package body regardless of whether it is invalid.
You might want to recompile a package body after modifying it. Recompiling a
package body does not invalidate objects that depend upon the package
specification.

When you recompile a package body, Oracle first recompiles the objects on which
the body depends, if any of those objects are invalid. If Oracle recompiles the body
successfully, the body becomes valid.

PACKAGE

Specify PACKAGE to recompile both the package specification and the package
body if one exists, regardless of whether they are invalid. This is the default. The
recompilation of the package specification and body lead to the invalidation and
recompilation as described above for SPECIFICATION and BODY

See Also: Oracle8i Concepts for information on how Oracle
maintains dependencies among schema objects, including remote
objects

7-86 SQL Reference

ALTER PACKAGE

Examples

DEBUG

Specify DEBUQO instruct the PL/SQL compiler to generate and store the code for
use by the PL/SQL debugger.

See Also: Oracle8i Supplied PL/SQL Packages Reference for
information on debugging packages

Recompiling a Package Examples This statement explicitly recompiles the
specification and body of the accounting package in the schema blair

ALTER PACKAGE blair.accounting
COMPILE PACKAGE;

If Oracle encounters no compilation errors while recompiling the accounting
specification and body, accounting becomes valid. Blair can subsequently call or
reference all package objects declared in the specification of accounting without
run-time recompilation. If recompiling accounting results in compilation errors,
Oracle returns an error and accounting remains invalid.

Oracle also invalidates all objects that depend upon accounting . If you
subsequently reference one of these objects without explicitly recompiling it first,
Oracle recompiles it implicitly at run time.

To recompile the body of the accounting package in the schema blair , issue the
following statement:

ALTER PACKAGE blair.accounting
COMPILE BODY;

If Oracle encounters no compilation errors while recompiling the package body, the
body becomes valid. Blair can subsequently call or reference all package objects
declared in the specification of accounting without run-time recompilation. If
recompiling the body results in compilation errors, Oracle returns an error message
and the body remains invalid.

Because this statement recompiles the body and not the specification of
accounting , Oracle does not invalidate dependent objects.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-87

ALTER PROCEDURE

ALTER PROCEDURE

Purpose

Use the ALTER PROCEDURIEatement to explicitly recompile a stand-alone stored
procedure. Explicit recompilation eliminates the need for implicit run-time
recompilation and prevents associated run-time compilation errors and
performance overhead.

To recompile a procedure that is part of a package, recompile the entire package
using the ALTER PACKAGRatement (see ALTER PACKAGE on page 7-85).

Note: This statement does not change the declaration or definition
of an existing procedure. To redeclare or redefine a procedure, use
the CREATE PROCEDURttement with the OR REPLACEIlause
(see CREATE PROCEDURE on page 9-132)

The ALTER PROCEDURIatement is quite similar to the ALTER FUNCTION
statement.

See Also: ALTER FUNCTION on page 7-38
Prerequisites
The procedure must be in your own schema or you must have ALTER ANY

PROCEDURS$ystem privilege.

Syntax

m.schema -DEBUG
| ALTER |5 PROCEDURE | S (procedure)5 COMPILE

Keywords and Parameters

schema

Specify the schema containing the procedure. If you omit schema, Oracle assumes
the procedure is in your own schema.

7-88 SQL Reference

ALTER PROCEDURE

Example

procedure
Specify the name of the procedure to be recompiled.

COMPILE

Specify COMPILEto recompile the procedure. The COMPILEkeyword is required.
Oracle recompiles the procedure regardless of whether it is valid or invalid.

« Oracle first recompiles objects upon which the procedure depends, if any of
those objects are invalid.

« Oracle also invalidates any local objects that depend upon the procedure, such
as procedures that call the recompiled procedure or package bodies that define
procedures that call the recompiled procedure.

« If Oracle recompiles the procedure successfully, the procedure becomes valid. If
recompiling the procedure results in compilation errors, then Oracle returns an
error and the procedure remains invalid. You can see the associated compiler
error messages with the SQL*Plus command SHOW ERRORS

See Also: Oracle8i Concepts for information on how Oracle
maintains dependencies among schema objects, including remote
objects

DEBUG

Specify DEBUQO instruct the PL/SQL compiler to generate and store the code for
use by the PL/SQL debugger.

See Also: Oracle8i Application Developer’s Guide - Fundamentals for
information on debugging procedures

Recompiling a Procedure Example To explicitly recompile the procedure close_
acct owned by the user henry , issue the following statement:

ALTER PROCEDURE henry.close_acct
COMPILE;

If Oracle encounters no compilation errors while recompiling close_acct
close_acct becomes valid. Oracle can subsequently execute it without
recompiling it at run time. If recompiling close_acct results in compilation
errors, Oracle returns an error and close_acct remains invalid.

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-89

ALTER PROCEDURE

Oracle also invalidates all dependent objects. These objects include any procedures,
functions, and package bodies that call close_acct . If you subsequently reference
one of these objects without first explicitly recompiling it, Oracle recompiles it
implicitly at run time.

7-90 SQL Reference

ALTER PROFILE

ALTER PROFILE

Purpose

Use the ALTER PROFILEstatement to add, modify, or remove a resource limit or
password management parameter in a profile.

