
Oracle® interMedia Audio, Image, and Video

User’s Guide and Reference

Release 8.1.7

September 2000

Part No. A85336-01

Oracle interMedia Audio, Image, and Video is designed to manage Internet
media content. interMedia is a standard feature, enabling Oracle8i to manage
rich content, including text, documents, images, audio, video, and location
information, in an integrated fashion with traditional business data.

Oracle interMedia Audio, Image, and Video User’s Guide and Reference, Release 8.1.7

Part No. A85336-01

Copyright © 1999, 2000, Oracle Corporation. All rights reserved.

Primary Author: Rod Ward

Contributors: Dan Mullen, Susan Mavris, Todd Rowell, Rabah Mediouni, Sanjay Agarwal, Robert
Abbott, Bill Voss, Susan Kotsovo, Rosanne Toohey, Bill Beauregard, Susan Shepard, Brenda Silva

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8, Oracle8i, and PL/SQL are trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments .. xxiii

Preface... xxv

Audience .. xxv
Organization .. xxv
Related Documents.. xxvi
Conventions... xxvii
Changes to This Guide... xxvii

1 Introduction

1.1 Oracle interMedia Audio, Image, and Video... 1-1
1.2 Audio Concepts ... 1-5
1.2.1 Digitized Audio .. 1-5
1.2.2 Audio Components.. 1-5
1.3 Image Concepts ... 1-6
1.3.1 Digitized Images .. 1-6
1.3.2 Image Components .. 1-6
1.4 Video Concepts.. 1-7
1.4.1 Digitized Video... 1-7
1.4.2 Video Components .. 1-7
1.5 Object Relational Technology.. 1-8
1.5.1 Multimedia Object Types and Methods ... 1-9
1.5.2 ORDSource Object Type and Methods ... 1-9
 iii

1.5.2.1 Storing Multimedia Data.. 1-9
1.5.2.2 Querying Multimedia Data ... 1-10
1.5.2.3 Accessing Multimedia Data... 1-11
1.6 Extending Oracle interMedia ... 1-11
1.6.1 Supporting Other External Sources and Other Audio, Image, and Video Data

Formats .. 1-11
1.6.2 Supporting Audio Data Processing ... 1-13
1.6.3 Supporting Video Data Processing.. 1-13
1.7 Loading Multimedia Data into Oracle8i Using interMedia... 1-13
1.8 Reading Data from a LOB .. 1-15
1.9 interMedia Architecture.. 1-15
1.9.1 interMedia Text Services.. 1-18
1.9.2 Annotation Services for Multimedia Data .. 1-20
1.9.3 Streaming Content from an Oracle Database... 1-22
1.9.4 Support for Web Technologies ... 1-22
1.9.5 Geocoding Services .. 1-24

2 interMedia Examples

2.1 Audio Data Examples ... 2-1
2.1.1 Defining a Song Object .. 2-2
2.1.2 Creating an Object Table SongsTable .. 2-2
2.1.3 Creating a List Object Containing a List of References to Songs............................. 2-3
2.1.4 Defining the Implementation of the songList Object .. 2-3
2.1.5 Creating a CD Object and a CD Table ... 2-3
2.1.6 Inserting a Song into the SongsTable Table.. 2-4
2.1.7 Inserting a CD into the CdTable Table.. 2-5
2.1.8 Loading a Song into the SongsTable Table... 2-6
2.1.9 Inserting a Reference to a Song Object into the Songs List in the CdTable Table. 2-7
2.1.10 Adding a CD Reference to a Song.. 2-8
2.1.11 Retrieving Audio Data from a Song in a CD.. 2-9
2.1.12 Extending interMedia to Support a New Audio Data Format................................. 2-9
2.1.13 Extending interMedia with a New Type... 2-9
2.1.14 Using Audio Types with Object Views... 2-10
2.1.15 Scripts for Creating and Populating an Audio Table from a BFILE Data Source..........

... 2-12
iv

2.2 Image Data Examples ... 2-19
2.2.1 Adding Image Types to an Existing Table ... 2-20
2.2.2 Adding Image Types to a New Table ... 2-20
2.2.3 Inserting a Row Using BLOB Images.. 2-21
2.2.4 Populating a Row Using BLOB Images .. 2-21
2.2.5 Inserting a Row Using BFILE Images ... 2-22
2.2.6 Populating a Row Using BFILE Images.. 2-23
2.2.7 Querying a Row ... 2-24
2.2.8 Importing an Image from an External File into the Database 2-25
2.2.9 Copying an Image .. 2-25
2.2.10 Converting an Image Format ... 2-26
2.2.11 Copying and Converting in One Step... 2-26
2.2.12 Extending interMedia with a New Type... 2-27
2.2.13 Using Image Types with Object Views ... 2-29
2.2.14 Scripts for Creating and Populating an Image Table from a BFILE Data Source 2-30
2.2.15 Scripts for Populating an Image Table from an HTTP Data Source..................... 2-38
2.2.16 Addressing National Language Support (NLS) Issues .. 2-40
2.3 Video Data Examples.. 2-41
2.3.1 Defining a Clip Object ... 2-42
2.3.2 Creating an Object Table ClipsTable ... 2-42
2.3.3 Creating a List Object Containing a List of Clips .. 2-42
2.3.4 Defining the Implementation of the clipList Object.. 2-43
2.3.5 Creating a Video Object and a Video Table ... 2-43
2.3.6 Inserting a Video Clip into the ClipsTable Table .. 2-44
2.3.7 Inserting a Row into the VideoTable Table .. 2-44
2.3.8 Loading a Video into the ClipsTable Table .. 2-45
2.3.9 Inserting a Reference to a Clip Object into the Clips List in the VideoTable Table.......

..2-46
2.3.10 Inserting a Reference to a Video Object into the Clip ... 2-47
2.3.11 Retrieving a Video Clip from the VideoTable Table... 2-47
2.3.12 Extending interMedia to Support a New Video Data Format 2-48
2.3.13 Extending interMedia with a New Object Type .. 2-48
2.3.14 Using Video Types with Object Views ... 2-49
2.3.15 Scripts for Creating and Populating a Video Table from a BFILE Data Source.. 2-51
2.4 Extending interMedia to Support a New Data Source... 2-58
v

3 Ensuring Future Compatibility with Evolving interMedia Object Types

3.1 When and How to Call the Compatibility Initialization Function................................. 3-1

compatibilityInit() Method.. 3-3

4 ORDAudio Reference Information

4.1 Object Types ... 4-2

ORDAudio Object Type.. 4-3
4.2 Constructors ... 4-8

init() Method ... 4-9

init(srcType,srcLocation,srcName) Method .. 4-11
4.3 Methods .. 4-13
4.3.1 Example Table Definitions .. 4-17
4.3.2 ORDAudio Methods Associated with the updateTime Attribute 4-17

getUpdateTime Method ... 4-18

setUpdateTime() Method .. 4-19
4.3.3 ORDAudio Methods Associated with the description Attribute.......................... 4-20

setDescription() Method.. 4-21

getDescription Method ... 4-23
4.3.4 ORDAudio Methods Associated with the mimeType Attribute........................... 4-24

setMimeType() Method ... 4-25

getMimeType Method .. 4-27
4.3.5 ORDAudio Methods Associated with the source Attribute 4-28

processSourceCommand() Method ... 4-29

isLocal Method... 4-32

setLocal Method... 4-33

clearLocal Method ... 4-34

setSource() Method... 4-35

getSource Method.. 4-37

getSourceType Method... 4-38

getSourceLocation Method .. 4-40

getSourceName Method... 4-41

import() Method ... 4-42
vi

importFrom() Method.. 4-44

export() Method.. 4-47

getContentLength() Method ... 4-50

getContentInLob() Method ... 4-51

getContent Method ... 4-53

deleteContent Method .. 4-54

getBFILE Method... 4-55
4.3.6 ORDAudio Methods Associated with File-Like Operations 4-56

openSource() Method .. 4-57

closeSource() Method... 4-59

trimSource() Method.. 4-61

readFromSource() Method.. 4-63

writeToSource() Method ... 4-65
4.3.7 ORDAudio Methods Associated with the comments Attribute 4-67

appendToComments() Method.. 4-68

writeToComments() Method.. 4-70

readFromComments() Method .. 4-72

locateInComments() Method.. 4-73

trimComments() Method .. 4-75

eraseFromComments() Method ... 4-76

deleteComments Method... 4-77

loadCommentsFromFile() Method .. 4-78

copyCommentsOut() Method .. 4-80

compareComments() Method... 4-82

getCommentLength() Method.. 4-84
4.3.8 ORDAudio Methods Associated with Audio Attributes Accessors..................... 4-85

setFormat() Method.. 4-86

getFormat Method... 4-88

setEncoding() Method ... 4-89

getEncoding Method... 4-90

setNumberOfChannels() Method .. 4-91
vii

getNumberOfChannels Method.. 4-92

setSamplingRate() Method.. 4-93

getSamplingRate Method... 4-94

setSampleSize() Method .. 4-95

getSampleSize Method ... 4-96

setCompressionType() Method .. 4-97

getCompressionType Method ... 4-98

setAudioDuration() Method ... 4-99

getAudioDuration Method .. 4-100

setKnownAttributes() Method ... 4-101

setProperties() Method .. 4-103

setProperties() Method (XML).. 4-105

checkProperties() Method ... 4-107

getAttribute() Method.. 4-109

getAllAttributes() Method... 4-111
4.3.9 ORDAudio Methods Associated with Processing Audio Data 4-113

processAudioCommand() Method .. 4-114
4.4 Packages or PL/SQL Plug-ins ... 4-117
4.4.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package ... 4-117
4.4.2 Extending interMedia to Support a New Audio Data Format............................. 4-120

5 ORDImage Reference Information

5.1 Object Types ... 5-2

ORDImage Object Type.. 5-3
5.2 Constructors ... 5-6

init() Method ... 5-7

init(srcType,srcLocation,srcName) Method .. 5-9
5.3 Methods .. 5-11
5.3.1 Example Table Definitions .. 5-13
5.3.2 ORDImage Methods Associated with Copy Operations 5-14

copy() Method... 5-15
5.3.3 ORDImage Methods Associated with Process Operations.................................... 5-17
viii

process() Method .. 5-18

processCopy() Method .. 5-22
5.3.4 ORDImage Methods Associated with Properties Set and Check Operations..... 5-24

setProperties Method.. 5-25

setProperties() Method for Foreign Images.. 5-27

checkProperties Method... 5-30
5.3.5 ORDImage Methods Associated with Image Attributes.. 5-31

getHeight Method ... 5-32

getWidth Method .. 5-33

getContentLength Method... 5-34

getFileFormat Method .. 5-35

getContentFormat Method .. 5-36

getCompressionFormat Method ... 5-37
5.3.6 ORDImage Methods Associated with the local Attribute...................................... 5-38

setLocal Method .. 5-39

clearLocal Method... 5-40

isLocal Method .. 5-41
5.3.7 ORDImage Methods Associated with the date Attribute 5-42

getUpdateTime Method ... 5-43

setUpdateTime() Method .. 5-44
5.3.8 ORDImage Methods Associated with the mimeType Attribute........................... 5-45

getMimeType Method .. 5-46

setMimeType() Method ... 5-48
5.3.9 ORDImage Methods Associated with the source Attribute 5-50

getContent Method ... 5-51

getBFILE Method... 5-52

deleteContent Method .. 5-54

setSource() Method .. 5-55

getSource Method.. 5-57

getSourceType Method... 5-58

getSourceLocation Method .. 5-59

getSourceName Method... 5-60
ix

import() Method ... 5-61

importFrom() Method.. 5-63

export() Method .. 5-65
5.3.10 ORDImage Methods Associated with Image Migration .. 5-67

migrateFromORDImgB() Method.. 5-68

migrateFromORDImgF() Method .. 5-70

6 ORDVideo Reference Information

6.1 Object Types ... 6-2

ORDVideo Object Type .. 6-3
6.2 Constructors ... 6-8

init() Method ... 6-9

init(srcType,srcLocation,srcName) Method .. 6-11
6.3 Methods .. 6-13
6.3.1 Example Table Definitions .. 6-18
6.3.2 ORDVideo Methods Associated with the updateTime Attribute 6-18

getUpdateTime Method ... 6-19

setUpdateTime() Method .. 6-20
6.3.3 ORDVideo Methods Associated with the description Attribute 6-21

setDescription() Method.. 6-22

getDescription Method ... 6-24
6.3.4 ORDVideo Methods Associated with the mimeType Attribute 6-25

setMimeType() Method ... 6-26

getMimeType Method .. 6-28
6.3.5 ORDVideo Methods Associated with the source Attribute 6-29

processSourceCommand() Method ... 6-30

isLocal Method... 6-33

setLocal Method... 6-34

clearLocal Method ... 6-35

setSource() Method... 6-36

getSource Method.. 6-38

getSourceType Method... 6-39
x

getSourceLocation Method .. 6-41

getSourceName Method... 6-42

import() Method ... 6-43

importFrom() Method.. 6-45

export() Method.. 6-48

getContentLength() Method ... 6-51

getContentInLob() Method ... 6-52

getContent Method ... 6-54

deleteContent Method .. 6-56

getBFILE Method... 6-57
6.3.6 ORDVideo Methods Associated with File-Like Operations 6-58

openSource() Method .. 6-59

closeSource() Method... 6-61

trimSource() Method.. 6-63

readFromSource() Method.. 6-65

writeToSource() Method ... 6-67
6.3.7 ORDVideo Methods Associated with the comments Attribute 6-69

appendToComments() Method.. 6-70

writeToComments() Method.. 6-72

readFromComments() Method .. 6-74

locateInComments() Method.. 6-75

trimComments() Method .. 6-77

eraseFromComments() Method ... 6-78

deleteComments Method... 6-79

loadCommentsFromFile() Method .. 6-80

copyCommentsOut() Method .. 6-82

compareComments() Method... 6-84

getCommentLength() Method.. 6-86
6.3.8 ORDVideo Methods Associated with Video Attributes Accessors 6-87

setFormat() Method.. 6-88

getFormat Method... 6-90
xi

setFrameSize() Method .. 6-91

getFrameSize() Method.. 6-93

setFrameResolution() Method .. 6-95

getFrameResolution Method ... 6-96

setFrameRate() Method ... 6-97

getFrameRate Method... 6-98

setVideoDuration() Method.. 6-99

getVideoDuration Method ... 6-100

setNumberOfFrames() Method .. 6-101

getNumberOfFrames Method ... 6-102

setCompressionType() Method .. 6-103

getCompressionType Method ... 6-104

setNumberOfColors() Method ... 6-105

getNumberOfColors Method... 6-106

setBitRate() Method.. 6-107

getBitRate Method... 6-108

setKnownAttributes() Method ... 6-109

setProperties() Method .. 6-112

setProperties() Method (XML).. 6-114

checkProperties() Method ... 6-116

getAttribute() Method.. 6-118

getAllAttributes() Method... 6-120
6.3.9 ORDVideo Methods Associated with Processing Video Data 6-122

processVideoCommand() Method... 6-123
6.4 Packages or PL/SQL Plug-ins ... 6-126
6.4.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package .. 6-126
6.4.2 Extending interMedia to Support a New Video Data Format 6-129

7 ORDSource Reference Information

7.1 Object Types ... 7-2

ORDSource Object Type ... 7-3
7.2 Methods .. 7-7
xii

7.2.1 Example Table Definitions.. 7-8
7.2.2 ORDSource Methods Associated with the local Attribute....................................... 7-9

setLocal Method .. 7-10

clearLocal Method... 7-11

isLocal Method .. 7-12
7.2.3 ORDSource Methods Associated with the updateTime Attribute 7-13

getUpdateTime Method ... 7-14

setUpdateTime() Method .. 7-15
7.2.4 ORDSource Methods Associated with the srcType, srcLocation, and srcName

Attributes ...7-16

setSourceInformation() Method ... 7-17

getSourceInformation Method .. 7-19

getSourceType Method... 7-20

getSourceLocation Method .. 7-21

getSourceName Method... 7-22

getBFile Method... 7-23
7.2.5 ORDSource Methods Associated with Import and Export Operations 7-25

import() Method ... 7-26

import() Method (Deprecated) ... 7-28

importFrom() Method.. 7-31

importFrom() Method (Deprecated).. 7-34

export() Method.. 7-37
7.2.6 ORDSource Methods Associated with the localData Attribute 7-40

getContentLength() Method ... 7-41

getSourceAddress() Method... 7-43

getLocalContent Method.. 7-45

getContentInTempLob() Method... 7-47

deleteLocalContent Method .. 7-50
7.2.7 ORDSource Methods Associated with File Operations.. 7-51

open() Method .. 7-52

close() Method... 7-54

trim() Method.. 7-56
xiii

7.2.8 ORDSource Methods Associated with Read/Write Operations........................... 7-58

read() Method.. 7-59

write() Method .. 7-61
7.2.9 ORDSource Methods Associated with Processing Commands to the External Source

... 7-63

processCommand() Method ... 7-64
7.3 Packages or PL/SQL Plug-ins ... 7-66
7.3.1 ORDPLUGINS.ORDX_FILE_SOURCE Package ... 7-66
7.3.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package ... 7-68
7.3.3 ORDPLUGINS.ORDX_<srcType>_SOURCE Package... 7-70
7.3.4 Extending interMedia to Support a New Data Source.. 7-70

8 Tuning Tips for the DBA

8.1 Setting Database Initialization Parameters .. 8-2
8.2 Issues to Consider in Creating Tables with interMedia Column Objects Containing

BLOBs .. 8-6
8.2.1 Initializing Internal interMedia Column Objects Containing BLOBs to NULL or

EMPTY .. 8-7
8.2.2 Specifying Tablespace and Storage Characteristics for interMedia Column Objects

Containing BLOBs ... 8-7
8.2.3 Segment Attributes and Physical Attributes .. 8-14
8.2.4 Accommodating Temporary LOBs in the Buffer Cache... 8-15
8.2.5 Using interMedia Column Objects Containing BLOBs in Table Partitions 8-15
8.2.6 LOB Buffering for Client Applications.. 8-16
8.3 Improving Multimedia Data INSERT Performance in interMedia Objects Containing

LOBs ... 8-16
8.4 Loading Multimedia Data Using the interMedia Clipboard... 8-23
8.5 Loading Multimedia Data Using interMedia Annotator Utility................................... 8-24
8.6 Loading Results of an interMedia Benchmark .. 8-24
8.7 Reading Data from an ORDVideo Object Using the interMedia readFromSource()

Method in a PL/SQL Script ... 8-26
8.8 Reading Results of an interMedia Benchmark .. 8-27
8.9 Getting the Best Performance Results .. 8-28
8.10 Improving Multimedia LOB Data Retrieval and Update Performance 8-29
xiv

A Audio File and Compression Formats

A.1 Supported Audio File and Compression Formats.. A-1

B Image File and Compression Formats

B.1 Supported Image File and Compression Formats.. B-1

C Video File and Compression Formats

C.1 Supported Video File and Compression Formats .. C-1

D Image process() and processCopy() Operators

D.1 Common Concepts.. D-1
D.1.1 Source and Destination Images.. D-1
D.1.2 process() and processCopy() .. D-2
D.1.3 Operator and Value ... D-2
D.1.4 Combining Operators .. D-2
D.2 Image Formatting Operators ... D-2
D.2.1 FileFormat ... D-3
D.2.2 ContentFormat.. D-3
D.2.3 CompressionFormat .. D-4
D.2.4 CompressionQuality.. D-5
D.3 Image Processing Operators .. D-5
D.3.1 Cut .. D-6
D.3.2 Scale.. D-6
D.3.3 XScale ... D-6
D.3.4 YScale ... D-7
D.3.5 FixedScale .. D-7
D.3.6 MaxScale .. D-7
D.4 Format-Specific Operators ... D-8
D.4.1 ChannelOrder ... D-8
D.4.2 Interleaving ... D-8
D.4.3 PixelOrder ... D-9
D.4.4 ScanlineOrder ... D-9
D.4.5 InputChannels .. D-9
xv

E Image Raw Pixel Format

E.1 Raw Pixel Introduction ... E-1
E.2 Raw Pixel Image Structure... E-2
E.3 Raw Pixel Header Field Descriptions ... E-3
E.4 Raw Pixel Post-Header Gap... E-7
E.5 Raw Pixel Data Section and Pixel Data Format .. E-8
E.5.1 Scanline Ordering... E-8
E.5.2 Pixel Ordering... E-9
E.5.3 Band Interleaving ... E-9
E.5.4 N-Band Data.. E-11
E.6 Raw Pixel Header “C” Structure... E-11
E.7 Raw Pixel Header “C” Constants.. E-12
E.8 Raw Pixel PL/SQL Constants.. E-13
E.9 Raw Pixel Images Using CCITT Compression.. E-13
E.10 Foreign Image Support and the Raw Pixel Format .. E-14

F Sample Programs

F.1 Sample Audio Scripts.. F-1
F.2 Sample Program for Modifying Images or Testing the Image Installation F-2
F.2.1 Demonstration (Demo) Installation Steps .. F-2
F.2.2 Running the Demo ... F-2
F.3 Sample Video Scripts .. F-4
F.4 Java Demo... F-4

G Frequently Asked Questions

H Exceptions and Error Messages

H.1 Exceptions... H-1
H.1.1 ORDAudioExceptions Exceptions ... H-1
H.1.2 ORDImageExceptions Exceptions ... H-3
H.1.3 ORDVideoExceptions Exceptions.. H-3
H.1.4 ORDSourceExceptions Exceptions .. H-4
H.2 ORDAudio Error Messages.. H-5
H.3 ORDImage Error Messages .. H-7
xvi

H.4 ORDVideo Error Messages .. H-12

I Deprecated Image Object Types and Methods

ORDImgB Object Type ... I-4

ORDImgF Object Type ... I-6

checkProperties Method... I-8

copyContent Method .. I-9

deleteContent Method ... I-10

getCompressionFormat Method .. I-11

getContent Method .. I-12

getContentFormat Method ... I-13

getContentLength Method.. I-14

 getFileFormat Method .. I-15

getHeight Method .. I-16

getMimeType Method ... I-17

getWidth Method ... I-18

process Method... I-19

processCopy Method ... I-22

setProperties Method... I-24

setProperties() Method for Foreign Images... I-26

J Deprecated Audio and Video Methods

J.1 Deprecated ORDAudio Methods... J-2

getFormat() Method .. J-3

getEncoding() Method.. J-5

getNumberOfChannels() Method... J-7

getSamplingRate() Method .. J-9

getSampleSize() Method.. J-11

getCompressionType() Method ... J-13

getAudioDuration() Method .. J-15
J.2 Deprecated ORDVideo Methods .. J-16
xvii

getFormat() Method ... J-17

getFrameSize() Method.. J-19

getFrameResolution() Method.. J-21

getFrameRate() Method... J-23

getVideoDuration() Method ... J-25

getNumberOfFrames() Method.. J-27

getCompressionType() Method ... J-29

getNumberOfColors() Method... J-31

getBitRate() Method ... J-33

Index
xviii

List of Examples

2–1 Define a Song Object ... 2-2
2–2 Create a Table Named SongsTable ... 2-2
2–3 Create a List Object Containing a List of References to Songs 2-3
2–4 Define the Implementation of the songList Object... 2-3
2–5 Create a CD Table Containing CD Information.. 2-4
2–6 Insert a Song into the SongsTable Table .. 2-5
2–7 Insert a CD into the CdTable Table .. 2-5
2–8 Load a Song into the SongsTable Table ... 2-6
2–9 Insert a Reference to a Song Object into the Songs List in the CdTable Table 2-7
2–10 Add a CD Reference to a Song .. 2-8
2–11 Retrieve Audio Data from a Song in a CD... 2-9
2–12 Define a Relational Table Containing No ORDAudio Object....................................... 2-10
2–13 Define an Object View Containing an ORDAudio Object and Relational Columns. 2-11
2–14 Add a New Column of Type ORDImage to the emp Table.. 2-20
2–15 Add ORDImage Types to a New Table ... 2-21
2–16 Insert a Row into a Table with Empty Data in the ORDImage Type Column........... 2-21
2–17 Populate a Row with ORDImage BLOB Data ... 2-22
2–18 Insert a Row into a Table with an Image in the ORDImage Type Column................ 2-23
2–19 Populate a Row with ORDImage External File Data ... 2-24
2–20 Query Rows of ORDImage Data for Widths Greater Than 32 2-24
2–21 Query Rows of ORDImage Data for Widths Greater Than 32 and a Minimum Content

Length ..2-25
2–22 Import an Image from an External File .. 2-25
2–23 Copy an Image... 2-25
2–24 Convert an Image Format .. 2-26
2–25 Copy and Convert an Image Format.. 2-27
2–26 Extend Oracle interMedia Image with a New Object Type... 2-28
2–27 Define a Relational Table Containing No ORDImage Object 2-29
2–28 Define an Object View Containing an ORDImage Object and Relational Columns . 2-30
2–29 Address a National Language Support Issue.. 2-40
2–30 Define a Clip Object .. 2-42
2–31 Create a Table Named ClipsTable .. 2-42
2–32 Create a List Object Containing a List of Clips ... 2-42
2–33 Define the Implementation of the clipList Object... 2-43
2–34 Create a Video Table Containing Video Information .. 2-43
2–35 Insert a Video Clip into the ClipsTable Table ... 2-44
2–36 Insert a Row into the VideoTable Table ... 2-44
2–37 Load a Video into the ClipsTable Table ... 2-45
2–38 Insert a Reference to a Clip Object into the Clips List in the VideoTable Table 2-46
 xix

2–39 Insert a Reference to a Video Object into the Clip .. 2-47
2–40 Retrieve a Video Clip .. 2-48
2–41 Define a Relational Table Containing No ORDVideo Object.. 2-49
2–42 Define an Object View Containing an ORDVideo Object and Relational Columns.. 2-50
4–1 Show the Package Body for Extending Support to a New Audio

Data Format ... 4-121
6–1 Show the Package Body for Extending Support to a New Video

Data Format ... 6-130
7–1 Show the Package Body for Extending Support to a New Data Source...................... 7-71
8–1 Create a Separate Tablespace to Store an interMedia Column Object Containing LOB

Data .. 8-8
8–2 Show the Load1.bat File.. 8-17
8–3 Show the T1.SQL File .. 8-17
8–4 Show the Load1.sql File that Executes the load_image Stored Procedure.................. 8-20
8–5 Show the Control File for Loading Video Data... 8-21
8–6 Read Data from an ORDVideo Column Object Using interMedia readFromSource()

Method in a PL/SQL Stored Procedure ... 8-26
F–1 Execute the Demo from the Command Line ... F-3
xx

 xxi

List of Figures

1–1 interMedia Architecture.. 1-16

xxii

List of Tables

1–1 interMedia Services and Features -- Supported Systems and Oracle8i Releases 1-16
4–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema.................................... 4-117
4–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package .. 4-119
5–1 Image Processing Operators .. 5-18
5–2 Additional Image Processing Operators for Raw Pixel and Foreign Images 5-19
5–3 Image Characteristics for Foreign Files .. 5-28
6–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema.................................... 6-126
6–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package... 6-128
7–1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package 7-68
7–2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package 7-70
A–1 AIFF Data Format .. A-1
A–2 AIFF-C Data Format.. A-2
A–3 AU Data Format... A-3
A–4 WAV Data Format ... A-4
A–5 Audio MPEG Data Format... A-5
B–1 BMP Data Format .. B-1
B–2 CALS Raster Data Format .. B-2
B–3 EXIF Data Format .. B-2
B–4 GIF Data Format ... B-3
B–5 JFIF Data Format .. B-3
B–6 PCX Data Format ... B-4
B–7 PICT Data Format ... B-4
B–8 Raw Pixel Data Format .. B-5
B–9 Sun Raster Data Format ... B-6
B–10 Targa Data Format .. B-6
B–11 TIFF Data Format .. B-7
C–1 Apple QuickTime 3.0 Data Format ... C-2
C–2 Microsoft Video for Windows (AVI) Data Format ... C-3
C–3 RealNetworks Real Video Data Format ... C-3
I–1 Functions and Procedures .. I-1
I–2 Image Processing Operators ... I-19
I–3 Additional Image Processing Operators for Raw Pixel and Foreign Images I-20
I–4 Image Characteristics for Headerless Files ... I-26

Send Us Your Comments

Oracle interMedia Audio, Image, and Video User’s Guide and Reference , Release 8.1.7

Part No. A85336-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: nedc_doc@us.oracle.com
■ FAX: 603.897.3316 Attn: Oracle interMedia Documentation
■ Postal service:

Oracle Corporation
Oracle interMedia Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xxiii

xxiv

Preface

This guide describes how to use Oracle interMedia Audio, Image and Video.

Oracle interMedia Audio, Image, and Video requires Oracle8i or Oracle8i Enter-
prise Edition.

For information about the differences between Oracle8i and Oracle8i Enterprise Edi-
tion and the features and options that are available to you, see Getting to Know
Oracle8i.

Audience
This guide is for application developers and database administrators who are inter-
ested in storing, retrieving, and manipulating audio, image, and video data in an
Oracle database, including developers of audio, image, and video specialization
options.

Organization
This guide contains the following chapters and appendixes:

Chapter 1 Introduces multimedia and Oracle interMedia; explains multimedia-related con-
cepts.

Chapter 2 Provides basic examples of using Oracle interMedia object types and methods.

Chapter 3 Provides compatibility information for ensuring future compatibility with evolv-
ing object types.

Chapter 4 Provides reference information on Oracle interMedia ORDAudio object type and
methods.
 xxv

Related Documents

Chapter 5 Provides reference information on Oracle interMedia ORDImage object type and
methods.

Chapter 6 Provides reference information on Oracle interMedia ORDVideo object type and
methods.

Chapter 7 Provides reference information on Oracle interMedia ORDSource object type and
methods.

Chapter 8 Provides tuning tips for the DBA for more efficient storage of multimedia data.

Appendix A Describes the supported audio data formats.

Appendix B Describes the supported image data formats.

Appendix C Describes the supported video data formats

Appendix D Describes the process and processCopy operators.

Appendix E Describes the raw pixel format.

Appendix F Describes how to run the sample program and includes the source program.

Appendix G Emphasizes several entries from the online FAQ.

Appendix H Lists exceptions raised and potential errors, their causes, and user actions to cor-
rect them.

Appendix I Describes the deprecated image object types and methods.

Appendix J Describes the deprecated audio and video methods.

Note: For information added after the release of this guide, refer
to the online README.txt file in your ORACLE_HOME directory.
Depending on your operating system, this file may be in:

ORACLE_HOME/ord/img/admin/README.txt

Please see your operating-system specific installation guide for
more information.

For the latest documentation, see the Oracle Technology Network
Web site:

http://technet.oracle.com/
xxvi

For more information about using interMedia in a development environment, see
the following documents in the release 8.1.7 Oracle database server documentation
set:

■ Oracle Call Interface Programmer’s Guide

■ Oracle8i Application Developer’s Guide - Fundamentals

■ Oracle8i Application Developer’s Guide - Large Objects (LOBs)

■ Oracle8i Concepts

■ PL/SQL User’s Guide and Reference

■ Oracle interMedia Audio, Image, and Video Java Classes User’s Guide and Reference

Conventions
In this guide, Oracle interMedia is sometimes referred to as interMedia.

In examples, an implied carriage return occurs at the end of each line, unless other-
wise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this guide:

Changes to This Guide
The following substantive changes were made to this guide since its previous
version for release 8.1.6 on the Oracle Technology Network (OTN) Web site.

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

... Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the exam-
ple have been omitted.

boldface text Boldface text indicates a term defined in the text.

italic text Italic text is used for emphasis, book titles, and variable names.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.
 xxvii

Other minor corrections and clarifications are also included.

Information is provided to ensure future compatibility of the 8.1.7 release with a
future release of the evolving interMedia object types (ORDAudio, ORDImage,
ORDVideo, and ORDSource) containing new object attributes. Client-side applica-
tions should call the new compatibility initialization function (compatibilityInit()
method) at the beginning of an application if necessary. See Chapter 3 for more
information.

It is recommended that users use the new static methods, init() and init(srcType,
srcLocation,srcName); these two methods have been added to each of the media
types (ORDImage, ORDAudio, ORDVideo) to allow for easy initialization of
instances of these types. Do not use the default constructors because INSERT state-
ments using the default constructors will fail if the object type has evolved adding
new attributes. See Section 4.2, Section 5.2, and Section 6.2 for more information.

The export() method now works for the source type FILE. See Section 4.3,
Section 5.3, and Section 6.3 for more information.

An additional ORDSource.import method has been defined. It is nearly identical to
the existing import method except that the destination BLOB is not passed in as a
separate (redundant) parameter. See Section 7.2 for more information.

The deleteContent method no longer touches the metadata attributes. See
Section 4.3, Section 5.3, and Section 6.3 for more information.

The digital camera format known as EXIF is now recognized; it is a variation of the
JFIF format, and the setProperties method sets the fileFormat attribute to JFIF. See
Table B–3 for more information.
xxviii

 Introdu
1

Introduction

Oracle interMedia is a single product that enables Oracle8i to store, manage, and
retrieve text, documents, geographic location information, images, audio, and video
in an integrated fashion with other enterprise information. Oracle interMedia
extends Oracle8i reliability, availability, and data management to text and multime-
dia content in Internet, electronic commerce, and media-rich applications as well as
online Internet-based geocoding services for locator applications.

Oracle interMedia provides services for managing Web content. These services
include:

■ Media and application metadata management services (see Section 1.9.2)

■ Storage and retrieval services (see Section 1.7 and Section 1.8)

■ Support for popular formats (see Appendix A, Appendix B, and Appendix C)

■ Access through traditional and Web interfaces (see Section 1.9.4) and a search
capability using associated relational data or using specialized indexing.

Oracle interMedia provides content services to JDeveloper, Oracle Developer, Ora-
cle Internet File System, WebDB, Oracle applications, and Oracle partners. This
guide describes only the management of image, audio, and video data.

1.1 Oracle interMedia Audio, Image, and Video
The capabilities of interMedia audio, image, and video include the storage, retrieval,
management, and manipulation of multimedia data managed by Oracle8i. Oracle
interMedia supports multimedia storage, retrieval, and management of:

■ Binary large objects (BLOBs) stored locally in Oracle8i and containing audio,
image, or video data
ction 1-1

Oracle interMedia Audio, Image, and Video
■ File-based large objects, or BFILEs, stored locally in operating system-specific
file systems and containing audio, image, or video data

■ URLs containing audio, image, or video data stored on any HTTP server such
as Oracle Application Server, Netscape Application Server, Microsoft Internet
Information Server, Apache HTTPD server, and Spyglass servers

■ Streaming audio or video data stored on specialized media servers such as the
Oracle Video Server

Multimedia applications have common and unique requirements. Oracle interMe-
dia object types support common application requirements and can be extended to
address application-specific requirements. With Oracle interMedia, multimedia data
can be managed as easily as standard attribute data.

Oracle interMedia is accessible to applications through both relational and object
interfaces. Database applications written in Java, C++, or traditional 3GLs can inter-
act with interMedia through modern class library interfaces, or PL/SQL and Oracle
Call Interface (OCI).

interMedia supports storage of all the popular file formats, including desktop pub-
lishing image, and streaming audio and video formats in Oracle8i databases. inter-
Media provides the means to add audio, image, and video columns or objects to
existing tables, and insert and retrieve multimedia data. This enables database
designers to extend existing application databases with multimedia data or to build
new end-user multimedia database applications. interMedia developers can use the
basic functions provided here to build specialized multimedia applications.

Oracle interMedia uses object types, similar to Java or C++ classes, to describe mul-
timedia data. These object types are called ORDAudio, ORDImage, and ORDVideo.
An instance of these object types consists of attributes, including metadata and the
media data, and methods. Media data is the actual audio, image, or video. Meta-
data is information about the data, such as object length, compression type, or for-
mat. Methods are procedures that can be performed on the object like getContent()
and setProperties().

interMedia objects have a common media data storage model. The media data com-
ponent of these objects can be stored in the database, in a binary large object (BLOB)
under transaction control. The media data can also be stored outside the database,
without transaction control. In this case, a pointer is stored in the database under
transaction control, and the media data is stored in:

■ An external binary file (BFILE)

■ An HTTP server-based URL
1-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Oracle interMedia Audio, Image, and Video
■ A source on a specialized media data server such as Oracle Video Server

■ A user-defined source on other servers

Media data stored outside the database can provide a convenient mechanism for
managing large, pre-existing, or new media repositories that reside as flat files on
erasable or read-only media. This data can be imported into BLOBs at any time for
transaction control. Section 1.7 describes several ways of loading multimedia data
into an Oracle8i database.

Object metadata and methods are always stored in the database under Oracle inter-
Media control. Whether media data is stored within or outside the database, inter-
Media manages metadata for all the media types and may automatically extract it
for audio, image, and video. This metadata includes the following attributes:

■ Local (audio, image, and video) data in the database

■ Audio, image, and video data storage information including the source type,
location, and source name, and whether the data is stored locally (in the data-
base) or externally

■ Audio, image, and video data update timestamp

■ Audio and video data description

■ Audio, image, and video data format

■ MIME type of the audio, image, and video data

■ Audio and video comments

■ Audio characteristics: encoding type, number of channels, sampling rate, sam-
ple size, compression type, and play time (duration)

■ Image characteristics: height and width, image content length, image content
format, and image compression format

■ Video characteristics: frame width and height, frame resolution, frame rate, play
time (duration), number of frames, compression type, number of colors, and bit
rate

In addition, a minimal set of image and data manipulation methods is provided.
For image, this includes verifying the image properties match the image, perform-
ing format conversion and compression, scaling, cropping, copying, and deleting
images.

interMedia is designed to be extensible. It supports a base set of popular audio,
image, and video data characteristics for multimedia processing that also can be
extended, for example, to support additional formats, new digital compression and
 Introduction 1-3

Oracle interMedia Audio, Image, and Video
decompression schemes (codecs), data sources, and even specialized data process-
ing algorithms for audio and video data.

It is possible to extend Oracle interMedia by:

■ Creating a new object type or a new composite object type based on the pro-
vided multimedia object types. See the examples in Section 2.1.13,
Section 2.2.12, and Section 2.3.13 for more information.

■ Creating specialized plug-ins to support other external sources of audio, image,
and video data that are not currently supported. See Section 1.6.1 for more
information.

■ Creating specialized audio and video data format plug-ins to support other
audio and video data formats that are not currently supported. See Section 1.6.1
for more information.

■ Using the setProperties() method for foreign images, which allows certain other
image formats to be recognized. See Section 1.6.1 and the “setProperties()
Method for Foreign Images” in Section 5.3.4 for more information.

■ Using the audio and video data processing methods to allow a specific audio or
video command and its arguments to be passed through to process audio or
video data. See Section 1.6.2 and Section 1.6.3 for more information.

interMedia is a building block for various multimedia applications rather than being
an end-user application. It consists of object types along with related methods for
managing and processing multimedia data. Some example applications for interMe-
dia audio, image, and video are:

■ Internet music stores that provide music samplings of CD quality

■ Digital sound repositories

■ Dictation and telephone conversation repositories

■ Audio archives and collections (for example, for musicians)

■ Digital art galleries

■ Real estate marketing

■ Document imaging

■ Photograph collections (for example, for professional photographers)

■ Internet video stores and digital video-clip previews

■ Digital video sources for streaming video delivery systems
1-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Audio Concepts
■ Digital video libraries, archives, and repositories

■ Libraries of digital video training programs

■ Digital video repositories (for example, for motion picture production, televi-
sion broadcasting, documentaries, advertisements, and so forth)

1.2 Audio Concepts
This section contains information about digitized audio concepts and using interMe-
dia audio to build audio applications or specialized interMedia audio objects.

1.2.1 Digitized Audio
interMedia audio integrates the storage, retrieval, and management of digitized
audio data in Oracle databases using Oracle8i.

Audio may be produced by an audio recorder, an audio source such as a micro-
phone, digitized audio, other specialized audio recording devices, or even by pro-
gram algorithms. Audio recording devices take an analog or continuous signal,
such as the sound picked up by a microphone or sound recorded on magnetic
media, and convert it into digital values with specific audio characteristics such as
format, encoding type, number of channels, sampling rate, sample size, compres-
sion type, and audio duration.

1.2.2 Audio Components
Digitized audio consists of the audio data (digitized bits) and attributes that
describe and characterize the audio data. Audio applications sometimes associate
application-specific information, such as the description of the audio clip, date
recorded, author or artist, and so forth, with audio data by storing descriptive text
in an attribute or column in the database table.

The audio data can have different formats, encoding types, compression types,
numbers of channels, sampling rates, sample sizes, and playing times (duration)
depending upon how the audio data was digitally recorded. interMedia audio can
store and retrieve audio data of any data format. interMedia audio can automati-
cally extract metadata from audio data of a variety of popular audio formats. inter-
Media audio can also extract application attributes and store them in the comments
field of the object in XML form identical to what is provided by the interMedia
Annotator utility. Supported audio attributes depend upon available hardware
capabilities or processing power for any user-defined formats. See Appendix A for a
list of supported data formats from which interMedia audio can extract and store
 Introduction 1-5

Image Concepts
attributes and other audio features. interMedia audio is extensible and can be made
to recognize and support additional audio formats.

The size of digitized audio (number of bytes) tends to be large compared to tradi-
tional computer objects, such as numbers and text. Therefore, several encoding
schemes are used that squeeze audio data into fewer bytes, thus putting a smaller
load on storage devices and networks.

1.3 Image Concepts
This section contains information about digitized image concepts and using inter-
Media image to build image applications or specialized interMedia image objects.

1.3.1 Digitized Images
interMedia image integrates the storage, retrieval, and management of digitized
images in Oracle databases using Oracle8i.

interMedia image supports two-dimensional, static, digitized raster images stored
as binary representations of real-world objects or scenes. Images may be produced
by a document or photograph scanner, a video source such as a camera or VCR con-
nected to a video digitizer or frame grabber, other specialized image capture
devices, or even by program algorithms. Capture devices take an analog or continu-
ous signal such as the light that falls onto the film in a camera, and convert it into
digital values on a two-dimensional grid of data points known as pixels. Devices
involved in the capture and display of images are under application control.

1.3.2 Image Components
Digitized images consist of the image data (digitized bits) and attributes that
describe and characterize the image data. Image applications sometimes associate
application-specific information, such as including the name of the person pictured
in a photograph, description of the image, date photographed, photographer, and
so forth, with image data by storing this descriptive text in an attribute or column in
the database table.

The image data (pixels) can have varying depths (bits per pixel) depending on how
the image was captured, and can be organized in various ways. The organization of
the image data is known as the data format. interMedia image can store and retrieve
image data of any data format. interMedia image can process and automatically
extract properties of images of a variety of popular data formats. See Appendix B
for a list of supported data formats for which interMedia image can process and
extract metadata. In addition, certain foreign images (formats not natively sup-
1-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Concepts
ported by interMedia image) have limited support for image processing. See
Appendix E for more information.

The storage space required for digitized images can be large compared to tradi-
tional attribute data such as numbers and text. Many compression schemes are
available to squeeze an image into fewer bytes, thus reducing storage device and
network load. Lossless compression schemes squeeze an image so that when it is
decompressed, the resulting image is bit-for-bit identical with the original. Lossy
compression schemes do not result in an identical image when decompressed, but
rather, one in which the changes may be imperceptible to the human eye.

Image interchange format describes a well-defined organization and use of image
attributes, data, and often compression schemes, allowing different applications to
create, exchange, and use images. Interchange formats are often stored in or as disk
files. They may also be exchanged in a sequential fashion over a network and be
referred to as a protocol. There are many application subdomains within the digi-
tized imaging world and many applications that create or utilize digitized images
within these. interMedia image supports storage and retrieval of all image data for-
mats, and processing and attribute extraction of many image data formats (see
Appendix B).

1.4 Video Concepts
This section contains information about digitized video concepts and using interMe-
dia video to build video applications or specialized interMedia video objects.

1.4.1 Digitized Video
interMedia video integrates the storage, retrieval, and management of digitized
video data in Oracle databases using Oracle8i.

Video may be produced by a video recorder, a video camera, digitized animation
video, other specialized video recording devices, or even by program algorithms.
Some video recording devices take an analog or continuous signal, such as the
video picked up by a video camera or video recorded on magnetic media, and con-
vert it into digital values with specific video characteristics such as format, encod-
ing type, frame rate, frame size (width and height), frame resolution, video length,
compression type, number of colors, and bit rate.

1.4.2 Video Components
Digitized video consists of the video data (digitized bits) and the attributes that
describe and characterize the video data. Video applications sometimes associate
 Introduction 1-7

Object Relational Technology
application-specific information, such as the description of the video training tape,
date recorded, instructor’s name, producer’s name, and so forth, with video data by
storing descriptive text in an attribute or column in the database table.

The video data can have different formats, compression types, frame rates, frame
sizes, frame resolutions, playing times, compression types, number of colors, and
bit rates depending upon how the video data was digitally recorded. interMedia
video can store and retrieve video data of any data format. interMedia video can
automatically extract metadata from video data of a variety of popular video for-
mats. interMedia video can also extract application attributes and store them in the
comments field of the object in XML form identical to what is provided by the inter-
Media Annotator utility. Supported video attributes depend upon available hard-
ware capabilities or processing power for any user-defined formats. See
Appendix C for a list of supported data formats from which interMedia audio can
extract and store attributes and other video features. interMedia video is extensible
and can be made to recognize and support additional video formats.

The size of digitized video (number of bytes) tends to be large compared to tradi-
tional computer objects, such as numbers and text. Therefore, several encoding
schemes are used that squeeze video data into fewer bytes, thus putting a smaller
load on storage devices and networks.

1.5 Object Relational Technology
Oracle8i is an object relational database management system. This means that in
addition to its traditional role in the safe and efficient management of relational
data, it provides support for the definition of object types, including the data associ-
ated with objects and the operations (methods) that can be performed on them. This
powerful mechanism, well established in the object-oriented world, includes inte-
gral support for BLOBs to provide the basis for adding complex objects, such as dig-
itized audio, image, and video to Oracle8i databases.

Within Oracle interMedia, audio data characteristics have an object relational type
known as ORDAudio, image data characteristics have an object relational type
known as ORDImage, and video data characteristics have an object relational type
known as ORDVideo. All three store data source information in an object relational
type known as ORDSource.

See the following references for extensive information on using BLOBs and BFILEs:

■ Oracle8i Application Developer’s Guide - Large Objects (LOBs)

■ Oracle8i Concepts -- see the chapter on Object Views.
1-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Object Relational Technology
1.5.1 Multimedia Object Types and Methods
Oracle interMedia provides the ORDAudio, ORDImage, and ORDVideo object
types and methods for:

■ Performing updateTime ORDSource attribute manipulation

■ Manipulating multimedia data source attribute information

■ Extracting attributes from multimedia data

■ Getting and managing multimedia data from Oracle interMedia, Web servers,
and other servers

■ Performing a minimal set of manipulation operations on multimedia data (inter-
Media image only)

■ Performing description attribute manipulation, file operations (open, close,
trim, read, and write) on the source, comments attribute manipulation, and pro-
cessing commands (processAudioCommand and processVideoCommand) to
operate on the multimedia data (interMedia audio and video only)

1.5.2 ORDSource Object Type and Methods
Oracle interMedia provides the ORDSource object type and methods for multime-
dia data source manipulation. This section presents a conceptual overview of the
ORDSource object type methods.

1.5.2.1 Storing Multimedia Data
interMedia can store multimedia data as an internal source within the Oracle8i data-
base, under transactional control as a BLOB. It can also externally reference digi-
tized multimedia data stored as an external source in an operating system-specific
BFILE in a local file-system, as a URL on an HTTP server, as streaming audio or
video stored on media servers, or as a user-defined source on other servers.
Although these external storage mechanisms are particularly convenient for inte-
grating pre-existing sets of multimedia data with an Oracle8i database, the multi-
media data will not be under transactional control.

Note: ORDSource methods should not be called directly. Instead,
invoke the wrapper method of the media object corresponding to
the ORDSource method. This information is presented for users
who want to write their own user-defined sources.
 Introduction 1-9

Object Relational Technology
BLOBs are stored in the database tablespaces in a way that optimizes space and pro-
vides efficient access. BLOBs may not be stored inline with other row data. Depend-
ing on the size of the BLOB, a locator is stored in the row and the actual BLOB (up
to 4 gigabytes) is stored in other tablespaces. The locator can be considered a
pointer to the actual location of the BLOB value. When you select a BLOB, you are
selecting the locator instead of the value, although this is done transparently. An
advantage of this design is that multiple BLOB locators can exist in a single row. For
example, you might want to store a short video clip of a training tape, an audio
recording containing a brief description of its contents, a syllabus of the course, a
picture of the instructor, and a set of maps and directions to each training center.

Because BFILEs are not under the transactional control of the database, users could
change the external source without updating the database, thus causing an inconsis-
tency with the BFILE locator. See Oracle8i Application Developer’s Guide - Large
Objects (LOBs) and Oracle Call Interface Programmer’s Guide for detailed information
on using BLOBs and BFILEs.

interMedia provides the ORDSource object type and methods for performing local
attribute manipulation, updateTime attribute manipulation, source attribute manip-
ulation, import/export operations, source content operations, source access opera-
tions, source read and write operations, and command process operations.

Using interMedia with Oracle Video Server
In the case of Oracle Video Server (OVS), the ORDSource object can store a pointer
(either a URL or OVS MDS block) directly in the tablespace of your database that an
application can resolve into a playable asset. The application can extract the meta-
data about the OVS source and store the metadata, along with the pointer to the
media data in interMedia. In this case, you are using interMedia to store the media
metadata and OVS to store the media data. Note that ORDVideo methods do not
operate on OVS data.

1.5.2.2 Querying Multimedia Data
Once stored within an Oracle8i database, multimedia data can be queried and
retrieved by using the various alphanumeric columns (attributes) of the table to find
a row that contains the desired data. For example, you can select a video clip from
the Training table where the course name is ’Oracle8i Concepts’.

The collection of multimedia data in the database can be related to some set of
attributes or keywords that describe the associated content. The multimedia data
content can be described with textual components and numeric attributes such as
dates and identification numbers. With Oracle8i, data attributes can reside in the
same table as the object type. Alternatively, the application designer could define a
1-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Extending Oracle interMedia
composite object type that contains one of the interMedia object types along with
other attributes.

1.5.2.3 Accessing Multimedia Data
Applications access and manipulate multimedia data using SQL, PL/SQL, or Java
through the object relational types ORDAudio, ORDImage, and ORDVideo. See
Oracle interMedia Audio, Image, and Video Java Classes User’s Guide and Reference for
more information about using Java. The object syntax for accessing attributes within
a complex object is the dot notation:

variable.data_attribute

The syntax for invoking methods of a complex object is also the dot notation:

variable.function(parameter1, parameter2, ...)

See Oracle8i Concepts for information on this and other SQL syntax.

1.6 Extending Oracle interMedia
interMedia audio, image, and video can be extended to support:

■ Other external sources of audio, image, and video data not currently supported

■ Other audio, image, and video data formats not currently supported

■ Audio and video data processing

The following sections describe each of these topics and where to find more infor-
mation.

1.6.1 Supporting Other External Sources and Other Audio, Image, and Video Data
Formats

For each unique external audio, image, or video data source or each unique audio
or video data format that you want to support, you must:

1. Design your new data source or new audio or video data format.

2. Implement your new data source or new audio or video data format.

3. Install your new plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in to PUBLIC.
 Introduction 1-11

Extending Oracle interMedia
Supporting Other External Sources
To implement your new data source, you must implement the required interfaces in
the ORDX_<srcType>_SOURCE package in the ORDPLUGINS schema (where <src-
Type> represents the name of the new external source type). Use the package body
example in Section 7.3.2 as a template to create the package body. Then set the
source parameter in the setSourceInformation() call to the appropriate source value
to indicate to the audio, image, or video object that package ORDPLUG-
INS.ORDX_<srcType>_SOURCE is available as a plug-in. Use the ORDPLUG-
INS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_SOURCE packages
as guides when you extend support to other external audio, image, or video
sources.

See Section 2.4, Section 7.3.1, Section 7.3.2, and Section 7.3.4 for examples and for
more information on extending the supported external sources of audio, image, and
video data.

Supporting Other Audio and Video Data Formats
To implement your new audio or video data format, you must implement the
required interfaces in the ORDPLUGINS.ORDX_<format>_<media> package in the
ORDPLUGINS schema (where <format> represents the name of the new audio or
video data format and <media> represents the media of the format). Use the ORD-
PLUGINS.ORDX_DEFAULT_<media> package as a guide when you extend sup-
port to other audio or video data formats. Use the package body examples in
Section 4.4.2 and Section 6.4.2 as templates to create the audio or video package
body, respectively. Then set the new format parameter in the setFormat() call to the
appropriate format value to indicate to the audio or video object that package ORD-
PLUGINS.ORDX_<format>_<media> is available as a plug-in.

See Section F.1 and Section F.3 for more information on installing your own format
plug-in and running the sample scripts provided.

See Section 2.1.12, Section 2.3.12, Section 4.4.1, and Section 6.4 for examples and for
more information on extending the supported audio and video data attributes.

Supporting Other Image Data Formats
Oracle interMedia image supports certain other image formats through the setProp-
erties() method for foreign images. This method allows other image formats to be
recognized by writing the values supplied to the setProperties() method for foreign
images to the existing ORDImage data attributes. See “setProperties() Method for
Foreign Images” in Section 5.3.4 for more information.
1-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Loading Multimedia Data into Oracle8i Using interMedia
1.6.2 Supporting Audio Data Processing
To support audio data processing, that is, the passing of an audio processing com-
mand and set of arguments to a format plug-in for processing, use the
processAudioCommand() method. This method is available only for user-defined
formats.

See “processAudioCommand() Method” in Section 4.3.9 and Section 2.1.12 for a
description.

1.6.3 Supporting Video Data Processing
To support video data processing, that is, the passing of a command and set of argu-
ments to a format plug-in for processing, use the processVideoCommand() method.
This method is only available for user-defined formats.

See “processVideoCommand() Method” in Section 6.3.9 and Section 2.3.12 for a
description.

1.7 Loading Multimedia Data into Oracle8i Using interMedia
Multimedia data can be managed best by the Oracle8i database. Your multimedia
data should be loaded into Oracle8i to take advantage of its reliability, scalability,
availability, and data management capabilities. To bulk load multimedia data into
Oracle8i, you can use:

■ SQL*Loader

SQL*Loader is an Oracle utility that lets you load data, and in this case, multi-
media data (LOB data), from external multimedia files into a table of an
Oracle8i database containing interMedia column objects.

■ PL/SQL

A procedural extension to SQL, PL/SQL is an advanced fourth-generation pro-
gramming language (4GL) of Oracle Corporation.

An advantage of using SQL*Loader is that it is easy to create and test the control file
that controls your data loading operation. See Section 8.3 for a description of a sam-
ple control file. See Section 8.6 for a description of a sample interMedia benchmark
using SQL*Loader and a discussion of the performance results. See also Oracle8i
Utilities for more information.

An advantage of using PL/SQL scripts to load your data is that you can use release
8.1.5, 8.1.6, or 8.1.7 to achieve the best load performance for bulk loading vast
amounts of multimedia data. See Section 8.3 for a description of a sample PL/SQL
 Introduction 1-13

Loading Multimedia Data into Oracle8i Using interMedia
multimedia data load script. See Section 8.6 for a description of a sample interMe-
dia benchmark using PL/SQL scripts and stored procedures, and a discussion of
the performance results. See also PL/SQL User’s Guide and Reference for more infor-
mation.

Loading Multimedia Data Using Oracle8i interMedia Web Agent and
Clipboard
You can also use the Oracle8i interMedia Web Agent feature, the Clipboard, to eas-
ily integrate multimedia data into Web and Java applications, and to store, retrieve,
and manage multimedia objects, such as audio, video, and image data, in an
Oracle8i database server. The Clipboard is useful for individually managing multi-
media objects by allowing you to:

■ Capture multimedia objects from files and URLs and store them in the database

■ Capture multimedia objects from external sources, such as cameras and scan-
ners, and store them in the database

Using the Clipboard, you can also:

■ Retrieve multimedia objects from an Oracle8i database

■ Drag multimedia objects from an Oracle8i database to a Web authoring tool

■ Edit multimedia objects with your favorite editor and reload the updated object
into the database

You can use the drag-and-drop features of the Clipboard with many authoring
tools, such as Microsoft Word, Microsoft FrontPage and Symantec Visual Page.
When you drag-and-drop multimedia objects from a database into a Web authoring
tool, the Clipboard generates the necessary URLs to retrieve the object from the
database.

See Using Oracle8i interMedia with the Web for more information.

The Clipboard can be downloaded from the Oracle interMedia Utilities and Plugins
section of the Oracle Technology Network Web site:

http://technet.oracle.com/

Loading Multimedia Data Using Oracle interMedia Annotator Utility
You can use the Oracle interMedia Annotator utility to upload media data and an
associated annotation into an Oracle8i database where Oracle interMedia is
installed. Annotator does this using an Oracle PL/SQL Upload Template, which
contains both PL/SQL calls and Annotator-specific keywords.
1-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

interMedia Architecture
Advanced users with PL/SQL experience can create their own PL/SQL Upload
Templates in a text editor. Novice users can use the PL/SQL Template Wizard,
which is a graphical user interface that progresses through each step of PL/SQL
Upload Template creation.

With a PL/SQL Upload Template created, you use the Annotator utility to invoke
the Upload Annotation window and perform a series of operations, entering user
name, password, service name, and the path to the PL/SQL Template Folder and
file specification for your PL/SQL Upload Template.

See Chapter 5 "Uploading Structured Annotations into a Database" in Oracle inter-
Media Annotator Utility User’s Guide for more information.

Oracle interMedia Annotator can be downloaded from the Oracle interMedia Utili-
ties and Plugins section of the Oracle Technology Network Web site:

http://technet.oracle.com/

1.8 Reading Data from a LOB
LOB read tests were conducted with:

■ PL/SQL scripts used to read LOBs from the database

■ OCI calls to perform LOB read operations from C++

A benchmark measured the performance of an Oracle-based system in a setting
modeling a real-life audio server application. See Section 8.7 for a description of the
PL/SQL script used to read LOBs from the database. See Section 8.8 for a descrip-
tion of the LOB-read benchmark tests and the results of these tests.

1.9 interMedia Architecture
Oracle interMedia is a single, integrated product that extends Oracle8i by offering
services to store, manage, and retrieve image, audio, video, and text data, docu-
ment search services, support for Web technologies, and annotation services for
multimedia data.

The interMedia architecture provides a set of services and features (see Figure 1–1)
that provides a framework on which media-rich content as well as traditional data
are supported in the database. This content and data can then be securely shared
across multiple applications written with popular languages and tools, easily man-
aged and administered by relational database management and administration
technologies, and offered on a scalable server that supports thousands of users.
 Introduction 1-15

interMedia Architecture
Figure 1–1 interMedia Architecture

Table 1–1 describes the interMedia services and features for specified operating sys-
tems and releases of Oracle8i.

Table 1–1 interMedia Services and Features -- Supported Systems and Oracle8i Releases

 Form of
Distribution1

inter Media
Services and
Features Operating Systems and Platforms2 Release

Solaris Linux
Windows
NT Macintosh 8.1.5 8.1.6 8.1.7

CD-ROM Audio, Image, &
Video server-side

X X X -- X X X

CD-ROM Audio, Image, &
Video Java client

X X X -- X X X

CD-ROM Text X X X -- X X X

1-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

interMedia Architecture
OTN Web Agent3 X X X -- X X X

OTN Clipboard -- -- X -- X X X

OTN Annotator utility -- -- X X (MacOS 8.6) X X X

OTN MediaFinder X -- X -- X X X

OTN Plug-in for Real-
Networks G2
Streaming Server

X X X -- X X X

OTN Plug-in for Mac-
romedia Dream-
weaver 2

-- -- X -- X X X

CD-ROM Locator X X X -- X X X

CD-ROM Generic Geocod-
ing
interface4

X X X -- -- X X

OTN Custom Data-
Source and Data-
Sink for JMF 2.05

X -- X -- X X X

OTN BFILE and BLOB
Stream Adaptors
for JAI

X X -- -- X X

1 Oracle software is distributed from CD-ROM or OTN -- Oracle Technology Network Web site:
http://technet.oracle.com/

2 interMedia server and client software are available on many other platforms; the platforms shown in this table describe
only the ones on which the respective interMedia services and features listed are known to run.

3 Works with the following Web servers: Oracle Application Server, Apache Web Server, Microsoft Internet Information
Server, or Sun/Netscape Alliance Web servers: iPlanet Web Server, Netscape Enterprise Server, or Netscape FastTrack
Server.

4 Generic geocoding client written in Java, is embedded in Oracle8i database as a JSP, and published using PL/SQL inter-
face.

5 Requires JMF V2.0, Oracle JDBC 8.1.5 or later. JDK version 1.1.x.

Table 1–1 interMedia Services and Features -- Supported Systems and Oracle8i Releases (Cont.)

 Form of
Distribution1

inter Media
Services and
Features Operating Systems and Platforms2 Release

Solaris Linux
Windows
NT Macintosh 8.1.5 8.1.6 8.1.7
 Introduction 1-17

interMedia Architecture
Section 1.9.1, Section 1.9.2, Section 1.9.3, and Section 1.9.4 describe these interMedia
services and features that comprise the interMedia product.

1.9.1 interMedia Text Services
Oracle8i interMedia Text provides a truly fourth-generation text engine that is
unmatched by other database or text management vendors. It is fully integrated
into Oracle8i and enables application developers to transparently include powerful
text searching capabilities into their SQL-based applications.

Oracle8i interMedia Text lets you build a text query application that provides
search, retrieval, and viewing capabilities for text. It lets you deliver powerful, con-
tent-based retrieval on free text using industry-standard, classical, full text search
features. These text search features include: exact word or phrase matching, Bool-
ean, wild card, fuzzy matching, proximity, section searching, stemming, stop words,
case sensitivity, thesaurus expansion, and search scoring. In addition, it uses
advanced capabilities that include themes, rendering, filtering, and gists. Oracle8i
interMedia Text is integrated with the database to fully utilize SQL, PL/SQL, Ora-
cle Enterprise Manager, and SQL*Loader. It is extensible so you can add custom
words and phrases to the Linguistics Knowledge Base. These text-retrieval capabili-
ties are fundamental to Web applications, and any other applications storing and
searching text.

Oracle8i interMedia Text indexes any documents or textual content to deliver fast,
accurate retrieval of information in multiple languages from:

■ Document archives

■ Online product catalogs

■ News services

■ Media asset management systems

■ Job postings

■ Customer call reports

■ Other online text information sources

Oracle8i interMedia Text is easy to use by providing a single SQL API for all struc-
tured and text queries, and a single point of administration for applications. It is fast
and scalable by utilizing kernel integration for database scalability, and uses a cost-
based optimizer for optimum performance. It utilizes powerful text search features
including full-text search for complete control, and about search for syntax-free, pre-
cise search and recall.
1-18 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

interMedia Architecture
In addition, interMedia Text provides concept searching and theme analysis of
English language documents.

To index and query, you use standard SQL with a domain index of type context.
You can also use the supplied interMedia Text PL/SQL packages for advanced fea-
tures such as document presentation and thesaurus maintenance.

Oracle8i interMedia Text uses a specific mechanism for processing text with the final
result being an inverted index, which is a list of the words from the document with
each word having a list of documents in which it appears. This process is like a
pipeline; it begins with the datastore stage, then the filter stage, the sectioner stage,
and finally the lexer stage, with options being available at each stage of this pipe-
line.

The datastore stage considers where the text is stored: within a database, in a file sys-
tem managed by the database, as a URL datastore that allows a database to manage
documents stored remotely on other servers, and accessed using HTTP or FTP.

The filter stage considers the format of the source text document. Oracle8i interMe-
dia Text has filters for more than 150 file formats to convert the original source doc-
ument into an HTML format while maintaining the integrity of the document with
such things as headings, titles, and so forth. Application developers can easily
replace the filter module with their own custom-built filter or with a third-party fil-
ter to add support for a document type.

The sectioner stage is responsible for identifying the containing sections for each text
unit as predefined HTML or XML sections. XML documents are supported if they
have custom attributes specified in inline DTDs (document type definitions).
Enhanced XML support includes indexing and searching attribute text, using nest
within for sophisticated queries, and support for doctype-limited tag detection. The
set supplied with the sectioner recognizes standard XML and HTML sections, and
automatically indexes the text as part of these sections. Application developers can
define a simple mapping to give each section a name of their choice. Paragraphs
and sentences within text are intelligently recognized to allow, for example two
words to be found only where they both exist within the same paragraph.

The lexer stage is responsible for separating the text the sectioner produces into
words or tokens, removing any stop words that are specified from a list, and add-
ing any additional lexer preferences, for example, for handling contractions. The
result is a final set of words that will be indexed. For European languages, base let-
ter conversion, alternate spellings, and compound word processing are all sup-
ported. For multibyte languages, special lexers are available for Chinese, Japanese,
and Korean texts to decide how to index groups of characters.
 Introduction 1-19

interMedia Architecture
To build a query application, you must understand the roles for system administra-
tors (CTXSYS role) and application developers (CTXAPP role) associated with inter-
Media Text.

The general steps for building a query application are the following:

1. Load the documents using the SQL INSERT statement, ctxload executable,
SQL*Loader, DBMS_LOB.LOADFROMFILE() PL/SQL procedure to load LOBs
from BFILEs, or Oracle Call Interface. By default, the system expects your docu-
ments to be loaded in a text column of one of the following data types:
VARCHAR2, CLOB, BLOB, CHAR, or BFILE.

2. Index the documents using the standard SQL CREATE INDEX statement on the
text column in which the indextype is always ctxsys.context.

3. Issue two types of queries, an exact word or phrase query or an ABOUT query,
using the CONTAINS operator in a standard SQL SELECT statement. ABOUT
queries increase the number of relevant documents returned by a query. In
English, ABOUT queries can use the theme component of the index, which is
created by default, and return documents based on the concepts of your query,
not only the exact word or phrase you specify.

4. Present the documents that satisfy a query. Documents can be rendered in a
number of different ways, such as present plain text or HTML documents with
query terms highlighted, highlighted offset, or not highlighted, and so forth.

Oracle8i interMedia Text can be called from any application that has a SQL interface
through an intermediate protocol such as ODBC, or directly using embedded SQL
calls. Application developers can develop interMedia Text applications that inte-
grate into applications that use Oracle Application Web Server or any other Web
servers that are supported by Oracle interMedia Web Agent, CGI programs (per-
haps using ODBC or OCI as the database interface), or through other proprietary
callout mechanisms.

See Oracle8i interMedia Text Reference for details on building a text query application.

1.9.2 Annotation Services for Multimedia Data
Annotation services are essential for constructing and operating a media archive. In
the sections that follow, the interMedia Annotator utility and a MediaFinder sample
application are described. An annotation utility shows how content and format
properties can be extracted from media data, collected as an annotation, stored in
the database, and queried to locate media data based on the annotation’s content.
MediaFinder is a sample application that demonstrates how to build a media
library.
1-20 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

interMedia Architecture
interMedia Annotator Utility
Oracle interMedia Annotator utility makes it easy to store and search for rich media
content in Oracle8i. Annotator is essential for constructing and operating a media
archive. Oracle interMedia Annotator utility extracts content and format attributes
from media sources (image, audio, and video files, audio CD, and URLs), and orga-
nizes the attributes into an XML formatted annotation. It lets you customize annota-
tions to further describe the data, loads the annotation and the media data into
Oracle8i, and automatically indexes the annotation for powerful full text and the-
matic media searches using interMedia Text services. Thus, the database can be que-
ried to locate the media data based on the annotation’s content.

See Oracle interMedia Annotator User’s Guide for more information. interMedia Anno-
tator utility can be downloaded from the Oracle interMedia Utilities and Plugins
section of the Oracle Technology Network Web site:

http://technet.oracle.com/

MediaFinder - a Sample Application That Uses Oracle interMedia Anno-
tator Utility
MediaFinder is a sample application that demonstrates how to build a media
library by using Oracle interMedia components. The open source code is provided
to assist developers in building their own applications.

MediaFinder is an application that uses Oracle interMedia to let you search a video
library built using Oracle interMedia Annotator. MediaFinder allows searching by
movie title or by keyword, retrieving movie annotation information along with the
video clip, and launching QuickTime to play the video. QuickTime is streamed by
the Oracle interMedia Plug-in for Apple QuickTime Streaming Server from the Ora-
cle database. During a keyword search that will result in text sample matches,
MediaFinder will locate the point where the match occurred, and allow you to start
the playback from that point.

With the Apple QuickTime-For-Java library, interMedia Annotator can extract video
frames as well as the text-track samples from the specified QuickTime movie. Con-
sequently, MediaFinder can enrich the result set of your keyword search by retriev-
ing the video frame that is closest to the matching text sample by means of
timestamp comparisons.

MediaFinder uses interMedia Text services to perform a text search against an XML
document as well as a plain text string. For more information, refer to the Oracle
interMedia information provided on the Oracle Technology Network Web site:

http://technet.oracle.com/
 Introduction 1-21

interMedia Architecture
MediaFinder also uses Oracle interMedia image and video objects for the storage of
images and video in the Oracle8i database.

MediaFinder has a graphical user interface that allows you to use a Web interface to
search a video library for a specific text sample, and retrieve the video frames asso-
ciated with each text sample.

See "MediaFinder" - a Sample Application That Uses Oracle interMedia Annotator Utility
Readme for Installation, Configuration, and Use for more information. The
MediaFinder sample application can be downloaded from the Oracle interMedia
Utilities and Plugins section of the Oracle Technology Network Web site:

http://technet.oracle.com/

1.9.3 Streaming Content from an Oracle Database
You can stream content stored in an Oracle database using an Oracle interMedia
plug-in that supports the streaming server, and deliver this content for play on a cli-
ent that uses the browser-supported streaming player.

Oracle interMedia Plug-in for RealNetworks G2 Streaming Server
Oracle interMedia Plug-in for RealNetworks G2 Streaming Server allows RealServer
G2 to stream multimedia data to a client directly out of the Oracle8i database. This
plug-in is installed in RealServer G2 and defined in the RealServer G2 configura-
tion file. The data is requested with a URL, which contains information necessary to
select the multimedia data from the database.

For information on RealNetwork RealServer G2 Streaming Server, see the following
URL:

http://www.real.com/

See Oracle interMedia Plug-in for RealNetworks G2 Streaming Server Readme for Installa-
tion and Configuration for more information. The Oracle interMedia Plug-in for Real-
Networks G2 Streaming Server can be downloaded from the Oracle interMedia
Utilities and Plugins section of the Oracle Technology Network Web site:

http://technet.oracle.com/

1.9.4 Support for Web Technologies
Using interMedia support for Web technologies, you can easily integrate multime-
dia data into Web and Java applications. You can store, retrieve, and manage rich
media content in an Oracle8i database, and decode URLs to retrieve multimedia
object data for use by popular Web authoring tools, and display in a Web browser.
1-22 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

interMedia Architecture
Oracle8i interMedia Web Agent
interMedia Web Agent is a plug-in for Oracle Application Server.

Oracle8i interMedia Web Agent is implemented as:

■ A PL/SQL cartridge application for Oracle Application Server

■ A set of Server Applications Functions of the Netscape Server Application Pro-
gramming Interface (NSAPI) for Sun/Netscape Alliance Web servers: iPlanet
Web Server, Netscape Enterprise Server, or Netscape FastTrack Server

■ An Internet Server Application Programming Interface (ISAPI) extension for
Microsoft Internet Information Server (IIS)

■ An Apache module for Apache Web Server

interMedia Web Agent decodes database URLs to retrieve multimedia object data
for display in a Web browser, or for other handling. The Web Agent returns the
MIME type, content length, and content of the object to the Web application for dis-
play by a Web browser.

interMedia Web Agent consists of the Web Agent itself and an administrative com-
ponent. It is available for the Windows NT, Linux, and Solaris platforms.

See Using Oracle8i interMedia with the Web for more information. Oracle8i interMe-
dia Web Agent can be downloaded from the Oracle interMedia Utilities and Plugins
section of the Oracle Technology Network Web site:

http://technet.oracle.com/

Oracle8i interMedia Web Agent and Clipboard Features
You can also use the Clipboard features of interMedia Web Agent to easily integrate
multimedia data into Web and Java applications, and to store, retrieve, and manage
multimedia objects, such as audio, video, and image data, in an Oracle8i database
server. See Section 1.7 for a complete description of the Clipboard.

See Using Oracle8i interMedia with the Web for more information.

The Clipboard can be downloaded from the Oracle interMedia Utilities and Plugins
section of the Oracle Technology Network Web site:

http://technet.oracle.com/

Oracle interMedia Plug-in for Macromedia Dreamweaver
Oracle interMedia Plug-in for Macromedia Dreamweaver allows a Dreamweaver
user to retrieve interMedia multimedia object data directly from the Oracle8i data-
 Introduction 1-23

interMedia Architecture
base, insert it into a Dreamweaver Web document, and then, display it using a Web
browser. Oracle8i interMedia Web Agent returns the MIME type, content length,
and content of the multimedia object. This extension is installed in Dreamweaver
and defined in the Dreamweaver 2 configuration directory.

For information on Macromedia Dreamweaver, see the following URL:

http://www.macromedia.com/

See Oracle interMedia Dreamweaver Extension Readme for Installation, Configuration,
and Use for more information. The Oracle interMedia Dreamweaver Extension Plug-
in can be downloaded from the Oracle interMedia Utilities and Plugins section of
the Oracle Technology Network Web site:

http://technet.oracle.com/

1.9.5 Geocoding Services
Geocoding represents addresses and locations of interest (postal codes, demo-
graphic regions, and so forth) as geometric factors (points). These enable distances
to be calculated and sites to be represented graphically in Web, data warehousing,
customer information system, and enterprise resource planning applications.
Geocoding services can be used to add the exact location (latitude and longitude) of
points of interest to existing data files stored in Oracle8i.

A geocoding service is used for converting tables of address data into standardized
address, location, and possibly other data.

Oracle interMedia Locator
Oracle interMedia Locator is an Internet-ready tool developed exclusively to sup-
port standalone and online geocoding and Internet mapping requirements. Geo-
coded business information provides a necessary step in cleansing, enhancing, and
visualizing customer records. Such information is proving vital in data warehous-
ing, customer information systems, electronic commerce, and enterprise resource
planning. In addition to geocoding support, Oracle interMedia Locator provides the
technology that enables the deployment of simple, easy-to-use Internet-based map-
ping applications.

Oracle interMedia Locator enables Oracle8i to support online internet-based
geocoding facilities for locator applications and proximity queries.

Oracle interMedia Locator supports the leading online and batch geocoding ser-
vices including MapXtreme from MapInfo Corporation, Centrus from Qualitative
1-24 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

interMedia Architecture
Marketing Software, MapQuest destination information solutions from
MapQuest.com ("MapQuest") , and GeoZip from whereonearth.com Ltd.

MapInfo Corporation, Qualitative Marketing Software, MapQuest.com, and where-
onearth.com currently provide the online and batch geocoding services for the
Locator features. Each service offers a number of free geocoding calls at its Web site
for trial purposes for online geocoding, and geocoding service software for batch
geocoding. Locator users need to consent to the vendor policies and possibly regis-
ter with them:

MapInfo Corporation: http://www.MapMarker.com/

Qualitative Marketing Software: http://www.centrus-software.com/oracle/

MapQuest.com: http://www.mapquest.com/

whereonearth.com: http://www.whereonearth.com/

During registration for online geocoding services, you are asked to create your own
user ID and password. Please make a note of them for embedding into your sample
geocoding service because the user ID/password combination is required for each
geocoding call. Your free account is limited to a small number of address records
per day.

Should you require the ability to geocode larger data sets, or for further informa-
tion, contact:

■ MapInfo technologies to complement your Oracle solution; call 1.800.FAST-
MAP (1.800.327.8627); or send e-mail to custserv@mapinfo.com (see their Web
site for more specific geographic contact information)

■ QMSoft technologies to complement your Oracle solution; call QMSoft at
1.800.782.7988; or send e-mail to oracle@qmsoft.com

■ MapQuest.com technologies to complement your Oracle solution; call
1.888.MAPQUEST (1.888.627.7837) or in Europe, (31) 70.426.2660; or send e-mail
to info@mapquest.com

■ whereonearth.com technologies to complement your Oracle solution; call +44
(0) 207 246 1400; or send e-mail to enquiries@whereonearth.com

These companies’ Web sites will also have detailed documentation about the ven-
dor-specific parameter information of the Locator features, such as match code or
error code. Because Oracle provides an interface to facilitate the geocoding func-
tions, you should contact the vendors with your questions.
 Introduction 1-25

interMedia Architecture
See Oracle interMedia Locator Release Notes (ORACLE_HOME/md/doc/
README.txt) for additional information about the geocoding services provided by
these Oracle partners.

Oracle interMedia Locator also supports server-based geocoding and data scrub-
bing operations for data warehouse applications.

Using simple location queries, Oracle interMedia Locator allows Web and other
applications to retrieve information based on distance. For example, using a set of
geocoded address data and simple query-by-text or query-by-map operations, users
can use a Web browser-based application, enter a distance, and identify the nearest
location from a specific address or reference point on a map. For example, Oracle
interMedia Locator applications can help you locate stores, offices, distribution
points, and other points of interest based on their distance from a given postal (zip)
code, address, or other reference point.

See Oracle interMedia Locator User’s Guide and Reference for more information.

These features enable database designers to extend existing application databases
with geocoded, spatial-point data, or to build new geocoded spatial-point applica-
tions. Web application developers can build specialized Web-enabled interMedia
Locator applications.

Oracle interMedia Locator is Web-based and requests are formatted in HTTP. Thus,
each request in SQL must contain the URL of the Web site, proxy for the firewall (if
any), and user account information on the service provider’s Web site. An HTTP
approach potentially limits the utility or practicality of the service when dealing
with large tables or undertaking frequent updates to the base address information.
In such situations, it is preferable to use a batch geocoding service made available
within an Intranet or local area network. The next section describes the interface for
a facility that potentially contains this existing Oracle interMedia Locator HTTP-
based solution.

Generic Geocoding Interface
A generic geocoding interface is available with Oracle Spatial for 8.1.6. This is a
generic interface to third-party geocoding software that lets users geocode their
address information stored in database tables, standardized addresses, and corre-
sponding location information as instances of predefined object types. This inter-
face is part of the geocoding framework in Oracle Spatial for 8.1.6 and Oracle
interMedia Locator.

This generic geocoding interface describes a set of interfaces and metadata schema
that enables geocoding of an entire address table, or a single row. It also describes
the procedures for inserting or updating standardized address and spatial data into
1-26 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

interMedia Architecture
another table (or the same table). The third-party geocoding service is assumed to
have been installed on a local network and to be accessible through standard com-
munication protocols such as sockets or HTTP.

The generic geocoding client is written in Java and embedded in the Oracle8i data-
base as a Java stored procedure (JSP). A fast, scalable, highly available, and secure
Java Virtual Machine (Java VM or JVM) is integrated in the Oracle8i database server.
The Java VM provides an ideal platform for enterprise applications written in Java
as JSPs, Enterprise Java Beans (EJBs), or Java Methods of Oracle8i object types.

JSPs are published using the PL/SQL interface; thus, the generic geocoding inter-
face can be compatible with existing Locator APIs.

The stored procedures have an interface, oracle.spatial.geocoder, that must be
implemented by each vendor whose geocoder is integrated with Oracle Spatial and
interMedia Locator. The procedures also require certain object types to be defined
and metadata tables to be populated. The object types, metadata schema, and geo-
coder interface are described in Oracle interMedia Locator User’s Guide and Reference
and Appendix C of Oracle Spatial User’s Guide and Reference.
 Introduction 1-27

interMedia Architecture
1-28 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 interMedia Exa
2

interMedia Examples

This chapter provides examples that show common operations with Oracle interMe-
dia. Examples are presented by audio, image, and video data groups followed by a
section that describes how to extend interMedia to support a new data source.

2.1 Audio Data Examples
interMedia audio examples include the following common operations:

■ Defining a song object named songObject

■ Creating an object table named SongsTable

■ Creating a list object named songList that contains a list of songs

■ Defining the implementation of the songList object

■ Creating a CD object and CdTable table

■ Inserting a song into the SongsTable table

■ Inserting a CD into the CdTable table

■ Loading a song into the SongsTable table

■ Inserting a reference to a song object into the songs list in the CdTable table

■ Adding a CD reference to a song

■ Retrieving audio data from a song in a CD

■ Extending interMedia to support a new audio data format

■ Extending interMedia audio with new object types

■ Using interMedia with object views
mples 2-1

Audio Data Examples
■ Using a set of scripts for creating and populating an audio table from a BFILE
data source

The audio data examples in this section use a table of songs and a table of CDs. For
each song, the following information is stored: a CDRef (REF into the CD table), a
song ID, song title, artist, awards, time period of song, duration of song, clipRef
(REF into the audio clips table or music video), text content, and the audio source
containing lyrics. (A REF refers to row objects with globally unique object IDs that
capture references between row objects; row objects are automatically indexed for
fast access.) For each CD, the following are stored: an item ID, CD DB ID, CD title,
CD artist, CD category, copyright, name of producer, awards, time period, rating,
duration, text content, cover image, and the list of songs on the CD.

Reference information on the methods used in these examples is presented in
Chapter 4.

2.1.1 Defining a Song Object
Example 2–1 describes how to define a Song object.

Example 2–1 Define a Song Object

CREATE TYPE songObject as OBJECT (
 cdRef REF CdObject, -- REF into the cd table
 songId VARCHAR2(20),
 title VARCHAR2(4000),
 artist VARCHAR2(4000),
 awards VARCHAR2(4000),
 timePeriod VARCHAR2(20),
 duration INTEGER,
 clipRef REF clipObject, -- REF into the clips table (music video)
 txtcontent CLOB,
 audioSource ORDSYS.ORDAUDIO
);

2.1.2 Creating an Object Table SongsTable
Example 2–2 describes how to create an object table named SongsTable.

Example 2–2 Create a Table Named SongsTable

CREATE TABLE SongsTable of songObject (UNIQUE (songId), songId NOT NULL);
2-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Audio Data Examples
2.1.3 Creating a List Object Containing a List of References to Songs
Example 2–3 describes how to create a list object containing a list of references to
songs.

Example 2–3 Create a List Object Containing a List of References to Songs

CREATE TYPE songNstType AS TABLE of REF songObject;

CREATE TYPE songList AS OBJECT (songs songNstType,
 MEMBER PROCEDURE addSong(s IN REF songObject));

2.1.4 Defining the Implementation of the songList Object
Example 2–4 describes how to define the implementation of the songList object.

Example 2–4 Define the Implementation of the songList Object

CREATE TYPE BODY songList AS
 MEMBER PROCEDURE addSong(s IN REF songObject)
 IS
 pos INTEGER := 0;
 BEGIN
 IF songs IS NULL THEN
 songs := songNstType(NULL);
 pos := 0;
 ELSE
 pos := songs.count;
 END IF;
 songs.EXTEND;
 songs(pos+1) := s;
 END;
END;

2.1.5 Creating a CD Object and a CD Table
This section describes how to create a CD object and a CD table of audio clips that
includes, for each audio clip, the following information:

■ Item ID

■ CD DB ID

■ CD title
 interMedia Examples 2-3

Audio Data Examples
■ CD artist

■ CD category

■ Copyright

■ Name of producer

■ Awards

■ Time period

■ Rating

■ Duration

■ Text content

■ Cover image

■ Songs

Example 2–5 creates a CD object named CdObject, and a CD table named CdTable
that contains the CD information.

Example 2–5 Create a CD Table Containing CD Information

CREATE TYPE CdObject as OBJECT (
 itemId INTEGER,
 cddbID INTEGER,
 title VARCHAR2(4000),
 artist VARCHAR2(4000),
 category VARCHAR2(20),
 copyright VARCHAR2(4000),
 producer VARCHAR2(4000),
 awards VARCHAR2(4000),
 timePeriod VARCHAR2(20),
 rating VARCHAR2(256),
 duration INTEGER,
 txtcontent CLOB,
 coverImg REF ORDSYS.ORDImage,
 songs songList);

CREATE TABLE CdTable OF CdObject (UNIQUE(itemId), itemId NOT NULL)
 NESTED TABLE songs.songs STORE AS song_store_table;

2.1.6 Inserting a Song into the SongsTable Table
Example 2–6 describes how to insert a song into the SongsTable table.
2-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Audio Data Examples
Example 2–6 Insert a Song into the SongsTable Table

-- Insert a song into the songs table
INSERT INTO SongsTable VALUES (NULL,
 ’00’,
 ’Under Pressure’,
 ’Queen’,
 ’no awards’,
 ’80-90’,
 243,
 NULL,
 EMPTY_CLOB(),
 ORDSYS.ORDAudio,init());

-- Check songs insertion
SELECT s.title
FROM SongsTable s
WHERE songId = ’00’;

2.1.7 Inserting a CD into the CdTable Table
Example 2–7 describes how to insert a CD into the CdTable table.

Example 2–7 Insert a CD into the CdTable Table

-- Insert a cd into the cd table
INSERT INTO CdTable VALUES (1, 23232323,
 ’Queen Classics’,
 ’Queen’,
 ’rock’,
 ’BMV Company’,
 ’BMV’,
 ’Grammy’,
 ’80-90’,
 ’no rating’,
 4000, -- in seconds
 EMPTY_CLOB(),
 NULL,
 songList(NULL));

-- Check cd insertion
SELECT cd.title
FROM Cdtable cd;
 interMedia Examples 2-5

Audio Data Examples
2.1.8 Loading a Song into the SongsTable Table
Example 2–8 describes how to load a song into the SongsTable table. This example
requires an AUDDIR directory to be defined; see the comments in the example.

Example 2–8 Load a Song into the SongsTable Table

-- Load a Song into the SongsTable
-- Create your directory specification below
-- CREATE OR REPLACE DIRECTORY AUDDIR AS ’/audio/’;
DECLARE
 audioObj ORDSYS.ORDAUDIO;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT S.audioSource INTO audioObj
 FROM SongsTable S
 WHERE S.songId = ’00’
 FOR UPDATE;

 audioObj.setSource(’FILE’, ’AUDDIR’, ’UnderPressure.au’);
 audioObj.setMimeType(’audio/basic’);
 audioObj.import(ctx);
 audioObj.setProperties(ctx);

 UPDATE SongsTable S
 SET S.audioSource = audioObj
 WHERE S.songId = ’00’;
 COMMIT;
END;

-- Check song insertion
DECLARE
 audioObj ORDSYS.ORDAUDIO;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT S.audioSource INTO audioObj
 FROM SongsTable S
 WHERE S.songId = ’00’;

 dbms_output.put_line(’Content Length: ’ ||
 audioObj.getContentLength(ctx));
 dbms_output.put_line(’Content MimeType: ’ ||
 audioObj.getMimeType());
END;
2-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Audio Data Examples
2.1.9 Inserting a Reference to a Song Object into the Songs List in the CdTable Table
Example 2–9 describes how to insert a reference to a song object into the songs list
in the CdTable table.

Example 2–9 Insert a Reference to a Song Object into the Songs List in the CdTable
Table

-- Insert a reference to a SongObject into the Songs List in the CdTable Table
DECLARE
 songRef REF SongObject;
 songListInstance songList;
BEGIN
 SELECT REF(S) into songRef
 FROM SongsTable S
 where S.songId = ’00’;

 SELECT C.songs INTO songListInstance
 FROM CdTable C
 WHERE C.itemId = 1
 FOR UPDATE;

 songListInstance.addSong(songRef);

 UPDATE CdTable C
 SET C.songs = songListInstance
 WHERE C.itemId = 1;

 COMMIT;
END;

-- Check insertion of ref
-- This example works for the first entry inserted in the songList
DECLARE
 song SongObject;
 songRef REF SongObject;
 songListInstance songList;
 songType songNstType;
BEGIN
 SELECT C.songs INTO songListInstance
 FROM CdTable C
 WHERE C.itemId = 1;

 SELECT songListInstance.songs INTO songType FROM DUAL;
 songRef := songType(1);
 interMedia Examples 2-7

Audio Data Examples
 SELECT DEREF(songRef) INTO song FROM DUAL;

 dbms_output.put_line(’Song Title: ’ ||
 song.title);
END;

2.1.10 Adding a CD Reference to a Song
Example 2–10 describes how to add a CD reference to a song.

Example 2–10 Add a CD Reference to a Song

-- Adding a cd reference to a song
DECLARE
 songCdRef REF CdObject;
BEGIN
 SELECT S.cdRef INTO songCdRef
 FROM SongsTable S
 WHERE S.songId = ’00’
 FOR UPDATE;

 SELECT REF(C) INTO songCdRef
 FROM CdTable C
 WHERE C.itemId = 1;

 UPDATE SongsTable S
 SET S.cdRef = songCdRef
 WHERE S.songId = ’00’;

 COMMIT;
END;

-- Check cd Ref
DECLARE
 cdRef REF CdObject;
 cd CdObject;
BEGIN
 SELECT S.cdRef INTO cdRef
 FROM SongsTable S
 WHERE S.songId = ’00’;

 SELECT DEREF(cdRef) INTO cd FROM DUAL;
 dbms_output.put_line(’Cd Title: ’ ||
 cd.title);
END;
2-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Audio Data Examples
2.1.11 Retrieving Audio Data from a Song in a CD
Example 2–11 describes how to retrieve audio data from a song in a CD.

Example 2–11 Retrieve Audio Data from a Song in a CD

FUNCTION retrieveAudio(itemID IN INTEGER,
 songId IN INTEGER)
 RETURN BLOB IS obj ORDSYS.ORDAudio;
BEGIN
 select S.audioSource into obj from SongsTable S
 where S.songId = songId;
 return obj.getContent;
END;

2.1.12 Extending interMedia to Support a New Audio Data Format
To support a new audio data format, implement the required interfaces in the
ORDX_<format>_AUDIO package in the ORDPLUGINS schema (where <format>
represents the name of the new audio data format). See Section 4.4.1 for a complete
description of the interfaces for the ORDX_DEFAULT_AUDIO package. Use the
package body example in Section 4.4.2 as a template to create the audio package
body. Then set the new format parameter in the setFormat call to the appropriate
format value to indicate to the audio object that package ORDPLUG-
INS.ORDX_<format>_AUDIO is available as a plug-in.

See Section F.1 for more information on installing your own format plug-in and run-
ning the sample scripts provided. See the fplugins.sql and fpluginb.sql files that are
installed in the $ORACLE_HOME/ord/aud/demo/ directory. These are demonstration
(demo) plug-ins that you can use as a guideline to write any format plug-in that you
want to support. See the auddemo.sql file in this same directory to learn how to
install your own format plug-in.

2.1.13 Extending interMedia with a New Type
This section describes how to extend Oracle interMedia with a new object type.

You can use any of the interMedia objects types as the basis for a new type of your
own creation.

See Example 2–3 and Example 2–4 for brief examples. See Example 2–26 for a more
complete example and description.
 interMedia Examples 2-9

Audio Data Examples
2.1.14 Using Audio Types with Object Views
This section describes how to use audio types with object views. Just as a view is a
virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view mecha-
nism. By using object views, you can create virtual object tables from data -- of
either built-in or user-defined types -- stored in the columns of relational or object
tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming with-
out permanently converting your tables. Using object views, you can convert data
gradually and transparently from relational tables to object-relational tables.

In Example 2–12, consider the following relational table (containing no ORDAudio
objects).

Example 2–12 Define a Relational Table Containing No ORDAudio Object

create table flat (
 id NUMBER,
 description VARCHAR2(4000),
 localData BLOB,
 srcType VARCHAR2(4000),
 srcLocation VARCHAR2(4000),

Note: When a type is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDAudio attribute and the interMedia
ORDAudio type is altered, which always occurs during an interMe-
dia installation upgrade.

A workaround to this problem is to revalidate all invalid type defi-
nitions with the following SQL statement:

SQL> ALTER TYPE <type-name> COMPILE;

Now you can alter the dependent type definition as follows:

SQL> ALTER TYPE <type-name> REPLACE AS OBJECT
(...);
/

2-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Audio Data Examples
 srcName VARCHAR2(4000),
 upDateTime DATE,
 local NUMBER,
 format VARCHAR2(31),
 mimeType VARCHAR2(4000),
 comments CLOB,
 encoding VARCHAR2(256),
 numberOfChannels NUMBER,
 samplingRate NUMBER,
 sampleSize NUMBER,
 compressionType VARCHAR2(4000),
 audioDuration NUMBER,
 audioclip RAW(2000)
);

You can create an object view on the relational table shown in Example 2–12 as fol-
lows in Example 2–13.

Example 2–13 Define an Object View Containing an ORDAudio Object and Relational
Columns

create or replace view object_audio_v as
 select
 id,
 ordsys.ORDAudio(
 T.description,
 T.localData,
 T.comments,
 T.format,
 T.encoding,
 T.numberOfChannels,
 T.samplingRate,
 T.sampleSize,
 T.compressionType,
 T.audioDuration,
 T.audioclip) AUDIO
 from flat T;

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Therefore, you can use different in-memory object represen-
tations for different applications without changing the way you store the data in the
database. Object views also provide a way to use replication when your application
uses objects. You can create an object view containing one or more object columns
 interMedia Examples 2-11

Audio Data Examples
and also use replication. See the Oracle8i Concepts manual for more information on
defining, using, and updating object views.

2.1.15 Scripts for Creating and Populating an Audio Table from a BFILE Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site: http://technet.oracle.com/ as an end-to-end script that creates and
populates an audio table from a BFILE data source. You can get to this site by select-
ing the Oracle interMedia Plugins and Utilities page and from the interMedia page,
select Sample Code.

The following set of scripts:

1. Creates a tablespace for the audio data, creates a user and grants certain privi-
leges to this new user, creates an audio data load directory (create_auduser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_audtable.sql).

3. Loads the audio data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importaud.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_audschema.sql) automates this entire process by running
each script in the required order. The last script (readaudio.sql) creates a stored pro-
cedure that performs a SELECT operation to read a specified amount of audio data
from the BLOB, beginning at a particular offset, until all the audio data is read. To
successfully load the audio data, you must have an auddir directory created on your
system. This directory contains the aud1.wav and aud2.mp3 files, which are
installed in <ORACLE_HOME>/ord/aud/demo directory; this directory path and
disk drive must be specified in the CREATE DIRECTORY statement in the
create_auduser.sql file.