Changes made to a profile with an ALTER PROFILEstatement affect users only in
their subsequent sessions, not in their current sessions.

See Also: CREATE PROFILE on page 9-139 for information on
creating a profile

Prerequisites
You must have ALTER PROFILEsystem privilege to change profile resource limits.
To modify password limits and protection, you must have ALTER PROFILEand
ALTER USERystem privileges.

Syntax

| ALTER |5{ PROFILE |(profile)of LIMIT H
password_parameters

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-91

ALTER PROFILE

resource_parameters =

4 SESSIONS_PER_USER |—
—| CPU_PER_SESSION |7

[T

—| IDLE_TIME

(-

-| LOGICAL_READS_PER_SESSION |_

-| LOGICAL_READS_PER CALL |—

] COMPOSITE_LIMIT

4 FAILED_LOGIN_ATTEMPTS |\

-| PASSWORD_LIFE_TIME |—

—| PASSWORD_REUSE_TIME |—

—| PASSWORD_REUSE_MAX |—

-| PASSWORD_LOCK_TIME |—

\| PASSWORD_GRACE_TIME |J

e,
‘=

¥| PASSWORD_VERIFY_FUNCTION

7-92 SQL Reference

H=
DEFAULT

ALTER PROFILE

Keywords and Parameters

The keywords and parameters in the ALTER PROFILEstatement all have the same
meaning as in the CREATE PROFILEtatement.

Note: You cannot remove a limit from the DEFAULTprofile.

See Also: CREATE PROFILE on page 9-139

Examples

Making a Password Unavailable Example The following statement makes a
password unavailable for reuse for 90 days:

ALTER PROFILE prof
LIMIT PASSWORD_REUSE_TIME 90
PASSWORD_REUSE_MAX UNLIMITED;

Setting Default Values Example The following statement defaults the PASSWORD _
REUSE_TIMEvalue to its defined value in the DEFAULTprofile:

ALTER PROFILE prof
LIMIT PASSWORD_REUSE_TIME DEFAULT
PASSWORD_REUSE_MAX UNLIMITED;

Limiting Login Attempts and Password Lock Time Example The following
statement alters profile prof with FAILED_LOGIN_ATTEMPTSset to 5 and
PASSWORD_LOCK_TIMEt to 1:

ALTER PROFILE prof LIMIT
FAILED_LOGIN_ATTEMPTS 5
PASSWORD_LOCK_TIME 1;

This statement causes prof ’s account to become locked for 1 day after 5
unsuccessful login attempts.

Changing Password Lifetime and Grace Period Example The following statement
modifies profile prof 's PASSWORD_LIFE_TIMHEo 60 days and PASSWORD _
GRACE_TIMBo 10 days:

ALTER PROFILE prof LIMIT
PASSWORD_LIFE_TIME 60
PASSWORD_GRACE_TIME 10;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-93

ALTER PROFILE

Limiting Concurrent Sessions Example This statement defines a new limit of 5
concurrent sessions for the engineer profile:

ALTER PROFILE engineer LIMIT SESSIONS_PER_USER 5;
If the engineer profile does not currently define a limit for SESSIONS_PER_USER
the above statement adds the limit of 5 to the profile. If the profile already defines a

limit, the above statement redefines it to 5. Any user assigned the engineer profile
is subsequently limited to 5 concurrent sessions.

Removing Limits Example This statement removes the IDLE_TIME limit from
the engineer profile:
ALTER PROFILE engineer LIMIT IDLE_TIME DEFAULT,;

Any user assigned the engineer profile is subject in their subsequent sessions to
the IDLE_TIME limit defined in the DEFAULTprofile.

Limiting Idle Time Example This statement defines a limit of 2 minutes of idle time
for the DEFAULTprofile:
ALTER PROFILE default LIMIT IDLE_TIME 2;

This IDLE_TIME limit applies to these users:

« Users who are not explicitly assigned any profile

« Users who are explicitly assigned a profile that does not define an IDLE_TIME
limit

This statement defines unlimited idle time for the engineer profile:

ALTER PROFILE engineer LIMIT IDLE_TIME UNLIMITED;

Any user assigned the engineer profile is subsequently permitted unlimited idle
time.

7-94 SQL Reference

ALTER RESOURCE COST

ALTER RESOURCE COST

Purpose

Prerequisites

Use the ALTER RESOURCE COStatement to specify or change the formula by
which Oracle calculates the total resource cost used in a session. The weight that
you assign to each resource determines how much the use of that resource
contributes to the total resource cost. If you do not assign a weight to a resource, the
weight defaults to 0, and use of the resource subsequently does not contribute to the
cost. The weights you assign apply to all subsequent sessions in the database.

Oracle calculates the total resource cost by first multiplying the amount of each
resource used in the session by the resource’s weight, and then summing the
products for all four resources. For any session, this cost is limited by the value of
the COMPOSITE_LIMIT parameter in the user’s profile. Both the products and the
total cost are expressed in units called service units.

Although Oracle monitors the use of other resources, only the four resources shown
in the syntax can contribute to the total resource cost for a session.

Once you have