Script 1: Create a Tablespace, Create an Audio User, Grant Privileges
to the Audio User, and Create an Audio Data Load Directory
(create_auduser.sql)
This script creates the auddemo tablespace. It contains a data file named aud-
demo.dbf of 200MB in size, an initial extent of 64K, and a next extent of 128K, and
turns on table logging. Next, the auddemo user is created and given connect,
resource, create library, and create directory privileges followed by creating the
2-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Audio Data Examples
audio data load directory. Before running this script, you must change the create
directory line to point to your data load directory location.

-- create_auduser.sql
-- Connect as admin
connect system/<system password>;

-- Edit this script and either enter your system password here
-- to replace <system password> or comment out this connect
-- statement and connect as system before running this script.

set serveroutput on
set echo on

-- Need system manager privileges to delete a user.
-- Note: There is no need to delete auddemo user if you do not delete
-- the auddemo tablespace, therefore comment out the next line.

-- drop user auddemo cascade;

-- Need system manager privileges to delete a directory. If there is no need to
-- delete it, then comment out the next line.

-- drop directory auddir;

-- Delete then create tablespace.

-- Note: It is better to not delete and create tablespaces,
-- so comment this next line out. The create tablespace statement
-- will fail if it already exists.

-- drop tablespace auddemo including contents;

-- If you uncomment the preceding line and really want to delete the
-- auddemo tablespace, remember to manually delete the auddemo.dbf

Note: You must edit the create_auduser.sql file and either enter
the system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already cre-
ated it, otherwise this file will not run.
 interMedia Examples 2-13

Audio Data Examples
-- file to complete this operation. Otherwise, you cannot create
-- the auddemo tablespace again because the auddemo.dbf file
-- already exists. Therefore, it might be best to create this tablespace
-- once and not delete it.

create tablespace auddemo
 datafile ’auddemo.dbf’ size 200M
 minimum extent 64K
 default storage (initial 64K next 128K)
 logging;

-- Create auddemo user.
create user auddemo identified by auddemo
default tablespace auddemo
temporary tablespace temp;

-- Note: If you do not have a temp tablespace already defined, you will have to
-- create it first for this script to work.

grant connect, resource, create library to auddemo;
grant create any directory to auddemo;

-- Note: If this user already exists, you get an error message
-- when you try and create this user again.

-- Connect as auddemo.
connect auddemo/auddemo

-- Create the auddemo load directory; this is the directory where the audio
-- files are residing.

create or replace directory auddir
 as ’e:\oracle\ord\aud\demo’;
grant read on directory auddir to public with grant option;

-- Note: If this directory already exists, an error message
-- is returned stating the operation will fail; ignore the message.

Script 2: Create the Audio Table and Initialize the Column Object
(create_audtable.sql)
This script creates the audio table and then performs an insert operation to initial-
ize the column object to empty for two rows. Initializing the column object creates
the BLOB locator that is required for populating each row with BLOB data in a sub-
sequent data load operation.
2-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Audio Data Examples
--create_audtable.sql

connect auddemo/auddemo;
set serveroutput on
set echo on

drop table audtable;
create table audtable (id number,
 Audio ordsys.ordAudio);

-- Insert a row with empty BLOB.
insert into audtable values(1,ORDSYS.ORDAudio.init());

-- Insert a row with empty BLOB.
insert into audtable values(2,ORDSYS.ORDAudio.init());
commit;

Script 3: Load the Audio Data (importaud.sql)
This script performs a SELECT FOR UPDATE operation to load the audio data by
first setting the source for loading the audio data from a file, importing the data, set-
ting the properties for the BLOB data, updating the row, and committing the trans-
action. To successfully run this script, you must copy two audio clips to your
AUDDIR directory using the names specified in this script, or modify this script to
match the file names of your audio clips.

-- importaud.sql

set serveroutput on
set echo on
-- Import two files into the database.

DECLARE
 obj ORDSYS.ORDAUDIO;
 ctx RAW(4000) := NULL;

BEGIN
-- This imports the audio file aud1.wav from the auddir directory
-- on a local file system (srcType=FILE) and sets the properties.

 select Audio into obj from audtable where id = 1 for update;
 obj.setSource(’FILE’,’AUDDIR’,’aud1.wav’);
 obj.import(ctx);
 obj.setProperties(ctx);
 interMedia Examples 2-15

Audio Data Examples
 update audtable set audio = obj where id = 1;
 commit;

-- This imports the audio file aud2.mp3 from the auddir directory
-- on a local file system (srcType=FILE) and sets the properties.

 select Audio into obj from audtable where id = 2 for update;
 obj.setSource(’FILE’,’AUDDIR’,’aud2.mp3’);
 obj.import(ctx);
 obj.setProperties(ctx);

 update audtable set audio = obj where id = 2;
 commit;
END;
/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)
This script performs a SELECT operation of the rows of the audio table, then gets
the audio characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

--chkprop.sql
set serveroutput on;
--Connect auddemo/auddemo
--Query audtable for ORDSYS.ORDAudio.
DECLARE
 audio ORDSYS.ORDAudio;
 idnum integer;
 properties_match BOOLEAN;
 ctx RAW(4000) := NULL;

BEGIN
 FOR I IN 1..2 LOOP
 SELECT id, audio into idnum, audio from audtable where id=I;
 dbms_output.put_line(’audio id: ’|| idnum);

 properties_match := audio.checkProperties(ctx);
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;

 dbms_output.put_line(’audio encoding: ’|| audio.getEncoding);
 dbms_output.put_line(’audio number of channels: ’|| audio.getNumberOfChannels);
 dbms_output.put_line(’audio MIME type: ’|| audio.getMimeType);
 dbms_output.put_line(’audio file format: ’|| audio.getFormat);
 dbms_output.put_line(’BLOB Length: ’||
2-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Audio Data Examples
TO_CHAR(audio.getContentLength(ctx)));
dbms_output.put_line(’--’);

 END loop;
END;

Results from running the script chkprop.sql are the following:

SQL> @chkprop.sql
audio id: 1
Check Properties Succeeded
audio encoding: MS-PCM
audio number of channels: 1
audio MIME type: audio/x-wav
audio file format: WAVE
BLOB Length: 93594
--
audio id: 2
Check Properties Succeeded
audio encoding: LAYER3
audio number of channels: 1
audio MIME type: audio/mpeg
audio file format: MPGA
BLOB Length: 51537
--
PL/SQL procedure successfully completed.

Automated Script (setup_audschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

--setup_audschema.sql
-- Create auddemo user, tablespace, and load directory to
-- hold the audio files:
@create_auduser.sql

-- Create Audio table:
@create_audtable.sql

--Import 2 audio clips and set properties:
@importaud.sql

--Check the properties of the audio clips:
@chkprop.sql
 interMedia Examples 2-17

Audio Data Examples
--exit;

Read Data from the BLOB (readaudio.sql)
This script creates a stored procedure that performs a SELECT operation to read a
specified amount of audio data from the BLOB, beginning at a particular offset,
until all the audio data is read.

--readaudio.sql

set serveroutput on
set echo on

create or replace procedure readaudio as

 obj ORDSYS.ORDAudio;
 buffer RAW (32767);
 numBytes BINARY_INTEGER := 32767;
 startpos integer := 1;
 read_cnt integer := 1;
 ctx RAW(4000) := NULL;

BEGIN

 Select audio into obj from audtable where id = 1;

 LOOP
 obj.readFromSource(ctx,startPos,numBytes,buffer);
 DBMS_OUTPUT.PUT_LINE(’BLOB Length: ’ || TO_CHAR(obj.getContentLength(ctx)));

 DBMS_OUTPUT.PUT_LINE(’start position: ’|| startPos);
 DBMS_OUTPUT.PUT_LINE(’doing read: ’ || read_cnt);
 startpos := startpos + numBytes;
 read_cnt := read_cnt + 1;
 END LOOP;
-- Note: Add your own code here to process the audio data being read;
-- this routine just reads the data into the buffer 32767 bytes
-- at a time, then reads the next chunk, overwriting the first
-- buffer full of data.

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
2-18 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);

END;

/
show errors

To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute readaudio
Content Length: 93594
start position: 1
doing read: 1
start position: 32768
doing read: 2
start position: 65535
doing read: 3

End of data

PL/SQL procedure successfully completed.

2.2 Image Data Examples
interMedia image examples include the following common operations:

■ Adding types to a new or existing table

■ Inserting a row using BLOB images

■ Populating a row using BLOB images

■ Inserting a row using BFILE images

■ Populating a row using BFILE images

■ Querying a row

■ Importing an image from an external file into the database

■ Copying an image

■ Converting an image format

■ Copying and converting an image in one step

■ Extending interMedia with new object types
 interMedia Examples 2-19

Image Data Examples
■ Using image types with object views

■ Using a set of scripts for creating and populating an image table from a BFILE
data source

■ Using a set of scripts for creating and populating an image table from an HTTP
data source

■ Addressing National Language Support (NLS) issues

2.2.1 Adding Image Types to an Existing Table
Suppose you have an existing table named ’emp’ with the following columns:

ename VARCHAR2(50)
salary NUMBER
job VARCHAR2(50)
department INTEGER

To add a new column to the ’emp’ table called ’photo’ using the ORDImage type,
issue the statement in Example 2–14.

Example 2–14 adds a new column of type ORDImage to the emp table.

Example 2–14 Add a New Column of Type ORDImage to the emp Table

ALTER TABLE emp
ADD (photo ORDSYS.ORDImage);

2.2.2 Adding Image Types to a New Table
Suppose you are creating a new table called ’emp’ with the following information:

■ Employee name

■ Salary

■ Job title

■ Department

■ Badge photograph

■ Large photograph

The column for the badge photograph (maybe a thumbnail image cropped and
scaled from the large personnel photograph) uses the ORDImage type, and the col-
umn 'large_photo' also uses the ORDImage type. The statement in Example 2–15
creates the table and adds ORDImage types to the new table.
2-20 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
Example 2–15 Add ORDImage Types to a New Table

CREATE TABLE emp (
 ename VARCHAR2(50),
 salary NUMBER,
 job VARCHAR2(50),
 department INTEGER,
 photo ORDSYS.ORDImage,
 large_photo ORDSYS.ORDImage);

2.2.3 Inserting a Row Using BLOB Images
To insert a row into a table that has storage for image content using the ORDImage
type, you must populate the type with an initializer. Note that this is different from
NULL. Attempting to use the ORDImage type with a NULL value results in an
error.

Example 2–16 describes how to insert rows into the table using the ORDImage type.
Assume you have a table 'emp' with the following columns:

ename VARCHAR2(50)
salary NUMBER
job VARCHAR2(50)
department INTEGER
photo ORDImage

If you are going to store image data in the database (in a binary large object
(BLOB)), you must populate the ORDSource.localData attribute with a value and
initialize storage for the localData attribute with an empty_blob() constructor. To
insert a row into the table with empty data in the 'photo' column, issue the state-
ment in Example 2–16.

Example 2–16 inserts a row into a table with empty data in the ORDImage type col-
umn.

Example 2–16 Insert a Row into a Table with Empty Data in the ORDImage Type Col-
umn

INSERT INTO emp VALUES (
 ’John Doe’, 24000, ’Technical Writer’, 123,
 ORDSYS.ORDImage.init());

2.2.4 Populating a Row Using BLOB Images
Prior to updating a BLOB value, you must lock the row containing the BLOB loca-
tor. This is usually done using a SELECT FOR UPDATE statement in SQL and
 interMedia Examples 2-21

Image Data Examples
PL/SQL programs, or using an Oracle Call Interface (OCI) pin or lock function in
OCI programs.

Example 2–17 populates a row with ORDImage BLOB data. See Section 2.1.15 for
another set of examples for populating rows using BLOB images.

Example 2–17 Populate a Row with ORDImage BLOB Data

DECLARE
 -- applicaition variables
 Image ORDSYS.ORDImage;
 ctx RAW(4000) := NULL;
BEGIN
 INSERT INTO emp VALUES (
 ’John Doe’, 24000, ’Technical Writer’, 123,
 ORDSYS.ORDImage.init());
 -- Select the newly inserted row for update
 SELECT photo INTO Image FROM emp
 WHERE ename = ’John Doe’ for UPDATE;
 -- Can use the getContent method to get the LOB locator.
 -- Populate the data with DBMS LOB calls or write an OCI program to
 -- fill in the image BLOB.
 -- This example imports the image file test.gif from the IMGDIR
 -- directory on a local file system
 -- (srcType=FILE) and automatically sets the properties.

 Image.setSource(’FILE’,’IMGDIR’,’test.gif’);
 Image.import(ctx);

 UPDATE emp SET photo = Image WHERE ename = ’John Doe’;
 COMMIT;
 -- Continue processing
END;

An UPDATE statement is required to update the property attributes. If you do not
use the UPDATE statement now, you can still commit, and the change to the image
will be reflected in the BLOB attribute, but not in the properties. See Oracle8i Appli-
cation Developer’s Guide - Large Objects (LOBs) for more information on BLOBs.

2.2.5 Inserting a Row Using BFILE Images
To insert a row into a table that has storage for image content in external files using
the ORDImage type, you must populate the type with an initializer. Note that this is
different from NULL. Attempting to use the ORDImage type with a NULL value
results in an error.
2-22 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
Example 2–18 describes how to insert rows into the table using the ORDImage type.
Assume you have a table 'emp' with the following columns:

ename VARCHAR2(50)
salary NUMBER
job VARCHAR2(50)
department INTEGER
large_photo ORDImage

If you are going to use the ORDImage type column, you must first populate the col-
umn with a value. To populate the value of the ORDImage type column with an
image stored externally in a file, you must populate the row with a file constructor.

Example 2–18 inserts a row into the table with an image called ’jdoe.gif’ from the
ORDIMGDIR directory.

Example 2–18 Insert a Row into a Table with an Image in the ORDImage Type Column

INSERT INTO emp VALUES (
 ’John Doe’, 24000, ’Technical Writer’, 123,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’jdoe.gif’));

For a description of row insertion into an object type, see Chapter 5, and the Oracle8i
Application Developer’s Guide - Large Objects (LOBs) manual.

The sourceLocation argument ’ORDIMGDIR’ is a directory referring to a file system
directory. Note that the directory name must be in uppercase. The following
sequence creates a directory named ORDIMGDIR:

-- Make a directory referring to a file system directory
create directory ORDIMGDIR as ’<MYIMAGEDIRECTORY>’;
grant read on directory ORDIMGDIR to <user-or-role>;

<MYIMAGEDIRECTORY> is the file system directory, and <user-or-role> is the
specific user to whom to grant read access.

2.2.6 Populating a Row Using BFILE Images
Example 2–19 populates the row with ORDImage data stored externally in files.

Note: In releases 8.1.5, 8.1.6, and 8.1.7 of Oracle8i, the content
stored in ORDImage in files or URLs is read-only.
 interMedia Examples 2-23

Image Data Examples
Example 2–19 Populate a Row with ORDImage External File Data

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 INSERT INTO emp VALUES (’John Doe’, 24000, ’Technical Writer’, 123,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’jdoe.gif’));
 -- Select the newly inserted row for update
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- Set property attributes for the image data
 Image.setProperties;
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
 COMMIT;
 -- Continue processing
END;

2.2.7 Querying a Row
Example 2–20 and Example 2–21 assume you have this table:

create table emp (
ename VARCHAR2(50),
salary NUMBER,
job VARCHAR2(50),
department INTEGER,
photo ORDSYS.ORDImage,
large_photo ORDSYS.ORDImage);

Example 2–20 queries the emp (employees) table for the name John Doe and the
ORDImage data for rows with minimum photo widths (greater than 32 pixels).You
must create a table alias (E in this example) when you refer to a type in a SELECT
statement.

Example 2–20 Query Rows of ORDImage Data for Widths Greater Than 32

SELECT ename, E.large_photo.getWidth()
 FROM emp E
 WHERE ename = ’John Doe’ and
 E.large_photo.getWidth() > 32;

Example 2–21 queries the emp (employees) table for the name John Doe and the
ORDImage data for rows with minimum photo widths (greater than 32 pixels) and
a minimum content length (greater than 10000 bytes).
2-24 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
Example 2–21 Query Rows of ORDImage Data for Widths Greater Than 32 and a Mini-
mum Content Length

SELECT ename, E.large_photo.getCompressionFormat()
 FROM emp E
 WHERE ename = ’John Doe’ and
 E.large_photo.getWidth() > 32 and
 E.large_photo.getContentLength() > 10000;

2.2.8 Importing an Image from an External File into the Database
To import an image from an external file into the database, use the ORDIm-
age.import method. Example 2–22 imports image data from an external file into the
database. The source type, source location, and source name must be set prior to
calling the import() method.

Example 2–22 Import an Image from an External File

DECLARE
 Image ORDSYS.ORDImage;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT large_photo
 INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- Import the image into the database
 Image.import(ctx);
 UPDATE emp SET large_photo = IMAGE
 WHERE ename = ’John Doe’;
 COMMIT;
END;

2.2.9 Copying an Image
To copy an image, use the ORDImage.copy method. Example 2–23 copies image
data.

Example 2–23 Copy an Image

DECLARE
 Image_1 ORDSYS.ORDImage;
 Image_2 ORDSYS.ORDImage;
BEGIN
 SELECT photo INTO Image_1
 FROM emp WHERE ename = ’John Doe’;
 interMedia Examples 2-25

Image Data Examples
 SELECT photo INTO Image_2
 FROM emp WHERE ename = ’Also John Doe’ FOR UPDATE;
 -- Copy the data from Image_1 to Image_2
 Image_1.copy(Image_2);
 -- Continue processing
 UPDATE emp SET photo = Image_2
 WHERE ename = ’Also John Doe’;
 COMMIT;
END;

2.2.10 Converting an Image Format
To convert the image data into a different format, use the process() method.

Example 2–24 converts the image data to the TIFF image file format.

Example 2–24 Convert an Image Format

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- Convert the image to TIFF (in place)
 Image.process(’fileFormat=TIFF’);
 UPDATE emp SET photo = Image WHERE ename = ’John Doe’;
 COMMIT;
END;

2.2.11 Copying and Converting in One Step
To make a copy of the image and convert it in one step, use the processCopy()
method.

Note: The process() method processes only into a BLOB, so the
image data must be stored locally.

Note: The processCopy() method processes only into a BLOB, so
the destination image must be set to local and the localData
attribute in the source must be initialized.
2-26 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
Example 2–25 creates a thumbnail image, converts the image data to the TIFF image
file format, copies it to a BLOB, and leaves the original image intact.

Example 2–25 Copy and Convert an Image Format

DECLARE
 Image_1 ORDSYS.ORDImage;
 Image_2 ORDSYS.ORDImage;
BEGIN
 SELECT photo, large_photo
 INTO Image_2, Image_1
 FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- Convert the image to a TIFF thumbnail image and store the
 -- result in Image_2
 Image_1.processCopy(’fileFormat=TIFF fixedScale=32 32’, Image_2);
 -- Continue processing
 UPDATE emp SET photo = Image_2 WHERE ename = ’John Doe’;
 COMMIT;
END;

Changes made by the processCopy() method can be rolled back. This technique
may be useful for a temporary format conversion.

2.2.12 Extending interMedia with a New Type
You can use the ORDImage type as the basis for a new type of your own creation as
shown in Example 2–26.

Note: When a type is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDImage attribute and the interMedia
ORDImage type is altered, which always occurs during an interMe-
dia installation upgrade.

A workaround to this problem is to revalidate all invalid type defi-
nitions with the following SQL statement:

SQL> ALTER TYPE <type-name> COMPILE;

Now you can alter the dependent type definition as follows:

SQL> ALTER TYPE <type-name> REPLACE AS OBJECT
(...);
/

 interMedia Examples 2-27

Image Data Examples
Example 2–26 Extend Oracle interMedia Image with a New Object Type

CREATE TYPE AnnotatedImage AS OBJECT
 (image ORDSYS.ORDImage,
 description VARCHAR2(2000),
 MEMBER PROCEDURE SetProperties(SELF IN OUT AnnotatedImage),
 MEMBER PROCEDURE Copy(dest IN OUT AnnotatedImage),
 MEMBER PROCEDURE ProcessCopy(command IN VARCHAR2,
 dest IN OUT AnnotatedImage)
);
/

CREATE TYPE BODY AnnotatedImage AS
 MEMBER PROCEDURE SetProperties(SELF IN OUT AnnotatedImage) IS
 BEGIN
 SELF.image.setProperties;
 SELF.description :=
 ’This is an example of using Image object as a subtype’;
 END SetProperties;
 MEMBER PROCEDURE Copy(dest IN OUT AnnotatedImage) IS
 BEGIN
 SELF.image.copy(dest.image);
 dest.description := SELF.description;
 END Copy;
 MEMBER PROCEDURE ProcessCopy(command IN VARCHAR2,
 dest IN OUT AnnotatedImage) IS
 BEGIN
 SELF.Image.processCopy(command,dest.image);
 dest.description := SELF.description;
 END ProcessCopy;
END;
/

After creating the new type, you can use it as you would any other type. For exam-
ple:

create or replace directory TEST_DIR as ’C:\TESTS’;

CREATE TABLE my_example(id NUMBER, an_image AnnotatedImage);
INSERT INTO my_example VALUES (1,
 AnnotatedImage(
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’jdoe.gif’));
COMMIT;
DECLARE
 myimage AnnotatedImage;
2-28 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
BEGIN
 SELECT an_image INTO myimage FROM my_example;
 myimage.SetProperties;
 DBMS_OUTPUT.PUT_LINE(’This image has a description of ’);
 DBMS_OUTPUT.PUT_LINE(myimage.description);
 UPDATE my_example SET an_image = myimage;
END;
/

2.2.13 Using Image Types with Object Views
Just as a view is a virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view mecha-
nism. By using object views, you can create virtual object tables from data-- of either
built-in or user-defined types -- stored in the columns of relational or object tables in
the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming with-
out permanently converting your tables. Using object views, you can convert data
gradually and transparently from relational tables to object-relational tables.

In Example 2–27, consider the following relational table (containing no ORDImage
objects):

Example 2–27 Define a Relational Table Containing No ORDImage Object

CREATE TABLE flat(
 id NUMBER,
 localData BLOB,
 srcType VARCHAR2(4000),
 srcLocation VARCHAR2(4000),
 srcName VARCHAR2(4000),
 updateTime DATE,
 local NUMBER,
 height INTEGER,
 width INTEGER,
 contentLength INTEGER,
 fileFormat VARCHAR2(4000),
 contentFormat VARCHAR2(4000),
 compressionFormat VARCHAR2(4000),
 mimeType VARCHAR2(4000)
 interMedia Examples 2-29

Image Data Examples
);

You can create an object view on the relational table shown in Example 2–27 as fol-
lows in Example 2–28.

Example 2–28 Define an Object View Containing an ORDImage Object and Relational
Columns

CREATE OR REPLACE VIEW object_images_v AS
 SELECT
 id,
 ORDSYS.ORDImage(
 ORDSYS.ORDSource(
 T.localData,
 T.srcType,
 T.srcLocation,
 T.srcName,
 T.updateTime,
 T.local),
 T.height,
 T.width,
 T.contentLength,
 T.fileFormat,
 T.contentFormat,
 T.compressionFormat,
 T.mimeType
) IMAGE
 FROM flat T;

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Thus you can use different in-memory object representations
for different applications without changing the way you store the data in the data-
base. Object views also provide a way to use replication when your application uses
objects. You can create an object view containing one or more object columns and
also use replication. See the Oracle8i Concepts manual for more information on defin-
ing, using, and updating object views.

2.2.14 Scripts for Creating and Populating an Image Table from a BFILE Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site: http://technet.oracle.com/ as end-to-end scripts that create and popu-
late an image table from a BFILE data source. You can get to this site by selecting the
Oracle interMedia Plugins and Utilities page and from the interMedia page, select
Sample Code.
2-30 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
The following set of scripts:

1. Creates a tablespace for the image data, creates a user and grants certain privi-
leges to this new user, creates an image data load directory (create_imguser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_imgtable.sql).

3. Loads the image data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importimg.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_imgschema.sql) automates this entire process by running
each script in the required order. The last script (readimage.sql) creates a stored pro-
cedure that performs a SELECT operation to read a specified amount of image data
from the BLOB beginning at a particular offset until all the image data is read. To
successfully load the image data, you must have an imgdir directory created on your
system containing the img71.gif and img50.gif files, which are installed in the
<ORACLE_HOME>/ord/img/demo directory; this directory path and disk drive
must be specified in the CREATE DIRECTORY statement in the create_imguser.sql
file.

Script 1: Create a Tablespace, Create an Image User, Grant Privileges
to the Image User, and Create an Image Data Load Directory
(create_imguser.sql)
This script creates the imgdemo tablespace with a data file named imgdemo.dbf of
200MB in size, with an initial extent of 64K, a next extent of 128K, and turns on table
logging. Next, the imgdemo user is created and given connect, resource, create
library, and create directory privileges, followed by creating the image data load
directory.

-- create_imguser.sql
-- Connect as admin.

Note: You must edit the create_imguser.sql file and either enter
the system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already cre-
ated it, otherwise this file will not run.
 interMedia Examples 2-31

Image Data Examples
connect system/<system password>;
-- Edit this script and either enter your system password here
-- to replace <system password> or comment out this connect
-- statement and connect as system before running this script.

set serveroutput on
set echo on

-- Need system manager privileges to delete a user.
-- Note: There is no need to delete imgdemo user if you do not delete the
-- imgdemo tablespace, therefore comment out the next line.

-- drop user imgdemo cascade;

-- Need system manager privileges to delete a directory. If threre is
-- no need to really delete it, then comment out the next line.

-- drop directory imgdir;

-- Delete then create the tablespace.

-- Note: It is better to not delete and create tablespaces,
-- so comment this next line out. The create tablespace statement
-- will fail if it already exists.

-- drop tablespace imgdemo including contents;

-- If you uncomment the preceding line and really want to delete the
-- imgdemo tablespace, remember to manually delete the imgdemo.dbf
-- file to complete the operation. Otherwise, you cannot create
-- the imgdemo tablespace again because the imgdemo.dbf file
-- already exists. Therefore, it might be best to create this
-- tablespace once and not delete it.

-- Create tablespace.
create tablespace imgdemo
 datafile ’imgdemo.dbf’ size 200M
 minimum extent 64K
 default storage (initial 64K next 128K)
 logging;

-- Create imgdemo user.
create user imgdemo identified by imgdemo
default tablespace imgdemo
temporary tablespace temp;
2-32 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
-- Note: If you do not have a temp tablespace already defined, you will
-- have to create it first for this script to work.

grant connect, resource, create library to imgdemo;
grant create any directory to imgdemo;

-- Note: If this user already exists, you get an error message when you
-- try and create this user again.

-- Connect as imgdemo.
connect imgdemo/imgdemo

-- Create the imgdemo load directory; this is the directory where the image
-- files are residing.

create or replace directory imgdir
 as ’e:\oracle\ord\img\demo’;
grant read on directory imgdir to public with grant option;
-- Note: If this directory already exists, an error message
-- is returned stating the operation will fail; ignore the message.

Script 2: Create the Image Table and Initialize the Column Object
(create_imgtable.sql)
This script creates the image table and then performs an insert operation to initial-
ize the column object to empty for two rows. Initializing the column object creates
the BLOB locator that is required for populating each row with BLOB data in a sub-
sequent data load operation.

-- create_imgtable.sql
connect imgdemo/imgdemo;
set serveroutput on
set echo on

drop table imgtable;
create table imgtable (id number,
 Image ordsys.ordImage);

-- Insert a row with empty BLOB.
insert into imgtable values(1,ORDSYS.ORDImage.init());

-- Insert a row with empty BLOB.
insert into imgtable values(2,ORDSYS.ORDImage.init());
 interMedia Examples 2-33

Image Data Examples
commit;

Script 3: Load the Image Data (importimg.sql)
This script performs a SELECT FOR UPDATE operation to load the image data by
first setting the source for loading the image data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two image files to your
IMGDIR directory using the names specified in this script, or modify this script to
match the file names of your image files.

--importimg.sql
set serveroutput on
set echo on
-- Import the two files into the database.

DECLARE
 obj ORDSYS.ORDIMAGE;
 ctx RAW(4000) := NULL;
BEGIN
-- This imports the image file img71.gif from the IMGDIR directory
-- on a local file system (srcType=FILE) and sets the properties.

 select Image into obj from imgtable where id = 1 for update;
 obj.setSource(’FILE’,’IMGDIR’,’img71.gif’);
 obj.import(ctx);

 update imgtable set image = obj where id = 1;
 commit;

-- This imports the image file img50.gif from the IMGDIR directory
-- on a local file system (srcType=FILE) and sets the properties.

 select Image into obj from imgtable where id = 2 for update;
 obj.setSource(’FILE’,’IMGDIR’,’img50.gif’);
 obj.import(ctx);

 update imgtable set image = obj where id = 2;
 commit;
END;
/

2-34 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
Script 4: Check the Properties of the Loaded Data (chkprop.sql)
This script performs a SELECT operation of the rows of the image table, then gets
the image characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

-- chkprop.sql
set serveroutput on;
--connect imgdemo/imgdemo
--Query imgtable for ORDSYS.ORDImage.
DECLARE
 image ORDSYS.ORDImage;
 idnum integer;
 properties_match BOOLEAN;

BEGIN
 FOR I IN 1..2 LOOP
 SELECT id into idnum from imgtable where id=I;
 dbms_output.put_line(’image id: ’|| idnum);

 SELECT Image into image from imgtable where id=I;

 properties_match := image.checkProperties;
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;

 dbms_output.put_line(’image height: ’|| image.getHeight);
 dbms_output.put_line(’image width: ’|| image.getWidth);
 dbms_output.put_line(’image MIME type: ’|| image.getMimeType);
 dbms_output.put_line(’image file format: ’|| image.getFileFormat);
 dbms_output.put_line(’BLOB Length: ’|| TO_CHAR(image.getContentLength));

 dbms_output.put_line(’---’);

 END loop;
END;
/

Results from running the script chkprop.sql are the following:

SQL> @chkprop.sql
image id: 1
Check Properties Succeeded
image height: 15
image width: 43
image MIME type: image/gif
image file format: GIFF
BLOB Length: 1124
 interMedia Examples 2-35

Image Data Examples

image id: 2
Check Properties Succeeded
image height: 32
image width: 110
image MIME type: image/gif
image file format: GIFF
BLOB Length: 686

PL/SQL procedure successfully completed.

Automated Script (setup_imgschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

-- setup_imgschema.sql
-- Create imgdemo user, tablespace, and load directory to
-- hold image files:
@create_imguser.sql

-- Create image table:
@create_imgtable.sql

--Import 2 images and set properties:
@importimg.sql

--Check the properties of the images:
@chkprop.sql

--exit;

Read Data from the BLOB (readimage.sql)
This script performs a SELECT operation to read a specified amount of image data
from the BLOB, beginning at a particular offset until all the image data is read.

-- readimage.sql

set serveroutput on
set echo on

create or replace procedure readimage as
2-36 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
-- Note: ORDImage has no readFromSource method like ORDAudio
-- and ORDVideo; therefore, you must use the DBMS_LOB package to
-- read image data from a BLOB.

 buffer RAW (32767);
 src BLOB;
 obj ORDSYS.ORDImage;
 amt BINARY_INTEGER := 32767;
 pos integer := 1;
 read_cnt integer := 1;

BEGIN

 Select t.image.getcontent into src from imgtable t where t.id = 1;
 Select image into obj from imgtable t where t.id = 1;
 DBMS_OUTPUT.PUT_LINE(’Content length is: ’|| TO_CHAR(obj.getContentLength));

 LOOP
 DBMS_LOB.READ(src,amt,pos,buffer);
 DBMS_OUTPUT.PUT_LINE(’start position: ’|| pos);
 DBMS_OUTPUT.PUT_LINE(’doing read ’|| read_cnt);
 pos := pos + amt;
 read_cnt := read_cnt + 1;

-- Note: Add your own code here to process the image data being read;
-- this routine just reads data into the buffer 32767 bytes
-- at a time, then reads the next chunk, overwriting the first
-- buffer full of data.
 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’----------------’);
 DBMS_OUTPUT.PUT_LINE(’End of data ’);

END;

/
show errors

To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute readimage(1);
Content length is: 1124
 interMedia Examples 2-37

Image Data Examples
start position: 1
doing read 1

End of data

PL/SQL procedure successfully completed.

2.2.15 Scripts for Populating an Image Table from an HTTP Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site: http://technet.oracle.com/ as end-to-end scripts that create and popu-
late an image table from an HTTP data source. You can get to this site by selecting
the Oracle interMedia Plugins and Utilities page and from the interMedia page,
select Sample Code.

The following set of scripts performs a row insert operation and an import opera-
tion, then checks the properties of the loaded images to ensure that the images are
really loaded.

Initialize the Column Object and Import the Image Data
(importimghttp.sql)
This script inserts two rows into the imgtable table, initializing the object column
for each row to empty with a locator, and indicating the HTTP source information
(source type (HTTP), URL location, and HTTP object name). Within a SELECT FOR
UPDATE statement, an import operation loads each image object into the database
followed by an UPDATE statement to update the object attributes for each image,
and finally a COMMIT statement to commit the transaction.

To successfully run this script, you must modify this script to point to two images
located on your own Web site.

--importimghttp.sql
-- Import the two HTTP images from a Web site into the database.
-- Running this script assumes you have already run the
-- create_imguser.sql and create_imgtable.sql scripts.
-- Modify the HTTP URL and object name to point to two images
-- on your own Web site.

Note: Before you run the importimg.sql script described in this
section to load image data from an HTTP data source, check to
ensure you have already run the create_imguser.sql and
create_imgtable.sql scripts described in Section 2.2.14.
2-38 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Data Examples
set serveroutput on
set echo on

-- Import two images from HTTP source URLs.

connect imgdemo/imgdemo;

-- Insert two rows with empty BLOB.

insert into imgtable values (7,ORDSYS.ORDImage.init(
 ’http’,’your.web.site.com/intermedia’,’image1.gif’));

insert into imgtable values (8,ORDSYS.ORDImage.init(
 ’http’,’your.web.site.com/intermedia’,’image2.gif’));

DECLARE
 obj ORDSYS.ORDIMAGE;
 ctx RAW(4000) := NULL;
BEGIN
-- This imports the image file image1.gif from the HTTP source URL
-- (srcType=HTTP), and automatically sets the properties.

 select Image into obj from imgtable where id = 7 for update;
 obj.import(ctx);

 update imgtable set image = obj where id = 7;
 commit;

-- This imports the image file image2.gif from the HTTP source URL
-- (srcType=HTTP), and automatically sets the properties.

 select Image into obj from imgtable where id = 8 for update;
 obj.import(ctx);

 update imgtable set image = obj where id = 8;
 commit;
END;
/

Check the Properties of the Loaded Data
This script performs a SELECT operation of the rows of the image table, then gets
the image characteristics of the BLOB data to check that the BLOB data is in fact
loaded.
 interMedia Examples 2-39

Image Data Examples
--chkprop.sql
set serveroutput on;
--connect imgdemo/imgdemo
--Query imgtable for ORDSYS.ORDImage.
DECLARE
image ORDSYS.ORDImage;
idnum integer;
properties_match BOOLEAN;

BEGIN
 FOR I IN 7..8 LOOP
 SELECT id into idnum from imgtable where id=I;
 dbms_output.put_line(’image id: ’|| idnum);
 SELECT Image into image from imgtable where id=I for update;
 properties_match := image.checkProperties;
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;
 dbms_output.put_line(’image height: ’|| image.getHeight);
 dbms_output.put_line(’image width: ’|| image.getWidth);
 dbms_output.put_line(’image MIME type: ’|| image.getMimeType);
 dbms_output.put_line(’image file format: ’|| image.getFileFormat);
 dbms_output.put_line(’BLOB length: ’|| TO_CHAR(image.getContentLength));
 dbms_output.put_line(’---’);
 END loop;
END;
/

2.2.16 Addressing National Language Support (NLS) Issues
Example 2–29 shows how to use the processCopy() method with language settings
that use the comma as the decimal point. For example, when the territory is
FRANCE, the decimal point is expected to be a comma. Notice the ",75" specified as
the scale factor. This application addresses National Language Support issues.

Example 2–29 Address a National Language Support Issue

ALTER SESSION SET NLS_LANGUAGE = FRENCH;
ALTER SESSION SET NLS_TERRITORY = FRANCE;
DECLARE
 myimage ORDSYS.ORDImage;
 mylargeimage ORDSYS.ORDImage;
BEGIN
 SELECT photo, large_photo INTO myimage, mylargeimage
 FROM emp FOR UPDATE;
 myimage.setProperties;
2-40 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Data Examples
 myimage.ProcessCopy(’scale=",75"’, mylargeimage);
 UPDATE emp SET photo = myimage, large_photo = mylargeimage;
 COMMIT;
END;
/

2.3 Video Data Examples
interMedia video examples include the following common operations:

■ Defining a clip object named clipObject

■ Creating an object table named clipsTable

■ Creating a list object named clipList that contains a list of clips

■ Defining the implementation of the clipList object

■ Creating a video object and VideoTable table

■ Inserting a video clip into the ClipsTable table

■ Inserting a row into the VideoTable table

■ Loading a video into the ClipsTable table

■ Inserting a reference to a clipObject into the clips list in the video table

■ Inserting a reference to a video object into the clip

■ Retrieving a video clip from the VideoTable table

■ Extending interMedia to support a new video data format

■ Extending interMedia with new object types

■ Using video types with object views

■ Using a set of scripts for creating and populating a video table from a BFILE
data source

The video examples in this section use a table of video clips and a table of videos.
For each video clip the following are stored: a videoRef (REF into the video table),
clip ID, title, director, category, copyright, producer, awards, time period, rating,
duration, cdRef (REF into CdObject for sound tracks), text content (indexed by
CONTEXT), cover image (REF into the image table), and video source. For each
video the following are stored: an item ID, duration, text content (indexed by CON-
TEXT), cover image (REF into the image table), and a list of clips on the video.
 interMedia Examples 2-41

Video Data Examples
Reference information on the methods used in these examples is presented in
Chapter 6.

2.3.1 Defining a Clip Object
Example 2–30 describes how to define a clip object.

Example 2–30 Define a Clip Object

CREATE TYPE clipObject as OBJECT (
 videoRef REF VideoObject, -- REF into the video table
 clipId VARCHAR2(20), -- Id inside of the clip table
 title VARCHAR2(4000),
 director VARCHAR2(4000),
 category VARCHAR2(20),
 copyright VARCHAR2(4000),
 producer VARCHAR2(4000),
 awards VARCHAR2(4000),
 timePeriod VARCHAR2(20),
 rating VARCHAR2(256),
 duration INTEGER,
 cdRef REF CdObject, -- REF into a CdObject(soundtrack)
 txtcontent CLOB,
 coverImg REF ORDSYS.ORDImage, -- REF into the ImageTable
 videoSource ORDSYS.ORDVideo);

2.3.2 Creating an Object Table ClipsTable
Example 2–31 describes how to create an object table named ClipsTable.

Example 2–31 Create a Table Named ClipsTable

CREATE TABLE ClipsTable of clipObject (UNIQUE (clipId), clipId NOT NULL);

2.3.3 Creating a List Object Containing a List of Clips
Example 2–32 describes how to create a list object containing a list of clips.

Example 2–32 Create a List Object Containing a List of Clips

CREATE TYPE clipNstType AS TABLE of REF clipObject;

CREATE TYPE clipList AS OBJECT (clips clipNstType,
 MEMBER PROCEDURE addClip(c IN REF clipObject));
2-42 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Data Examples
2.3.4 Defining the Implementation of the clipList Object
Example 2–33 describes how to define the implementation of the clipList object.

Example 2–33 Define the Implementation of the clipList Object

CREATE TYPE BODY clipList AS
 MEMBER PROCEDURE addClip(c IN REF clipObject)
 IS
 pos INTEGER := 0;
 BEGIN
 IF clips IS NULL THEN
 clips := clipNstType(NULL);
 pos := 0;
 ELSE
 pos := clips.count;
 END IF;
 clips.EXTEND;
 clips(pos+1) := c;
 END;
END;

2.3.5 Creating a Video Object and a Video Table
This section describes how to create a video object and a video table of video clips
that includes, for each video clip, the following information:

■ Item ID

■ Duration

■ Text content

■ Cover image

■ Clips

Example 2–34 creates a video object named videoObject and a video table named
VideoTable that contains the video information.

Example 2–34 Create a Video Table Containing Video Information

CREATE TYPE VideoObject as OBJECT (
 itemId INTEGER,
 duration INTEGER,
 txtcontent CLOB,
 coverImg REF ORDSYS.ORDImage,
 interMedia Examples 2-43

Video Data Examples
 clips clipList);

CREATE TABLE VideoTable OF VideoObject (UNIQUE(itemId),itemId NOT NULL)
 NESTED TABLE clips.clips STORE AS clip_store_table;

2.3.6 Inserting a Video Clip into the ClipsTable Table
Example 2–35 describes how to insert a video clip into the ClipsTable table.

Example 2–35 Insert a Video Clip into the ClipsTable Table

-- Insert a Video Clip into the ClipsTable
insert into ClipsTable values (NULL,
 ’11’,
 ’Oracle Commercial’,
 ’Larry Ellison’,
 ’commercial’,
 ’Oracle Corporation’,
 ’’,
 ’no awards’,
 ’90s’
 ’no rating’,
 30,
 NULL,
 EMPTY_CLOB(),
 NULL,
 ORDSYS.ORDVIDEO.init(’Oracle Commercial 1 Video Clip’),
 ’QuickTime File Format’,
 ’video/quicktime’,
 160, 120, 72, 15, 30, 450, ’Cinepak’, 256, 15000));

2.3.7 Inserting a Row into the VideoTable Table
Example 2–36 describes how to insert a row into the VideoTable table.

Example 2–36 Insert a Row into the VideoTable Table

-- Insert a row into the VideoTable
insert into VideoTable values (11,
 30,
 NULL,
 NULL,
 clipList(NULL));
2-44 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Data Examples
2.3.8 Loading a Video into the ClipsTable Table
Example 2–37 describes how to load a video into the ClipsTable table. This example
requires a VIDDIR directory to be defined; see the comments in the example.

Example 2–37 Load a Video into the ClipsTable Table

-- Load a Video into a clip
-- Create your directory specification below
-- CREATE OR REPLACE DIRECTORY VIDDIR AS ’/video/’;
DECLARE
 videoObj ORDSYS.ORDVIDEO;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT C.videoSource INTO videoObj
 FROM ClipsTable C
 WHERE C.clipId = ’11’
 FOR UPDATE;

 videoObj.setDescription(’Under Pressure Video Clip’);
 videoObj.setSource(’FILE’, ’VIDDIR’, ’UnderPressure.mov’);
 videoObj.import(ctx);
 videoObj.setProperties(ctx)

 UPDATE ClipsTable C
 SET C.videoSource = videoObj
 WHERE C.clipId = ’11’;
 COMMIT;
END;

-- Check video insertion
DECLARE
 videoObj ORDSYS.ORDVideo;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT C.videoSource INTO videoObj
 FROM ClipsTable C
 WHERE C.clipId = ’11’;

 dbms_output.put_line(’Content Length: ’ ||
 videoObj.getContentLength(ctx));
 dbms_output.put_line(’Content MimeType: ’ ||
 videoObj.getMimeType());
END;
 interMedia Examples 2-45

Video Data Examples
2.3.9 Inserting a Reference to a Clip Object into the Clips List in the VideoTable Table
Example 2–38 describes how to insert a reference to a clip object into the clips list in
the VideoTable table.

Example 2–38 Insert a Reference to a Clip Object into the Clips List in the VideoTable
Table

-- Insert a reference to a ClipObject into the Clips List in the VideoTable
DECLARE
 clipRef REF ClipObject;
 clipListInstance clipList;
BEGIN
 SELECT REF(C) into clipRef
 FROM ClipsTable C
 where C.clipId = ’11’;

 SELECT V.clips INTO clipListInstance
 FROM VideoTable V
 WHERE V.itemId = 11
 FOR UPDATE;

 clipListInstance.addClip(clipRef);

 UPDATE VideoTable V
 SET V.clips = clipListInstance
 WHERE V.itemId = 11;

 COMMIT;
END;

-- Check insertion of clip ref
DECLARE
 clip ClipObject;
 clipRef REF ClipObject;
 clipListInstance clipList;
 clipType clipNstType;
BEGIN
 SELECT V.clips INTO clipListInstance
 FROM VideoTable V
 WHERE V.itemId = 11;

 SELECT clipListInstance.clips INTO clipType FROM DUAL;
 clipRef := clipType(1);
 SELECT DEREF(clipRef) INTO clip FROM DUAL;
2-46 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Data Examples
 dbms_output.put_line(’Clip Title: ’ ||
 clip.title);
END;

2.3.10 Inserting a Reference to a Video Object into the Clip
Example 2–39 describes how to insert a reference to a video object into the clip.

Example 2–39 Insert a Reference to a Video Object into the Clip

-- Insert a reference to a video object into the clip
DECLARE
 aVideoRef REF VideoObject;
BEGIN
-- Make a VideoRef an obj to use for update
 SELECT Cp.videoRef INTO aVideoRef
 FROM ClipsTable Cp
 WHERE Cp.clipId = ’11’
 FOR UPDATE;

-- Change its value
 SELECT REF(V) INTO aVideoRef
 FROM VideoTable V
 WHERE V.itemId = 11;

-- Update database
 UPDATE ClipsTable C
 SET C.videoRef = aVideoRef
 WHERE C.clipId = ’11’;

 COMMIT;
END;

2.3.11 Retrieving a Video Clip from the VideoTable Table
Example 2–40 describes how to retrieve a video clip from the VideoTable table and
return it as a BLOB. The program segment performs these operations:

1. Defines the retrieveVideo() method to retrieve the video clip by its clipId as an
ORDVideo BLOB.

2. Selects the desired video clip (where C.clipId = clipId) and returns it
using the getContent method.
 interMedia Examples 2-47

Video Data Examples
Example 2–40 Retrieve a Video Clip

FUNCTION retrieveVideo(clipId IN INTEGER)
RETURN BLOB IS
 obj ORDSYS.ORDVideo;

BEGIN
 -- Select the desired video clip from the ClipTable table.
 SELECT C.videoSource INTO obj from ClipTable C
 WHERE C.clipId = clipId;
 return obj.getContent;
END;

2.3.12 Extending interMedia to Support a New Video Data Format
This section describes how to extend Oracle interMedia to support a new video data
format.

To support a new video data format, implement the required interfaces in the
ORDX_<format>_VIDEO package in the ORDPLUGINS schema (where <format>
represents the name of the new video data format). See Section 6.4.1 for a complete
description of the interfaces for the ORDX_DEFAULT_VIDEO package. Use the
package body example in Section 6.4.2 as a template to create the video package
body.

Then set the new format parameter in the setFormat call to the appropriate format
value to indicate to the video object that package ORDPLUGINS.ORDX_<format>
_VIDEO is available as a plug-in.

See Section F.3 for more information on installing your own format plug-in and run-
ning the sample scripts provided. See the fplugins.sql and fpluginb.sql files that are
installed in the$ORACLE_HOME/ord/vid/demo/ directory. These are demonstration
(demo) plug-ins that you can use as a guideline to write any format plug-in that you
want to support. See the viddemo.sql file in this same directory to learn how to
install your own format plug-in.

2.3.13 Extending interMedia with a New Object Type
This section describes how to extend Oracle interMedia with a new object type.

You can use the ORDVideo type as the basis for a new type of your own creation.

See Example 2–32 and Example 2–33 for brief examples. See Example 2–26 for a
more complete example and description.
2-48 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Data Examples
2.3.14 Using Video Types with Object Views
This section describes how to use video types with object views. Just as a view is a
virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view mecha-
nism. By using object views, you can create virtual object tables from data -- of
either built-in or user-defined types -- stored in the columns of relational or object
tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming with-
out permanently converting your tables. Using object views, you can convert data
gradually and transparently from relational tables to object-relational tables.

In Example 2–41, consider the following relational table (containing no ORDVideo
objects).

Example 2–41 Define a Relational Table Containing No ORDVideo Object

create table flat (
 id number,
 description VARCHAR2(4000),
 localData BLOB,
 srcType VARCHAR2(4000),
 srcLocation VARCHAR2(4000),

Note: When a type is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDVideo attribute and the interMedia ORD-
Video type is altered, which always occurs during an interMedia
installation upgrade.

A workaround to this problem is to revalidate all invalid type defi-
nitions with the following SQL statement:

SQL> ALTER TYPE <type-name> COMPILE;

Now you can alter the dependent type definition as follows:

SQL> ALTER TYPE <type-name> REPLACE AS OBJECT
(...);
/

 interMedia Examples 2-49

Video Data Examples
 srcName VARCHAR2(4000),
 upDateTime DATE,
 local NUMBER,
 format VARCHAR2(31),
 mimeType VARCHAR2(4000),
 comments CLOB,
 width INTEGER,
 height INTEGER,
 frameResolution INTEGER,
 frameRate INTEGER,
 videoDuration INTEGER,
 numberOfFrames INTEGER,
 compressionType VARCHAR2(4000),
 numberOfColors INTEGER,
 bitRate INTEGER,
 videoclip RAW(2000)
);

You can create an object view on the relational table shown in Example 2–41 as fol-
lows in Example 2–42.

Example 2–42 Define an Object View Containing an ORDVideo Object and Relational
Columns

create or replace view object_video_v as
 select
 id,
 ordsys.ORDVideo(
 T.description,
 T.localData,
 T.comments,
 T.format,
 T.width,
 T.height,
 T.frameResolution,
 T.frameRate,
 T.videoDuration,
 T.numberofFrames,
 T.compressionType,
 T.numberOfColors,
 T.bitRate,
 T.videoclip) VIDEO
 from flat T;
2-50 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Data Examples
Object views provide the flexibility of looking at the same relational or object data
in more than one way. Therefore, you can use different in-memory object represen-
tations for different applications without changing the way you store the data in the
database. Object views also provide a way to use replication when your application
uses objects. You can create an object view containing one or more object columns
and also use replication. See the Oracle8i Concepts manual for more information on
defining, using, and updating object views.

2.3.15 Scripts for Creating and Populating a Video Table from a BFILE Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site: http://technet.oracle.com/ as end-to-end scripts that create and popu-
late a video table from a BFILE data source. You can get to this site by selecting the
Oracle interMedia Plugins and Utilities page and from the interMedia page, select
Sample Code.

The following set of scripts:

1. Creates a tablespace for the video data, creates a user and grants certain privi-
leges to this new user, creates a video data load directory (create_viduser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_vidtable.sql).

3. Loads the video data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importvid.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_vidschema.sql) automates this entire process by running each
script in the required order. The last script (readvideo.sql) creates a stored proce-
dure that performs a SELECT operation to read a specified amount of video data
from the BLOB, beginning at a particular offset, until all the video data is read. To
successfully load the video data, you must have a viddir directory created on your
system containing the vid1.mov and vid2.mov files, which are installed in the
<ORACLE_HOME>/ord/vid/demo directory; this directory path and disk drive
must be specified in the CREATE DIRECTORY statement in the create_viduser.sql
file.
 interMedia Examples 2-51

Video Data Examples
Script 1: Create a Tablespace, Create a Video User, Grant Privileges to
the Video User, and Create a Video Data Load Directory
(create_viduser.sql)
This script creates the viddemo tablespace with a data file named viddemo.dbf of
200MB in size, with an initial extent of 64K, a next extent of 128K, and turns on table
logging. Next, the viddemo user is created and given connect, resource, create
library, and create directory privileges followed by creating the video data load
directory.

-- create_viduser.sql

-- Connect as admin.
connect system/<system password>;

-- Edit this script and either enter your system password here
-- to replace <system password> or comment out this connect
-- statement and connect as system before running this script.

set serveroutput on
set echo on

-- Need system manager privileges to delete a user.
-- Note: There is no need to delete viddemo user if you do not
-- delete the viddemo tablespace, therefore comment out the next line.

-- drop user viddemo cascade;

-- Need system manager privileges to delete a directory. If there is no
-- need to really delete it, then comment out the next line.

-- drop directory viddir;

-- Delete then create tablespace.

-- Note: It is better to not delete and create tablespaces,

Note: You must edit the create_viduser.sql file and either enter the
system password in the connect statement or comment out the con-
nect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already cre-
ated it, otherwise this file will not run.
2-52 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Data Examples
-- so comment this next line out. The create tablespace statement
-- will fail if it already exists.

-- drop tablespace viddemo including contents;

-- If you uncomment the previous line and want to delete the
-- viddemo tablespace, remember to manually delete the viddemo.dbf
-- file to complete the operation. Otherwise, you cannot create
-- the viddemo tablespace again because the viddemo.dbf file
-- already exists. Therefore, it might be best to create this
-- tablespace once and not delete it.

-- Create tablespace.
create tablespace viddemo
 datafile ’viddemo.dbf’ size 200M
 minimum extent 64K
 default storage (initial 64K next 128K)
 logging;

-- Create viddemo user.
create user viddemo identified by viddemo
default tablespace viddemo
temporary tablespace temp;

-- Note: If you do not have a temp tablespace already defined, you
-- will have to create it first for this script to work.

grant connect, resource, create library to viddemo;
grant create any directory to viddemo;

-- Note: If this user already exists, you get an error message
-- when you try and create this user again.

-- Connect as viddemo.
connect viddemo/viddemo

-- Create the viddemo load directory; this is the directory where the video
-- files are residing.

create or replace directory viddir
 as ’e:\oracle\ord\vid\demo’;
grant read on directory viddir to public with grant option;

-- Note: If this directory already exists, an error message
-- is returned stating the operation will fail; ignore the message.
 interMedia Examples 2-53

Video Data Examples
Script 2: Create the Video Table and Initialize the Column Object
(create_vidtable.sql)
This script creates the video table and then performs an insert operation to initial-
ize the column object to empty for two rows. Initializing the column object creates
the BLOB locator that is required for populating each row with BLOB data in a sub-
sequent data load operation.

--create_vidtable.sql
connect viddemo/viddemo;
set serveroutput on
set echo on

drop table vidtable;
create table vidtable (id number,
 Video ordsys.ordVideo);

-- Insert a row with empty BLOB.
insert into vidtable values(1,ORDSYS.ORDVideo.init());

-- Insert a row with empty BLOB.
insert into vidtable values(2,ORDSYS.ORDVideo.init());
commit;

Script 3: Load the Video Data (importvid.sql)
This script performs a SELECT FOR UPDATE operation to load the video data by
first setting the source for loading the video data from a file, importing the data, set-
ting the properties for the BLOB data, updating the row, and committing the trans-
action. To successfully run this script, you must copy two video clips to your
VIDDIR directory using the names specified in this script, or modify this script to
match the file names of your video clips.

-- importvid.sql

set serveroutput on
set echo on
-- Import the two files into the database.

DECLARE
 obj ORDSYS.ORDVIDEO;
 ctx RAW(4000) := NULL;

BEGIN
-- This imports the video file vid1.mov from the VIDDIR directory
-- on a local file system (srcType=FILE) and sets the properties.
2-54 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Data Examples
 select Video into obj from vidtable where id = 1 for update;
 obj.setSource(’FILE’,’VIDDIR’,’vid1.mov’);
 obj.import(ctx);
 obj.setProperties(ctx);

 update vidtable set video = obj where id = 1;
 commit;

-- This imports the video file vid2.mov from the VIDDIR directory
-- on a local file system (srcType=FILE) and sets the properties.

 select Video into obj from vidtable where id = 2 for update;
 obj.setSource(’FILE’,’VIDDIR’,’vid2.mov’);
 obj.import(ctx);
 obj.setProperties(ctx);

 update vidtable set video = obj where id = 2;
 commit;
END;
/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)
This script performs a SELECT operation of the rows of the video table, then gets
the video characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

--chkprop.sql
set serveroutput on;
--connect viddemo/viddemo
--Query vidtable for ORDSYS.ORDVideo.
DECLARE
 video ORDSYS.ORDVideo;
 idnum integer;
 properties_match BOOLEAN;
 ctx RAW(4000) := NULL;
 width integer;
 height integer;

BEGIN
 FOR I IN 1..2 LOOP
 SELECT id, video into idnum, video from vidtable where id=I;
 dbms_output.put_line(’video id: ’|| idnum);
 interMedia Examples 2-55

Video Data Examples
 properties_match := video.checkProperties(ctx);
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;

 --dbms_output.put_line(’video frame rate: ’|| video.getFrameRate(ctx));
 --dbms_output.put_line(’video width & height: ’|| video.getFrameSize(ctx,width,height);
 dbms_output.put_line(’video MIME type: ’|| video.getMimeType);
 dbms_output.put_line(’video file format: ’|| video.getFormat(ctx));
 dbms_output.put_line(’BLOB Length: ’|| TO_CHAR(video.getContentLength(ctx)));
 dbms_output.put_line(’--’);

 END loop;
END;
/

Results from running the script chkprop.sql are the following:

SQL> @chkprop.sql
video id: 1
Check Properties Succeeded
video MIME type: video/quicktime
video file format: MOOV
BLOB Length: 4958415
--
video id: 2
Check Properties Succeeded
video MIME type: video/quicktime
video file format: MOOV
BLOB Length: 2891247
--

Automated Script (setup_vidschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

-- setup_vidschema.sql
-- Create viddemo user, tablespace, and load directory to
-- hold the video files:
@create_viduser.sql

-- Create Video table:
@create_vidtable.sql

--Import 2 video clips and set properties:
@importvid.sql

--Check the properties of the video clips:
@chkprop.sql
2-56 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Video Data Examples
--exit;

Read Data from the BLOB (readvideo.sql)
This script creates a stored procedure that performs a SELECT operation to read a
specified amount of video data from the BLOB, beginning at a particular offset,
until all the video data is read.

-- readvideo.sql

set serveroutput on
set echo on

create or replace procedure readvideo as

 obj ORDSYS.ORDVideo;
 buffer RAW (32767);
 numbytes BINARY_INTEGER := 32767;
 startpos integer := 1;
 read_cnt integer := 1;
 ctx RAW(4000) := NULL;

BEGIN

 Select video into obj from vidtable where id = 1;

 LOOP
 obj.readFromSource(ctx,startpos,numbytes,buffer);
 DBMS_OUTPUT.PUT_LINE(’Content length is: ’|| TO_CHAR(obj.getContentLength));

 DBMS_OUTPUT.PUT_LINE(’start position: ’|| startpos);
 DBMS_OUTPUT.PUT_LINE(’doing read ’|| read_cnt);
 startpos := startpos + numbytes;
 read_cnt := read_cnt + 1;

-- Note: Add your own code here to process the video data being read;
-- this routine just reads the data into the buffer 32767 bytes
-- at a time, then reads the next chunk, overwriting the first
-- buffer full of data.
 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
 interMedia Examples 2-57

Extending interMedia to Support a New Data Source
 DBMS_OUTPUT.PUT_LINE(’----------------’);

 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);

END;
/
show errors

To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute readvideo
Content Length: 4958415
start position: 1
doing read 1
start position: 32768
doing read 2
start position: 65535
.
.
.
doing read 151
start position: 4947818
doing read 152

End of data

PL/SQL procedure successfully completed.

2.4 Extending interMedia to Support a New Data Source
This section describes how to extend Oracle interMedia to support a new data
source.

To support a new data source, implement the required interfaces in the ORDX_<src-
Type>_SOURCE package in the ORDPLUGINS schema (where <srcType> repre-
sents the name of the new external source type). See Section 7.3.1 and Section 7.3.2
for a complete description of the interfaces for the ORDX_FILE_SOURCE and
ORDX_HTTP_SOURCE packages. See Section 7.3.4 for an example of modifying the
package body listing that is provided. Then set the source type parameter in the set-
SourceInformation call to the appropriate source type to indicate to the video object
that package ORDPLUGINS.ORDX_<srcType>_SOURCE is available as a plug-in.
2-58 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Ensuring Future Compatibility with Evolving interMedia Object T
3

Ensuring Future Compatibility with

Evolving interMedia Object Types

The interMedia object types may evolve by adding new object attributes in a future
release. Client-side applications that want to maintain compatibility with the 8.1.7
release of the interMedia object types (ORDAudio, ORDImage, ORDVideo, and
ORDSource), even after a server upgrade that includes evolved the object types, are
advised to do the following:

■ Make a call to the compatibility initialization function at the beginning of the
application, if necessary (see Section 3.1).

■ Use the static constructor functions, init(), in INSERT statements that are pro-
vided beginning with release 8.1.7 (see Section 4.2, Section 5.2, and Section 6.2).
Do not use the default constructors because INSERT statements using the
default constructor will fail if the interMedia object types have added new
attributes.

3.1 When and How to Call the Compatibility Initialization Function
Only client-side applications that statically recognize the structure of the interMedia
object types need to make a call to the compatibility initialization function. Server-
side stored procedures will automatically use the newly installed (potentially
changed) interMedia object types after an upgrade, so you do not need to call the
compatibility initialization function from server-side stored procedures.

Note: If you do not do the preceding recommended actions, you
may have to upgrade and perhaps even recompile your application
when you upgrade to a newer server release with evolved types.
ypes 3-1

When and How to Call the Compatibility Initialization Function
Client-side applications that do not statically (at compile time) recognize the
structure of interMedia object types do not need to call the compatibility
initialization function. OCI applications that determine the structure of the
interMedia object types at runtime, through the OCIDescribeAny call, do not need
to call the compatibility initialization function.

Client-side applications written in OCI that have been compiled with the C
structure of interMedia object types (generated by OTT) should make a call to the
server-side PL/SQL function, ORDSYS.IM.compatibilityInit(), at the beginning of
the application. See the compatibilityInit() method description of this function in
this section.

Client-side applications written in Java using the interMedia Java Classes for 8.1.7,
should call the OrdMediaUtil.imCompatibilityInit() function after connecting to the
Oracle database server.

public static void imCompatibilityInit(OracleConnection con)
 throws Exception

This Java function takes OracleConnection as an argument. The included interMe-
dia 8.1.7 Java API will ensure that your 8.1.7 application will work (without upgrad-
ing) with a potential future release of interMedia with evolved object types.

There is not yet a way for client-side PL/SQL applications to maintain compatibil-
ity with the 8.1.7 release of the interMedia object types if the objects add new
attributes in a future release.

See the compatibilityInit() method in this section, and Oracle interMedia Audio,
Image, and Video Java Classes User’s Guide and Reference, release 8.1.7, for further infor-
mation, and detailed descriptions and examples. This guide is on the Oracle Tech-
nology Network, http://technet.oracle.com/.
3-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

compatibilityInit() Method
compatibilityInit() Method

Format
compatibilityInit(release IN VARCHAR2,

 errmsg OUT VARCHAR2)

RETURN NUMBER;

Description
Allows for compatibly evolving the interMedia object types in a future release.

Parameters

release
The release number. This string should be set to ’8.1.7’ to allow an 8.1.7 application
to work (without upgrading) with a potential future release of the Oracle database
and interMedia with evolved object types.

errmsg
String output parameter. If the function returns a status other than 0, this errmsg
string contains the reason for the failure.

Pragmas
None.

Exceptions
None.

Usage Notes
You should begin using the compatibilityInit() method as soon as possible to
ensure you will not have to upgrade the Oracle software on your client node, or
recompile your client application in order to work with a future release of the
Oracle database server if the interMedia object types change in a future release. See
Section 3.1 to determine if you need to call this function.

The compatibility initialization function for interMedia is located in the ORDSYS.IM
package.
 Ensuring Future Compatibility with Evolving interMedia Object Types 3-3

compatibilityInit() Method
Examples
Using OCI and setting the compatibilityInit() method release parameter to release
8.1.7 to allow an 8.1.7 application to work with a future release of the Oracle
database and interMedia with changed object types; note, that this is not a
standalone program in that it assumes that you have allocated handles beforehand:

void prepareExecuteStmt(OCIEnv *envHndl,
 OCIStmt **stmtHndl,
 OCIError *errorHndl,
 OCISvcCtx *serviceCtx,
 OCIBind *bindhp[])
{
 text *statement = (text *)
 "begin :sts := ORDSYS.IM.compatibilityInit(:vers, :errText);
end;";
 sword sts = 0;
 text *vers = (text *)"8.1.7";
 text errText[512];
 sb2 nullInd;

 printf(" Preparing statement\n");

 OCIHandleAlloc(envHndl, (void **) stmtHndl, OCI_HTYPE_STMT, 0, NULL
);

 OCIStmtPrepare(*stmtHndl, errorHndl, (text *)statement,
 (ub4)strlen((char *)statement), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

 printf(" Executing statement\n");

 OCIBindByPos(*stmtHndl, &bindhp[0], errorHndl, 1, (void *)&sts,
 sizeof(sts), SQLT_INT, (void *)0, NULL, 0, 0,
 NULL, OCI_DEFAULT);

 OCIBindByPos(*stmtHndl, &bindhp[1], errorHndl, 2, vers,
 strlen((char *)vers) + 1, SQLT_STR, (void *)0, NULL,
 0, 0, NULL, OCI_DEFAULT);

 OCIBindByPos(*stmtHndl, &bindhp[2], errorHndl, 3, errText,
 sizeof(errText), SQLT_STR, &nullInd, NULL, 0, 0,
 NULL, OCI_DEFAULT);

 OCIStmtExecute(serviceCtx, *stmtHndl, errorHndl, 1, 0,
 (OCISnapshot *)NULL, (OCISnapshot *)NULL, OCI_DEFAULT);
3-4

compatibilityInit() Method
 printf(" Statement executed\n");
 if (sts != 0)
 {
 printf("CompatibilityInit failed with Sts = %d\n", sts);
 printf("%s\n", errText);
 }

}

 Ensuring Future Compatibility with Evolving interMedia Object Types 3-5

compatibilityInit() Method
3-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 ORDAudio Reference Inform
4

ORDAudio Reference Information

Oracle interMedia contains information about the ORDAudio type:

■ Object type -- see Section 4.1.

■ Constructors -- see Section 4.2.

■ Methods -- see Section 4.3.

■ Packages or PL/SQL plug-ins -- see Section 4.4.

The examples in this chapter assume that the test audio table TAUD has been cre-
ated and filled with data. This table was created using the SQL statements described
in Section 4.3.1.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx(RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the openSource() method. At this point, the source plug-in
can initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

Note: If you manipulate the audio data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the audio data.
ation 4-1

Object Types
Methods invoked at the ORDAudio level that are handed off to the format plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure and initial-
ize it to NULL.

4.1 Object Types
Oracle interMedia describes the ORDAudio object type, which supports the storage
and management of audio data.

Note: In the current release, not all source or format plug-ins will
use the ctx argument, but if you code as previously described, your
application should work with any current or future source or for-
mat plug-in.
4-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDAudio Object Type
ORDAudio Object Type

The ORDAudio object type supports the storage and management of audio data.
This object type is defined as follows:

CREATE OR REPLACE TYPE ORDAudio
AS OBJECT
(
 -- ATTRIBUTES
description VARCHAR2(4000),
source ORDSource,
format VARCHAR2(31),
mimeType VARCHAR2(4000),
comments CLOB,
 -- AUDIO RELATED ATTRIBUTES
encoding VARCHAR2(256),
numberOfChannels INTEGER,
samplingRate INTEGER,
sampleSize INTEGER,
compressionType VARCHAR2(4000),
audioDuration INTEGER,

 -- METHODS
-- CONSTRUCTORS
--
STATIC FUNCTION init() RETURN ORDAudio,
STATIC FUNCTION init(srcType IN VARCHAR2,
 srcLocation IN VARCHAR2,
 srcName IN VARCHAR2) RETURN ORDAudio,
-- Methods associated with the date attribute
MEMBER FUNCTION getUpdateTime RETURN DATE,
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setUpdateTime(current_time DATE),
-- Methods associated with the description attribute
MEMBER PROCEDURE setDescription(user_description IN VARCHAR2),
MEMBER FUNCTION getDescription RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getDescription, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with the mimeType attribute
MEMBER PROCEDURE setMimeType(mime IN VARCHAR2),
MEMBER FUNCTION getMimeType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS),
 ORDAudio Reference Information 4-3

ORDAudio Object Type
-- Methods associated with the source attribute
MEMBER FUNCTION processSourceCommand(
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW,

MEMBER FUNCTION isLocal RETURN BOOLEAN,
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setLocal,
MEMBER PROCEDURE clearLocal,

MEMBER PROCEDURE setSource(
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER FUNCTION getSource RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceLocation RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceName RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE import(ctx IN OUT RAW),
MEMBER PROCEDURE importFrom(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER PROCEDURE export(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER FUNCTION getContentLength(ctx IN OUT RAW) RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getContentInLob(
4-4

ORDAudio Object Type
 ctx IN OUT RAW,
 dest_lob IN OUT NOCOPY BLOB,
 mimeType OUT VARCHAR2,
 format OUT VARCHAR2),

MEMBER FUNCTION getContent RETURN BLOB,
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE deleteContent,

MEMBER FUNCTION getBFILE RETURN BFILE,
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with file operations on the source
MEMBER FUNCTION openSource(userArg IN RAW, ctx OUT RAW) RETURN INTEGER,
MEMBER FUNCTION closeSource(ctx IN OUT RAW) RETURN INTEGER,
MEMBER FUNCTION trimSource(ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER,
MEMBER PROCEDURE readFromSource(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW),
MEMBER PROCEDURE writeToSource(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer IN RAW),

-- Methods associated with the comments attribute
MEMBER PROCEDURE appendToComments(amount IN BINARY_INTEGER,
 buffer IN VARCHAR2),
MEMBER PROCEDURE writeToComments(offset IN INTEGER,
 amount IN BINARY_INTEGER,
 buffer IN VARCHAR2),
MEMBER FUNCTION readFromComments(offset IN INTEGER,
 amount IN BINARY_INTEGER := 32767)
 RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(readFromComments, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION locateInComments(pattern IN VARCHAR2,
 offset IN INTEGER := 1,
 occurrence IN INTEGER := 1)
 RETURN INTEGER,
MEMBER PROCEDURE trimComments(newlen IN INTEGER),
 ORDAudio Reference Information 4-5

ORDAudio Object Type
MEMBER PROCEDURE eraseFromComments(amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1),
MEMBER PROCEDURE deleteComments,
MEMBER PROCEDURE loadCommentsFromFile(fileobj IN BFILE,
 amount IN INTEGER,
 from_loc IN INTEGER := 1,
 to_loc IN INTEGER := 1),
MEMBER PROCEDURE copyCommentsOut(dest IN OUT NOCOPY CLOB,
 amount IN INTEGER,
 from_loc IN INTEGER := 1,
 to_loc IN INTEGER := 1),
MEMBER FUNCTION compareComments(
 compare_with_lob IN CLOB,
 amount IN INTEGER := 4294967295,
 starting_pos_in_comment IN INTEGER := 1,
 starting_pos_in_compare IN INTEGER := 1)
 RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(compareComments, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getCommentLength RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getCommentLength, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with audio attributes accessors
MEMBER PROCEDURE setFormat(knownformat IN VARCHAR2),
MEMBER FUNCTION getFormat RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setEncoding(knownEncoding IN VARCHAR2),
MEMBER FUNCTION getEncoding RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getEncoding, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setNumberOfChannels(knownNumberOfChannels IN INTEGER),
MEMBER FUNCTION getNumberOfChannels RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getNumberOfChannels, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setSamplingRate(knownSamplingRate IN INTEGER),
MEMBER FUNCTION getSamplingRate RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getSamplingRate, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setSampleSize(knownSampleSize IN INTEGER),
MEMBER FUNCTION getSampleSize RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getSampleSize, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setCompressionType(knownCompressionType IN VARCHAR2),
MEMBER FUNCTION getCompressionType RETURN VARCHAR2,
4-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDAudio Object Type
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setAudioDuration(knownAudioDuration IN INTEGER),
MEMBER FUNCTION getAudioDuration RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getAudioDuration, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setKnownAttributes(
 knownFormat IN VARCHAR2,
 knownEncoding IN VARCHAR2,
 knownNumberOfChannels IN INTEGER,
 knownSamplingRate IN INTEGER,
 knownSampleSize IN INTEGER,
 knownCompressionType IN VARCHAR2,
 knownAudioDuration IN INTEGER),

-- Methods associated with setting all the properties
MEMBER PROCEDURE setProperties(ctx IN OUT RAW),
MEMBER PROCEDURE setProperties(ctx IN OUT RAW,
 setComments IN BOOLEAN),
MEMBER FUNCTION checkProperties(ctx IN OUT RAW) RETURN BOOLEAN,

MEMBER FUNCTION getAttribute(
 ctx IN OUT RAW,
 name IN VARCHAR2) RETURN VARCHAR2,

MEMBER PROCEDURE getAllAttributes(
 ctx IN OUT RAW,
 attributes IN OUT NOCOPY CLOB),

-- Methods associated with audio processing
MEMBER FUNCTION processAudioCommand(
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
);

where:

■ description: the description of the audio object.

■ source: the ORDSource where the audio data is to be found.

■ format: the format in which the audio data is stored.

■ mimeType: the MIME type information.
 ORDAudio Reference Information 4-7

Constructors
■ comments: the comment information of the audio object.

■ encoding: the encoding type of the audio data.

■ numberOfChannels: the number of audio channels in the audio data.

■ samplingRate: the rate in Hz at which the audio data was recorded.

■ sampleSize: the sample width or number of samples of audio in the data.

■ compressionType: the compression type of the audio data.

■ audioDuration: the total duration of the audio data stored.

4.2 Constructors
This section describes the constructor functions.

The interMedia audio constructor functions are as follows:

■ init()

■ init(srcType,srcLocation,srcName)
4-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

init() Method
init() Method

Format
init() RETURN ORDAudio;

Description
Allows for easy initialization of instances of the ORDAudio object type.

Parameters
None.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDAudio attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 1 (local)

■ source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDAudio object type, especially if the ORDAudio type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDAudio object attributes:

DECLARE
 myAudio ORDSYS.ORDAudio;
 ORDAudio Reference Information 4-9

init() Method
BEGIN
 myAudio := ORDSYS.ORDAudio.init();
INSERT INTO taud VALUES (myAudio);
END;
/

4-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

init(srcType,srcLocation,srcName) Method
init(srcType,srcLocation,srcName) Method

Format
init(srcType IN VARCHAR2,

 srcLocation IN VARCHAR2,

 srcName IN VARCHAR2)

 RETURN ORDAudio;

Description
Allows for easy initialization of instances of the ORDAudio object type.

Parameters

srcType
The source type of the audio data.

srcLocation
The source location of the audio data.

srcName
The source name of the audio data.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDAudio attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 0

■ source.localData is set to empty_blob
 ORDAudio Reference Information 4-11

init(srcType,srcLocation,srcName) Method
■ source.srcType is set to the input value

■ source.srcLocation is set to the input value

■ source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDAudio object type, especially if the ORDAudio type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDAudio object attributes:

DECLARE
 myAudio ORDSYS.ORDAudio;
BEGIN
 myAudio := ORDSYS.ORDAudio.init(’FILE’,’AUDDIR’,’audio1.au’);
INSERT INTO taud VALUES (myAudio);
END;
/

4-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
4.3 Methods
This section presents reference information on the Oracle interMedia methods used
for audio data manipulation. These methods are described in the following group-
ings:

ORDAudio Methods Associated with the updateTime Attribute
■ getUpdateTime: returns the time when the audio object was last updated.

■ setUpdateTime(): sets the update time for the audio object. This method is
called implicitly by methods that modify natively supported audio formats.

ORDAudio Methods Associated with the description Attribute
■ setDescription(): sets the description of the audio data.

■ getDescription: returns the description of the audio data.

ORDAudio Methods Associated with mimeType Attribute
■ setMimeType(): sets the MIME type of the stored audio data. This method is

called implicitly by any method that modifies natively supported audio for-
mats.

■ getMimeType: returns the MIME type of the stored audio data.

ORDAudio Methods Associated with the source Attribute
■ processSourceCommand(): sends a command and related arguments to the

source plug-in.

■ isLocal: returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external.

■ setLocal: sets a flag to indicate that the data is stored locally in a BLOB.

■ clearLocal: clears the flag to indicate that the data is stored externally.

■ setSource(): sets the source information to where audio data is found.

■ getSource: returns a formatted string containing complete information about
the external data source formatted as a URL.

■ getSourceType: returns the external source type of the audio data.

■ getSourceLocation: returns the external source location of the audio data.

■ getSourceName: returns the external source name of the audio data.
 ORDAudio Reference Information 4-13

Methods
■ import(): transfers data from an external data source (specified by calling set-
SourceInformation()) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp.

■ importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp.

■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source.

■ getContentLength(): returns the length of the data source (as number of bytes).

■ getContentInLob(): returns content into a temporary LOB.

■ getContent: returns the handle to the BLOB used to store contents locally.

■ deleteContent: deletes the content of the local BLOB.

■ getBFILE: returns the external content as a BFILE.

ORDAudio Methods Associated with File Operations
■ openSource(): opens a data source or a BLOB.

■ closeSource(): closes a data source or a BLOB.

■ trimSource(): trims a data source or a BLOB.

■ readFromSource(): reads a buffer of n bytes from a source beginning at a start
position.

■ writeToSource(): writes a buffer of n bytes to a source beginning at a start posi-
tion.

Note: The export() method natively supports only sources of
source type FILE. User-defined sources may support the export()
method.
4-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
ORDAudio Methods Associated with the comments Attribute

■ appendToComments(): appends a specified buffer and amount of comment
data to the end of the audio data comments.

■ writeToComments(): writes a specified buffer and amount of comment data to
the audio data comments beginning at the specified offset.

■ readFromComments(): reads a specified amount of comment data from the
audio data comments beginning at the specified offset.

■ locateInComments(): matches and locates the occurrence of the specified pat-
tern of characters in the audio data comments.

■ trimComments(): trims the audio data comments to the specified length.

■ eraseFromComments(): erases the specified amount of comment data from the
audio data comments beginning at the specified offset.

■ deleteComments: deletes the audio data comments.

■ loadCommentsFromFile(): loads the comments from the specified BFILE into
the audio data comments.

■ copyCommentsOut(): copies the audio data comments to the given Character
LOB (CLOB).

■ compareComments(): compares the audio data comments with the comments
of another specified CLOB of audio data.

■ getCommentLength: returns the length of the audio data comments.

ORDAudio Methods Associated with Audio Attributes Accessors
■ setFormat(): sets the object attribute value of the format of the audio data.

■ getFormat: returns the object attribute value of the format in which the audio
data is stored.

■ setEncoding(): sets the object attribute value of the encoding type of the audio
data.

Note: The comments attribute is populated by setProperties()
when the setComments parameter is TRUE and by the Oracle inter-
Media Annotator utility. Oracle recommends that you not write to
this attribute directly.
 ORDAudio Reference Information 4-15

Methods
■ getEncoding: returns the object attribute value of the encoding type of the audio
data.

■ setNumberOfChannels(): sets the object attribute value of the number of audio
channels of the audio data.

■ getNumberOfChannels: returns the object attribute value of the number of
audio channels in the audio data.

■ setSamplingRate(): sets the object attribute value of the sampling rate of the
audio data.

■ getSamplingRate: returns the object attribute value of the sampling rate in sam-
ples per second at which the audio data was recorded.

■ setSampleSize(): sets the object attribute value of the sample width or number
of samples of audio in the data.

■ getSampleSize: returns the object attribute value of the sample width or num-
ber of samples of audio in the data.

■ setCompressionType(): sets the object attribute value of the compression type
of the audio data.

■ getCompressionType: returns the object attribute value of the compression type
of the audio data.

■ setAudioDuration(): sets the object attribute value of the total time value for
the time required to play the audio data.

■ getAudioDuration: returns the object attribute value of the total time required
to play the audio data.

■ setKnownAttributes(): sets known audio attributes including format, encoding
type, number of channels, sampling rate, sample size, compression type, and
audio duration of the audio data. The parameters are passed in with this call.

■ setProperties(): reads the audio data to get the values of the object attributes
and then stores them in the object. For the known attributes that ORDAudio
understands, it sets the properties for these attributes. These include: format,
encoding type, data type, number of channels, sampling rate, and sample size
of the audio data.

■ setProperties(): reads the audio data to get the values of the object attributes
and then stores them in the object. If the value for the setComments parameter
is TRUE, then the comments field of the object will be populated with a rich set
of format and application properties of the audio object in XML form, identical
to what is provided by the interMedia Annotator utility. For the known
4-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
attributes that ORDAudio understands, it sets the properties for these
attributes. These include: format, encoding type, data type, number of chan-
nels, sampling rate, and sample size of the audio data.

■ checkProperties(): calls the format plug-in to check the properties including for-
mat, encoding type, number of channels, sampling rate, and sample size of the
audio data, and returns a Boolean value TRUE if the properties stored in object
attributes match those in the audio data.

■ getAttribute(): returns the value of the requested attribute. This method is only
available for user-defined format plug-ins.

■ getAllAttributes(): returns a formatted string for convenient client access. For
natively supported formats, the string includes the following list of audio data
attributes separated by a comma (’,’): FileFormat, Encoding, NumberOfChan-
nels, SamplingRate, and SampleSize. Different format plug-ins can return data
in any format in this call. For user-defined formats, the string is defined by the
format plug-in.

ORDAudio Methods Associated with Processing Audio Data
■ processAudioCommand(): sends commands and related arguments to the for-

mat plug-in for processing. This method is available only for user-defined for-
mat plug-ins.

For more information on object types and methods, see Oracle8i Concepts.

4.3.1 Example Table Definitions
The methods described in this reference chapter show examples based on a test
audio table TAUD. Refer to the TAUD table definition that follows when reading
through the examples in Section 4.3.2 through Section 4.3.9:

TAUD Table Definition
CREATE TABLE TAUD(n NUMBER, aud ORDSYS.ORDAUDIO)
storage (initial 100K next 100K pctincrease 0);

INSERT INTO TAUD VALUES(1, ORDSYS.ORDAudio.init());
INSERT INTO TAUD VALUES(2, ORDSYS.ORDAudio.init());

4.3.2 ORDAudio Methods Associated with the updateTime Attribute
This section presents reference information on the ORDAudio methods associated
with the updateTime attribute.
 ORDAudio Reference Information 4-17

getUpdateTime Method
getUpdateTime Method

Format
getUpdateTime RETURN DATE;

Description
Returns the time when the object was last updated.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the updated time of some audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N = 1 ;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getUpdateTime,’MM-DD-YYYY HH24:MI:SS’));
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

4-18 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setUpdateTime() Method
setUpdateTime() Method

Format
setUpdateTime(current_time DATE);

Description
Sets the time when the audio data was last updated. Use this method whenever you
modify the audio data. The methods setDescription(), setMimeType(), setSource(),
import(), importFrom(), export(), deleteContent, and all set audio accessors call
this method implicitly.

Parameters

current_time
The timestamp to be stored. Defaults to SYSDATE.

Usage Notes
You must invoke this method whenever you modify the audio data.

Pragmas
None.

Exceptions
None.

Examples
Set the updated time of some audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N = 1;
 obj.setUpdateTime(SYSDATE);
 UPDATE TAUD SET aud=obj WHERE N = 1;
 COMMIT;
END;
/

 ORDAudio Reference Information 4-19

setUpdateTime() Method
4.3.3 ORDAudio Methods Associated with the description Attribute
This section presents reference information on the ORDAudio methods associated
with the description attribute.
4-20 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setDescription() Method
setDescription() Method

Format
setDescription (user_description IN VARCHAR2);

Description
Sets the description of the audio data.

Parameters

user_description
The description of the audio data.

Usage Notes
Each audio object may need a description to help some client applications. For
example, a Web-based client can show a list of audio descriptions from which a user
can select one to access the audio data.

Web-access components and other client components provided with Oracle interMe-
dia make use of this description attribute to present audio data to users.

Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
None.

Examples
Set the description attribute for some audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing title’);
 DBMS_OUTPUT.PUT_LINE(’-------------’);
 ORDAudio Reference Information 4-21

setDescription() Method
 obj.setDescription(’audio1.wav’);
 DBMS_OUTPUT.PUT_LINE(obj.getDescription);
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
END;
/

4-22 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getDescription Method
getDescription Method

Format
getDescription RETURN VARCHAR2;

Description
Returns the description of the audio data.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getDescription, WNDS, WNPS, RNDS, RNPS)

Exceptions
DESCRIPTION_IS_NOT_SET

This exception is raised if you call the getDescription() method and the description
is not set.

Examples
See the example in the setDescription() Method on page 4-21.
 ORDAudio Reference Information 4-23

getDescription Method
4.3.4 ORDAudio Methods Associated with the mimeType Attribute
This section presents reference information on the ORDAudio methods associated
with the mimeType attribute.
4-24 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setMimeType() Method
setMimeType() Method

Format
setMimeType(mime IN VARCHAR2);

Description
Allows you to set the MIME type of the audio data.

Parameters

mime
The MIME type.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Call the setMimeType() method to set the MIME type if the source is a file or BLOB.

The MIME type is extracted from the HTTP header on import for HTTP sources.

Pragmas
None.

Exceptions
INVALID_MIME_TYPE

This exception is raised if you call the setMimeType() method and the value for
mimeType is NULL.

Examples
Set the MIME type for some stored audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing mimetype’);
 DBMS_OUTPUT.PUT_LINE(’----------------’);
 obj.setMimeType(’audio/basic’);
 ORDAudio Reference Information 4-25

setMimeType() Method
 DBMS_OUTPUT.PUT_LINE(obj.getMimeType);
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
END;
/

4-26 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getMimeType Method
getMimeType Method

Format
getMimeType RETURN VARCHAR2;

Description
Returns the MIME type for the audio data.

Parameters
None.

Usage Notes
If the source is an HTTP server, the MIME type information is read from the HTTP
header information. If the source is a file or BLOB, you must call the setMimeType()
method and set the MIME type.

Pragmas
PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setMimeType() Method on page 4-25.
 ORDAudio Reference Information 4-27

getMimeType Method
4.3.5 ORDAudio Methods Associated with the source Attribute
This section presents reference information on the ORDAudio methods associated
with the source attribute.
4-28 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

processSourceCommand() Method
processSourceCommand() Method

Format
processSourceCommand(

 ctx IN OUT RAW,

 cmd IN VARCHAR2,

 arguments IN VARCHAR2,

 result OUT RAW)

RETURN RAW;

Description
Allows you to send any command and its arguments to the source plug-in. This
method is available only for user-defined source plug-ins.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

cmd
Any command recognized by the source plug-in.

arguments
The arguments of the command.

result
The result of calling this method returned by the source plug-in.

Usage Notes
Use this method to send any command and its respective arguments to the source
plug-in. Commands are not interpreted; they are just taken and passed through to
be processed.
 ORDAudio Reference Information 4-29

processSourceCommand() Method
Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the processSourceCommand() method and the
value of srcType is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the processSourceCommand() method and this
method is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the processSourceCommand() method within a
source plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Process some commands:

DECLARE
 obj ORDSYS.ORDAudio;
 res RAW(4000);
 result RAW(4000);
 command VARCHAR(4000);
 argList VARCHAR(4000);
 ctx RAW(4000) :=NULL;
BEGIN
select aud into obj from TAUD where N =1 for UPDATE;
-- assign command
-- assign argList
res := obj.processSourceCommand (ctx, command, argList, result);
UPDATE TAUD SET aud=obj WHERE N=1 ;
COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’AUDIO METHOD_NOT_SUPPORTED EXCEPTION caught’);
4-30 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

processSourceCommand() Method
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’AUDIO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);
END;
/

 ORDAudio Reference Information 4-31

isLocal Method
isLocal Method

Format
isLocal RETURN BOOLEAN;

Description
Returns TRUE if the data is stored locally in a BLOB or FALSE if the data is stored
externally.

Parameters
None.

Usage Notes
If the local attribute is set to 1 or NULL, this method returns TRUE, otherwise this
method returns FALSE.

Pragmas
PRAGMA RESTRICT_REFERENCES(getLocal, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Determine whether or not the data is local:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT s INTO obj FROM TAUD WHERE N = 1 ;
 if(obj.isLocal = TRUE) then
 DBMS_OUTPUT.put_line(’local is set true’);
 else
 DBMS_OUTPUT.put_line(’local is set false’);
 end if;
END;
/

4-32 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setLocal Method
setLocal Method

Format
setLocal;

Description
Sets the local attribute to indicate that the data is stored internally in a BLOB. When
local is set, audio methods look for audio data in the source.localData attribute.

Parameters
None.

Usage Notes
This method sets the local attribute to 1 meaning the data is stored locally in local-
Data.

Pragmas
None.

Exceptions
None.

Examples
Set the flag to local for the data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT s INTO obj FROM TAUD WHERE N = 1 FOR UPDATE;
 obj.setLocal;
 UPDATE TAUD SET s=obj WHERE N = 1;
 COMMIT;
END;
/

 ORDAudio Reference Information 4-33

clearLocal Method
clearLocal Method

Format
clearLocal;

Description
Resets the local flag to indicate that the data is stored externally. When the local flag
is set to clear, audio methods look for audio data using the srcLocation, srcName,
and srcType attributes.

Parameters
None.

Usage Notes
This method sets the local attribute to a 0, meaning the data is stored externally or
outside of Oracle8i.

Pragmas
None.

Exceptions
None.

Examples
Clear the value of the local flag for the data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT s INTO obj FROM TAUD WHERE N = 1 FOR UPDATE;
 obj.clearLocal;
 UPDATE TAUD SET s=obj WHERE N = 1;
 COMMIT;
END;
/

4-34 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setSource() Method
setSource() Method

Format
setSource(

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Sets or alters information about the external source of the audio data.

Parameters

source_type
The source type of the external data. See the “ORDSource Object Type” definition in
Chapter 7 for more information.

source_location
The source location of the external data. See the “ORDSource Object Type” defini-
tion in Chapter 7 for more information.

source_name
The source name of the external data. See the “ORDSource Object Type” definition
in Chapter 7 for more information.

Usage Notes
Users can use this method to set the audio data source to a new BFILE or URL.

You must ensure that the directory exists or is created before you use this method.

Calling this method implicitly calls the setUpdateTime() method and the clearLo-
cal method.

Pragmas
None.
 ORDAudio Reference Information 4-35

setSource() Method
Exceptions
None.

Examples
Set the source of the audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 obj.setSource(’FILE’,’AUDIODIR’,’audio.au’);
 DBMS_OUTPUT.PUT_LINE(obj.getSource);
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
END;
/

4-36 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSource Method
getSource Method

Format
getSource RETURN VARCHAR2;

Description
Returns information about the external location of the audio data in URL format.

Parameters
None.

Usage Notes
Possible return values are:

■ FILE://<DIR OBJECT NAME>/<FILE NAME> for a file source

■ HTTP://<URL> for an HTTP source

■ User-defined source

Pragmas
PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setSource() Method on page 4-36.
 ORDAudio Reference Information 4-37

getSourceType Method
getSourceType Method

Format
getSourceType RETURN VARCHAR2;

Description
Returns a string containing the type of the external audio data source.

Parameters
None.

Usage Notes
Returns a VARCHAR2 string containing the type of the external audio data source,
for example ’FILE’.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the source type information about an audio data source:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 obj.setSource(’FILE’,’AUDIODIR’,’testaud.dat’);
 -- get source information
 DBMS_OUTPUT.put_line(obj.getSource);
 DBMS_OUTPUT.put_line(obj.getSourceType);
 DBMS_OUTPUT.put_line(obj.getSourceLocation);
 DBMS_OUTPUT.put_line(obj.getSourceName);
4-38 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSourceType Method
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

 ORDAudio Reference Information 4-39

getSourceLocation Method
getSourceLocation Method

Format
getSourceLocation RETURN VARCHAR2;

Description
Returns a string containing the value of the external audio data source location.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string containing the value of the external audio
data location, for example ’BFILEDIR’.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_LOCATION

This exception is raised if you call the getSourceLocation method and the value of
srcLocation is NULL.

Examples
See the example in the getSourceType Method on page 4-38.
4-40 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSourceName Method
getSourceName Method

Format
getSourceName RETURN VARCHAR2;

Description
Returns a string containing of the name of the audio external data source.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string containing the name of the external data
source, for example ’testaud.dat’.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_NAME

This exception is raised if you call the getSourceName method and the value of src-
Name is NULL.

Examples
See the example in the getSourceType Method on page 4-38.
 ORDAudio Reference Information 4-41

import() Method
import() Method

Format
import(ctx IN OUT RAW);

Description
Transfers audio data from an external audio data source to a local source (local-
Data) within an Oracle database.

Parameters

ctx
The source plug-in context information.This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

Usage Notes
Use the setSource() method to set the external source type, location, and name prior
to calling the import() method.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external audio data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.
4-42 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

import() Method
ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and the import() method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import audio data from an external audio data source into the local source:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 obj.setSource(’FILE’,’AUDIODIR’,’testaud.dat’);
 -- get source information
 DBMS_OUTPUT.PUT_LINE(obj.getSource);
 -- import data
 obj.import(ctx);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(obj.getSource);
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
END;
/

 ORDAudio Reference Information 4-43

importFrom() Method
importFrom() Method

Format
importFrom(ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers audio data from the specified external audio data source to a local source
(localData) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

source_type
The source type of the audio data.

source_location
The location from where the audio data is to be imported.

source_name
The name of the audio data.

Usage Notes
This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external audio data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.
4-44 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

importFrom() Method
Pragmas
None.

Exceptions
ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source plug-
in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import audio data from the specified external data source into the local source:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 -- import data
 obj.importFrom(ctx,’FILE’,’AUDIODIR’,’testaud.dat’);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(obj.getSource);
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(obj.getContent)));
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 ORDAudio Reference Information 4-45

importFrom() Method
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

4-46 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

export() Method
export() Method

Format
export(

 ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Copies audio data from a local source (localData) within an Oracle database to an
external audio data source.

Parameters

ctx
The source plug-in context information.

source_type
The source type of the location to where the data is to be exported.

source_location
The location where the audio data is to be exported.

source_name
The name of the audio object to where the data is to be exported.

Usage Notes
After exporting audio data, all audio attributes remain unchanged and srcType,
srcLocation, and srcName are updated with input values. After calling the export()
method, you can call the clearLocal() method to indicate the data is stored outside

Note: The export() method natively supports only sources of
source type FILE. User-defined sources may support the export()
method.
 ORDAudio Reference Information 4-47

export() Method
the database and call the deleteContent() method if you want to delete the content
of the local data.

This method is also available for user-defined sources that can support the export
method.

The only server-side native support for the export method is for the srcType FILE.

The export() method for a source type of FILE is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading pur-
poses.

The export() method is not an exact mirror operation to the import() method in
that the clearLocal() method is not automatically called to indicate the data is
stored outside the database, whereas the import() method automatically calls the
setLocal() method.

Call the deleteContent() method after calling the export() method to delete the con-
tent from the database if you no longer intend to manage the multimedia data
within the database.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the
DBMS_JAVA.GRANT_PERMISSION call to specify which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBMS_JAVA.GRANT_PERMISSION(
 ’MEDIAUSER’,
 ’java.io.FilePermission’,
 ’/actual/server/directory/path/filename.dat’,
 ’write’);

See the security and performance section in Oracle8i Java Developer’s Guide for more
information.

Invoking this method implicitly calls the setUpdateTime() method.

Pragmas
None.
4-48 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

export() Method
Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the export() method and the value of srcType is
NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not sup-
ported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Export data from a local source to an external data source:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM taud WHERE N = 1;
 obj.export(ctx,’FILE’,’AUDIODIR’,’testaud.dat’);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’OTHER EXCEPTION caught’);
END;
/

 ORDAudio Reference Information 4-49

getContentLength() Method
getContentLength() Method

Format
getContentLength(ctx IN OUT RAW) RETURN INTEGER;

Description
Returns the length of the audio data content stored in the source.

Parameters

ctx
The source plug-in context information.

Usage Notes
This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source type and implement this
method on it.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getContentLength() method and the value of
srcType is NULL and data is not stored locally in the BLOB.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentLength() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
See the example in the import() Method on page 4-43.
4-50 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContentInLob() Method
getContentInLob() Method

Format
getContentInLob(

 ctx IN OUT RAW,

 dest_lob IN OUT NOCOPY BLOB,

 mimeType OUT VARCHAR2,

 format OUT VARCHAR2)

Description
Transfers data from a data source into the specified BLOB. The BLOB can be another
BLOB, not the one for the object.

Parameters

ctx
The source plug-in context information.

dest_lob
The LOB in which to receive data.

mimeType
The MIME type of the data; this may or may not be returned.

format
The format of the data; this may or may not be returned.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION
 ORDAudio Reference Information 4-51

getContentInLob() Method
This exception is raised if you call the getContentInLob() method and the value of
srcType is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the getContentInLob() method and this method
is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentInLob() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Get data from a data source and put it into the specified BLOB:

DECLARE
 obj ORDSYS.ORDAudio;
 tempBLob BLOB;
 mimeType VARCHAR2(4000);
 format VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N = 1 ;
 if(obj.isLocal) then
 DBMS_OUTPUT.put_line(’local is true’);
 end if;
 DBMS_LOB.CREATETEMPORARY(tempBLob, true, 10);
 obj.getContentInLob(ctx,tempBLob, mimeType,format);
 -- process tempBLob
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.getLength(tempBLob)));
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDAudioExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-52 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContent Method
getContent Method

Format
getContent RETURN BLOB;

Description
Returns a handle to the local BLOB storage, that is the BLOB within the ORDAudio
object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
A client accesses audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 ;
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 DBMS_OUTPUT.put_line(TO_CHAR(DBMS_LOB.getLength(obj.getContent)));
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

 ORDAudio Reference Information 4-53

deleteContent Method
deleteContent Method

Format
deleteContent;

Description
Deletes the local data from the current local source (localData).

Parameters
None.

Usage Notes
This method can be called after you export the data from the local source to an
external audio data source and you no longer need this data in the local source.

Call this method when you want to update the object with a new object.

Pragmas
None.

Exceptions
None.

Examples
See the example in the import() Method on page 4-43.
4-54 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getBFILE Method
getBFILE Method

Format
getBFILE RETURN BFILE;

Description
Returns the LOB locator of the BFILE containing the audio clip.

Parameters
None.

Usage Notes
This method constructs and returns a BFILE using the stored source.srcLocation and
source.srcName attribute information. The source.srcLocation attribute must con-
tain a defined directory object. The source.srcName attribute must be a valid file
name.

Pragmas
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS)

Exceptions
If the source.srcType attribute value is NULL, calling this method raises an
INCOMPLETE_SOURCE_INFORMATION exception.

If the value of srcType is other than FILE, then calling this method raises an
INVALID_SOURCE_TYPE exception.

Examples
Return the BFILE for the stored source directory and file name attributes:

DECLARE
 Audio ORDSYS.ORDAudio;
 audiobfile BFILE;
BEGIN
 SELECT audioclip INTO Audio FROM emp
 WHERE ename = ’John Doe’;
 -- get the audio BFILE
 ORDAudio Reference Information 4-55

getBFILE Method
 audiobfile := Audio.getBFILE;
END;

4.3.6 ORDAudio Methods Associated with File-Like Operations
This section presents reference information on the ORDAudio methods associated
with file-like operations on a data source. You can use the following methods specif-
ically to manipulate audio data.
4-56 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

openSource() Method
openSource() Method

Format
openSource(userArg IN RAW, ctx OUT RAW) RETURN INTEGER;

Description
Opens a data source.

Parameters

userArg
The user argument. This may be used by user-defined source plug-ins.

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

Usage Notes
The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the openSource() method and the value for src-
Type is NULL and data is not local.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the openSource() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION
 ORDAudio Reference Information 4-57

openSource() Method
This exception is raised if you call the openSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Open an external data source:

DECLARE
 obj ORDSYS.ORDAudio;
 res INTEGER;
 ctx RAW(4000) :=NULL;
 userArg RAW(4000);
BEGIN
 select aud into obj from TAUD where N =1 for UPDATE;
 res := obj.openSource(userArg, ctx);
 UPDATE TAUD SET aud=obj WHERE N=1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-58 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

closeSource() Method
closeSource() Method

Format
closeSource(ctx IN OUT RAW) RETURN INTEGER;

Description
Closes a data source.

Parameters

ctx
The source plug-in context information. You must call the openSource() method;
see the introduction to this chapter for more information.

Usage Notes
The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the closeSource() method and the value for src-
Type is NULL and data is not local.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the closeSource() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the closeSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.
 ORDAudio Reference Information 4-59

closeSource() Method
Examples
Close an external data source:

DECLARE
 obj ORDSYS.ORDAudio;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =2 for UPDATE;
 res := obj.closeSource(ctx);
 UPDATE TAUD SET aud=obj WHERE N=2 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-60 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

trimSource() Method
trimSource() Method

Format
trim(ctx IN OUT RAW,

 newlen IN INTEGER) RETURN INTEGER;

Description
Trims a data source.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

newlen
The trimmed new length.

Usage Notes
The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the trimSource() method and the value for src-
Type is NULL and data is not local.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the trimSource() method and this method is not
supported by the source plug-in being used.
 ORDAudio Reference Information 4-61

trimSource() Method
ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the trimSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Trim an external data source:

DECLARE
 obj ORDSYS.ORDAudio;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for UPDATE;
 res := obj.trimSource(ctx,0);
 UPDATE TAUD SET aud=obj WHERE N=1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-62 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

readFromSource() Method
readFromSource() Method

Format
readFromSource(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer OUT RAW);

Description
Allows you to read a buffer of n bytes from a source beginning at a start position.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

startPos
The start position in the data source.

numBytes
The number of bytes to be read from the data source.

buffer
The buffer into which the data will be read.

Usage Notes
This method is not supported for HTTP sources.

To successfully read HTTP source types, the entire URL source must be requested to
be read. If you want to implement a read method for an HTTP source type, you
must provide your own implementation for this method in the modified source
plug-in for the HTTP source type.
 ORDAudio Reference Information 4-63

readFromSource() Method
Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the readFromSource() method and the value of
srcType is NULL and data is not local.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the readFromSource() method and the data is
local but localData is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the readFromSource() method and this method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the readFromSource() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Read a buffer from the source:

DECLARE
 obj ORDSYS.ORDAudio;
 buffer RAW(4000);
 i INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 i := 20;
 select aud into obj from TAUD where N =1 ;
 obj.readFromSource(ctx,1,i,buffer);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-64 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

writeToSource() Method
writeToSource() Method

Format
writeToSource(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer IN RAW);

Description
Allows you to write a buffer of n bytes to a source beginning at a start position.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

startPos
The start position in the source to where the buffer should be copied.

numBytes
The number of bytes to be written to the source.

buffer
The buffer of data to be written.

Usage Notes
This method assumes that the writable source allows you to write n number of
bytes starting at a random byte location. The FILE and HTTP source types are not
writable sources and do not support this method. This method will work if data is
stored in a local BLOB or is accessible through a user-defined source plug-in.

Pragmas
None.
 ORDAudio Reference Information 4-65

writeToSource() Method
Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the writeToSource() method and the value of src-
Type is NULL and data is not local.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the writeToSource() method and the data is local
but localData is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the writeToSource() method and this method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the writeToSource() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Write a buffer to the source:

DECLARE
 obj ORDSYS.ORDAudio;
 n INTEGER := 6;
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for update;
 obj.writeToSource(ctx,1,n,UTL_RAW.CAST_TO_RAW(’helloP’));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 update TAUD set aud = obj where N =1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-66 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

writeToSource() Method
4.3.7 ORDAudio Methods Associated with the comments Attribute
This section presents reference information on the ORDAudio methods associated
with the comments attribute.

Note: The comments attribute is populated by setProperties()
when the setComments parameter is TRUE and by the Oracle inter-
Media Annotator utility. Oracle recommends that you not write to
this attribute directly.
 ORDAudio Reference Information 4-67

appendToComments() Method
appendToComments() Method

Format
appendToComments(amount IN BINARY_INTEGER,

 buffer IN VARCHAR2);

Description
Appends a specified buffer and amount of comment data to the end of the com-
ments attribute of the audio object.

Parameters

amount
The amount of comment data to be appended.

buffer
The buffer of comment data to be appended.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
Append comment information to the comments attribute of the audio object:

DECLARE
 obj ORDSYS.ORDAudio;
 i INTEGER;
 j INTEGER;
4-68 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

appendToComments() Method
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 obj.deleteComments;
 obj.writeToComments(1,18,’This is a Comments’);
 obj.appendToComments(18,’This is a Comments’);
 -- check comments
 DBMS_OUTPUT.PUT_LINE(obj.readFromComments(1,obj.getCommentLength));
 DBMS_OUTPUT.PUT_LINE(obj.locateInComments(’Comments’,1));
 obj.trimComments(18);
 DBMS_OUTPUT.PUT_LINE(obj.readFromComments(1,18));
 i := 8;
 j := 9;
 obj.eraseFromComments(i,j);
 DBMS_OUTPUT.PUT_LINE(obj.readFromComments(1,10));
 obj.deleteComments;
 DBMS_OUTPUT.PUT_LINE(obj.readFromComments(1,10));
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

 ORDAudio Reference Information 4-69

writeToComments() Method
writeToComments() Method

Format
writeToComments(offset IN INTEGER,

 amount IN BINARY_INTEGER,

 buffer IN VARCHAR2);

Description
Writes a specified amount of comment buffer data to the comments attribute of the
audio object beginning at the specified offset.

Parameters

offset
The starting offset position in comments where comments data is to be written.

amount
The amount of comment data to be written.

buffer
The buffer of comment data to be written.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.
4-70 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

writeToComments() Method
Examples
See the example in the appendToComments() Method on page 4-68.
 ORDAudio Reference Information 4-71

readFromComments() Method
readFromComments() Method

Format
readFromComments(offset IN INTEGER,

 amount IN BINARY_INTEGER :=32767)

RETURN VARCHAR2;

Description
Reads a specified amount of comment data from the comments attribute of the
audio object beginning at a specified offset.

Parameters

offset
The starting offset position in comments from where comments data is to be read.

amount
The amount of comment data to be read.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(readFromComments, WNDS,
WNPS, RNDS, RNPS)

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the appendToComments() Method on page 4-68.
4-72 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

locateInComments() Method
locateInComments() Method

Format
locateInComments(pattern IN VARCHAR2,

 offset IN INTEGER := 1,

 occurrence IN INTEGER := 1)

RETURN INTEGER;

Description
Matches and locates the nth occurrence of the specified pattern of character data in
the comments attribute of the audio object beginning at a specified offset.

Parameters

pattern
The pattern of comment data for which to search.

offset
The starting offset position in comments where the search for a match should begin.

occurrence
The nth occurrence in the comments where the pattern of comment data was found.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.
 ORDAudio Reference Information 4-73

locateInComments() Method
Examples
See the example in the appendToComments() Method on page 4-68.
4-74 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

trimComments() Method
trimComments() Method

Format
trimComments(newlen IN INTEGER);

Description
Trims the length of comments of the audio object to the specified new length.

Parameters

newlen
The new length to which the comments are to be trimmed.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the appendToComments() Method on page 4-68.
 ORDAudio Reference Information 4-75

eraseFromComments() Method
eraseFromComments() Method

Format
eraseFromComments(amount IN OUT NOCOPY INTEGER,

 offset IN INTEGER := 1);

Description
Erases a specified amount of comment data from the comments attribute of the
audio object beginning at a specified offset.

Parameters

amount
The amount of comment data to be erased.

offset
The starting offset position in comments where comments data is to be erased.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the appendToComments() Method on page 4-68.
4-76 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

deleteComments Method
deleteComments Method

Format
deleteComments;

Description
Deletes the comments attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the appendToComments() Method on page 4-68.
 ORDAudio Reference Information 4-77

loadCommentsFromFile() Method
loadCommentsFromFile() Method

Format
loadCommentsFromFile(fileobj IN BFILE,

 amount IN INTEGER,

 from_loc IN INTEGER := 1,

 to_loc IN INTEGER := 1);

Description
Loads a specified amount of comment data from a BFILE into the comments
attribute of the audio object beginning at a specified offset.

Parameters

fileobj
The file object to be loaded.

amount
The amount of comment data to be loaded from the BFILE.

from_loc
The location from which to load comments from the BFILE.

to_loc
The location to which to load comments.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
4-78 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

loadCommentsFromFile() Method
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
Load comment information from a BFILE into the comments of the audio data:

DECLARE
 file_handle BFILE;
 obj ORDSYS.ORDAudio;
 isopen BINARY_INTEGER;
 amount INTEGER;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 file_handle := BFILENAME(obj.getSourceLocation, obj.getSourceName);
 isopen := DBMS_LOB.FILEISOPEN(file_handle);
 IF isopen = 0 THEN
 dbms_output.put_line(’File Not Open’);
 DBMS_LOB.FILEOPEN(file_handle, DBMS_LOB.FILE_READONLY);
 END IF;
 dbms_output.put_line(’File is now Open’);
 isopen := DBMS_LOB.FILEISOPEN(file_handle);
 IF isopen <> 0 THEN
 amount := DBMS_LOB.GETLENGTH(file_handle);
 END IF;
 obj.deleteComments;
 obj.loadCommentsFromFile(file_handle, 18, 1, 18);
 DBMS_OUTPUT.put_line(TO_CHAR(obj.getCommentLength));
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
END;
/

 ORDAudio Reference Information 4-79

copyCommentsOut() Method
copyCommentsOut() Method

Format
copyCommentsOut(dest IN OUT NOCOPY CLOB,

 amount IN INTEGER,

 from_loc IN INTEGER := 1,

 to_loc IN INTEGER := 1);

Description
Copies a specified amount of audio object comments attribute into the given CLOB.

Parameters

dest
The destination to which the comments are to be copied.

amount
The amount of comments to be copied.

from_loc
The location from which to copy comments.

to_loc
The location to which to copy comments.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.
4-80 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

copyCommentsOut() Method
Examples
Copy comments of the audio data to the given CLOB:

DECLARE
 obj ORDSYS.ORDAudio;
 obj1 ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj1 FROM TAUD WHERE N=2 FOR UPDATE;
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 obj.copyCommentsOut(obj1.comments,obj.getCommentLength,1,10);
 DBMS_OUTPUT.put_line(obj1.getCommentLength);
 DBMS_OUTPUT.put_line(obj.getCommentLength);
 UPDATE TAUD SET aud=obj1 WHERE N=2;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

 ORDAudio Reference Information 4-81

compareComments() Method
compareComments() Method

Format
compareComments(compare_with_lob IN CLOB,

 amount IN INTEGER := 4294967295,

 starting_pos_in_comment IN INTEGER := 1,

 starting_pos_in_compare IN INTEGER := 1)

RETURN INTEGER;

Description
Compares a specified amount of comments of audio data with comments of the
other CLOB provided.

Parameters

compare_with_lob
The comparison comments.

amount
The amount of comments of audio data to compare with the comparison comments.

starting_pos_in_comment
The starting position in the comments attribute of the audio object.

starting_pos_in_compare
The starting position in the comparison comments.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(compareComments, WNDS,
WNPS, RNDS, RNPS)
4-82 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

compareComments() Method
Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
Compare comments of the audio data with comments of another CLOB:

DECLARE
 file_handle BFILE;
 obj ORDSYS.ORDAudio;
 obj1 ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=2 ;
 SELECT aud INTO obj1 FROM TAUD WHERE N=1;
 DBMS_OUTPUT.put_line(’comparison output’);
 DBMS_OUTPUT.put_line(obj.compareComments(obj1.comments,obj.getCommentLength,1,18));
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

 ORDAudio Reference Information 4-83

getCommentLength() Method
getCommentLength() Method

Format
getCommentLength RETURN INTEGER;

Description
Returns the length of the comments attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getCommentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the compareComments() Method on page 4-83.
4-84 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getCommentLength() Method
4.3.8 ORDAudio Methods Associated with Audio Attributes Accessors
This section presents reference information on the ORDAudio methods associated
with the audio attributes accessors.
 ORDAudio Reference Information 4-85

setFormat() Method
setFormat() Method

Format
setFormat(knownFormat IN VARCHAR2);

Description
Sets the format attribute of the audio object.

Parameters

knownFormat
The known format of the audio data to be set in the audio object.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFormat() method and the value for the
knownFormat parameter is NULL.

Examples
Set the format for some audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 select aud into obj from TAUD where N =1 for update;
 obj.setFormat(’AUFF’);
 obj.setEncoding(’MULAW’);
 obj.setNumberOfChannels(1);
 obj.setSamplingRate(8);
 obj.setSampleSize(8);
 obj.setCompressionType(’8BITMONOAUDIO’);
 obj.setAudioDuration(16);
4-86 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setFormat() Method
 DBMS_OUTPUT.put_line(’format: ’ || obj.getformat);
 DBMS_OUTPUT.put_line(’encoding: ’ || obj.getEncoding);
 DBMS_OUTPUT.put_line(’numberOfChannels: ’ || TO_CHAR(obj.getNumberOfChannels));
 DBMS_OUTPUT.put_line(’samplingRate: ’ || TO_CHAR(obj.getSamplingRate));
 DBMS_OUTPUT.put_line(’sampleSize: ’ || TO_CHAR(obj.getSampleSize));
 DBMS_OUTPUT.put_line(’compressionType : ’ || obj.getCompressionType);
 DBMS_OUTPUT.put_line(’audioDuration: ’ || TO_CHAR(obj.getAudioDuration));
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

 ORDAudio Reference Information 4-87

getFormat Method
getFormat Method

Format
getFormat RETURN VARCHAR2;

Description
Returns the value of the format attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS)

Exceptions
AUDIO_FORMAT_IS_NULL

This exception is raised if you call the getFormat() method and the value for for-
mat is NULL.

Examples
See the example in the setFormat() Method on page 4-86.
4-88 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setEncoding() Method
setEncoding() Method

Format
setEncoding(knownEncoding IN VARCHAR2);

Description
Sets the value of the encoding attribute of the audio object.

Parameters

knownEncoding
A known encoding type.

Usage Notes
The value of encoding always matches that of the compressionType value because
in many audio formats, encoding and compression type are tightly integrated. See
Appendix A for more information.

Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setEncoding() method and the value for the
knownEncoding parameter is NULL.

Examples
See the example in the setFormat() Method on page 4-86.
 ORDAudio Reference Information 4-89

getEncoding Method
getEncoding Method

Format
getEncoding RETURN VARCHAR2;

Description
Returns the value of the encoding attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getEncoding, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setFormat() Method on page 4-86.
4-90 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setNumberOfChannels() Method
setNumberOfChannels() Method

Format
setNumberOfChannels(knownNumberOfChannels IN INTEGER);

Description
Sets the value of the numberOfChannels attribute for the audio object.

Parameters

knownNumberOfChannels
A known number of channels.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setNumberOfChannels() method and the
value for the knownNumberOfChannels parameter is NULL.

Examples
See the example in the setFormat() Method on page 4-86.
 ORDAudio Reference Information 4-91

getNumberOfChannels Method
getNumberOfChannels Method

Format
getNumberOfChannels RETURN INTEGER;

Description
Returns the value of the numberOfChannels attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getNumberOfChannels, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setFormat() Method on page 4-86.
4-92 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setSamplingRate() Method
setSamplingRate() Method

Format
setSamplingRate(knownSamplingRate IN INTEGER);

Description
Sets the value of the samplingRate attribute of the audio object. The unit is Hz.

Parameters

knownSamplingRate
A known sampling rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setSamplingRate() method and the value for
the knownSamplingRate parameter is NULL.

Examples
See the example in the setFormat() Method on page 4-86.
 ORDAudio Reference Information 4-93

getSamplingRate Method
getSamplingRate Method

Format
getSamplingRate IN INTEGER;

Description
Returns the value of the samplingRate attribute of the audio object. The unit is Hz.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSamplingRate, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setFormat() Method on page 4-86.
4-94 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setSampleSize() Method
setSampleSize() Method

Format
setSampleSize(knownSampleSize IN INTEGER);

Description
Sets the value of the sampleSize attribute of the audio object.

Parameters

knownSampleSize
A known sample size.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setSampleSize() method and the value for the
knownSampleSize parameter is NULL.

Examples
See the example in the setFormat() Method on page 4-86.
 ORDAudio Reference Information 4-95

getSampleSize Method
getSampleSize Method

Format
getSampleSize RETURN INTEGER;

Description
Returns the value of the sampleSize attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSampleSize, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setFormat() Method on page 4-86.
4-96 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setCompressionType() Method
setCompressionType() Method

Format
setCompressionType(knownCompressionType IN VARCHAR2);

Description
Sets the value of the compressionType attribute of the audio object.

Parameters

knownCompressionType
A known compression type.

Usage Notes
The value of the compressionType always matches that of the encoding value
because in many audio formats, encoding and compression type are tightly inte-
grated. See Appendix A for more information.

Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setCompressionType() method and the value
for the knownCompressionType parameter is NULL.

Examples
See the example in the setFormat() Method on page 4-86.
 ORDAudio Reference Information 4-97

getCompressionType Method
getCompressionType Method

Format
getCompressionType RETURN VARCHAR2;

Description
Returns the value of the compressionType attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setFormat() Method on page 4-86.
4-98 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setAudioDuration() Method
setAudioDuration() Method

Format
setAudioDuration(knownAudioDuration IN INTEGER);

Description
Sets the value of the audioDuration attribute of the audio object.

Parameters

knownAudioDuration
A known audio duration.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setAudioDuration() method and the value
for the knownAudioDuration parameter is NULL.

Examples
See the example in the setFormat() Method on page 4-86.
 ORDAudio Reference Information 4-99

getAudioDuration Method
getAudioDuration Method

Format
getAudioDuration RETURN INTEGER;

Description
Returns the value of the audioDuration attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getAudioDuration, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setFormat() Method on page 4-86.
4-100 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setKnownAttributes() Method
setKnownAttributes() Method

Format
setKnownAttributes(

 knownFormat IN VARCHAR2,

 knownEncoding IN VARCHAR2,

 knownNumberOfChannels IN INTEGER,

 knownSamplingRate IN INTEGER,

 knownSamleSize IN INTEGER,

 knownCompressionType IN VARCHAR2,

 knownAudioDuration IN INTEGER);

Description
Sets the known audio attributes for the audio object.

Parameters

knownFormat
The known format.

knownEncoding
The known encoding type.

knownNumberOfChannels
The known number of channels.

knownSamplingRate
The known sampling rate.

knownSampleSize
The known sample size.

knownCompressionType
The known compression type.
 ORDAudio Reference Information 4-101

setKnownAttributes() Method
knownAudioDuration
The known audio duration.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
None.

Examples
Set the known attributes for the audio data.

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 select aud into obj from TAUD where N =1 for update;
 obj.setKnownAttributes(’AUFF’,’MULAW’, 1, 8, 8, ’8BITMONOAUDIO’,16);
 DBMS_OUTPUT.put_line(’format: ’ || obj.getformat);
 DBMS_OUTPUT.put_line(’encoding: ’ || obj.getEncoding);
 DBMS_OUTPUT.put_line(’numberOfChannels: ’ || TO_CHAR(obj.getNumberOfChannels));
 DBMS_OUTPUT.put_line(’samplingRate: ’ || TO_CHAR(obj.getSamplingRate));
 DBMS_OUTPUT.put_line(’sampleSize: ’ || TO_CHAR(obj.getSampleSize));
 DBMS_OUTPUT.put_line(’compressionType : ’ || obj.getCompressionType);
 DBMS_OUTPUT.put_line(’audioDuration: ’ || TO_CHAR(obj.getAudioDuration));
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDAudioExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-102 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setProperties() Method
setProperties() Method

Format
setProperties(ctx IN OUT RAW);

Description
Reads the audio data to get the values of the object attributes and then stores them
in the object attributes. This method sets the properties for the following attributes
of the audio data: format, encoding type, number of channels, sampling rate, and
sample size.

Parameters

ctx
The format plug-in context information.

Usage Notes
If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default for-
mat plug-in; otherwise, it uses the plug-in specified by the format.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the setProperties() method and the audio plug-in
raises an exception.

Examples
Set the property information for known audio attributes:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
 ORDAudio Reference Information 4-103

setProperties() Method
BEGIN
 select aud into obj from TAUD where N =1 for update;
 obj.setProperties(ctx);
 --DBMS_OUTPUT.put_line(’format: ’ || obj.getformat);
 DBMS_OUTPUT.put_line(’encoding: ’ || obj.getEncoding);
 DBMS_OUTPUT.put_line(’numberOfChannels: ’ || TO_CHAR(obj.getNumberOfChannels));
 DBMS_OUTPUT.put_line(’samplingRate: ’ || TO_CHAR(obj.getSamplingRate));
 DBMS_OUTPUT.put_line(’sampleSize: ’ || TO_CHAR(obj.getSampleSize));
 update TAUD set aud = obj where N =1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDAudioExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-104 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setProperties() Method (XML)
setProperties() Method (XML)

Format
setProperties(ctx IN OUT RAW,

 setComments IN BOOLEAN);

Description
Reads the audio data to get the values of the object attributes and then stores them
in the object attributes. This method sets the properties for the following attributes
of the audio data: format, encoding type, number of channels, sampling rate, and
sample size. It populates the comments field of the object with a rich set of format
and application properties in XML form if the value of the setComments parameter
is TRUE.

Parameters

ctx
The format plug-in context information.

setComments
If the value is TRUE, then the comments field of the object is populated with a rich
set of format and application properties of the audio object in XML form, identical
to what is provided by the interMedia Annotator utility; otherwise, if the value is
FALSE, the comments field of the object remains unpopulated. The default value is
FALSE.

Usage Notes
If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default for-
mat plug-in; otherwise, it uses the plug-in specified by the format.

Pragmas
None.
 ORDAudio Reference Information 4-105

setProperties() Method (XML)
Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the setProperties() method and the audio plug-in
raises an exception.

Examples
Set the property information for known audio attributes:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for update;
 obj.setProperties(ctx,0);
 --DBMS_OUTPUT.put_line(’format: ’ || obj.getformat);
 DBMS_OUTPUT.put_line(’encoding: ’ || obj.getEncoding);
 DBMS_OUTPUT.put_line(’numberOfChannels: ’ || TO_CHAR(obj.getNumberOfChannels));
 DBMS_OUTPUT.put_line(’samplingRate: ’ || TO_CHAR(obj.getSamplingRate));
 DBMS_OUTPUT.put_line(’sampleSize: ’ || TO_CHAR(obj.getSampleSize));
 update TAUD set aud = obj where N =1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDAudioExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-106 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

checkProperties() Method
checkProperties() Method

Format
checkProperties(ctx IN OUT RAW) RETURN BOOLEAN;

Description
Checks the properties of the stored audio data, including the following audio
attributes: sample size, sample rate, number of channels, format, and encoding type.

Parameters

ctx
The format plug-in context information.

Usage Notes
If the format is set to NULL, then the checkProperties() method uses the default
format plug-in; otherwise, it uses the plug-in specified by the format.

The checkProperties() method does not check the MIME type because a file can
have multiple correct MIME types and this is not well defined.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the checkProperties() method and the audio
plug-in raises an exception.

Examples
Check property information for known audio attributes:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for update;
 ORDAudio Reference Information 4-107

checkProperties() Method
 if(obj.checkProperties(ctx) = TRUE) then
 DBMS_OUTPUT.put_line(’true’);
 else
 DBMS_OUTPUT.put_line(’false’);
 end if;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-108 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getAttribute() Method
getAttribute() Method

Format
getAttribute(

 ctx IN OUT RAW,

 name IN VARCHAR2)

RETURN VARCHAR2;

Description
Returns the value of the requested attribute from audio data for user-defined for-
mats only.

Parameters

ctx
The format plug-in context information.

name
The name of the attribute.

Usage Notes
The audio data attributes are available from the header of the formatted audio data.

If the format is set to NULL, then the getAttribute() method uses the default for-
mat plug-in; otherwise, it uses your user-defined format plug-in.

Audio data attribute information can be extracted from the audio data itself. You
can extend support to a format not understood by the ORDAudio object by imple-
menting an ORDPLUGINS.ORDX_<format>_AUDIO package that supports that
format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION
 ORDAudio Reference Information 4-109

getAttribute() Method
This exception is raised if you call the getAttribute() method and the audio plug-in
raises an exception.

Examples
Return information for the specified audio attribute for audio data stored in the
database:

DECLARE
 obj ORDSYS.ORDAudio;
 res VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting audio sample size’);
 DBMS_OUTPUT.PUT_LINE(’---------------------’);
 res := obj.getAttribute(ctx,’sample_size’);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’AUDIO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’AUDIO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);
END;
/

4-110 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getAllAttributes() Method
getAllAttributes() Method

Format
getAllAttributes(

 ctx IN OUT RAW,

 attributes IN OUT NOCOPY CLOB);

Description
Returns a formatted string for convenient client access. For natively supported for-
mats, the string includes the following list of audio data attributes separated by a
comma (’,’): fileFormat, mimeType, encoding, numberOfChannels, samplingRate,
sampleSize, compressionType, and audioDuration. For user-defined formats, the
string is defined by the format plug-in.

Parameters

ctx
The format plug-in context information.

attributes
The attributes.

Usage Notes
These audio data attributes are available from the header of the formatted audio
data.

If the format is set to NULL, then the getAllAttributes() method uses the default
format plug-in; otherwise, it uses the plug-in specified by the format.

Audio data attribute information can be extracted from the audio data itself. You
can extend support to a format that is not understood by the ORDAudio object by
implementing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports
this format. See Section 2.3.13 for more information.

Pragmas
None.
 ORDAudio Reference Information 4-111

getAllAttributes() Method
Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getAllAttributes() method and the audio
plug-in raises an exception.

Examples
Return all audio attributes for audio data stored in the database:

DECLARE
 obj ORDSYS.ORDAudio;
 tempLob CLOB;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting comma separated list of all attribs’);
 DBMS_OUTPUT.PUT_LINE(’---’);
 DBMS_LOB.CREATETEMPORARY(tempLob, FALSE, DBMS_LOB.CALL);
 obj.getAllAttributes(ctx,tempLob);
 DBMS_OUTPUT.put_line(DBMS_LOB.substr(tempLob, DBMS_LOB.getLength(tempLob) , 1));

 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.PUT_LINE(’ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION caught’);
END;
/

4-112 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getAllAttributes() Method
4.3.9 ORDAudio Methods Associated with Processing Audio Data
This section presents reference information on the ORDAudio methods associated
with processing audio data.
 ORDAudio Reference Information 4-113

processAudioCommand() Method
processAudioCommand() Method

Format
processAudioCommand(

 ctx IN OUT RAW,

 cmd IN VARCHAR2,

 arguments IN VARCHAR2,

 result OUT RAW)

RETURN RAW;

Description
Allows you to send a command and related arguments to the format plug-in for
processing.

Parameters

ctx
The format plug-in context information.

cmd
Any command recognized by the format plug-in.

arguments
The arguments of the command.

result
The result of calling this function returned by the format plug-in.

Usage Notes
Use this method to send any audio commands and their respective arguments to
the format plug-in. Commands are not interpreted; they are taken and passed
through to a format plug-in to be processed.

Note: This method is supported only for user-defined format
plug-ins.
4-114 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

processAudioCommand() Method
If the format is set to NULL, then the processAudioCommand() method uses the
default format plug-in; otherwise, it uses your user-defined format plug-in.

You can extend support to a format that is not understood by the ORDAudio object
by preparing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports
that format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the processAudioCommand() method and the
audio plug-in raises an exception.

Examples
Process a set of commands:

DECLARE
 obj ORDSYS.ORDAudio;
 res RAW(4000);
 result RAW(4000);
 command VARCHAR(4000);
 argList VARCHAR(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for UPDATE;
 -- assign command
 -- assign argList
 res := obj.processAudioCommand (ctx, command, argList, result);
 UPDATE TAUD SET aud=obj WHERE N=1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’AUDIO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’AUDIO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 ORDAudio Reference Information 4-115

processAudioCommand() Method
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

4-116 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
4.4 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided. Table 4–1 describes the PL/SQL plug-in packages provided in the ORD-
PLUGINS schema.

Section 4.4.1 describes the ORDPLUGINS.ORDX_DEFAULT_AUDIO package, the
methods supported, and the level of support. Note that the methods supported and
the level of support for the other PL/SQL plug-in packages described in Table 4–1
are identical for all plug-in packages, therefore, refer to Section 4.4.1.

4.4.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
Use the following provided ORDPLUGINS.ORDX_DEFAULT_AUDIO package as a
guide in developing your own ORDPLUGINS.ORDX_<format>_AUDIO audio for-
mat package. This package sets the mimeType field in the setProperties() method
with a MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_AUDIO
authid current_user
AS
--AUDIO ATTRIBUTES ACCESSORS
--Deprecated Functions Deprecated in Release 8.1.6 Begin Here
FUNCTION getFormat(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2;
FUNCTION getEncoding(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2;
FUNCTION getNumberOfChannels(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER;
FUNCTION getSamplingRate(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER;

Table 4–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Audio Format MIME Type

ORDPLUGINS.ORDX_DEFAULT_AUDIO <format> Dependent on file format

ORDPLUGINS.ORDX_AUFF_AUDIO AUFF audio/basic

ORDPLUGINS.ORDX_AIFF_AUDIO AIFF audio/x-aiff

ORDPLUGINS.ORDX_AIFC_AUDIO AIFC audio/x-aiff

ORDPLUGINS.ORDX_WAVE_AUDIO WAVE audio/x-wave

ORDPLUGINS.ORDX_MPGA_AUDIO MPGA audio/mpeg
 ORDAudio Reference Information 4-117

Packages or PL/SQL Plug-ins
FUNCTION getSampleSize(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER;
FUNCTION getCompressionType(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2;
FUNCTION getAudioDuration(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER;
--Deprecated Functions Deprecated in Release 8.1.6 End Here

PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
 RETURN NUMBER;
FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 name IN VARCHAR2) RETURN VARCHAR2;
PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 attributes IN OUT NOCOPY CLOB);
--AUDIO PROCESSING METHODS
FUNCTION processCommand(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 cmd IN VARCHAR2,
 arguments IN VARHAR2,
 result OUT RAW)
 RETURN RAW;

PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getEncoding, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getNumberOfChennels, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getSamplingRate, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getSampleSize, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getAttribute, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getAudioDuration, WNDS, WNPS, RNDS, RNPS);

END;
/

4-118 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
Table 4–2 shows the methods supported in the
ORDPLUGINS.ORDX_DEFAULT_AUDIO package and the exceptions raised if you
call a method that is not supported.

Table 4–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package

Name of Method Level of Support

getFormat Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getEncoding Supported; if the source is local, get the attribute and return the encoding, but
if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getNumberOfChannels Supported; if the source is local, get the attribute and return the number of
channels, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getSamplingRate Supported; if the source is local, get the attribute and return the sampling
rate, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getSampleSize Supported; if the source is local, get the attribute and return the sample size,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getCompressionType Supported; if the source is local, get the attribute and return the compression
type, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.
 ORDAudio Reference Information 4-119

Packages or PL/SQL Plug-ins
4.4.2 Extending interMedia to Support a New Audio Data Format
Extending interMedia to support a new audio data format consists of four steps:

1. Design your new audio data format.

2. Implement your new audio data format and name it, for example,
ORDX_MY_AUDIO.SQL.

3. Install your new ORDX_MY_AUDIO.SQL plug-in in the ORDPLUGINS
schema.

4. Grant EXECUTE privileges on your new plug-in, for example,
ORDX_MY_AUDIO.SQL plug-in, to PUBLIC.

Section 2.1.12 briefly describes how to extend interMedia to support a new audio
data format and describes the interface. A package body listing is provided in

getAudioDuration Supported; if the source is local, get the attribute and return the audio dura-
tion, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

setProperties Supported; if the source is local, process the local data and set the properties,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source is
a BFILE, then process the BFILE and set the properties; if the source is neither
local nor a BFILE, get the media content into a temporary LOB, process the
data, and set the properties.

checkProperties Supported; if the source is local, process the local data and check the proper-
ties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source is
a BFILE, then process the BFILE and check the properties; if the source is nei-
ther local nor a BFILE, get the media content into a temporary LOB, process
the data, and check the properties.

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
AUDIO_PLUGIN_EXCEPTION.

getAllAttributes Supported; if the source is local, get the attributes and return them, but if the
source is NULL, raise an ORDSYS.ORDSourceExceptions.EMPTY_SOURCE
exception; otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
AUDIO_PLUGIN_EXCEPTION.

Table 4–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package(Cont.)

Name of Method Level of Support
4-120 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
Example 4–1 to assist you in this operation. Add your variables to the places that
say "--Your variables go here" and add your code to the places that say "--Your code
goes here".

See Section F.1 for more information on installing your own audio format plug-in
and running the sample scripts provided.

Example 4–1 Show the Package Body for Extending Support to a New Audio
Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_AUDIO
AS
 --AUDIO ATTRIBUTES ACCESSORS
 FUNCTION getFormat(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getEncoding(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getNumberOfChannels(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getSamplingRate(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getSampleSize(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER
 IS
--Your variables go here
 ORDAudio Reference Information 4-121

Packages or PL/SQL Plug-ins
 BEGIN
--Your code goes here
 END;
 FUNCTION getCompressionType(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getAudioDuration(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 setComments IN NUMBER :=0)
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
 RETURN NUMBER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 name IN VARCHAR2)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 attributes IN OUT NOCOPY CLOB)
4-122 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 -- AUDIO PROCESSING METHODS
 FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
END;
/
show errors;
 ORDAudio Reference Information 4-123

Packages or PL/SQL Plug-ins
4-124 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 ORDImage Reference Inform
5

ORDImage Reference Information

Oracle interMedia contains the following information about the ORDImage type:

■ Object type -- see Section 5.1.

■ Constructors -- see Section 5.2

■ Methods -- see Section 5.3.

The examples in this chapter assume that the test image tables EMP and
OLD_IMAGE have been created and filled with data. These tables were created
using the SQL statements described in Section 5.3.1.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the source.open() method. At this point, the source plug-in
can initialize the context for this client. When processing is complete, the client
should invoke the source.close() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

Note: If you manipulate the image data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the image data.
ation 5-1

Object Types
5.1 Object Types
Oracle interMedia describes the ORDImage object type, which supports the storage,
management, and manipulation of image data.

Note: In the current release, not all source plug-ins will use the ctx
argument, but if you code as previously described, your applica-
tion should work with any current or future source plug-in.
5-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDImage Object Type
ORDImage Object Type

The ORDImage object type supports the storage and management of image data.
This object type is defined as follows:

CREATE OR REPLACE TYPE ORDImage
AS OBJECT
(

 -- TYPE ATTRIBUTES

 source ORDSource,
 height INTEGER,
 width INTEGER,
 contentLength INTEGER,
 fileFormat VARCHAR2(4000),
 contentFormat VARCHAR2(4000),
 compressionFormat VARCHAR2(4000),
 mimeType VARCHAR2(4000),

-- METHOD DECLARATION

-- CONSTRUCTORS
--
STATIC FUNCTION init() RETURN ORDImage,
STATIC FUNCTION init(srcType IN VARCHAR2,
 srcLocation IN VARCHAR2,
 srcName IN VARCHAR2) RETURN ORDImage,

 -- Methods associated with copy operations
 MEMBER PROCEDURE copy(dest IN OUT ORDImage),

 -- Methods associated with image process operations
 MEMBER PROCEDURE process(command IN VARCHAR2),

 MEMBER PROCEDURE processCopy(command IN VARCHAR2,
 dest IN OUT ORDImage),

 -- Methods associated with image property set and check operations
 MEMBER PROCEDURE setProperties,

 MEMBER PROCEDURE setProperties(description IN VARCHAR2),
 ORDImage Reference Information 5-3

ORDImage Object Type
 MEMBER FUNCTION checkProperties RETURN BOOLEAN,

 -- Methods associated with image attributes accessors
 MEMBER FUNCTION getHeight RETURN INTEGER,
 PRAGMA RESTRICT_REFERENCES(getHeight, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getWidth RETURN INTEGER,
 PRAGMA RESTRICT_REFERENCES(getWidth, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getContentLength RETURN INTEGER,
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getFileFormat RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getFileFormat, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getContentFormat RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getContentFormat, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getCompressionFormat RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getCompressionFormat, WNDS, WNPS, RNDS, RNPS),

 -- Methods associated with the local attribute
 MEMBER PROCEDURE setLocal,
 MEMBER PROCEDURE clearLocal,
 MEMBER FUNCTION isLocal RETURN BOOLEAN,
 PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS),

 -- Methods associated with the date attribute
 MEMBER FUNCTION getUpdateTime RETURN DATE,
 PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS, WNPS, RNDS, RNPS),
 MEMBER PROCEDURE setUpdateTime(current_time DATE),

 -- Methods associated with the mimeType attribute
 MEMBER FUNCTION getMimeType RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS),
 MEMBER PROCEDURE setMimeType(mime IN VARCHAR2),

 -- Methods associated with the source attribute
 MEMBER FUNCTION getContent RETURN BLOB,
 PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getBFILE RETURN BFILE,
 PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS),
5-4

ORDImage Object Type
 MEMBER PROCEDURE deleteContent,

 MEMBER PROCEDURE setSource(source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 MEMBER FUNCTION getSource RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getSourceType RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getSourceLocation RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getSourceName RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS, WNPS, RNDS, RNPS),

 MEMBER PROCEDURE import(ctx IN OUT RAW),
 MEMBER PROCEDURE importFrom(ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 MEMBER PROCEDURE export(ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),

 -- Methods associated with image migration
 MEMBER PROCEDURE migrateFromORDImgB(old_object ORDImgB),
 MEMBER PROCEDURE migrateFromORDImgF(old_object ORDImgF)
);

where:

■ source: the source of the stored image data.

■ height: the height of the image in pixels.

■ width: the width of the image in pixels.

■ contentLength: the size of the on-disk image file in bytes.

■ fileFormat: the file type or format in which the image data is stored (TIFF,
JIFF, and so forth.).

■ contentFormat: the type of image (monochrome, 8-bit grayscale, and so
forth).
 ORDImage Reference Information 5-5

Constructors
■ compressionFormat: the compression algorithm used on the image data.

■ mimeType: the MIME type information.

5.2 Constructors
This section describes the constructor functions.

The interMedia image constructor functions are as follows:

■ init()

■ init(srcType,srcLocation,srcName)
5-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

init() Method
init() Method

Format
init() RETURN ORDImage;

Description
Allows for easy initialization of instances of the ORDImage object type.

Parameters
None.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDImage attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 1 (local)

■ source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDImage object type, especially if the ORDImage type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDImage object attributes:

DECLARE
 myImage ORDSYS.ORDImage;
 ORDImage Reference Information 5-7

init() Method
BEGIN
 myImage := ORDSYS.ORDImage.init();
INSERT INTO emp VALUES (myImage);
END;
/

5-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

init(srcType,srcLocation,srcName) Method
init(srcType,srcLocation,srcName) Method

Format
init(srcType IN VARCHAR2,

 srcLocation IN VARCHAR2,

 srcName IN VARCHAR2)

 RETURN ORDImage;

Description
Allows for easy initialization of instances of the ORDImage object type.

Parameters

srcType
The source type of the image data.

srcLocation
The source location of the image data.

srcName
The source name of the image data.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDImage attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 0

■ source.localData is set to empty_blob
 ORDImage Reference Information 5-9

init(srcType,srcLocation,srcName) Method
■ source.srcType is set to the input value

■ source.srcLocation is set to the input value

■ source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDImage object type, especially if the ORDImage type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDImage object attributes:

DECLARE
 myImage ORDSYS.ORDImage;
BEGIN
 myImage := ORDSYS.ORDImage.init(’FILE’,’IMGDIR’,’image1.gif’);
INSERT INTO emp VALUES (myImage);
END;
/

5-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
5.3 Methods
This section presents reference information on the Oracle interMedia methods used
for image data manipulation. These methods are described in the following group-
ings:

ORDImage Methods Associated with copy Operations
■ copy(): creates a copy of an image in another ORDImage.

ORDImage Methods Associated with process Operations
■ process(): performs in-place image processing on an image stored in a BLOB.

■ processCopy(): performs image processing while copying an image to another
ORDImage BLOB data type.

ORDImage Methods Associated with properties set and check
Operations
■ setProperties: fills in the attribute fields of an image for native image formats.

■ setProperties(): fills in the attribute fields of an image and includes a descrip-
tion parameter for foreign image formats. See the “setProperties() Method for
Foreign Images” for a description of what a foreign image is.

■ checkProperties: verifies the stored image attributes match the actual image.

ORDImage Methods Associated with image Attributes
■ getHeight: returns the height of the image in pixels.

■ getWidth: returns the width of the image in pixels.

■ getContentLength: returns the size of the image in bytes.

■ getFileFormat: returns the file type of an image.

■ getContentFormat: returns the format of the image.

■ getCompressionFormat: returns the type of compression used on the image.

ORDImage Methods Associated with the local Attribute
■ setLocal: sets a flag to indicate that the data is stored locally in a BLOB.

■ clearLocal: clears the flag to indicate that the data is stored externally.
 ORDImage Reference Information 5-11

Methods
■ isLocal: returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external.

ORDImage Methods Associated with the date Attribute
■ getUpdateTime: returns the time when the image object was last updated.

■ setUpdateTime(): sets the update time for the image object. This method is
called implicitly by methods that modify natively supported images.

ORDImage Methods Associated with the mimeType Attribute
■ getMimeType: returns the MIME type of the stored image data.

■ setMimeType(): sets the MIME type of the stored image data. This method is
called implicitly by any method that modifies natively supported images.

ORDImage Methods Associated with the source Attribute
■ getContent: returns the content of the local data.

■ getBFILE: returns the external content as a BFILE.

■ deleteContent: deletes the content of the local data.

■ setSource(): sets the source information to where external image data is to be
found.

■ getSource: returns a string containing complete information about the external
data source formatted as a URL.

■ getSourceType: returns the external source type of the image data.

■ getSourceLocation: returns the external source location of the image data.

■ getSourceName: returns the external source name of the image data.

■ import(): transfers data from an external data source (specified by calling set-
SourceInformation()) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local, and updating the
timestamp and image attributes.

■ importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local, and updating the
timestamp and image attributes.
5-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, setting source information to parameters
supplied, and leaving all attributes unchanged

.

ORDImage Methods Associated with Image Migration
■ migrateFromORDImgB: copies old ORDImgB images to ORDImage objects.

■ migrateFromORDImgF: copies old ORDImgF images to ORDImage objects.

5.3.1 Example Table Definitions
The methods described in this chapter show examples based on a test image table
EMP. Refer to the EMP table definition that follows when reading through the
examples in Section 5.3.2 through Section 5.3.9:

EMP Table Definition
CREATE TABLE emp (
 ename VARCHAR2(50),
 salary NUMBER,
 job VARCHAR2(50),
 department INTEGER,
 photo ORDSYS.ORDImage,
 large_photo ORDSYS.ORDImage);
DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 INSERT INTO emp VALUES (’John Doe’, 24000, ’Technical Writer’, 123,
 ORDSYS.ORDImage.imit(’file’,’ORDIMGDIR’,’jdoe.gif’));
 INSERT INTO emp VALUES (’Jane Doe’, 24000, ’Technical Writer’, 456,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’jadoe.gif’));
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 Image.setProperties;
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
 COMMIT;
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’Jane Doe’ FOR UPDATE;
 Image.setProperties;

Note: The export() method natively supports only sources of
source type FILE. User-defined sources may support the export()
method.
 ORDImage Reference Information 5-13

Methods
 UPDATE emp SET large_photo = Image WHERE ename = ’Jane Doe’;
 COMMIT;
END;
/

Refer to the EMP and OLD_IMAGES table definitions that follow when reading
through the examples in Section 5.3.10.

EMP and OLD_IMAGES Table Definitions
CREATE TABLE emp (
 ename VARCHAR2(50),
 salary NUMBER,
 job VARCHAR2(50),
 department INTEGER,
 large_photo ORDSYS.ORDImage);
CREATE TABLE old_images (
 id NUMBER,
 imageb ORDSYS.ORDIMGB,
 imagef ORDSYS.ORDIMGF);
DECLARE
 blobimage ORDSYS.ORDIMGB;
 bfileimage ORDSYS.ORDIMGF;
BEGIN
 INSERT INTO old_images values
 (1, ORDSYS.ORDIMGB(empty_blob(),NULL,NULL,NULL,NULL,NULL,NULL),
 ORDSYS.ORDIMGF(bfilename(’ORDIMGDIR’,’jdoe.gif’),
 NULL,NULL,NULL,NULL,NULL,NULL));
 SELECT imageb, imagef INTO blobimage, bfileimage
 FROM old_images WHERE id = 1 FOR UPDATE;
 bfileimage.copyContent(blobimage.content);
 blobimage.setProperties;
 bfileimage.setProperties;
 UPDATE old_images SET imageb=blobimage, imagef=bfileimage WHERE id = 1;
 INSERT INTO emp values
 (’John Doe’, 24000, ’Technical Writer’, 123,
 ORDSYS.ORDImage.init());
 COMMIT;
end;
/

5.3.2 ORDImage Methods Associated with Copy Operations
This section presents reference information on the ORDImage method associated
with the copy operation.
5-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

copy() Method
copy() Method

Format
copy(dest IN OUT ORDImage);

Description
Copies an image without changing it.

Parameters

dest
The destination of the new image.

Usage Notes
This method copies the image data, as is, including all source and image attributes,
into the supplied local destination image.

If the data is stored locally in the source, then calling this method copies the BLOB
to the destination source.localData attribute.

Calling this method copies the external source information to the external source
information of the new image whether or not source data is stored locally.

Calling this method implicitly calls the setUpdateTime method on the destination
object to update its timestamp information.

Pragmas
None.

Exceptions
NULL_LOCAL_DATA

This exception is raised if you call the copy() method and the destination
source.localData attribute is not initialized.

This exception is raised if you call the copy() method and the source.isLocal
attribute value is 1 and the source.localData attribute value is NULL.
 ORDImage Reference Information 5-15

copy() Method
Examples
Create a copy of the image:

DECLARE
 Image_1 ORDSYS.ORDImage;
 Image_2 ORDSYS.ORDImage;
BEGIN
 SELECT photo, large_photo
 INTO Image_2, Image_1
 FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- copy the data from Image_1 to Image_2
 Image_1.copy(Image_2);
 UPDATE emp SET photo = Image_2
 WHERE ename = ’John Doe’;
END;
/

5-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

copy() Method
5.3.3 ORDImage Methods Associated with Process Operations
This section presents reference information on the ORDImage methods associated
with the process operation.
 ORDImage Reference Information 5-17

process() Method
process() Method

Format
process(command IN VARCHAR2);

Description
Performs one or more image processing operations on a BLOB, writing the image
back on to itself.

Parameters

command
A list of image processing operations to perform on the image.

Usage Notes
You can change one or more of the image attributes shown in Table 5–1. Table 5–2
shows additional changes that can be made only to raw pixel and foreign images.

Table 5–1 Image Processing Operators

Operator Name Usage Values

compressionFormat Compression type/format JPEG, SUNRLE, BMPRLE, TARGARLE,
LZW, LZWHDIFF, FAX3, FAX4,
HUFFMAN3, Packbits, GIFLZW

compressionQuality Compression quality MAXCOMPRATIO, MAXINTEGRITY,
LOWCOMP, MEDCOMP, HIGHCOMP

contentFormat Image type/pixel/data format MONOCHROME, 8BITGRAYSCALE,
8BITGREYSCALE, 8BITLUT, 24BITRGB

cut Window to cut or crop (origin.x
origin.y width height)

(Integer Integer Integer Integer)
maximum value is 65535

fileFormat File format of the image BMPF, CALS, GIFF, JFIF, PICT, RASF,
RPIX, TGAF, TIFF

fixedScale Scale to a specific size in pixels
(width, height)

(INTEGER INTEGER)
5-18 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

process() Method
maxScale Scale to a specific size in pixels,
while maintaining the aspect ratio
(maxWidth, maxHeight)

(INTEGER INTEGER)

scale Scale factor (for example, 0.5 or
2.0)

<FLOAT> positive

xScale X-axis scale factor (default is 1) <FLOAT> positive

yScale Y-axis scale factor (default is 1) <FLOAT> positive

Table 5–2 Additional Image Processing Operators for Raw Pixel and Foreign Images

Operator Name Usage Values

channelOrder Indicates the relative position of
the red, green, and blue channels
(bands) within the image.

RGB (default), RBG, GRB, GBR, BRG,
BGR

inputChannels For multiband images, specify
either one (grayscale) or three
integers indicating which chan-
nels to assign to red (first), green
(second), and blue (third). Note
that this parameter affects the
source image, not the destination.

INTEGER or
INTEGER INTEGER INTEGER

interleave Controls band layout within the
image:
 Band Interleaved by Pixel
 Band Interleaved by Line
 Band Sequential

BIP (default), BIL, BSQ

pixelOrder If NORMAL, then the leftmost
pixel appears first in the image.

NORMAL (default), REVERSE

scanlineOrder If NORMAL, then the top scan-
line appears first in the image.

NORMAL (default), INVERSE

Note: When specifying values that include floating-point num-
bers, you must use double quotation marks ("") around the value. If
you do not, the wrong values may be passed and you will get
incorrect results.

Table 5–1 Image Processing Operators(Cont.)

Operator Name Usage Values
 ORDImage Reference Information 5-19

process() Method
There is no implicit import() or importFrom() call performed when you call this
method; if data is external, you must first call import() or importFrom() to make
the data local before you can process it.

Implicit setProperties(), setUpdateTime(), and setMimeType() methods are done
after the process() method is called.

See Appendix D for more information on process() method operators.

Pragmas
None.

Exceptions
DATA_NOT_LOCAL

This exception is raised if you call the process() method and the data is not local or
the source.localData attribute is not initialized.

Examples
Example 1: Change the file format of image1 to GIF:

image1.process(’fileFormat=GIFF’);

Example 2: Change image1 to use lower quality JPEG compression and double the
length of the image along the X-axis:

image1.process(’compressionFormat=JPEG, compressionQuality=MAXCOMPRATIO,
xScale="2.0"’);

Note that changing the length on only one axis (for example, xScale=2.0) does not
affect the length on the other axis, and would result in image distortion. Also, only
the xScale and yScale parameters can be combined in a single operation. Any other
combinations of scale operators result in an error.

The maxScale and fixedScale operators are especially useful for creating thumbnail
images from various-sized originals. The following line creates at most a 32-by-32
pixel thumbnail image, preserving the original aspect ratio:

image1.process(’maxScale=32 32’);

Example 3: Convert the image to TIFF:

DECLARE
 Image ORDSYS.ORDImage;
5-20 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

process() Method
BEGIN
 SELECT photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 Image.process(’fileFormat=TIFF’);
 UPDATE emp SET photo = Image WHERE ename = ’John Doe’;
END;
/

 ORDImage Reference Information 5-21

processCopy() Method
processCopy() Method

Format
processCopy(command IN VARCHAR2,

 dest IN OUT ORDImage);

Description
Copies an image stored internally or externally to another image stored internally in
a BLOB.

Parameters

command
A list of image processing changes to make for the image in the new copy.

dest
The destination of the new image.

Usage Notes
See Table 5–1, “Image Processing Operators” and Table 5–2, “Additional Image Pro-
cessing Operators for Raw Pixel and Foreign Images”.

You cannot specify the same BLOB as both the source and destination.

Calling this method processes the image into the destination BLOB from any source
(local or external).

Implicit setProperties(), setUpdateTime(), and setMimeType() methods are done
on the destination image after the processCopy() method is called.

See Appendix D for more information on processCopy operators.

Pragmas
None.

Exceptions
NULL_DESTINATION
5-22 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

processCopy() Method
This exception is raised if you call the processCopy() method and the value of dest
is NULL.

DATA_NOT_LOCAL

This exception is raised if you call the processCopy() method and the
dest.source.isLocal attribute value is FALSE, (the destination image must be local).

NULL_LOCAL_DATA

This exception is raised if you call the processCopy() method and the
dest.source.localData attribute value is NULL (destination image must be initial-
ized).

This exception is raised if you call the processCopy() method and the source.isLo-
cal attribute value is 1 and the source.localData attribute value is NULL.

Examples
Copy an image, changing the file format, compression format, and data format in
the destination image:

DECLARE
 Image_1 ORDSYS.ORDImage;
 Image_2 ORDSYS.ORDImage;
 mycommand VARCHAR2(400);
BEGIN
 SELECT photo, large_photo
 INTO Image_2, Image_1
 FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 mycommand := ’fileFormat=tiff compressionFormat=packbits
 contentFormat = 8bitlut’;
 Image_1.processCopy(mycommand, Image_2);
 UPDATE emp SET photo = Image_2 WHERE ename = ’John Doe’;
END;
/

 ORDImage Reference Information 5-23

processCopy() Method
5.3.4 ORDImage Methods Associated with Properties Set and Check Operations
This section presents reference information on the ORDImage methods associated
with the properties set and check operations.
5-24 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setProperties Method
setProperties Method

Format
setProperties;

Description
Reads the image data to get the values of the object attributes, then stores them into
the appropriate attribute fields. The image data can be stored in the database in a
BLOB, or externally in a BFILE or URL. If the data is stored externally in anything
other than a BFILE, the data is read into a temporary BLOB in order to determine
the image characteristics.

This method should not be called for foreign images. Use the setProperties(descrip-
tion) method for foreign images.

Parameters
None.

Usage Notes
After you have copied, stored, or processed a native format image, call this method
to set the current characteristics of the new content, except when this method is
called implicitly.

This method sets the following information about an image:

■ Height in pixels

■ Width in pixels

■ Data size of the on-disk image in bytes

■ File type (TIFF, JFIF, and so forth)

■ Image type (monochrome, 8-bit grayscale, and so forth)

■ Compression type (JPEG, LZW, and so forth)

■ MIME type (generated based on file format)

Calling this method implicitly calls the setUpdateTime() and the setMimeType()
methods.
 ORDImage Reference Information 5-25

setProperties Method
Pragmas
None.

Exceptions
NULL_LOCAL_DATA

This exception is raised if you call the setProperties() method and the source.isLo-
cal attribute value is 1 and the source.localData attribute value is NULL.

Examples
Select the image, and then set the attributes using the setProperties method:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 INSERT INTO emp VALUES (’John Doe’, 24000, ’Technical Writer’, 123,
 ORDSYS.ORDImage(ORDSYS.ORDSource(empty_blob(),’file’,’ORDIMGDIR’,
 ’jdoe.gif’,SYSDATE,0),
 NULL,NULL,NULL,NULL,NULL,NULL,NULL));
 -- select the newly inserted row for update
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- set property attributes for the image data
 Image.setProperties;
 DBMS_OUTPUT.PUT_LINE(’image width = ’ || image.getWidth);
 DBMS_OUTPUT.PUT_LINE(’image height = ’ || image.getHeight);
 DBMS_OUTPUT.PUT_LINE(’image size = ’ || image.getContentLength);
 DBMS_OUTPUT.PUT_LINE(’image file type = ’ || image.getFileFormat);
 DBMS_OUTPUT.PUT_LINE(’image type = ’ || image.getContentFormat);
 DBMS_OUTPUT.PUT_LINE(’image compression = ’ || image.getCompressionFormat);
 DBMS_OUTPUT.PUT_LINE(’image mime type = ’ || image.getMimeType);
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
 END;
/

Example output:

image width = 360
image height = 490
image size = 66318
image file type = JFIF
image type = 24BITRGB
image compression = JPEG
image mime type = image/jpeg
5-26 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setProperties() Method for Foreign Images
setProperties() Method for Foreign Images

Format
setProperties(description IN VARCHAR2);

Description
Allows you to write the characteristics of a foreign image into the appropriate
attribute fields.

Parameters

description
Specifies the image characteristics to set for the foreign image.

Usage Notes

After you have copied, stored, or processed a foreign image, call this method to set
the characteristics of the new image content. Unlike the native image types
described in Appendix E, foreign images either do not contain information on how
to interpret the bits in the file or, interMedia image does not understand the infor-
mation. In this case, you must set the information explicitly.

Note: Once you have set the properties for a foreign image, it is
up to you to keep the properties consistent. If interMedia image
detects an unknown file format, it will not implicitly set the proper-
ties.
 ORDImage Reference Information 5-27

setProperties() Method for Foreign Images
You can set the following image characteristics for foreign images, as shown in
Table 5–3.

Table 5–3 Image Characteristics for Foreign Files

Field Data Type Description

CompressionFormat STRING Value must be CCITG3, CCITG4, or NONE (default).

DataOffset INTEGER The offset allows the image to have a header that interMedia
image does not try to interpret. Set the offset to avoid any potential
header. The value must be a positive integer less than the LOB
length. Default is zero.

DefaultChannelSelection INTEGER For multiband images, specify either one (grayscale) or three inte-
gers indicating which channels to assign to red (first), green (sec-
ond), and blue (third). For example, DefaultChannelSelection = 1
for single-band images and DefaultChannelSelection = 1, 2, 3 for tri-
ple-band images.

Height INTEGER Height of the image in pixels. Value must be a positive integer.
There is no default, thus a value must be specified.

Interleaving STRING Band layout within the image. Valid styles are:

■ BIP (default) Band Interleaved by Pixel

■ BIL Band Interleaved by Line

■ BSQ Band Sequential

NumberOfBands INTEGER Value must be a positive integer less than 255 describing the num-
ber of color bands in the image. Default is 3.

PixelOrder STRING If NORMAL (default), the leftmost pixel appears first in the file. If
REVERSE, the rightmost pixel appears first.

ScanlineOrder STRING If NORMAL (default), the top scanline appears first in the file. If
INVERSE, then the bottom scanline appears first.

UserString STRING A 4-character descriptive string. If used, the string is stored in the
fileFormat field, appended to the file format ("OTHER:"). Default is
blank and fileFormat is set to "OTHER".

Width INTEGER Width of the image in pixels. Value must be a positive integer.
There is no default, thus a value must be specified.

MimeType STRING Value must be a MIME type, such as img/gif.
5-28 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setProperties() Method for Foreign Images
The values supplied to setProperties() are written to the existing ORDImage data
attributes. The fileFormat is set to "OTHER" and includes the user string, if sup-
plied; for example, ’OTHER: LANDSAT’.

Pragmas
None.

Exceptions
NULL_PROPERTIES_DESCRIPTION

This exception is raised if you call the setProperties() method for Foreign Images
and the description attribute value is NULL.

Examples
Select the foreign image and then set the properties for the image:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- set property attributes for the image data
 Image.setProperties(’width=123 height=321 compressionFormat=NONE’ ||
 ’ userString=DJM dataOffset=128’ ||
 ’ scanlineOrder=INVERSE pixelOrder=REVERSE’ ||
 ’ interleaving=BIL numberOfBands=1’ ||
 ’ defaultChannelSelection=1’);
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

 ORDImage Reference Information 5-29

checkProperties Method
checkProperties Method

Format
checkProperties RETURN BOOLEAN;

Description
Verifies that the properties stored in attributes of the image object match the proper-
ties of the image. This method should not be used for foreign images.

Parameters
None.

Usage Notes
Use this method to verify that the image attributes match the actual image.

Pragmas
None.

Exceptions
None.

Examples
Check the image attributes:

DECLARE
 Image ORDSYS.ORDImage;
 properties_match BOOLEAN;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- check that properties match the image
 properties_match := Image.checkProperties;
 IF properties_match THEN
 DBMS_OUTPUT.PUT_LINE(’Check Properties succeeded’);
 END IF;
END;
/

5-30 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

checkProperties Method
5.3.5 ORDImage Methods Associated with Image Attributes
This section presents reference information on the ORDImage methods associated
with the image attributes.
 ORDImage Reference Information 5-31

getHeight Method
getHeight Method

Format
getHeight RETURN INTEGER;

Description
Returns the height of an image in pixels. This method does not actually read the
image; it is a simple accessor method that returns the value of the height attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the height attribute directly to protect your-
self from potential changes to the internal representation of the ORDImage object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getHeight, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the height of an image:

DECLARE
 Image ORDSYS.ORDImage;
 Height INTEGER;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image height
 Height := Image.getHeight;
END;
/

5-32 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getWidth Method
getWidth Method

Format
getWidth RETURN INTEGER;

Description
Returns the width of an image in pixels. This method does not actually read the
image; it is a simple accessor method that returns the value of the width attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the width attribute directly to protect your-
self from potential changes to the internal representation of the ORDImage object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getWidth, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the width of an image:

DECLARE
 Image ORDSYS.ORDImage;
 Width INTEGER;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image width
 Width := Image.getWidth;
END;
/

 ORDImage Reference Information 5-33

getContentLength Method
getContentLength Method

Format
getContentLength RETURN INTEGER;

Description
Returns the length of the image data content stored in the source. This method does
not actually read the image; it is a simple access method that returns the value of
the content length attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the contentLength attribute directly to pro-
tect from potential future changes to the internal representation of the ORDImage
object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the length of the image data content stored in the source:

DECLARE
 Image ORDSYS.ORDImage;
 ContentLength INTEGER;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image size
 ContentLength := Image.getContentLength;
END;
5-34 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getFileFormat Method
getFileFormat Method

Format
getFileFormat RETURN VARCHAR2;

Description
Returns the file type of an image (such as TIFF or JFIF). This method does not actu-
ally read the image; it is a simple accessor method that returns the value of the file-
Format attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the fileFormat attribute directly to protect
yourself from potential changes to the internal representation of the ORDImage
object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFileFormat, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the file type of an image:

DECLARE
 Image ORDSYS.ORDImage;
 FileFormat VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image file format
 FileFormat := Image.getFileFormat;
END;
 ORDImage Reference Information 5-35

getContentFormat Method
getContentFormat Method

Format
getContentFormat RETURN VARCHAR2;

Description
Returns the content type of an image (such as monochrome or 8-bit grayscale). This
method does not actually read the image; it is a simple accessor method that returns
the value of the contentFormat attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the contentFormat attribute directly to pro-
tect yourself from potential changes to the internal representation of the ORDImage
object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentFormat, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the type of an image:

DECLARE
 Image ORDSYS.ORDImage;
 ContentFormat VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image content format
 ContentFormat := Image.getContentFormat;
END;
5-36 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getCompressionFormat Method
getCompressionFormat Method

Format
getCompressionFormat RETURN VARCHAR2;

Description
Returns the compression type of an image. This method does not actually read the
image, it is a simple accessor method that returns the value of the compressionFor-
mat attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the compressionFormat attribute directly to
protect yourself from potential changes to the internal representation of the
ORDImage object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getCompressionFormat, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the compression type of an image:

DECLARE
 Image ORDSYS.ORDImage;
 CompressionFormat VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image compression format
 CompressionFormat := Image.getCompressionFormat;
END;
 ORDImage Reference Information 5-37

getCompressionFormat Method
5.3.6 ORDImage Methods Associated with the local Attribute
This section presents reference information on the ORDImage methods associated
with the local attribute.
5-38 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setLocal Method
setLocal Method

Format
setLocal;

Description
Sets the local attribute to indicate that the data is stored internally in a BLOB. When
local is set, image methods look for image data in the source.localData attribute.

Parameters
None.

Usage Notes
Sets the local attribute to 1, meaning the data is stored locally in the localData
attribute.

Pragmas
None.

Exceptions
NULL_LOCAL_DATA

This exception is raised if you call the setLocal method and the source.localData
attribute value is NULL.

Examples
Set the flag to local for the data:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp WHERE ename = ’John Doe’ FOR UPDATE;
 -- set local so we look for the image in the database
 Image.setLocal;
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

 ORDImage Reference Information 5-39

clearLocal Method
clearLocal Method

Format
clearLocal;

Description
Resets the local flag to indicate that the data is stored externally. When the local flag
is set to clear, image methods look for image data using the srcLocation, srcName,
and srcType attributes.

Parameters
None.

Usage Notes
This method sets the local attribute to a 0, meaning the data is stored externally or
outside of Oracle8i.

Pragmas
None.

Exceptions
None.

Examples
Clear the value of the local flag for the data:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp WHERE ename = ’John Doe’ FOR UPDATE;
 -- clear local so we look for image externally
 Image.clearLocal;
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

5-40 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

isLocal Method
isLocal Method

Format
isLocal RETURN BOOLEAN;

Description
Returns TRUE if the data is stored locally in a BLOB or FALSE if the data is stored
externally.

Parameters
None.

Usage Notes
If the local attribute is set to 1 or NULL, this method returns TRUE, otherwise this
method returns FALSE.

Pragmas
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Determine whether or not the data is local:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp WHERE ename = ’John Doe’;
 -- check to see if image is stored locally
 IF Image.isLocal THEN
 DBMS_OUTPUT.PUT_LINE(’Image is stored locally’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Image is stored externally’);
 END IF;
END;
/

 ORDImage Reference Information 5-41

isLocal Method
5.3.7 ORDImage Methods Associated with the date Attribute
This section presents reference information on the ORDImage methods associated
with the date attribute.
5-42 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getUpdateTime Method
getUpdateTime Method

Format
getUpdateTime RETURN DATE;

Description
Returns the time when the object was last updated.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the updated time of some image object:

DECLARE
 Image ORDSYS.ORDImage;
 UpdateTime DATE;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image update time
 UpdateTime := Image.getUpdateTime;
END;
/

 ORDImage Reference Information 5-43

setUpdateTime() Method
setUpdateTime() Method

Format
setUpdateTime(current_time DATE);

Description
Sets the time when the image data was last updated. Use this method whenever
you modify the image data. The methods copy(), process(), processCopy(), set-
Properties, setMimeType(), and export() call this method implicitly.

Parameters

current_time
The timestamp to be stored. Default is SYSDATE.

Usage Notes
You must invoke this method any time you modify the image data yourself.

Pragmas
None.

Exceptions
None.

Examples
Set the updated time of some image data:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- set the image update time
 Image.setUpdateTime(SYSDATE);
END;
/

5-44 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setUpdateTime() Method
5.3.8 ORDImage Methods Associated with the mimeType Attribute
This section presents reference information on the ORDImage methods associated
with the mimeType attribute.
 ORDImage Reference Information 5-45

getMimeType Method
getMimeType Method

Format
getMimeType RETURN VARCHAR2;

Description
Returns the MIME type for the image data. This is a simple accessor method that
returns the value of the mimeType attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the mimeType attribute directly to protect
yourself from potential changes to the internal representation of the ORDImage
object. If the source is a file or BLOB, the MIME type information is generated.

For unrecognized file formats, users must call the setMimeType() method and spec-
ify the MIME type.

Pragmas
PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the MIME type:

DECLARE
 Image ORDSYS.ORDImage;
 MimeType VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image mime type
 MimeType := Image.getMimeType;
5-46 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getMimeType Method
END;
/

 ORDImage Reference Information 5-47

setMimeType() Method
setMimeType() Method

Format
setMimeType(mime IN VARCHAR2);

Description
Allows you to set the MIME type of the image data.

Parameters

mime
The MIME type.

Usage Notes
You can override the automatic setting of MIME information by calling this method
with a specified MIME value.

You must call this method to set the MIME type for foreign images.

Calling this method implicitly calls the setUpdateTime() method.

The methods setProperties, process(), and processCopy() call this method implic-
itly.

The MIME type is extracted from the HTTP header on import for HTTP sources.

Pragmas
None.

Exceptions
None.

Examples
Set the MIME type for some stored image data:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp
5-48 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setMimeType() Method
 WHERE ename = ’John Doe’;
 -- set the image mime type
 Image.setMimeType(’image/bmp’);
END;
 ORDImage Reference Information 5-49

setMimeType() Method
5.3.9 ORDImage Methods Associated with the source Attribute
This section presents reference information on the ORDImage methods associated
with the source attribute.
5-50 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContent Method
getContent Method

Format
getContent RETURN BLOB;

Description
Returns a handle to the local LOB storage, that is the BLOB within the ORDImage
object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
A client accesses image data:

DECLARE
 Image ORDSYS.ORDImage;
 localData BLOB;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image BLOB
 localData := Image.getContent;
END;
/

 ORDImage Reference Information 5-51

getBFILE Method
getBFILE Method

Format
getBFILE RETURN BFILE;

Description
Returns the LOB locator of the BFILE containing the image.

Parameters
None.

Usage Notes
This method constructs and returns a BFILE using the stored source.srcLocation and
source.srcName attribute information. The source.srcLocation attribute must con-
tain a defined directory object. The source.srcName attribute must be a valid file
name.

Pragmas
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS)

Exceptions
If the source.srcType attribute value is NULL, calling this method raises an
INCOMPLETE_SOURCE_INFORMATION exception.

If the value of srcType is other than FILE, then calling this method raises an
INVALID_SOURCE_TYPE exception.

Examples
Return the BFILE for the stored source directory and file name attributes:

DECLARE
 Image ORDSYS.ORDImage;
 imagebfile BFILE;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image BFILE
5-52 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getBFILE Method
 imagebfile := Image.getBFILE;
END;
 ORDImage Reference Information 5-53

deleteContent Method
deleteContent Method

Format
deleteContent;

Description
Deletes the local data from the current local source (localData).

Parameters
None.

Usage Notes
This method can be called after you export the data from the local source to an
external image data source and you no longer need this data in the local source.

Call this method when you want to update the object with a new object.

Pragmas
None.

Exceptions
None.

Examples
Delete the local data from the current local source:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- delete the local content of the image
 Image.deleteContent;
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

5-54 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setSource() Method
setSource() Method

Format
setSource(source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Sets or alters information about the external source of the image data.

Parameters

source_type
The source type of the external data. See the “ORDSource Object Type” definition in
Chapter 7 for more information.

source_location
The source location of the external data. See the “ORDSource Object Type” defini-
tion in Chapter 7 for more information.

source_name
The source name of the external data. See the “ORDSource Object Type” definition
in Chapter 7 for more information.

Usage Notes
Users can use this method to set the image data source to a new BFILE or URL. Call-
ing this method implicitly calls the setUpdateTime() method and the clearLocal
method.

Pragmas
None.

Exceptions
None.
 ORDImage Reference Information 5-55

setSource() Method
Examples
Set the source of the image data:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- set source information for the image
 Image.setSource(’file’,
 ’ORDIMGDIR’,
 ’jdoe.gif’);
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

5-56 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSource Method
getSource Method

Format
getSource RETURN VARCHAR2;

Description
Returns information about the external location of the image data in URL format.

Parameters
None.

Usage Notes
Possible return values are:

■ FILE://<DIR OBJECT NAME>/<FILE NAME> for a file source

■ HTTP://<URL> for an HTTP source

■ User-defined source

Pragmas
PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the source of the image data:

DECLARE
 Image ORDSYS.ORDImage;
 SourceInfo VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image source information
 SourceInfo := Image.getSource;
END;
 ORDImage Reference Information 5-57

getSourceType Method
getSourceType Method

Format
getSourceType RETURN VARCHAR2;

Description
Returns a string containing the type of the external image data source.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string containing the type of the external image
data source, for example ’FILE’.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the source type information about an image data source:

DECLARE
 Image ORDSYS.ORDImage;
 SourceType VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image source type
 SourceType := Image.getSourceType;
END;
/

5-58 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSourceLocation Method
getSourceLocation Method

Format
getSourceLocation RETURN VARCHAR2;

Description
Returns a string containing the value of the external image data source location.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string containing the value of the external image
data location, for example ’BFILEDIR’.

You must ensure that the directory exists or is created before you use this method.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS,
WNPS, RNDS, RNPS)

Exceptions
If the value of srcLocation is NULL, then calling this method raises an ORDSource-
Exceptions.INCOMPLETE_SOURCE_LOCATION exception.

Examples
Get the source location information about an image data source:

DECLARE
 Image ORDSYS.ORDImage;
 SourceLocation VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image source location
 SourceLocation := Image.getSourceLocation;
END;
 ORDImage Reference Information 5-59

getSourceName Method
getSourceName Method

Format
getSourceName RETURN VARCHAR2;

Description
Returns a string containing the name of the external image data source.

Parameters
None.

Usage Notes
Returns a VARCHAR2 string containing the name of the external data source, for
example ’testimg.dat’.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_NAME

This exception is raised if you call the getSourceName method and the value of src-
Name is NULL.

Examples
Get the source name information about an image data source:

DECLARE
 Image ORDSYS.ORDImage;
 SourceName VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image source name
 SourceName := Image.getSourceName;
END;
5-60 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

import() Method
import() Method

Format
 MEMBER PROCEDURE import(ctx IN OUT RAW);

Description
Transfers image data from an external image data source to a local source (local-
Data) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
source.open() method; see the introduction to this chapter for more information.

Usage Notes
Use the setSource() method to set the external source type, location, and name prior
to calling the import() method.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external image data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

If the file format of the imported image is not previously set to a string beginning
with "OTHER", the setProperties() method is also called. Set the file format to a
string preceded by "OTHER" for foreign image formats; calling the setProperties()
method for Foreign Images does this for you.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION
 ORDImage Reference Information 5-61

import() Method
This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not sup-
ported by the source plug-in being used.

See Appendix H for more information about these exceptions.

Examples
Import image data from an external image data source into the local source:

DECLARE
 Image ORDSYS.ORDImage;
 ctx RAW(4000) :=NULL;
BEGIN
 -- select the image to be imported
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- import the image into the database
 Image.import(ctx);
 -- update the image object
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

5-62 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

importFrom() Method
importFrom() Method

Format
importFrom(ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers image data from the specified external image data source to a local source
(localData) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
source.open() method; see the introduction to this chapter for more information.

source_type
The source type of the image data.

source_location
The location from where the image data is to be imported.

source_name
The name of the image data.

Usage Notes
This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external image data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.
 ORDImage Reference Information 5-63

importFrom() Method
If the file format of the imported image is not previously set to a string beginning
with "OTHER", the setProperties() method is also called. Set the file format to a
string preceded by "OTHER" for foreign image formats; calling the setProperties()
method for Foreign Images does this for you.

Pragmas
None.

Exceptions
ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source plug-
in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import image data from the specified external data source into the local source:

DECLARE
 Image ORDSYS.ORDImage;
 ctx RAW(4000) :=NULL;
BEGIN
 -- select the image to be imported
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- import the image into the database
 Image.importFrom(ctx,
 ’FILE’,
 ’ORDIMGDIR’,
 ’jdoe.gif’);
 -- update the image object
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
5-64 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

export() Method
export() Method

Format
export(ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Copies image data from a local source (localData) within an Oracle database to an
external image data source.

Parameters

ctx
The source plug-in context information.

source_type
The source type of the location to where the data is to be exported.

source_location
The location to where the image data is to be exported.

source_name
The name of the image object to where the data is to be exported.

Usage Notes
After exporting image data, all image attributes remain unchanged and srcType,
srcLocation, and srcName are updated with input values. After calling the export()
method, you can call the clearLocal() method to indicate the data is stored outside
the database and call the deleteContent method if you want to delete the content of
the local data.

Note: The export() method natively supports only sources of
source type FILE. User-defined sources may support the export()
method.
 ORDImage Reference Information 5-65

export() Method
This method is also available for user-defined sources that can support the export
method.

The only server-side native support for the export method is for the srcType FILE.

The export() method for a source type of FILE is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading pur-
poses.

The export() method is not an exact mirror operation to the import() method in
that the clearLocal() method is not automatically called to indicate the data is
stored outside the database, whereas the import() method automatically calls the
setLocal() method.

Call the deleteContent method after calling the export() method to delete the con-
tent from the database if you no longer intend to manage the multimedia data
within the database.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the
DBMS_JAVA.GRANT_PERMISSION call to specify which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBMS_JAVA.GRANT_PERMISSION(
 ’MEDIAUSER’,
 ’java.io.FilePermission’,
 ’/actual/server/directory/path/filename.dat’,
 ’write’);

See the security and performance section in Oracle8i Java Developer’s Guide for more
information.

Invoking this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION
5-66 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

export() Method
This exception is raised if you call the export() method and the value of srcType is
NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not sup-
ported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Export data from a local source to an external data source:

DECLARE
 obj ORDSYS.ORDImage;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT large_photo INTO obj FROM emp WHERE ename = ’John Doe’;
 obj.export(ctx,'FILE','ORDIMGDIR','testimg.dat');
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line('Source METHOD_NOT_SUPPORTED caught');
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line('SOURCE PLUGIN EXCEPTION caught');
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line('OTHER EXCEPTION caught');
END;
/

5.3.10 ORDImage Methods Associated with Image Migration
This section presents reference information on the ORDImage methods associated
with image migration relative to converting old ORDImgB images and ORDImgF
images to new ORDImage images.
 ORDImage Reference Information 5-67

migrateFromORDImgB() Method
migrateFromORDImgB() Method

Format
migrateFromORDImgB(old_object ORDImgB);

Description
Allows you to migrate old ORDImgB images to the new ORDImage object.

Parameters

old_object
The old ORDImgB image.

Usage Notes
This method copies from the source BLOB to the destination BLOB, copies all the
image attributes from the old object to the new object, and sets the update time and
local attribute.

Pragmas
None.

Exceptions
NULL_SOURCE

This exception is raised if you call the migrateFromORDImgB() method and the
value of src (old_object) is NULL.

NULL_DESTINATION

This exception is raised if you call the migrateFromORDImgB() method and the
value of dest is NULL (ORDImage).

NULL_CONTENT

This exception is raised if you call the migrateFromORDImgB() method and the
value of src.content is NULL (old.object content attribute).

NULL_LOCAL_DATA
5-68 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

migrateFromORDImgB() Method
This exception is raised if you call the migrateFromORDImgB() method and the
dest.source.localData value is NULL (dest ORDImage source.localData).

Examples
Migrate an old ORDImgB image to a new ORDImage image:

DECLARE
 Image ORDSYS.ORDImage;
 old_image ORDSYS.ORDIMGB;
BEGIN
 -- Select the old image
 SELECT imageb INTO old_image FROM old_images WHERE id = 1;
 -- Select the new image
 SELECT large_photo INTO Image FROM emp WHERE ename = ’John Doe’ FOR UPDATE;
 -- Migrate from the old to the new
 Image.migrateFromORDImgB(old_image);
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

 ORDImage Reference Information 5-69

migrateFromORDImgF() Method
migrateFromORDImgF() Method

Format
migrateFromORDImgF(old_object ORDImgF);

Description
Allows you to migrate old ORDImgF images to the new ORDImage object.

Parameters

old_object
The old ORDImgF image.

Usage Notes
This method extracts the directory name and file name from the source and copies
them to the srcLocation and srcName attributes of the destination. It also copies all
image attributes from the old image object to the new image object, sets the
updateTime attribute, and clears the local attribute.

Pragmas
None.

Exceptions
None.

Examples
Migrate an old ORDImgF image to a new ORDImage image:

DECLARE
 Image ORDSYS.ORDImage;
 old_image ORDSYS.ORDIMGF;
BEGIN
 -- Select the old image
 SELECT imagef INTO old_image FROM old_images WHERE id = 1;
 -- Select the new image
 SELECT large_photo INTO Image FROM emp WHERE ename = ’John Doe’ FOR UPDATE;
 -- Migrate from the old to the new
5-70 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

migrateFromORDImgF() Method
 Image.migrateFromORDImgf(old_image);
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

 ORDImage Reference Information 5-71

migrateFromORDImgF() Method
5-72 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 ORDVideo Reference Inform
6

ORDVideo Reference Information

Oracle interMedia contains the following information about the ORDVideo type:

■ Object type -- see Section 6.1.

■ Constructors -- see Section 6.2.

■ Methods -- see Section 6.3.

■ Packages or PL/SQL plug-ins -- see Section 6.4.

The examples in this chapter assume that the test video table TVID has been cre-
ated and filled with data. This table was created using the SQL statements described
in Section 6.3.1.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the openSource() method. At this point, the source plug-in
can initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

Note: If you manipulate the video data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the video data.
ation 6-1

Object Types
Methods invoked at the ORDVideo level that are handed off to the format plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure and initial-
ize it to NULL.

6.1 Object Types
Oracle interMedia describes the ORDVideo object type, which supports the storage
and management of video data.

Note: In the current release, not all source or format plug-ins will
use the ctx argument, but if you code as previously described, your
application should work with any current or future source or for-
mat plug-in.
6-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDVideo Object Type
ORDVideo Object Type

The ORDVideo object type supports the storage and management of video data.
This object type is defined as follows:

CREATE OR REPLACE TYPE ORDVideo
AS OBJECT
(
 -- ATTRIBUTES
description VARCHAR2(4000),
source ORDSource,
format VARCHAR2(31),
mimeType VARCHAR2(4000),
comments CLOB,
 -- VIDEO RELATED ATTRIBUTES
width INTEGER,
height INTEGER,
frameResolution INTEGER,
frameRate INTEGER,
videoDuration INTEGER,
numberOfFrames INTEGER,
compressionType VARCHAR2(4000),
numberOfColors INTEGER,
bitRate INTEGER,

 -- METHODS
-- CONSTRUCTORS
--
STATIC FUNCTION init() RETURN ORDVideo,
STATIC FUNCTION init(srcType IN VARCHAR2,
 srcLocation IN VARCHAR2,
 srcName IN VARCHAR2) RETURN ORDVideo,
-- Methods associated with the date attribute
MEMBER FUNCTION getUpdateTime RETURN DATE,
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setUpdateTime(current_time DATE),
-- Methods associated with the description attribute
MEMBER PROCEDURE setDescription(user_description IN VARCHAR2),
MEMBER FUNCTION getDescription RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getDescription, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with the mimeType attribute
MEMBER PROCEDURE setMimeType(mime IN VARCHAR2),
 ORDVideo Reference Information 6-3

ORDVideo Object Type
MEMBER FUNCTION getMimeType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with the source attribute
MEMBER FUNCTION processSourceCommand(
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW,

MEMBER FUNCTION isLocal RETURN BOOLEAN,
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setLocal,
MEMBER PROCEDURE clearLocal,

MEMBER PROCEDURE setSource(
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER FUNCTION getSource RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceLocation RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceName RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE import(ctx IN OUT RAW),
MEMBER PROCEDURE importFrom(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER PROCEDURE export(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
6-4

ORDVideo Object Type
MEMBER FUNCTION getContentLength(ctx IN OUT RAW) RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getContentInLob(
 ctx IN OUT RAW,
 dest_lob IN OUT NOCOPY BLOB,
 mimeType OUT VARCHAR2,
 format OUT VARCHAR2),

MEMBER FUNCTION getContent RETURN BLOB,
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE deleteContent,

MEMBER FUNCTION getBFILE RETURN BFILE,
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with file operations on the source
MEMBER FUNCTION openSource(userArg IN RAW, ctx OUT RAW) RETURN INTEGER,
MEMBER FUNCTION closeSource(ctx IN OUT RAW) RETURN INTEGER,
MEMBER FUNCTION trimSource(ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER,
MEMBER PROCEDURE readFromSource(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW),
MEMBER PROCEDURE writeToSource(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer IN RAW),

-- Methods associated with the comments attribute
MEMBER PROCEDURE appendToComments(amount IN BINARY_INTEGER,
 buffer IN VARCHAR2),
MEMBER PROCEDURE writeToComments(offset IN INTEGER,
 amount IN BINARY_INTEGER,
 buffer IN VARCHAR2),
MEMBER FUNCTION readFromComments(offset IN INTEGER,
 amount IN BINARY_INTEGER := 32767)
 RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(readFromComments, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION locateInComments(pattern IN VARCHAR2,
 ORDVideo Reference Information 6-5

ORDVideo Object Type
 offset IN INTEGER := 1,
 occurrence IN INTEGER := 1)
 RETURN INTEGER,
MEMBER PROCEDURE trimComments(newlen IN INTEGER),
MEMBER PROCEDURE eraseFromComments(amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1),
MEMBER PROCEDURE deleteComments,
MEMBER PROCEDURE loadCommentsFromFile(fileobj IN BFILE,
 amount IN INTEGER,
 from_loc IN INTEGER :=1,
 to_loc IN INTEGER :=1),
MEMBER PROCEDURE copyCommentsOut(dest IN OUT NOCOPY CLOB,
 amount IN INTEGER,
 from_loc IN INTEGER :=1,
 to_loc IN INTEGER :=1),
MEMBER FUNCTION compareComments(
 compare_with_lob IN CLOB,
 amount IN INTEGER := 4294967295,
 starting_pos_in_comment IN INTEGER := 1,
 starting_pos_in_compare IN INTEGER := 1)
 RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(compareComments, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getCommentLength RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getCommentLength, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with the video attributes accessors
MEMBER PROCEDURE setFormat(knownformat IN VARCHAR2),
MEMBER FUNCTION getFormat RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setFrameSize(knownWidth IN INTEGER, knownHeight IN INTEGER),
MEMBER PROCEDURE getFrameSize(retWidth OUT INTEGER, retHeight OUT INTEGER),
PRAGMA RESTRICT_REFERENCES(getFrameSize, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setFrameResolution(knownFrameResolution IN INTEGER),
MEMBER FUNCTION getFrameResolution RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getFrameResolution, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setFrameRate(knownFrameRate IN INTEGER),
MEMBER FUNCTION getFrameRate RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getFrameRate, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setVideoDuration(knownVideoDuration IN INTEGER),
MEMBER FUNCTION getVideoDuration RETURN INTEGER,
6-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDVideo Object Type
PRAGMA RESTRICT_REFERENCES(getVideoDuration, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setNumberOfFrames(knownNumberOfFrames IN INTEGER),
MEMBER FUNCTION getNumberOfFrames RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getNumberOfFrames, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setCompressionType(knownCompressionType IN VARCHAR2),
MEMBER FUNCTION getCompressionType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setNumberOfColors(knownNumberOfColors IN INTEGER),
MEMBER FUNCTION getNumberOfColors RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getNumberOfColors, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setBitRate(knownBitRate IN INTEGER),
MEMBER FUNCTION getBitRate RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getBitRate, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setKnownAttributes(
 knownFormat IN VARCHAR2,
 knownWidth IN INTEGER,
 knownHeight IN INTEGER,
 knownFrameResolution IN INTEGER,
 knownFrameRate IN INTEGER,
 knownVideoDuration IN INTEGER
 knownNumberOfFrames IN INTEGER,
 knownCompressionType IN VARCHAR2,
 knownNumberOfColors IN INTEGER,
 knownBitRate IN INTEGER),

-- Methods associated with setting all the properties
MEMBER PROCEDURE setProperties(ctx IN OUT RAW),
MEMBER PROCEDURE setProperties(ctx IN OUT RAW,
 setComments IN BOOLEAN),
MEMBER FUNCTION checkProperties(ctx IN OUT RAW) RETURN BOOLEAN,

MEMBER FUNCTION getAttribute(
 ctx IN OUT RAW,
 name IN VARCHAR2) RETURN VARCHAR2,

MEMBER PROCEDURE getAllAttributes(
 ctx IN OUT RAW,
 attributes IN OUT NOCOPY CLOB),

-- Methods associated with video processing
 ORDVideo Reference Information 6-7

Constructors
MEMBER FUNCTION processVideoCommand(
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
);

where:

■ description: the description of the video object.

■ source: the ORDSource where the video data is to be found.

■ format: the format in which the video data is stored.

■ mimeType: the MIME type information.

■ comments: the comment information of the video object.

■ width: the width of each frame of the video data.

■ height: the height of each frame of the video data.

■ frameResolution: the frame resolution of the video data.

■ frameRate: the frame rate of the video data.

■ videoDuration: the total duration of the video data stored.

■ numberOfFrames: the number of frames in the video data.

■ compressionType: the compression type of the video data.

■ numberOfColors: the number of colors in the video data.

■ bitRate: the bit rate of the video data.

6.2 Constructors
This section describes the constructor functions.

The interMedia video constructor functions are as follows:

■ init()

■ init(srcType,srcLocation,srcName)
6-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

init() Method
init() Method

Format
init() RETURN ORDVideo;

Description
Allows for easy initialization of instances of the ORDVideo object type.

Parameters
None.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDVideo attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 1 (local)

■ source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDVideo object type, especially if the ORDVideo type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDVideo object attributes:

DECLARE
 myVideo ORDSYS.ORDVideo;
 ORDVideo Reference Information 6-9

init() Method
BEGIN
 myVideo := ORDSYS.ORDVideo.init();
INSERT INTO tvid VALUES (myVideo);
END;
/

6-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

init(srcType,srcLocation,srcName) Method
init(srcType,srcLocation,srcName) Method

Format
init(srcType IN VARCHAR2,

 srcLocation IN VARCHAR2,

 srcName IN VARCHAR2)

 RETURN ORDVideo;

Description
Allows for easy initialization of instances of the ORDVideo object type.

Parameters

srcType
The source type of the video data.

srcLocation
The source location of the video data.

srcName
The source name of the video data.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDVideo attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 0

■ source.localData is set to empty_blob
 ORDVideo Reference Information 6-11

init(srcType,srcLocation,srcName) Method
■ source.srcType is set to the input value

■ source.srcLocation is set to the input value

■ source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDVideo object type, especially if the ORDVideo type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDVideo object attributes:

DECLARE
 myVideo ORDSYS.ORDVideo;
BEGIN
 myVideo := ORDSYS.ORDVideo.init(’FILE’,’VIDDIR’,’video1.rm’);
INSERT INTO tvid VALUES (myVideo);
END;
/

6-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
6.3 Methods
This section presents reference information on the Oracle interMedia methods used
for video data manipulation. These methods are described in the following group-
ings:

ORDVideo Methods Associated with the updateTime Attribute
■ getUpdateTime: returns the time when the video object was last updated.

■ setUpdateTime(): sets the update time for the video object. This method is
called implicitly by methods that modify natively supported video formats.

ORDVideo Methods Associated with the description Attribute
■ setDescription(): sets the description of the video data.

■ getDescription: returns the description of the video data.

ORDVideo Methods Associated with mimeType Attribute
■ setMimeType(): sets the MIME type of the stored video data. This method is

called implicitly by any method that modifies natively supported video for-
mats.

■ getMimeType: returns the MIME type for video data.

ORDVideo Methods Associated with the source Attribute
■ processSourceCommand(): sends a command and related arguments to the

source plug-in.

■ isLocal: returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external.

■ setLocal: sets a flag to indicate that the data is stored locally in a BLOB.

■ clearLocal: clears the flag to indicate that the data is stored externally.

■ setSource(): sets the source information to where video data is to be found.

■ getSource: returns a formatted string containing complete information about
the external data source formatted as a URL.

■ getSourceType: returns the external source type of the video data.

■ getSourceLocation: returns the external source location of the video data.

■ getSourceName: returns the external source name of the video data.
 ORDVideo Reference Information 6-13

Methods
■ import(): transfers data from an external data source (specified by calling set-
SourceInformation()) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp.

■ importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp.

■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source.

■ getContentLength(): returns the length of the data source (as number of bytes).

■ getContentInLob(): returns content into a temporary LOB.

■ getContent: returns the handle to the BLOB used to store contents locally.

■ deleteContent: deletes the content of the local BLOB.

■ getBFILE: returns the external content as a BFILE.

ORDAudio Methods Associated with File Operations
■ openSource(): opens a data source.

■ closeSource(): closes a data source.

■ trimSource(): trims a data source.

■ readFromSource(): reads a buffer of n bytes from a source beginning at a start
position.

■ writeToSource(): writes a buffer of n bytes to a source beginning at a start posi-
tion.

Note: The export() method natively supports only sources of
source type FILE. User-defined sources may support the export()
method.
6-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
ORDVideo Methods Associated with the comments Attribute

■ appendToComments(): appends a specified buffer and amount of comment
data to the end of the video data comments.

■ writeToComments(): writes a specified buffer and amount of comment data to
the video data comments beginning at the specified offset.

■ readFromComments(): reads a specified amount of comment data from the
video data comments beginning at the specified offset.

■ locateInComments(): matches and locates the occurrence of the specified pat-
tern of characters in the video data comments.

■ trimComments(): trims the video data comments to the specified length.

■ eraseFromComments(): erases the specified amount of comment data from the
video data comments beginning at the specified offset.

■ deleteComments: deletes the video data comments.

■ loadCommentsFromFile(): loads the comments from the specified BFILE into
the video data comments.

■ copyCommentsOut(): copies the video data comments to the given Character
LOB (CLOB).

■ compareComments(): compares video data comments with the comments of
another specified CLOB of video data.

■ getCommentLength: returns the length of the video data comments.

ORDVideo Methods Associated with Video Attributes Accessors
The following methods are supported only by user-defined format plug-ins:

■ setFormat(): sets the object attribute value of the format of the video data.

■ getFormat: returns the object attribute value of the format in which the video
data is stored.

Note: The comments attribute is populated by setProperties()
when the setComments parameter is TRUE and by the Oracle inter-
Media Annotator utility. Oracle recommends that you not write to
this attribute directly.
 ORDVideo Reference Information 6-15

Methods
■ setFrameSize(): sets the object attribute value of the width and height in pixels
of each frame in the video data.

■ getFrameSize: returns the object attribute value of the width and height in pix-
els of each frame in the video data.

■ setFrameResolution(): sets the object attribute value of the number of pixels per
inch of frames in the video data.

■ getFrameResolution: returns the object attribute value of the number of pixels
per inch of frames in the video data.

■ setFrameRate(): sets the object attribute value of the rate in frames per second
at which the video data was recorded.

■ getFrameRate: returns the object attribute value of the rate in frames per sec-
ond at which the video data was recorded.

■ setVideoDuration(): sets the object attribute value of the total time it takes to
play the entire video data.

■ getVideoDuration: returns the object attribute value of the total time it takes to
play the entire video data.

■ setNumberOfFrames(): sets the object attribute value of the total number of
frames in the video data.

■ getNumberOfFrames: returns the object attribute value of the total number of
frames in the video data.

■ setCompressionType(): sets the value of the compression type attribute of the
video object.

■ getCompressionType: returns the object attribute value of the compression type
in the video data.

■ setNumberOfColors(): sets the object attribute value of the number of colors in
the video data.

■ getNumberOfColors: returns the object attribute value of the number of colors
in the video data.

■ setBitRate(): sets the object attribute value of the bit rate in the video data.

■ getBitRate: returns the object attribute value of the bit rate in the video data.

■ setKnownAttributes(): sets known video attributes including format, frame
size, frame resolution, frame rate, video duration, number of frames, compres-
6-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
sion type, number of colors, and bit rate of the video data. The parameters are
passed in with this call.

■ setProperties(): reads the video data to get the values of the object attributes
and then stores them in the object. For the known attributes that ORDVideo
understands, it sets the properties for these attributes, which include: format,
frame size, frame resolution, frame rate, video duration, number of frames,
compression type, number of colors, and bit rate of the video data.

■ setProperties(): reads the video data to get the values of the object attributes
and then stores them in the object. If the value for the setComments parameter
is TRUE, then the comments field of the object will be populated with a rich set
of format and application properties of the video object in XML form, identical
to what is provided by the interMedia Annotator utility. For the known
attributes that ORDVideo understands, it sets the properties for these attributes,
which include: format, frame size, frame resolution, frame rate, video duration,
number of frames, compression type, number of colors, and bit rate of the video
data.

■ checkProperties(): calls the format plug-in to check the properties including for-
mat, frame size, frame resolution, frame rate, video duration, number of frames,
compression type, number of colors, and bit rate of the video data; it returns a
Boolean value TRUE if the properties stored in object attributes match those in
the video data.

■ getAttribute(): returns the value of the requested attribute. This method is only
available for user-defined format plug-ins.

■ getAllAttributes(): returns a formatted string for convenient client access. For
natively supported formats, the string includes the following list of video data
attributes separated by a comma (’,’): format, frameSize, frameResolution,
frameRate, videoDuration, numberOfFrames, compressionType, numberOfCol-
ors, and bitRate. The string is defined by the user-defined format plug-in.

ORDVideo Methods Associated with Processing Video Data
■ processVideoCommand(): sends commands and related arguments to the for-

mat plug-in for processing.

For more information on object types and methods, see Oracle8i Concepts.
 ORDVideo Reference Information 6-17

Methods
6.3.1 Example Table Definitions
The methods described in this reference chapter show examples based on a test
video table TVID. Refer to the TVID table definition that follows when reading
through the examples in Section 6.3.2 through Section 6.3.9:

TVID Table Definition
CREATE TABLE TVID(n NUMBER, vid ORDSYS.ORDVIDEO)
storage (initial 100K next 100K pctincrease 0);

INSERT INTO TVID VALUES(1, ORDSYS.ORDVideo.init());
INSERT INTO TVID VALUES(2, ORDSYS.ORDVideo.init());

6.3.2 ORDVideo Methods Associated with the updateTime Attribute
This section presents reference information on the ORDVideo methods associated
with the updateTime attribute.
6-18 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getUpdateTime Method
getUpdateTime Method

Format
getUpdateTime RETURN DATE;

Description
Returns the time when the object was last updated.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the updated time of some video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT TVID INTO obj FROM TVID WHERE N = 1;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getUpdateTime,’MM-DD-YYYY HH24:MI:SS’));
END;
/

 ORDVideo Reference Information 6-19

setUpdateTime() Method
setUpdateTime() Method

Format
setUpdateTime(current_time DATE);

Description
Sets the time when the video data was last updated. Use this method whenever you
modify the video data. The methods setDescription(), setMimeType(), setSource(),
import(), importFrom(), export(), deleteContent, and all set video accessors call
this method implicitly.

Parameters

current_time
The timestamp to be stored. Default is SYSDATE.

Usage Notes
You must invoke this method whenever you modify the video data.

Pragmas
None.

Exceptions
None.

Examples
See also the example in the getUpdateTime Method on page 6-19.

Set the updated time of some video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N = 1;
 obj.setUpdateTime(SYSDATE);
 UPDATE TVID SET vid=obj WHERE N = 1;
 COMMIT;
END;
6-20 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setUpdateTime() Method
6.3.3 ORDVideo Methods Associated with the description Attribute
This section presents reference information on the ORDVideo methods associated
with the description attribute.
 ORDVideo Reference Information 6-21

setDescription() Method
setDescription() Method

Format
setDescription (user_description IN VARCHAR2);

Description
Sets the description of the video data.

Parameters

user_description
The description of the video data.

Usage Notes
Each video object may need a description to help some client applications. For
example, a Web-based client can show a list of video descriptions from which a user
can select one to access the video data.

Web access components and other client components provided with Oracle interMe-
dia make use of this description attribute to present video data to users.

Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
None.

Examples
Set the description attribute for some video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing description’);
 DBMS_OUTPUT.PUT_LINE(’-------------’);
6-22 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setDescription() Method
 obj.setDescription(’video1’);
 DBMS_OUTPUT.PUT_LINE(obj.getDescription);
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
END;
/

 ORDVideo Reference Information 6-23

getDescription Method
getDescription Method

Format
getDescription RETURN VARCHAR2;

Description
Returns the description of the video data.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getTitle, WNDS, WNPS, RNDS, RNPS)

Exceptions
DESCRIPTION_IS_NOT_SET

This exception is raised if you call the getDescription method and the description is
not set.

Examples
See the example in the setDescription() Method on page 6-22.
6-24 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getDescription Method
6.3.4 ORDVideo Methods Associated with the mimeType Attribute
This section presents reference information on the ORDVideo methods associated
with the mimeType attribute.
 ORDVideo Reference Information 6-25

setMimeType() Method
setMimeType() Method

Format
setMimeType(mime IN VARCHAR2);

Description
Allows you to set the MIME type of the video data.

Parameters

mime
The MIME type.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Call the setMimeType() method to set the MIME type if the source is a file or BLOB.

The MIME type is extracted from the HTTP header on import for HTTP sources.

Pragmas
None.

Exceptions
INVALID_MIME_TYPE

This exception is raised if you call the setMimeType() method and the value for
MIME type is NULL.

Examples
Set the MIME type for some stored video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing mimetype’);
 DBMS_OUTPUT.PUT_LINE(’----------------’);
 obj.setMimeType(’video/avi’);
6-26 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setMimeType() Method
 DBMS_OUTPUT.PUT_LINE(obj.getMimeType);
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
END;
/

 ORDVideo Reference Information 6-27

getMimeType Method
getMimeType Method

Format
getMimeType RETURN VARCHAR2;

Description
Returns the MIME type for the video data.

Parameters
None.

Usage Notes
If the source is an HTTP server, the MIME type information is read from the HTTP
header information. If the source is a file or BLOB, you must call the setMimeType()
method to set the MIME type.

Pragmas
PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setMimeType() Method on page 6-26.
6-28 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getMimeType Method
6.3.5 ORDVideo Methods Associated with the source Attribute
This section presents reference information on the ORDVideo methods associated
with the source attribute.
 ORDVideo Reference Information 6-29

processSourceCommand() Method
processSourceCommand() Method

Format
processSourceCommand(

 ctx IN OUT RAW,

 cmd IN VARCHAR2,

 arguments IN VARCHAR2,

 result OUT RAW)

RETURN RAW;

Description
Allows you to send any command and its arguments to the source plug-in. This
method is available only for user-defined source plug-ins.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

cmd
Any command recognized by the source plug-in.

arguments
The arguments of the command.

result
The result of calling this function returned by the source plug-in.

Usage Notes
Use this method to send any command and its respective arguments to the source
plug-in. Commands are not interpreted; they are taken and passed through to be
processed.
6-30 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

processSourceCommand() Method
Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the processSourceCommand() method and the
value of srcType is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the processSourceCommand() method and this
method is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the processSourceCommand() method within a
source plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Process some commands:

DECLARE
 obj ORDSYS.ORDVideo;
 res RAW(4000);
 result RAW(4000);
 command VARCHAR(4000);
 argList VARCHAR(4000);
 ctx RAW(4000) :=NULL;
BEGIN
select vid into obj from TVID where N =1 for UPDATE;
-- assign command
-- assign argList
res := obj.processSourceCommand (ctx, command,
 argList, result);
UPDATE TVID SET vid=obj WHERE N=1 ;
COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 ORDVideo Reference Information 6-31

processSourceCommand() Method
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);
END;
/

6-32 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

isLocal Method
isLocal Method

Format
isLocal RETURN BOOLEAN;

Description
Returns TRUE if the data is stored locally in a BLOB or FALSE if the data is stored
externally.

Parameters
None.

Usage Notes
If the local attribute value is set to 1 or NULL, this method returns TRUE, otherwise
this method returns FALSE.

Pragmas
PRAGMA RESTRICT_REFERENCES(getLocal, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Determine whether or not the data is local:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N = 1 FOR UPDATE;
 if(obj.isLocal) then
 DBMS_OUTPUT.put_line(’local is true’);
 else
 DBMS_OUTPUT.put_line(’local is false’);
 endif;
END;
/

 ORDVideo Reference Information 6-33

setLocal Method
setLocal Method

Format
setLocal;

Description
Sets the local attribute to indicate that the data is stored internally in a BLOB. When
the local flag is set, video methods look for video data in the source.localData
attribute.

Parameters
None.

Usage Notes
This method sets the local attribute to 1, meaning the data is stored locally in the
localData attribute.

Pragmas
None.

Exceptions
None.

Examples
Set the flag to local for the data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT s INTO obj FROM TVID WHERE N = 1 FOR UPDATE;
 obj.setLocal;
 UPDATE TVID SET s=obj WHERE N = 1;
 COMMIT;
END;
/

6-34 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

clearLocal Method
clearLocal Method

Format
clearLocal;

Description
Resets the local flag to indicate that the data is stored externally. When the local flag
is set to clear, video methods look for video data using the srcLocation, srcName,
and srcType attributes.

Parameters
None.

Usage Notes
This method sets the local attribute to a 0, meaning the data is stored externally or
outside of Oracle8i.

Pragmas
None.

Exceptions
None.

Examples
Clear the value of the local flag for the data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT s INTO obj FROM TVID WHERE N = 1 FOR UPDATE;
 obj.clearLocal;
 UPDATE TVID SET s=obj WHERE N = 1;
 COMMIT;
END;
/

 ORDVideo Reference Information 6-35

setSource() Method
setSource() Method

Format
setSource(

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Sets or alters information about the external source of the video data.

Parameters

source_type
The source type of the external data. See the “ORDSource Object Type” definition in
Chapter 7 for more information.

source_location
The source location of the external data. See the “ORDSource Object Type” defini-
tion in Chapter 7 for more information.

source_name
The source name of the external data. See the “ORDSource Object Type” definition
in Chapter 7 for more information.

Usage Notes
Users can use this method to set the video data source to a new BFILE or URL.

You must ensure that the directory exists or is created before you use this method.

Calling this method implicitly calls the setUpdateTime() method and the clearLo-
cal method.

Pragmas
None.
6-36 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setSource() Method
Exceptions
None.

Examples
Change the source to the exported file prior to exporting the video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 obj.setSource(’LOCAL’,’VIDEODIR’,’video.dat’);
 DBMS_OUTPUT.PUT_LINE(obj.getSource);
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
END;
/

 ORDVideo Reference Information 6-37

getSource Method
getSource Method

Format
getSource RETURN VARCHAR2;

Description
Returns information about the external location of the video data in URL format.

Parameters
None.

Usage Notes
Possible return values are:

■ FILE://<DIR OBJECT NAME>/<FILE NAME> for a file source

■ HTTP://<URL> for an HTTP source

■ User-defined source

Pragmas
PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in the setSource() Method on page 6-37.
6-38 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSourceType Method
getSourceType Method

Format
getSourceType RETURN VARCHAR2;

Description
Returns a string containing the type of the external video data source.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string containing the type of the external video
data source, for example ’FILE’.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the source type information about a video data source:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 obj.setSource(’FILE’,’VIDEODIR’,’MV1.AVI’);
 -- get source information
 DBMS_OUTPUT.put_line(obj.getSource);
 DBMS_OUTPUT.put_line(obj.getSourceType);
 DBMS_OUTPUT.put_line(obj.getSourceLocation);
 DBMS_OUTPUT.put_line(obj.getSourceName);
 ORDVideo Reference Information 6-39

getSourceType Method
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

6-40 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSourceLocation Method
getSourceLocation Method

Format
getSourceLocation RETURN VARCHAR2;

Description
Returns a string containing the value of the external video data source location.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string containing the value of the external video
data location, for example ’BFILEDIR’.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_LOCATION

This exception is raised if you call the getSourceLocation method and the value of
srcLocation is NULL.

Examples
See the example in the getSourceType Method on page 6-39.
 ORDVideo Reference Information 6-41

getSourceName Method
getSourceName Method

Format
getSourceName RETURN VARCHAR2;

Description
Returns a string containing the name of the external video data source.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string containing the name of the external data
source, for example ’testvid.dat’.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_NAME

This exception is raised if you call the getSourceName method and the value of src-
Name is NULL.

Examples
See the example in the getSourceType Method on page 6-39.
6-42 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

import() Method
import() Method

Format
import(ctx IN OUT RAW);

Description
Transfers video data from an external video data source to a local source (local-
Data) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

Usage Notes
Use the setSource() method to set the external source type, location, and name prior
to calling import.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external video data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.
 ORDVideo Reference Information 6-43

import() Method
ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not sup-
ported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import video data by first setting the source and then importing it:

DECLARE
 obj ORDSYS.ORDVideo;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 obj.setSource(’FILE’,’VIDEODIR’,’testvid.dat’);
 -- get source information
 DBMS_OUTPUT.PUT_LINE(obj.getSource);
 -- import data
 obj.import(ctx);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(obj.getSource);
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
END;
/

6-44 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

importFrom() Method
importFrom() Method

Format
importFrom(ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers video data from the specified external video data source to a local source
(localData) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

source_type
The source type of the video data.

source_location
The location from where the video data is to be imported.

source_name
The name of the video data.

Usage Notes
This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external video data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.
 ORDVideo Reference Information 6-45

importFrom() Method
Pragmas
None.

Exceptions
ORDSourceExceptions.NULL_SOURCE exception

This exception is raised if you call the importFrom() method and the value dlob is
NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source plug-
in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import video data from the specified external data source into the local source:

DECLARE
 obj ORDSYS.ORDVideo;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- import data
 obj.importFrom(ctx,’FILE’,’VIDEODIR’,’MV1.AVI’);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(obj.getContent)));
 DBMS_OUTPUT.PUT_LINE(obj.getSource);
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
6-46 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

importFrom() Method
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION Caught’);
END;
/

 ORDVideo Reference Information 6-47

export() Method
export() Method

Format
export(

 ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Copies video data from a local source (localData) within an Oracle database to an
external video data source.

Parameters

ctx
The source plug-in context information.

source_type
The source type of the location to where the data is to be exported.

source_location
The location to where the video data is to be exported.

source_name
The name of the video object to where the data is to be exported.

Usage Notes
After exporting video data, all video attributes remain unchanged and srcType,
srcLocation, and srcName are updated with input values. After calling the export
method, you can call the clearLocal() method to indicate the data is stored outside

Note: The export() method natively supports only sources of
source type FILE. User-defined sources may support the export()
method.
6-48 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

export() Method
the database and call the deleteContent() method if you want to delete the content
of the local data.

This method is also available for user-defined sources that can support the export
method.

The only server-side native support for the export method is for the srcType FILE.

The export() method for a source type of FILE is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading pur-
poses.

The export() method is not an exact mirror operation to the import() method in
that the clearLocal() method is not automatically called to indicate the data is
stored outside the database, whereas the import() method automatically calls the
setLocal() method.

Call the deleteContent() method after calling the export() method to delete the con-
tent from the database if you no longer intend to manage the multimedia data
within the database.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the
DBMS_JAVA.GRANT_PERMISSION call to specify which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBMS_JAVA.GRANT_PERMISSION(
 ’MEDIAUSER’,
 ’java.io.FilePermission’,
 ’/actual/server/directory/path/filename.dat’,
 ’write’);

See the security and performance section in Oracle8i Java Developer’s Guide for more
information.

Invoking this method implicitly calls the setUpdateTime() method.

Pragmas
None.
 ORDVideo Reference Information 6-49

export() Method
Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the export() method and the value of srcType is
NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not sup-
ported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Export data from a local source to an external data source:

DECLARE
 obj ORDSYS.ORDVideo;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM tvid WHERE N = 1;
 obj.export(ctx,’FILE’,’VIDEODIR’,’testvid.dat’);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’OTHER EXCEPTION caught’);
END;
/

6-50 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContentLength() Method
getContentLength() Method

Format
getContentLength(ctx IN OUT RAW) RETURN INTEGER;

Description
Returns the length of the video data content stored in the source.

Parameters

ctx
The source plug-in context information.

Usage Notes
This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source type and implement this
method on it.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOM-PLETE_SOURCE_INFORMATION

This exception is raised if you call the getContentLength() method and the value of
srcType is NULL and data is not stored locally in the BLOB.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentLength() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about this exception.

Examples
See the example in the import() Method on page 6-44.
 ORDVideo Reference Information 6-51

getContentInLob() Method
getContentInLob() Method

Format
getContentInLob(

 ctx IN OUT RAW,

 dest_lob IN OUT NOCOPY BLOB,

 mimeType OUT VARCHAR2,

 format OUT VARCHAR2)

Description
Transfers data from a data source into the specified BLOB. The BLOB can be another
BLOB, not the BLOB for the object.

Parameters

ctx
The source plug-in context information.

dest_lob
The LOB in which to receive data.

mimeType
The MIME type of the data; this may or may not be returned.

format
The format of the data; this may or may not be returned.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION
6-52 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContentInLob() Method
This exception is raised if you call the getContentInLob() method and the value of
srcType is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the getContentInLob() method and this method
is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentInLob() method and within a
source plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Get data from a data source into the specified BLOB on the local source:

DECLARE
 obj ORDSYS.ORDVideo;
 tempBLob BLOB;
 mimeType VARCHAR2(4000);
 format VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N = 1 ;
 if(obj.isLocal) then
 DBMS_OUTPUT.put_line(’local is true’);
 end if;
 DBMS_LOB.CREATETEMPORARY(tempBLob, true, 10);
 obj.getContentInLob(ctx,tempBLob, mimeType,format);
 -- process tempBLob
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.getLength(tempBLob)));
EXCEPTION
WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
DBMS_OUTPUT.put_line(’ORDVideoExceptions.METHOD_NOT_SUPPORTED caught’);
WHEN OTHERS THEN
DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

 ORDVideo Reference Information 6-53

getContent Method
getContent Method

Format
getContent RETURN BLOB;

Description
Returns a handle to the local BLOB storage, that is the BLOB within the ORDVideo
object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
A client accesses video data to be put on a Web-based player:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- import data
 obj.importFrom(ctx,’FILE’,’VIDEODIR’,’MV1.AVI’);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(obj.getContent)));
 DBMS_OUTPUT.PUT_LINE(obj.getSource);
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
6-54 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContent Method
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION Caught’);
END;
/

 ORDVideo Reference Information 6-55

deleteContent Method
deleteContent Method

Format
deleteContent;

Description
Deletes the local data from the current local source (localData).

Parameters
None.

Usage Notes
This method can be called after you export the data from the local source to an
external video data source and you no longer need this data in the local source.

Call this method when you want to update the object with a new object.

Pragmas
None.

Exceptions
None.

Examples
See the example in the import() Method on page 6-44.
6-56 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getBFILE Method
getBFILE Method

Format
getBFILE RETURN BFILE;

Description
Returns the LOB locator of the BFILE containing the video clip.

Parameters
None.

Usage Notes
This method constructs and returns a BFILE using the stored source.srcLocation and
source.srcName attribute information. The source.srcLocation attribute must con-
tain a defined directory object. The source.srcName attribute must be a valid file
name.

Pragmas
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS)

Exceptions
If the source.srcType attribute value is NULL, calling this method raises an
INCOMPLETE_SOURCE_INFORMATION exception.

If the value of srcType is other than FILE, then calling this method raises an
INVALID_SOURCE_TYPE exception.

Examples
Return the BFILE for the stored source directory and file name attributes:

DECLARE
 Video ORDSYS.ORDVideo;
 videobfile BFILE;
BEGIN
 SELECT videoclip INTO Video FROM emp
 WHERE ename = ’John Doe’;
 -- get the vodeo BFILE
 ORDVideo Reference Information 6-57

getBFILE Method
 videobfile := Video.getBFILE;
END;

6.3.6 ORDVideo Methods Associated with File-Like Operations
This section presents reference information on the ORDVideo methods associated
with file-like operations on a data source. You can use the methods in this section
specifically to manipulate video data.
6-58 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

openSource() Method
openSource() Method

Format
openSource(userArg IN RAW, ctx OUT RAW) RETURN INTEGER;

Description
Opens a data source.

Parameters

userArg
The user argument. This may be used by user-defined source plug-ins.

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

Usage Notes
The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the openSource() method and the value for src-
Type is NULL and the data is not local.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the openSource() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION
 ORDVideo Reference Information 6-59

openSource() Method
This exception is raised if you call the openSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Open a local data source:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
 ctx RAW(4000) :=NULL;
 userArg RAW(4000);
BEGIN
 select vid into obj from TVID where N =1 for UPDATE;
 res := obj.openSource(userArg, ctx);
 UPDATE TVID SET vid =obj WHERE N=1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

6-60 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

closeSource() Method
closeSource() Method

Format
closeSource(ctx IN OUT RAW) RETURN INTEGER;

Description
Closes a data source.

Parameters

ctx
The source plug-in context information. You must call the openSource() method;
see the introduction to this chapter for more information.

Usage Notes
The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the closeSource() method and the value for src-
Type is NULL and the data is not local.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the closeSource() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the closeSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.
 ORDVideo Reference Information 6-61

closeSource() Method
Examples
Close an external BFILE data source:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 select vid into obj from TVID where N =2 for UPDATE;
 obj.source.clearLocal;
 res := obj.closeSource(ctx);
 UPDATE TVID SET vid=obj WHERE N=2 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

6-62 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

trimSource() Method
trimSource() Method

Format
trim(ctx IN OUT RAW,

 newlen IN INTEGER) RETURN RAW;

Description
Trims a data source.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

newlen
The trimmed new length.

Usage Notes
The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the trimSource() method and the value for src-
Type is NULL and the data is not local.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the trimSource() method and this method is not
supported by the source plug-in being used.
 ORDVideo Reference Information 6-63

trimSource() Method
ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the trimSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Trim a local data source:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 select vid into obj from TVID where N =1 for UPDATE;
 res := obj.trimSource(ctx,0);
 UPDATE TVID SET vid=obj WHERE N=1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

6-64 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

readFromSource() Method
readFromSource() Method

Format
readFromSource(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer OUT RAW);

Description
Allows you to read a buffer of n bytes from a source beginning at a start position.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

startPos
The start position in the data source.

numBytes
The number of bytes to be read from the data source.

buffer
The buffer into which the data will be read.

Usage Notes
This method is not supported for HTTP sources.

To successfully read HTTP source types, the entire URL source must be requested to
be read. If you want to implement a read method for an HTTP source type, you
must provide your own implementation for this method in the modified source
plug-in for HTTP source type.
 ORDVideo Reference Information 6-65

readFromSource() Method
Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the readFromSource() method and the value of
srcType is NULL and the data is not local.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the readFromSource() method and the data is
local but the value of localData is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the readFromSource() method and this method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the readFromSource() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Read a buffer from the source:

DECLARE
 obj ORDSYS.ORDVideo;
 buffer RAW(4000);
 i INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
i := 20;
select vid into obj from TVID where N =1 ;
obj.readFromSource(ctx,1,i,buffer);
DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
EXCEPTION
WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
WHEN OTHERS THEN
DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

6-66 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

writeToSource() Method
writeToSource() Method

Format
writeToSource(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer IN RAW);

Description
Allows you to write a buffer of n bytes to a source beginning at a start position.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

startPos
The start position in the source to where the buffer should be copied.

numBytes
The number of bytes to be written to the source.

buffer
The buffer of data to be written.

Usage Notes
This method assumes that the writable source allows you to write n number of
bytes starting at a random byte location. The FILE and HTTP source types are not
writable sources and do not support this method. This method will work if data is
stored in a local BLOB or is accessible through a user-defined source plug-in.

Pragmas
None.
 ORDVideo Reference Information 6-67

writeToSource() Method
Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the writeToSource() method and the value of src-
Type is NULL and the data is not local.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the writeToSource() method and the data is local
but the localData value is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the writeToSource() method and this method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the writeToSource() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Write a buffer to the source:

DECLARE
 obj ORDSYS.ORDVideo;
 n INTEGER := 6;
 ctx RAW(4000) :=NULL;
BEGIN
 select vid into obj from TVID where N =1 for update;
 obj.writeToSource(ctx,1,n,UTL_RAW.CAST_TO_RAW(’helloP’));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 update TVID set vid = obj where N = 1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

6-68 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

writeToSource() Method
6.3.7 ORDVideo Methods Associated with the comments Attribute
This section presents reference information on the ORDVideo methods associated
with the comments attribute.

Note: The comments attribute is populated by setProperties()
when the setComments parameter is TRUE and by the Oracle inter-
Media Annotator utility. Oracle recommends that you not write to
this attribute directly.
 ORDVideo Reference Information 6-69

appendToComments() Method
appendToComments() Method

Format
appendToComments(amount IN BINARY_INTEGER,

 buffer IN VARCHAR2);

Description
Appends a specified buffer and amount of comment data to the end of the com-
ments attribute of the video object.

Parameters

amount
The amount of comment data to be appended.

buffer
The buffer of comment data to be appended.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
Append comment information to the comments attribute of the video object:

DECLARE
 obj ORDSYS.ORDVideo;
 i INTEGER;
 j INTEGER;
6-70 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

appendToComments() Method
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 obj.writeToComments(1,18,’This is a Comments’);
 obj.appendToComments(18,’This is a Comments’);
 DBMS_OUTPUT.PUT_LINE(obj.readFromComments(1,obj.getCommentLength));
 DBMS_OUTPUT.PUT_LINE(obj.locateInComments(’Comments’,1));
 obj.trimComments(18);
 DBMS_OUTPUT.PUT_LINE(obj.readFromComments(1,18));
 i := 8;
 j := 9;
 obj.eraseFromComments(i,j);
 DBMS_OUTPUT.PUT_LINE(obj.readFromComments(1,10));
 obj.deleteComments;
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

 ORDVideo Reference Information 6-71

writeToComments() Method
writeToComments() Method

Format
writeToComments(offset IN INTEGER,

 amount IN BINARY_INTEGER,

 buffer IN VARCHAR2);

Description
Writes a specified amount of comment buffer data to the comments attribute of the
video object beginning at the specified offset.

Parameters

offset
The starting offset position in comments where comments data is to be written.

amount
The amount of comment data to be written.

buffer
The buffer of comment data to be written.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.
6-72 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

writeToComments() Method
Examples
See the example in the appendToComments() Method on page 6-70.
 ORDVideo Reference Information 6-73

readFromComments() Method
readFromComments() Method

Format
readFromComments(offset IN INTEGER,

 amount IN BINARY_INTEGER :=32767)

RETURN VARCHAR2;

Description
Reads a specified amount of comment data from the comments attribute of the
video object beginning at a specified offset.

Parameters

offset
The starting offset position in comments from where comments data is to be read.

amount
The amount of comment data to be read.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(readFromComments, WNDS,
WNPS, RNDS, RNPS)

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the appendToComments() Method on page 6-70.
6-74 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

locateInComments() Method
locateInComments() Method

Format
locateInComments(pattern IN VARCHAR2,

 offset IN INTEGER := 1,

 occurrence IN INTEGER := 1)

RETURN INTEGER;

Description
Matches and locates the nth occurrence of the specified pattern of character data in
the comments attribute of the video object beginning at a specified offset.

Parameters

pattern
The pattern of comment data for which to search.

offset
The starting offset position in comments where the search for a match should begin.

occurrence
The nth occurrence in the comments where the pattern of comment data was found.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.
 ORDVideo Reference Information 6-75

locateInComments() Method
Examples
See the example in the appendToComments() Method on page 6-70.
6-76 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

trimComments() Method
trimComments() Method

Format
trimComments(newlen IN INTEGER);

Description
Trims the length of comments of the video object to the specified new length.

Parameters

newlen
The new length to which the comments are to be trimmed.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the appendToComments() Method on page 6-70.
 ORDVideo Reference Information 6-77

eraseFromComments() Method
eraseFromComments() Method

Format
eraseFromComments(amount IN OUT NOCOPY INTEGER,

 offset IN INTEGER := 1);

Description
Erases a specified amount of comment data from the comments attribute of the
video object beginning at a specified offset.

Parameters

amount
The amount of comment data to be erased.

offset
The starting offset position in comments where comments data is to be erased.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the appendToComments() Method on page 6-70.
6-78 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

deleteComments Method
deleteComments Method

Format
deleteComments;

Description
Deletes the comments attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the appendToComments() Method on page 6-70.
 ORDVideo Reference Information 6-79

loadCommentsFromFile() Method
loadCommentsFromFile() Method

Format
loadCommentsFromFile(fileobj IN BFILE,

 amount IN INTEGER,

 from_loc IN INTEGER := 1,

 to_loc IN INTEGER := 1);

Description
Loads a specified amount of comment data from a BFILE into the comments
attribute of the video object beginning at a specified offset.

Parameters

fileobj
The file object to be loaded.

amount
The amount of comment data to be loaded from the BFILE.

from_loc
The location from which to load comments from the BFILE.

to_loc
The location to which to load comments.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
6-80 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

loadCommentsFromFile() Method
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
Load comment information from a BFILE into the comments of the video data:

DECLARE
 file_handle BFILE;
 obj ORDSYS.ORDVideo;
 isopen BINARY_INTEGER;
 amount INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 --file_handle := BFILENAME(obj.getSourceLocation, obj.getSourceName);
 file_handle := BFILENAME(’VIDEODIR’, ’testvid.dat’);
 isopen := DBMS_LOB.FILEISOPEN(file_handle);
 IF isopen = 0 THEN
 --dbms_output.put_line(’File Not Open’);
 DBMS_LOB.FILEOPEN(file_handle, DBMS_LOB.FILE_READONLY);
 END IF;
 --dbms_output.put_line(’File is now Open’);
 isopen := DBMS_LOB.FILEISOPEN(file_handle);
 IF isopen <> 0 THEN
 amount := DBMS_LOB.GETLENGTH(file_handle);
 END IF;
 obj.loadCommentsFromFile(file_handle, 18, 1, 18);
 dbms_output.put_line(obj.getCommentLength);
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

 ORDVideo Reference Information 6-81

copyCommentsOut() Method
copyCommentsOut() Method

Format
copyCommentsOut(dest IN OUT NOCOPY CLOB,

 amount IN INTEGER,

 from_loc IN INTEGER := 1,

 to_loc IN INTEGER := 1);

Description
Copies a specified amount of video object comments attribute into the given CLOB.

Parameters

dest
The destination to which the comments are to be copied.

amount
The amount of comments data to be copied.

from_loc
The location from which to copy the comments.

to_loc
The location to which to copy the comments.

Usage Notes
None.

Pragmas
None.

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.
6-82 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

copyCommentsOut() Method
Examples
Copy comments of the video data to the given CLOB:

DECLARE
 file_handle BFILE;
 obj ORDSYS.ORDVideo;
 obj1 ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj1 FROM TVID WHERE N=2 FOR UPDATE;
 SELECT vid INTO obj FROM TVID WHERE N=1;
 obj.copyCommentsOut(obj1.comments,obj.getCommentLength,1,10);
 DBMS_OUTPUT.put_line(obj1.getCommentLength);
 DBMS_OUTPUT.put_line(obj.getCommentLength);
 UPDATE TVID SET vid=obj1 WHERE N=2;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

 ORDVideo Reference Information 6-83

compareComments() Method
compareComments() Method

Format
compareComments(compare_with_lob IN CLOB,

 amount IN INTEGER := 4294967295,

 starting_pos_in_comment IN INTEGER := 1,

 starting_pos_in_compare IN INTEGER := 1)

RETURN INTEGER;

Description
Compares a specified amount of comments of video data with comments of the
other CLOB provided.

Parameters

compare_with_lob
The comparison comments.

amount
The amount of comments of video data to compare with the comparison comments.

starting_pos_in_comment
The starting position in the comments attribute of the video object.

starting_pos_in_compare
The starting position in the comparison comments.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(compareComments, WNDS,
WNPS, RNDS, RNPS)
6-84 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

compareComments() Method
Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
Compare comments of the video data with comments of another CLOB:

DECLARE
 file_handle BFILE;
 obj ORDSYS.ORDVideo;
 obj1 ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=2 ;
 SELECT vid INTO obj1 FROM TVID WHERE N=1;
 DBMS_OUTPUT.put_line(’comparison output’);
 DBMS_OUTPUT.put_line(obj.compareComments(obj1.comments,obj.getCommentLength,
 1,18));
 EXCEPTION
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

 ORDVideo Reference Information 6-85

getCommentLength() Method
getCommentLength() Method

Format
getCommentLength RETURN INTEGER;

Description
Returns the length of the comments attribute of the video object.

Parameters

None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getCommentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
The exceptions-raised behavior for this method is similar to that of the DBMS_LOB
functions and procedures. See the DBMS_LOB package description in the Oracle8i
Supplied PL/SQL Packages Reference manual for a list of exceptions that can be raised
for the DBMS_LOB functions and procedures.

Examples
See the example in the compareComments() Method on page 6-85.
6-86 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getCommentLength() Method
6.3.8 ORDVideo Methods Associated with Video Attributes Accessors
This section presents reference information on the ORDVideo methods associated
with the video attributes accessors.
 ORDVideo Reference Information 6-87

setFormat() Method
setFormat() Method

Format
setFormat(knownFormat IN VARCHAR2);

Description
Sets the format attribute of the video object.

Parameters

knownFormat
The known format of the video data to be set in the audio object.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFormat() method and the value for the
knownFormat parameter is NULL.

Examples
Set the format for some stored video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing format’);
 DBMS_OUTPUT.PUT_LINE(’--------------’);
 obj.setFormat(’avi’);
 DBMS_OUTPUT.PUT_LINE(obj.getFormat);
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
6-88 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setFormat() Method
END;
/

 ORDVideo Reference Information 6-89

getFormat Method
getFormat Method

Format
getFormat RETURN VARCHAR2;

Description
Returns the value of the format attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getStoredFormat, WNDS,
WNPS, RNDS, RNPS)

Exceptions
VIDEO_FORMAT_IS_NULL

This exception is raised if you call the getFormat() method and the value for for-
mat is NULL.

Examples
See the example in the setFormat() Method on page 6-88.
6-90 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setFrameSize() Method
setFrameSize() Method

Format
setFrameSize(

 knownWidth IN INTEGER,

 knownHeight IN INTEGER);

Description
Sets the value of the height and width attributes of the video object.

Parameters

knownWidth
The frame width in pixels.

knownHeight
The frame height in pixels.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFrameSize() method and the value for
either the knownWidth or knownHeight parameter is NULL.

Examples
Set the frame size for video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 ORDVideo Reference Information 6-91

setFrameSize() Method
 select vid into obj from TVID where N =1 for update;
 obj.setFrameSize(1,2);
 obj.setFrameResolution(4);
 obj.setFrameRate(5);
 obj.setVideoDuration(20);
 obj.setNumberOfFrames(8);
 obj.setCompressionType(’Cinepak’);
 obj.setBitRate(1500);
 obj.setNumberOfColors(256);
 update TVID set vid = obj where N = 1;
 COMMIT;
END;
/

6-92 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getFrameSize() Method
getFrameSize() Method

Format
getFrameSize(

 retWidth OUT INTEGER,

 retHeight OUT INTEGER);

Description
Returns the value of the height and width attributes of the video object.

Parameters

retWidth
The frame width in pixels.

retHeight
The frame height in pixels.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFrameSize, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the frame size for video data:

DECLARE
 obj ORDSYS.ORDVideo;
 width INTEGER;
 height INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 ORDVideo Reference Information 6-93

getFrameSize() Method
 obj.getFrameSize(width, height);
 DBMS_OUTPUT.put_line(’width :’ || width);
 DBMS_OUTPUT.put_line(’height :’ || height);
END;
/

6-94 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setFrameResolution() Method
setFrameResolution() Method

Format
setFrameResolution(knownFrameResolution IN INTEGER);

Description
Sets the value of the frameResolution attribute of the video object.

Parameters

knownFrameResolution
The known frame resolution in pixels per inch.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFrameResolution() method and the value
for the knownFrameResolution parameter is NULL.

Examples
See the example in the setFrameSize() Method on page 6-91.
 ORDVideo Reference Information 6-95

getFrameResolution Method
getFrameResolution Method

Format
getFrameResolution RETURN INTEGER;

Description
Returns the value of the frameResolution attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFrameResolution, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the value of the frame resolution for the video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getFrameResolution;
 DBMS_OUTPUT.put_line(’resolution : ’ ||res);
END;
/

6-96 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setFrameRate() Method
setFrameRate() Method

Format
setFrameRate(knownFrameRate IN INTEGER);

Description
Sets the value of the frameRate attribute of the video object.

Parameters

knownFrameRate
The frame rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFrameRate() method and the value for the
knownFrameRate parameter is NULL.

Examples
See the example in the setFrameSize() Method on page 6-91.
 ORDVideo Reference Information 6-97

getFrameRate Method
getFrameRate Method

Format
getFrameRate RETURN INTEGER;

Description
Returns the value of the frameRate attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFrameRate, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the object attribute value of the frame rate for video data stored in the data-
base:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getFrameRate;
 DBMS_OUTPUT.put_line(’frame rate : ’ ||res);
END;
/

6-98 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setVideoDuration() Method
setVideoDuration() Method

Format
setVideoDuration(knownVideoDuration RETURN INTEGER);

Description
Sets the value of the videoDuration attribute of the video object.

Parameters

knownVideoDuration
A known video duration.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setVideoDuration() method and the value for
the knownVideoDuration parameter is NULL.

Examples
See the example in the setFrameSize() Method on page 6-91.
 ORDVideo Reference Information 6-99

getVideoDuration Method
getVideoDuration Method

Format
getVideoDuration RETURN INTEGER;

Description
Returns the value of the videoDuration attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getVideoDuration, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the total time to play the video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getVideoDuration;
 DBMS_OUTPUT.put_line(’video duration : ’ ||res);
END;
/

6-100 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setNumberOfFrames() Method
setNumberOfFrames() Method

Format
setNumberOfFrames(knownNumberOfFrames RETURN INTEGER);

Description
Sets the value of the numberOfFrames attribute of the video object.

Parameters

knownNumberOfFrames
A known number of frames.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setNumberOfFrames() method and the value
for the knownNumberOfFrames parameter is NULL.

Examples
See the example in the setFrameSize() Method on page 6-91.
 ORDVideo Reference Information 6-101

getNumberOfFrames Method
getNumberOfFrames Method

Format
getNumberOfFrames RETURN INTEGER;

Description
Returns the value of the numberOfFrames attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getNumberOfFrames, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the object attribute value of the total number of frames in the video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getNumberOfFrames;
 DBMS_OUTPUT.put_line(’number of frames : ’ ||res);
END;
/

6-102 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setCompressionType() Method
setCompressionType() Method

Format
setCompressionType(knownCompressionType IN VARCHAR2);

Description
Sets the value of the compressionType attribute of the video object.

Parameters

knownCompressionType
A known compression type.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setCompressionType() method and the value
for the knownCompressionType parameter is NULL.

Examples
See the example in the setFrameSize() Method on page 6-91.
 ORDVideo Reference Information 6-103

getCompressionType Method
getCompressionType Method

Format
getCompressionType RETURN VARCHAR2;

Description
Returns the value of the compressionType attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the object attribute value of the compressionType attribute of the video
object:

DECLARE
 obj ORDSYS.ORDVideo;
 res VARCHAR2(4000);
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getCompressionType;
 DBMS_OUTPUT.put_line(’compression type: ’ ||res);
END;
/

6-104 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setNumberOfColors() Method
setNumberOfColors() Method

Format
setNumberOfColors(knownNumberOfColors RETURN INTEGER);

Description
Sets the value of the numberOfColors attribute of the video object.

Parameters

knownNumberOfColors
A known number of colors.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setNumberOfColors() method and the value
for the knownNumberOfColors parameter is NULL.

Examples
See the example in the setFrameSize() Method on page 6-91.
 ORDVideo Reference Information 6-105

getNumberOfColors Method
getNumberOfColors Method

Format
getNumberOfColors RETURN INTEGER;

Description
Returns the value of the numberOfColors attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getNumberOfColors, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the object attribute value of the numberOfColors attribute of the video
object:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getNumberOfColors;
 DBMS_OUTPUT.put_line(’number of colors: ’ ||res);
END;
/

6-106 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setBitRate() Method
setBitRate() Method

Format
setBitRate(knownBitRate IN INTEGER);

Description
Sets the value of the bitRate attribute of the video object.

Parameters

knownBitRate
The bit rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setBitRate() method and the value for the
knownBitRate parameter is NULL.

Examples
See the example in the setFrameSize() Method on page 6-91.
 ORDVideo Reference Information 6-107

getBitRate Method
getBitRate Method

Format
getBitRate RETURN INTEGER;

Description
Returns the value of the bitRate attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getBitRate, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the object attribute value of the bitRate attribute of the video object:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getBitRate;
 DBMS_OUTPUT.put_line(’bit rate : ’ || res);
END;
/

6-108 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setKnownAttributes() Method
setKnownAttributes() Method

Format
setKnownAttributes(

 knownFormat IN VARCHAR2,

 knownWidth IN INTEGER,

 knownHeight IN INTEGER,

 knownFrameResolution IN INTEGER,

 knownFrameRate IN INTEGER,

 knownVideoDuration IN INTEGER,

 knownNumberOfFrames IN INTEGER,

 knownCompressionType IN VARCHAR2,

 knownNumberOfColors IN INTEGER,

 knownBitRate IN INTEGER);

Description
Sets the known video attributes for the video data.

Parameters

knownFormat
The known format.

knownWidth
The known width.

knownHeight
The known height.

knownFrameResolution
The known frame resolution.

knownFrameRate
The known frame rate.
 ORDVideo Reference Information 6-109

setKnownAttributes() Method
knownVideoDuration
The known video duration.

knownNumberOfFrames
The known number of frames.

knownCompressionType
The known compression type.

knownNumberOfColors
The known number of colors.

knownBitRate
The known bit rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
None.

Examples
Set the property information for all known attributes for video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 select vid into obj from TVID where N =1 for update;
 obj.setKnownAttributes(’MOOV’,1,2,4,5,20,8,’Cinepak’, 256, 1500);
 DBMS_OUTPUT.put_line(’width: ’ || TO_CHAR(obj.width));
 DBMS_OUTPUT.put_line(’height: ’ || TO_CHAR(obj.height));
 DBMS_OUTPUT.put_line(’format: ’ || obj.getFormat);
 DBMS_OUTPUT.put_line(’frame resolution: ’ ||TO_CHAR(obj.getFrameResolution));
 DBMS_OUTPUT.put_line(’frame rate: ’ || TO_CHAR(obj.getFrameRate));
 DBMS_OUTPUT.put_line(’video duration: ’ || TO_CHAR(obj.getVideoDuration));
 DBMS_OUTPUT.put_line(’number of frames: ’ || TO_CHAR(obj.getNumberOfFrames));
 DBMS_OUTPUT.put_line(’compression type: ’ || obj.getCompressionType);
 DBMS_OUTPUT.put_line(’bite rate: ’ || TO_CHAR(obj.getBitRate));
6-110 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setKnownAttributes() Method
 DBMS_OUTPUT.put_line(’number of colors: ’ || TO_CHAR(obj.getNumberOfColors));
 update TVID set vid = obj where N = 1;
 COMMIT;
END;
/

 ORDVideo Reference Information 6-111

setProperties() Method
setProperties() Method

Format
setProperties(ctx IN OUT RAW);

Description
Reads the video data to get the values of the object attributes and then stores them
in the object. For the known attributes that ORDVideo understands, it sets the prop-
erties for these attributes, which include: format, frame size, frame resolution, frame
rate, video duration, number of frames, compression type, number of colors, and bit
rate.

Parameters

ctx
The format plug-in context information.

Usage Notes
If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default for-
mat plug-in; otherwise, it uses your user-defined format plug-in.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the setProperties() method and the video plug-in
raises an exception when calling this method.

Examples
Set the property information for known video attributes:

DECLARE
 obj ORDSYS.ORDVideo;
6-112 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setProperties() Method
 ctx RAW(4000) :=NULL;
BEGIN
 select vid into obj from TVID where N =1 for update;
 obj.setProperties(ctx);
 update TVID set vid = obj where N = 1;
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’exception raised’);
END;
/

 ORDVideo Reference Information 6-113

setProperties() Method (XML)
setProperties() Method (XML)

Format
setProperties(ctx IN OUT RAW,

 setComments IN BOOLEAN);

Description
Reads the video data to get the values of the object attributes and then stores them
in the object. For the known attributes that ORDVideo understands, it sets the prop-
erties for these attributes, which include: format, frame size, frame resolution, frame
rate, video duration, number of frames, compression type, number of colors, and bit
rate. It populates the comments field of the object with a rich set of format and
application properties in XML form if the value of the setComments parameter is
TRUE.

Parameters

ctx
The format plug-in context information.

setComments
If the value is TRUE, then the comments field of the object is populated with a rich
set of format and application properties of the video object in XML form, identical
to what is provided by the interMedia Annotator utility; otherwise, if the value is
FALSE, the comments field of the object remains unpopulated. The default value is
FALSE.

Usage Notes
If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default for-
mat plug-in; otherwise, it uses your user-defined format plug-in.

Pragmas
None.
6-114 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setProperties() Method (XML)
Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the setProperties() method and the video plug-in
raises an exception when calling this method.

Examples
Set the property information for known video attributes:

DECLARE
 obj ORDSYS.ORDVideo;
 ctx RAW(4000) :=NULL;
BEGIN
 select vid into obj from TVID where N =1 for update;
 obj.setProperties(ctx,0);
 update TVID set vid = obj where N = 1;
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’exception raised’);
END;
/

 ORDVideo Reference Information 6-115

checkProperties() Method
checkProperties() Method

Format
checkProperties(ctx IN OUT RAW) RETURN BOOLEAN;

Description
Checks all the properties of the stored video data, including the following video
attributes: format, frame size, frame resolution, frame rate, video duration, number
of frames, compression type, number of colors, and bit rate.

Parameters

ctx
The format plug-in context information.

Usage Notes
If the format is set to NULL, then the checkProperties() method uses the default
format plug-in; otherwise, it uses your user-defined format plug-in.

The checkProperties() method does not check the MIME type because a file can
have multiple correct MIME types and this is not well defined.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the checkProperties() method and the video
plug-in raises an exception when calling this method.

Examples
Check property information for known video attributes:

DECLARE
 obj ORDSYS.ORDVideo;
 ctx RAW(4000) :=NULL;
BEGIN
6-116 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

checkProperties() Method
 select vid into obj from TVID where N =1 ;
 if (obj.checkProperties(ctx)) then
 DBMS_OUTPUT.put_line(’check Properties returned true’);
else
 DBMS_OUTPUT.put_line(’check Properties returned false’);
 end if;
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’exception raised’);
END;
/

 ORDVideo Reference Information 6-117

getAttribute() Method
getAttribute() Method

Format
getAttribute(

 ctx IN OUT RAW,

 name IN VARCHAR2)

RETURN VARCHAR2;

Description
Returns the value of the requested attribute from video data for user-defined for-
mats only.

Parameters

ctx
The format plug-in context information.

name
The name of the attribute.

Usage Notes
The video data attributes are available from the header of the formatted video data.

If the format is set to NULL, then the getAttribute() method uses the default for-
mat plug-in; otherwise, it uses your user-defined format plug-in.

Video data attribute information can be extracted from the video data itself. You can
extend support to a video format that is not understood by the ORDVideo object by
implementing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION
6-118 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getAttribute() Method
This exception is raised if you call the getAttribute() method and the video plug-in
raises an exception when calling this method.

Examples
Return information for the specified video attribute for video data stored in the
database:

DECLARE
 obj ORDSYS.ORDVideo;
 res VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting video duration’);
 DBMS_OUTPUT.PUT_LINE(’---------------------’);
 res := obj.getAttribute(ctx,’video_duration’);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);
END;
/

 ORDVideo Reference Information 6-119

getAllAttributes() Method
getAllAttributes() Method

Format
getAllAttributes(

 ctx IN OUT RAW,

 attributes IN OUT NOCOPY CLOB);

Description
Returns a formatted string for convenient client access. For natively supported for-
mats, the string includes the following list of audio data attributes separated by a
comma (’,’): width, height, format, frameResolution, frameRate, videoDuration,
numberOfFrames, compressionType, numberOfColors, and bitRate. For user-
defined formats, the string is defined by the format plug-in.

Parameters

ctx
The format plug-in context information.

attributes
The attributes.

Usage Notes
These video data attributes are available from the header of the formatted video
data.

If the format is set to NULL, then the getAllAttributes() method uses the default
format plug-in; otherwise, it uses your user-defined format plug-in.

Video data attribute information can be extracted from the video data itself. You can
extend support to a video format that is not understood by the ORDVideo object by
implementing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 2.3.13 for more information.

Pragmas
None.
6-120 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getAllAttributes() Method
Exceptions
METHOD_NOT_SUPPORTED

This exception is raised if you call the getAllAttributes() method and the video
plug-in raises an exception when calling this method.

Examples
Return all video attributes for video data stored in the database:

DECLARE
 obj ORDSYS.ORDVideo;
 tempLob CLOB;
 ctx RAW(4000) :=NULL;
BEGIN

 SELECT vid INTO obj FROM TVID WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting comma separated list of all attributes’);
 DBMS_OUTPUT.PUT_LINE(’---’);

 DBMS_LOB.CREATETEMPORARY(tempLob, FALSE, DBMS_LOB.CALL);
 obj.getAllAttributes(ctx,tempLob);
 DBMS_OUTPUT.put_line(DBMS_LOB.substr(tempLob, DBMS_LOB.getLength(tempLob), 1));

 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION CAUGHT’);
END;
/

 ORDVideo Reference Information 6-121

getAllAttributes() Method
6.3.9 ORDVideo Methods Associated with Processing Video Data
This section presents reference information on the ORDVideo methods associated
with processing video data.
6-122 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

processVideoCommand() Method
processVideoCommand() Method

Format
processVideoCommand(

 ctx IN OUT RAW,

 cmd IN VARCHAR2,

 arguments IN VARCHAR2,

 result OUT RAW)

RETURN RAW;

Description
Allows you to send a command and related arguments to the format plug-in for
processing.

Parameters

ctx
The format plug-in context information.

cmd
Any command recognized by the format plug-in.

arguments
The arguments of the command.

result
The result of calling this function returned by the format plug-in.

Usage Notes
Use this method to send any video commands and their respective arguments to the
format plug-in. Commands are not interpreted; they are taken and passed through
to a format plug-in to be processed.

Note: This method is supported only for user-defined format
plug-ins.
 ORDVideo Reference Information 6-123

processVideoCommand() Method
If the format is set to NULL, then the processVideoCommand() method uses the
default format plug-in; otherwise, it uses your user-defined format plug-in.

You can extend support to a format that is not understood by the ORDVideo object
by preparing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
METHOD_NOT_SUPPORTED or VIDEO_PLUGIN_EXCEPTION

Either exception is raised if you call the ProcessVideoCommand() method and the
video plug-in raises an exception when calling this method.

Examples
Process a set of commands:

DECLARE
 obj ORDSYS.ORDVideo;
 res RAW(4000);
 result RAW(4000);
 command VARCHAR(4000);
 argList VARCHAR(4000);
 ctx RAW(4000) :=NULL;
BEGIN
select vid into obj from TVID where N =1 for UPDATE;
-- assign command
-- assign argList
res := obj.processVideoCommand (ctx, command, argList, result);
UPDATE TVID SET vid=obj WHERE N=1 ;
COMMIT;
EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
6-124 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

processVideoCommand() Method
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

 ORDVideo Reference Information 6-125

Packages or PL/SQL Plug-ins
6.4 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided. Table 6–1 describes the PL/SQL plug-in packages provided in the ORD-
PLUGINS schema.

Section 6.4.1 describes the ORDPLUGINS.ORDX_DEFAULT_VIDEO package, the
methods supported, and the level of support. Note that the methods supported and
the level of support for the other PL/SQL plug-in packages described in Table 6–1
are identical for all plug-in packages, therefore, refer to Section 6.4.1.

6.4.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
Use the following provided ORDPLUGINS.ORDX_DEFAULT_VIDEO package as a
guide in developing your own ORDPLUGINS.ORDX_<format>_VIDEO video for-
mat package. This package sets the mimeType field in the setProperties() method
with a MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_VIDEO
authid current_user
AS
--VIDEO ATTRIBUTES ACCESSORS
FUNCTION getFormat(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN VARCHAR2;
FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 name IN VARCHAR2)
 RETURN VARCHAR2;
PROCEDURE getFrameSize(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 width OUT INTEGER,
 height OUT INTEGER);
FUNCTION getFrameResolution(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;

Table 6–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Audio Format MIME Type

ORDPLUGINS.ORDX_DEFAULT_VIDEO <format> Dependent on file format

ORDPLUGINS.ORDX_AVI_VIDEO AVI video/x-msvideo

ORDPLUGINS.ORDX_MOOV_VIDEO MOOV video/quicktime

ORDPLUGINS.ORDX_RMFF_VIDEO RMFF application/x-vnd.realmedia
6-126 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
FUNCTION getFrameRate(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
FUNCTION getVideoDuration(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
FUNCTION getNumberOfFrames(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
FUNCTION getCompressionType(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN VARCHAR2;
FUNCTION getNumberOfColors(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
FUNCTION getBitRate(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW,obj IN ORDSYS.ORDVideo) RETURN NUMBER;

-- must return name=value; name=value; ... pairs
PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 attributes IN OUT NOCOPY CLOB);
-- VIDEO PROCESSING METHODS
FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getAttribute, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getFrameSize, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getFrameResolution, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getFrameRate, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getVideoDuration, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getNumberOfFrames, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getNumberOfColors, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getBitRate, WNDS, WNPS, RNDS, RNPS);

END;
/

 ORDVideo Reference Information 6-127

Packages or PL/SQL Plug-ins
Table 6–2 shows the methods supported in the ORDPLU-
GINS.ORDX_DEFAULT_VIDEO package and the exceptions raised if you call a
method that is not supported.

Table 6–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package

Name of Method Level of Support

getFormat Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

getFrameSize Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getFrameResolution Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

getFrameRate Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getVideoDuration Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getNumberOfFrames Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.
6-128 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
6.4.2 Extending interMedia to Support a New Video Data Format
Extending interMedia to support a new video data format consists of four steps:

1. Design your new video data format.

getCompressionType Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getNumberOfColors Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getBitRate Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

setProperties Supported; if the source is local, process the local data and set the proper-
ties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source
is a BFILE, then process the BFILE and set the properties; if the source is nei-
ther local nor a BFILE, get the media content into a temporary LOB, process
the data, and set the properties.

checkProperties Supported; if the source is local, process the local data and set the proper-
ties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source
is a BFILE, then process the BFILE and set the properties; if the source is nei-
ther local nor a BFILE, get the media content into a temporary LOB, process
the data, and set the properties.

getAllAttributes Supported; if the source is local, get the attributes and return them, but if
the source is NULL, raise an ORDSYS.ORDSourceExcep-
tions.EMPTY_SOURCE exception; otherwise, if the source is external, raise
an ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

Table 6–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package (Cont.)

Name of Method Level of Support
 ORDVideo Reference Information 6-129

Packages or PL/SQL Plug-ins
2. Implement your new video data format and name it, for example,
ORDX_MY_VIDEO.SQL.

3. Install your new ORDX_MY_VIDEO.SQL plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example,
ORDX_MY_VIDEO.SQL plug-in, to PUBLIC.

Section 2.3.12 briefly describes how to extend interMedia to support a new video
data format and describes the interface. A package body listing is provided in
Example 6–1 to assist you in this operation. Add your variables to the places that
say "--Your variables go here" and add your code to the places that say "--Your code
goes here".

See Section F.3 for more information on installing your own video format plug-in
and running the sample scripts provided.

Example 6–1 Show the Package Body for Extending Support to a New Video
Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_VIDEO
AS
 --VIDEO ATTRIBUTES ACCESSORS
 FUNCTION getFormat(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 name IN VARCHAR2)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 PROCEDURE getFrameSize(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 width OUT INTEGER,
 height OUT INTEGER)
 IS
--Your variables go here
 BEGIN
6-130 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
--Your code goes here
 END;
 FUNCTION getFrameResolution(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getFrameRate(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getVideoDuration(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getNumberOfFrames(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getCompressionType(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getNumberOfColors(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getBitRate(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 ORDVideo Reference Information 6-131

Packages or PL/SQL Plug-ins
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;

PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 setComments IN NUMBER :=0)
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION checkProperties(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo) RETURN NUMBER
 IS
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 attributes IN OUT NOCOPY CLOB)
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 -- VIDEO PROCESSING METHODS
 FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
END;
/

6-132 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
show errors;
 ORDVideo Reference Information 6-133

Packages or PL/SQL Plug-ins
6-134 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 ORDSource Reference Inform
7

ORDSource Reference Information

Oracle interMedia contains the following information about the ORDSource type:

■ Object type -- see Section 7.1.

■ Methods -- see Section 7.2.

■ Packages or PL/SQL plug-ins -- see Section 7.3.

This object is used only by other Oracle interMedia objects. You can use this as an
embedded object to implement source mechanisms for your own objects.

The examples in this chapter assume that the test source table TS has been created
and filled with data. This table was created using the SQL statements described in
Section 7.2.1.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the open() method. At this point, the source plug-in can ini-
tialize context for this client. When processing is complete, the client should invoke
the close() method.

Methods invoked from a source plug-in call have the first argument as obj (ORD-
Source) and the second argument as ctx (RAW(4000)).

The ORDSource object does not attempt to maintain consistency, for example, with
local and upDateTime attributes. It is up to you to maintain consistency. ORDAu-

Note: In the current release, not all source plug-ins will use the ctx
argument, but if you code as previously described, your applica-
tion should work with any current or future source plug-in.
ation 7-1

Object Types
dio, ORDImage, and ORDVideo objects all maintain consistency of their included
ORDSource object.

7.1 Object Types
Oracle interMedia provides the ORDSource object type, which supports access to a
variety of sources of multimedia data.
7-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDSource Object Type
ORDSource Object Type

The ORDSource object type supports access to data sources locally in a BLOB
within an Oracle database, externally from a BFILE on a local file system, externally
from a URL on an HTTP server (within the firewall), or externally from a user-
defined source on another server. This object type is defined as follows:

CREATE OR REPLACE TYPE ORDsource
AS OBJECT
(
 -- ATTRIBUTES
localData BLOB,
srcType VARCHAR2(4000),
srcLocation VARCHAR2(4000),
srcName VARCHAR2(4000),
updateTime DATE,
local NUMBER,
 -- METHODS
-- Methods associated with the local attribute
MEMBER PROCEDURE setLocal,
MEMBER PROCEDURE clearLocal,
MEMBER FUNCTION isLocal RETURN BOOLEAN,
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS),
-- Methods associated with the updateTime attribute
MEMBER FUNCTION getUpdateTime RETURN DATE,
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setUpdateTime(current_time DATE),
-- Methods associated with the source information
MEMBER PROCEDURE setSourceInformation(
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER FUNCTION getSourceInformation RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceInformation, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceLocation RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceName RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS, WNPS, RNDS, RNPS),
 ORDSource Reference Information 7-3

ORDSource Object Type
MEMBER FUNCTION getBFile RETURN BFILE,
PRAGMA RESTRICT_REFERENCES(getBFile, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with source import/export operations
MEMBER PROCEDURE import(
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2),
MEMBER PROCEDURE import(
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2),
MEMBER PROCEDURE importFrom(
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER PROCEDURE importFrom(
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER PROCEDURE export(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
-- Methods associated with source content-related operations
MEMBER FUNCTION getContentLength(ctx IN OUT RAW) RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceAddress(ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getLocalContent RETURN BLOB,
PRAGMA RESTRICT_REFERENCES(geLocalContent, WNDS, WNPS, RNDS, RNPS),
7-4

ORDSource Object Type
MEMBER PROCEDURE getContentInTempLob(
 ctx IN OUT RAW,
 tempLob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 duration IN PLS_INTEGER := 10,
 cache IN BOOLEAN := TRUE),
MEMBER PROCEDURE deleteLocalContent,

-- Methods associated with source access methods
MEMBER FUNCTION open(userArg IN RAW, ctx OUT RAW) RETURN INTEGER,
MEMBER FUNCTION close(ctx IN OUT RAW) RETURN INTEGER,
MEMBER FUNCTION trim(ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER,

-- Methods associated with content read/write operations
MEMBER PROCEDURE read(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW),
MEMBER PROCEDURE write(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer IN RAW),
-- Methods associated with any commands to be sent to the external source
MEMBER FUNCTION processCommand(
 ctx IN OUT RAW,
 command IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
);

where:

■ localData: contains the locally stored multimedia data stored as a BLOB within
the object. Up to 4 gigabytes of data can be stored as a BLOB within an Oracle
database and is protected by the Oracle security and transaction environment.
 ORDSource Reference Information 7-5

ORDSource Object Type
■ srcType: identifies the data source type. Supported values source types are:

■ srcLocation: identifies the place where data can be found based on the srcType
value. Valid srcLocation values for corresponding srcType values are:

■ srcName: identifies the data object name. Valid srcName values for correspond-
ing srcType values are:

■ updateTime: the time at which the data was last updated.

■ local: a flag to determine whether or not the data is local:

1 means the data is in the BLOB.

0 means the data is in external sources.

NULL, which may be a default state when you first insert an empty row, is
assumed to mean data is local.

srcType Source Type

"FILE" A BFILE on a local file system

"HTTP" An HTTP server

"<name>" User-defined

Note: The keyword FILE for the plug-in is a reserved word for the
BFILE source provided by Oracle Corporation. To implement for
your own file plug-in, select a different name, for example,
MYFILE.

srcType Location Value

"FILE" <DIR> or name of the directory object

"HTTP" <SourceBase> or URL needed to find the base directory

"<name>" <iden> or identifier string required to access a user-defined source

srcType Name Value

"FILE" <FILE> or name of the file

"HTTP" <Source> or name of the object

"<name>" <object name> or name of the object
7-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
7.2 Methods
This section presents ORDSource reference information on the Oracle interMedia
methods provided for source data manipulation. These methods are described in
the following groupings:

ORDSource Methods Associated with the local Attribute
■ setLocal: sets the flag value for the local attribute to "1", meaning that the source

of the data is local.

■ clearLocal: resets the flag value for the local attribute to "0", meaning that the
source of the data is external.

■ isLocal: returns TRUE to indicate that the source of the data is local or in the
BLOB, or FALSE, meaning the data is in an external source. The value of the
local attribute is used to determine the return value.

ORDSource Methods Associated with the updateTime Attribute
■ getUpdateTime: returns the value of the updateTime attribute.

■ setUpdateTime: sets the value of the updateTime attribute to the specified time
provided in the argument.

ORDSource Methods Associated with the srcType, srcLocation, and
srcName Attributes
■ setSourceInformation(): sets or alters information about the source of the data.

■ getSourceInformation: returns a formatted string containing complete informa-
tion about the data source formatted as a URL.

■ getSourceType: returns the external source type of the data.

■ getSourceLocation: returns the external source location of the data.

■ getSourceName: returns the external source name of the data.

■ getBFile: returns the external content as a BFILE, if srcType is of type FILE.

ORDSource Methods Associated with import and export Operations
■ import(): transfers data from an external data source (specified by calling set-

SourceInformation()) to the local source (localData) within an Oracle database.

■ importFrom(): transfers data from the specified external data source (source,
location, name) to the local source (localData) within an Oracle database.
 ORDSource Reference Information 7-7

Methods
■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source.

ORDSource Methods Associated with the localData Attribute
■ getContentLength(): returns the length of the data source (as number of bytes).

■ getSourceAddress(): returns the address of the data source.

■ getLocalContent: returns the handle to the BLOB used to store contents locally.

■ getContentInTempLob(): returns content into a temporary LOB.

■ deleteLocalContent: deletes the content of the local BLOB.

ORDSource Methods Associated with Access Operations
■ open(): opens a data source.

■ close(): closes a data source.

■ trim(): trims a data source.

ORDSource Methods Associated with Source Read/Write Operations
■ read(): reads a buffer of n bytes from a source beginning at a start position.

■ write(): writes a buffer of n bytes to a source beginning at a start position.

ORDSource Methods Associated with Processing Commands to the
External Source
■ processCommand(): process as any command to the external source. This

method is supported only for user-defined sources.

For more information on object types and methods, see Oracle8i Concepts.

7.2.1 Example Table Definitions
The methods described in this reference chapter show examples based on a test
source table TS. Refer to the TS table definition that follows when reading through
the examples in Section 7.2.2 through Section 7.2.9:

Note: The export() method natively supports only sources of
source type FILE. User-defined sources may support the export()
method.
7-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Methods
TS Table Definition
CREATE TABLE TS(n NUMBER, s ORDSYS.ORDSOURCE);

INSERT INTO TS VALUES(1, ORDSYS.ORDSOURCE(EMPTY_BLOB(), NULL, NULL, NULL,
SYSDATE, NULL));
INSERT INTO TS VALUES(2, ORDSYS.ORDSOURCE(EMPTY_BLOB(), NULL, NULL, NULL,
SYSDATE, NULL));
INSERT INTO TS VALUES(3, ORDSYS.ORDSOURCE(EMPTY_BLOB(), NULL, NULL, NULL,
SYSDATE, NULL));
INSERT INTO TS VALUES(4, ORDSYS.ORDSOURCE(EMPTY_BLOB(), NULL, NULL, NULL,
SYSDATE, NULL));

7.2.2 ORDSource Methods Associated with the local Attribute
This section presents reference information on the ORDSource methods associated
with the local attribute.
 ORDSource Reference Information 7-9

setLocal Method
setLocal Method

Format
setLocal;

Description
Sets the local attribute to indicate that the data is stored in a BLOB within Oracle8i.

Parameters
None.

Usage Notes
This method sets the local attribute to 1, meaning the data is stored locally in the
localData attribute.

Pragmas
None.

Exceptions
None.

Examples
Set the flag to local for the data:

DECLARE
 SRC ORDSYS.ORDSource;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.setLocal;
 UPDATE TS SET S=SRC WHERE N = 1;
 COMMIT;
END;
/

7-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

clearLocal Method
clearLocal Method

Format
clearLocal;

Description
Resets the flag value from local, meaning the source of the data is stored locally in a
BLOB in Oracle8i, to nonlocal meaning the source of the data is stored externally.

Parameters
None.

Usage Notes
This method sets the local attribute to a 0, meaning the data is stored externally or
outside of Oracle8i.

Pragmas
None.

Exceptions
None.

Examples
Clear the value of the local flag for the data:

DECLARE
 SRC ORDSYS.ORDSource;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.clearLocal;
 UPDATE TS SET S=SRC WHERE N = 1;
 COMMIT;
END;
/

 ORDSource Reference Information 7-11

isLocal Method
isLocal Method

Format
isLocal RETURN BOOLEAN;

Description
Returns TRUE if the data is stored locally in a BLOB in Oracle8i or FALSE if the data
is stored externally.

Parameters
None.

Usage Notes
If the local attribute is set to1 or NULL, this method returns TRUE, otherwise this
method returns FALSE.

Pragmas
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Determine whether or not the data is local:

DECLARE
 SRC ORDSYS.ORDSource;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 ;
 if(SRC.isLocal = TRUE) then
 DBMS_OUTPUT.put_line(’local is set true’);
 else
 DBMS_OUTPUT.put_line(’local is set false’);
 end if;
END;
/

7-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

isLocal Method
7.2.3 ORDSource Methods Associated with the updateTime Attribute
This section presents reference information on the ORDSource methods associated
with the updateTime attribute.
 ORDSource Reference Information 7-13

getUpdateTime Method
getUpdateTime Method

Format
getUpdateTime RETURN DATE;

Description
Returns the value of the updateTime attribute for the ORDSource object. This is the
timestamp when the object was last changed, or what the user explicitly set by call-
ing the setUpdateTime() method.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the current value of the updateTime attribute for some data:

DECLARE
 SRC ORDSYS.ORDSource;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.setUpdateTime(SYSDATE);
 UPDATE TS SET S=SRC WHERE N = 1;
 COMMIT;
 SELECT S INTO SRC FROM TS WHERE N = 1 ;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(SRC.getUpdateTime,’MM-DD-YYYY HH24:MI:SS’));
END;
/

7-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setUpdateTime() Method
setUpdateTime() Method

Format
setUpdateTime(current_time DATE);

Description
Sets the value of the updateTime attribute to the time you specify.

Parameters

current_time
The update time.

Usage Notes
If current_time is NULL, updateTime is set to SYSDATE (the current time).

Pragmas
None.

Exceptions
None.

Examples
See the example in getUpdateTime Method on page 7-14
 ORDSource Reference Information 7-15

setUpdateTime() Method
7.2.4 ORDSource Methods Associated with the srcType, srcLocation, and srcName
Attributes

This section presents reference information on the ORDSource methods associated
with the srcType, srcLocation, and srcName attributes.
7-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setSourceInformation() Method
setSourceInformation() Method

Format
setSourceInformation(

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Sets the provided subcomponent information for the srcType, srcLocation, and src-
Name that describes the external data source.

Parameters

source_type
The source type of the external data. See the “ORDSource Object Type” definition in
this chapter for more information.

source_location
The source location of the external data. See the “ORDSource Object Type” defini-
tion in this chapter for more information.

source_name
The source name of the external data. See the “ORDSource Object Type” definition
in this chapter for more information.

Usage Notes
Before you call the import() method, you must call the setSourceInformation()
method to set the srcType, srcLocation, and srcName attribute information to
describe where the data source is located. If you call the importFrom() or the
export() method, then these attributes are set after the importFrom() or export()
call succeeds.

You must ensure that the directory exists or is created before you use this method.
 ORDSource Reference Information 7-17

setSourceInformation() Method
Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the setSourceInformation() method and the value
for source_type is NULL.

Examples
Set the source to point to a file:

DECLARE
 SRC ORDSYS.ORDSource;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.setSourceInformation(’FILE’,’AUDIODIR’,’testaud.dat’);
 DBMS_OUTPUT.PUT_LINE(SRC.getSourceInformation);
 DBMS_OUTPUT.PUT_LINE(SRC.getSourceType);
 DBMS_OUTPUT.PUT_LINE(SRC.getSourceLocation);
 DBMS_OUTPUT.PUT_LINE(SRC.getSourceName);
 UPDATE TS SET S=SRC WHERE N = 1;
 COMMIT;
END;
/

7-18 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSourceInformation Method
getSourceInformation Method

Format
getSourceInformation RETURN VARCHAR2;

Description
Returns a URL formatted string containing complete information about the exter-
nal data source.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string formatted as: <srcType>://<srcLoca-
tion>/<srcName>, where srcType, srcLocation, and srcName are the ORDSource
attribute values.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceInformation, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in setSourceInformation() Method on page 7-18.
 ORDSource Reference Information 7-19

getSourceType Method
getSourceType Method

Format
getSourceType RETURN VARCHAR2;

Description
Returns the external data source type.

Parameters
None.

Usage Notes
This method returns the current value of the srcType attribute, for example FILE.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in setSourceInformation() Method on page 7-18.
7-20 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSourceLocation Method
getSourceLocation Method

Format
getSourceLocation RETURN VARCHAR2;

Description
Returns the external data source location.

Parameters
None.

Usage Notes
This method returns the current value of the srcLocation attribute, for example
BFILEDIR.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS,
WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_LOCATION

This exception is raised if you call the setSourceLocation() method and the value of
srcLocation is NULL.

Examples
See the example in setSourceInformation() Method on page 7-18.
 ORDSource Reference Information 7-21

getSourceName Method
getSourceName Method

Format
getSourceName RETURN VARCHAR2;

Description
Returns the external data source name.

Parameters
None.

Usage Notes
This method returns the current value of the srcName attribute, for example
testaud.dat.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS,
WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_NAME

This exception is raised if you call the setSourceName() method and the value of
srcName is NULL.

Examples
See the example in setSourceInformation() Method on page 7-18.
7-22 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getBFile Method
getBFile Method

Format
getBFile RETURN BFILE;

Description
Returns a BFILE handle, if the srcType is FILE.

Parameters
None.

Usage Notes
This method can only be used for a srcType of FILE or BFILE sources.

Pragmas
PRAGMA RESTRICT_REFERENCES(getBFile, WNDS, WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getBFILE method and the value of srcType is
NULL.

INVALID_SOURCE_TYPE

This exception is raised if you call the getBFile method and the value of srcType is
other than FILE.

Examples
Get a BFILE:

DECLARE
 SRC ORDSYS.ORDSource;
 file_handle BFILE;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 ;
 src.setSourceInformation(’FILE’,’BFILEDIR’,’testaud.dat’);
 file_handle := SRC.getBFile;
 ORDSource Reference Information 7-23

getBFile Method
 DBMS_OUTPUT.put_line(DBMS_LOB.GETLENGTH(file_handle));
END;
/

7-24 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getBFile Method
7.2.5 ORDSource Methods Associated with Import and Export Operations
This section presents reference information on the ORDSource methods associated
with import and export operations.
 ORDSource Reference Information 7-25

import() Method
import() Method

Format
import(

 ctx IN OUT RAW,

 mimetype OUT VARCHAR2,

 format OUT VARCHAR2);

Description
Transfers data from an external data source (specified by first calling setSourceInfor-
mation()) to a local source within an Oracle database.

Parameters

ctx
The source plug-in context information.This information is passed along uninter-
preted to the source plug-in handling the import() call.

mimetype
Out parameter to receive the MIME type of the data, if any, for example, ’audio/
basic’.

format
Out parameter to receive the format of the data, if any, for example, ’AUFF’.

Usage Notes
Call setSourceInformation() to set the srcType, srcLocation, and srcName attribute
information to describe where the data source is located prior to calling the
import() method.

You must ensure that the directory exists or is created before you use this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
None.
7-26 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

import() Method
Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not sup-
ported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised, raises a exception.

Examples
Import data from an external data source into the local source and check for excep-
tions:

DECLARE
 SRC ORDSYS.ORDSource;
 mType VARCHAR2(4000);
 format VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.setSourceInformation(’FILE’,’BFILEDIR’,’testaud.dat’);
 SRC.import(ctx,mType,format);
 COMMIT;
EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line('Source METHOD_NOT_SUPPORTED caught');
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line('SOURCE PLUGIN EXCEPTION caught');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('OTHER EXCEPTION caught');
END;
/

 ORDSource Reference Information 7-27

import() Method (Deprecated)
import() Method (Deprecated)

Format
import(

 ctx IN OUT RAW,

 dlob IN OUT NOCOPY BLOB,

 mimetype OUT VARCHAR2,

 format OUT VARCHAR2);

Description
Transfers data from an external data source (specified by first calling setSourceInfor-
mation()) to a local source within an Oracle database.

Parameters

ctx
The source plug-in context information.This information is passed along uninter-
preted to the source plug-in handling the import() call.

dlob
The destination large object or data object.

mimetype
Out parameter to receive the MIME type of the data, if any, for example, ’audio/
basic’.

format
Out parameter to receive the format of the data, if any, for example, ’AUFF’.

Note: This method is deprecated in the 8.1.7 release.
7-28 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

import() Method (Deprecated)
Usage Notes
Call setSourceInformation() to set the srcType, srcLocation, and srcName attribute
information to describe where the data source is located prior to calling the
import() method.

You must ensure that the directory exists or is created before you use this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not sup-
ported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised, raises a exception.

Examples
Import data from an external data source into the local source and check for excep-
tions:

DECLARE
 SRC ORDSYS.ORDSource;
 mType VARCHAR2(4000);
 format VARCHAR2(4000);
 dblob BLOB;
 ctx RAW(4000) :=NULL;
BEGIN
 ORDSource Reference Information 7-29

import() Method (Deprecated)
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.setSourceInformation(’FILE’,’BFILEDIR’,’testaud.dat’);
 SRC.import(ctx,dblob,mType,format);
 COMMIT;
EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line('Source METHOD_NOT_SUPPORTED caught');
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line('SOURCE PLUGIN EXCEPTION caught');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('OTHER EXCEPTION caught');
END;
/

7-30 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

importFrom() Method
importFrom() Method

Format
importFrom(

 ctx IN OUT RAW,

 mimetype OUT VARCHAR2,

 format OUT VARCHAR2

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers data from the specified external data source (type, location, name) to a
local source within an Oracle database, and resets the source attributes and the
timestamp.

Parameters

ctx
The source plug-in context information.This information is passed along uninter-
preted to the source plug-in handling the importFrom() call.

mimetype
Out parameter to receive the MIME type of the data, if any, for example, ’audio/
basic’.

format
Out parameter to receive the format of the data, if any, for example, ’AUFF’.

source_type
Source type from where the data is to be imported. This also sets the srcType
attribute.

source_location
Source location from where the data is to be imported. This also sets the srcLoca-
tion attribute.
 ORDSource Reference Information 7-31

importFrom() Method
source_name
Name of the source to be imported. This also sets the srcName attribute.

Usage Notes
This method describes where the data source is located by specifying values for the
type, location, and name parameters, which set the srcType, srcLocation, and src-
Name attribute values, respectively, after the importFrom operation succeeds.

You must ensure that the directory exists or is created before you use this method.

This method is a combination of a setSourceInformation() call followed by an
import() call.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
None.

Exceptions
NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source plug-
in when any other exception is raised.

Examples
Import data from the specified data source into a BLOB "l":

DECLARE
 SRC ORDSYS.ORDSource;
 mType VARCHAR2(4000);
 format VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
7-32 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

importFrom() Method
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.importFrom(ctx, mType, format,’FILE’,’AUDIODIR’,’testaud.dat’);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(SRC.getContentLength(ctx)));
 UPDATE TS SET S=SRC WHERE N=1;
 COMMIT;
END;
 ORDSource Reference Information 7-33

importFrom() Method (Deprecated)
importFrom() Method (Deprecated)

Format
importFrom(

 ctx IN OUT RAW,

 dlob IN OUT NOCOPY BLOB,

 mimetype OUT VARCHAR2,

 format OUT VARCHAR2

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers data from the specified external data source (type, location, name) to a
local source within an Oracle database, and resets the source attributes and the
timestamp.

Parameters

ctx
The source plug-in context information.This information is passed along uninter-
preted to the source plug-in handling the importFrom() call.

dlob
The destination large object or data object.

mimetype
Out parameter to receive the MIME type of the data, if any, for example, ’audio/
basic’.

format
Out parameter to receive the format of the data, if any, for example, ’AUFF’.

Note: This method is deprecated in the 8.1.7 release.
7-34 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

importFrom() Method (Deprecated)
source_type
Source type from where the data is to be imported. This also sets the srcType
attribute.

source_location
Source location from where the data is to be imported. This also sets the srcLoca-
tion attribute.

source_name
Name of the source to be imported. This also sets the srcName attribute.

Usage Notes
This method describes where the data source is located by specifying values for the
type, location, and name parameters, which set the srcType, srcLocation, and src-
Name attribute values, respectively, after the importFrom operation succeeds.

You must ensure that the directory exists or is created before you use this method.

This method is a combination of a setSourceInformation() call followed by an
import() call.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
None.

Exceptions
NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source plug-
in when any other exception is raised.
 ORDSource Reference Information 7-35

importFrom() Method (Deprecated)
Examples
Import data from the specified data source into a BLOB l:

DECLARE
 SRC ORDSYS.ORDSource;
 mType VARCHAR2(4000);
 format VARCHAR2(4000);
 l BLOB;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.importFrom(ctx, l, mType, format,’FILE’,’AUDIODIR’,’testaud.dat’);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(SRC.getContentLength(ctx)));
 UPDATE TS SET S=SRC WHERE N=1;
 COMMIT;
END;
7-36 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

export() Method
export() Method

Format
export(

 ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Copies data from a local source (localData) within an Oracle database to an external
data source.

Parameters

ctx
The source plug-in context information.

source_type
The source type of the location to where data is to be exported.

source_location
The location where the data is to be exported.

source_name
The name of the object to where the data is to be exported.

Usage Notes
This method exports data out of the localData to another source.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Note: The export() method natively supports only sources of
source type FILE. User-defined sources may support the export()
method.
 ORDSource Reference Information 7-37

export() Method
After exporting data, the srcType, srcLocation, and srcName attributes are updated
with input parameter values. After calling the export() method, call the
clearLocal() method to indicate the data is stored outside the database and call the
deleteLocalContent method if you want to delete the content of the local data.

This method is also available for user-defined sources that can support the export
method.

The only server-side native support for the export method is for the srcType FILE.

The export() method for a source type of FILE is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading pur-
poses.

The export() method is not an exact mirror operation to the import() method in
that the clearLocal() method is not automatically called to indicate the data is
stored outside the database, whereas the import() method automatically calls the
setLocal() method.

Call the deleteLocalContent method after calling the export() method to delete the
content from the database if you no longer intend to manage the multimedia data
within the database.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the
DBMS_JAVA.GRANT_PERMISSION call to specify to which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBMS_JAVA.GRANT_PERMISSION(
 ’MEDIAUSER’,
 ’java.io.FilePermission’,
 ’/actual/server/directory/path/filename.dat’,
 ’write’);

See the security and performance section in Oracle8i Java Developer’s Guide for more
information.

Invoking this method implicitly calls the setUpdateTime() method.

Pragmas
None.
7-38 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

export() Method
Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the export() method and the value of srcType is
NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not sup-
ported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.

Examples
Export data from a local source to an external data source:

DECLARE
 obj ORDSYS.ORDSource;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT S INTO obj FROM TS WHERE N = 1;
 obj.export(ctx,’FILE’,’VIDEODIR’,’testvid.dat’);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’OTHER EXCEPTION caught’);
END;
/

 ORDSource Reference Information 7-39

export() Method
7.2.6 ORDSource Methods Associated with the localData Attribute
This section presents reference information on the ORDSource methods associated
with the localData attribute.
7-40 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContentLength() Method
getContentLength() Method

Format
getContentLength(ctx IN OUT RAW) RETURN INTEGER;

Description
Returns the length of the data content stored in the source. For a FILE source and
for data in a local BLOB data source, the length is returned as a number of bytes.
The unit type of the returned value is defined by the plug-in that implements this
method.

Parameters

ctx
The source plug-in context information.

Usage Notes
This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source plug-in and implement
this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getContentLength() method and the value of
srcType is NULL and data is not stored locally in the BLOB.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentLength() method within a source
plug-in when any other exception is raised.
 ORDSource Reference Information 7-41

getContentLength() Method
Examples
Get the length of the data content stored in the source:

DECLARE
 SRC ORDSYS.ORDSource;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1;
 DBMS_OUTPUT.PUT_LINE(SRC.getSourceInformation);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(SRC.getContentLength(ctx)));
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
 END;
/

7-42 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSourceAddress() Method
getSourceAddress() Method

Format
getSourceAddress(ctx IN OUT RAW,

 userData IN VARCHAR2) RETURN VARCHAR2;

Description
Returns the source address for data located in an external data source. This method
is only implemented for user-defined sources.

Parameters

ctx
The source plug-in context information.

userData
Information input by the user needed by some sources to obtain the desired source
address.

Usage Notes
Use this method to return the address of an external data source when the source
needs to format this information in some unique way. For example, call the get-
SourceAddress()method to obtain the address for RealNetworks server sources or
URLs containing data sources located on Oracle Application Server.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS,
WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getSourceAddress() method and the value of
srcType is NULL.
 ORDSource Reference Information 7-43

getSourceAddress() Method
SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getSource Address() method within a source
plug-in when any other exception is raised.

Examples
Get the source address for the external source:

DECLARE
 SRC ORDSYS.ORDSource;
 ctx RAW(4000) :=NULL;
 userData VARCHAR2(4000);
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 -- process tempBlob
 SRC.setSourceInformation(’FILE’,’AUDIODIR’,’testaud.dat’);
 userData :=NULL;
 DBMS_OUTPUT.PUT_LINE(SRC.getSourceAddress(ctx,userData));
 COMMIT;
END;
/

7-44 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getLocalContent Method
getLocalContent Method

Format
getLocalContent RETURN BLOB;

Description
Returns the content or BLOB handle of the local data.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getLocalContent, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the local content for a local source prior to an import operation:

DECLARE
 SRC ORDSYS.ORDSource;
 l BLOB;
 mimeType VARCHAR2(4000);
 format VARCHAR2(4000);
 ctx RAW(4000) := NULL;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 l := SRC.getLocalContent;
 SRC.importFrom(ctx, 1, mimeType, format,’FILE’,’AUDIODIR’,’testaud.dat’);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(1)));
 UPDATE TS SET S=SRC WHERE N=1;
 COMMIT;
 ORDSource Reference Information 7-45

getLocalContent Method
END;
7-46 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContentInTempLob() Method
getContentInTempLob() Method

Format
getContentInTempLob(

 ctx IN OUT RAW,

 tempLob IN OUT NOCOPY BLOB,

 mimetype OUT VARCHAR2,

 format OUT VARCHAR2,

 duration IN PLS_INTEGER := 10,

 cache IN BOOLEAN := TRUE);

Description
Transfers data from the current data source into a temporary LOB, which will be
allocated and initialized as a part of this call.

Parameters

ctx
The source plug-in context information.

tempLob
Uninitialized BLOB locator, which will be allocated in this call.

mimetype
Out parameter to receive the MIME type of the data, for example, ’audio/basic’.

format
Out parameter to receive the format of the data, for example, ’AUFF’.

duration
The life of the temporary LOB to be allocated. The life of the temporary LOB can be
for the duration of the call, the transaction, or for the session. The default is
DBMS_LOB.SESSION. Valid values for each duration state are as follows:

DBMS_LOB.CALL

DBMS_LOB.TRANSACTION
 ORDSource Reference Information 7-47

getContentInTempLob() Method
DBMS_LOB.SESSION

cache
Whether or not you want to keep the data cached. The value is either TRUE or
FALSE. The default is TRUE.

Usage Notes
None.

Pragmas
None.

Exceptions
NO_DATA_FOUND

This exception is raised if you call the getContentInLob() method when working
with temporary LOBs for looping read operations that reach the end of the LOB,
and there are no more bytes to be read from the LOB.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentInLob() method within a source
plug-in when any other exception is raised.

Examples
Get data from an external data source into a temporary LOB on the local source:

DECLARE
 SRC ORDSYS.ORDSource;
 userData VARCHAR2(4000);
 l BLOB;
 tempBLob BLOB;
 mimeType VARCHAR2(4000);
 format VARCHAR2(4000);
 ctx RAW(4000) := NULL;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.importFrom(ctx, src.localData, mimeType, format,’FILE’,’AUDIODIR’,’testaud.dat’);
 SRC.getContentInTempLob(ctx,tempBlob,
 mimeType,format, 0,FALSE);
-- process tempBlob

 DBMS_OUTPUT.PUT_LINE(TO_CHAR(SRC.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(SRC.getSourceAddress(ctx,userData));
7-48 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContentInTempLob() Method
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(tempBlob)));
 UPDATE TS SET S=SRC WHERE N=1;
 COMMIT;
END;
/

 ORDSource Reference Information 7-49

deleteLocalContent Method
deleteLocalContent Method

Format
deleteLocalContent;

Description
Deletes the local data from the current local source (localData).

Parameters
None.

Usage Notes
This method can be called after you export the data from the local source to an
external data source and you no longer need this data in the local source.

Pragmas
None.

Exceptions
None.

Examples
Delete the local data from the current local source:

DECLARE
 SRC ORDSYS.ORDSource;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 SRC.deleteLocalContent;
 UPDATE TS SET S=SRC WHERE N=1;
 COMMIT;
END;
/

7-50 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

deleteLocalContent Method
7.2.7 ORDSource Methods Associated with File Operations
This section presents reference information on the ORDSource methods associated
with accessing an external data source.
 ORDSource Reference Information 7-51

open() Method
open() Method

Format
open(userArg IN RAW, ctx OUT RAW) RETURN INTEGER;

Description
Opens a data source. It is recommended that this method be called before invoking
any other methods that accept the ctx parameter.

Parameters

userArg
The user argument.

ctx
The source plug-in context information.

Usage Notes
Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the open() method and the value for srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the open() method and this method is not sup-
ported by the source plug-in being used.
7-52 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

open() Method
SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the open() method within a source plug-in when
any other exception is raised.

Examples
Open an external data source:

DECLARE
 SRC ORDSYS.ORDSource;
 res INTEGER;
 ctx RAW(4000) :=NULL;
 userArg RAW(4000);
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 res := SRC.open(userArg, ctx);
 -- manipulate the source
 res := SRC.close(ctx);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Exception caught’);
END;
/

 ORDSource Reference Information 7-53

close() Method
close() Method

Format
close(ctx IN OUT RAW) RETURN INTEGER;

Description
Closes a data source.

Parameters

ctx
The source plug-in context information.

Usage Notes
Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the close() method and the value for srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the close() method and this method is not sup-
ported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the close() method within a source plug-in when
any other exception is raised.
7-54 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

close() Method
Examples
Close an external data source:

DECLARE
 SRC ORDSYS.ORDSource;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 res := SRC.close(ctx);
 UPDATE TS SET S=SRC WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Exception caught’);
END;
/

 ORDSource Reference Information 7-55

trim() Method
trim() Method

Format
trim(ctx IN OUT RAW,

 newlen IN INTEGER) RETURN INTEGER;

Description
Trims a data source.

Parameters

ctx
The source plug-in context information.

newlen
The trimmed new length.

Usage Notes
Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the trim() method and the value for srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED
7-56 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

trim() Method
This exception is raised if you call the trim() method and this method is not sup-
ported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the trim() method within a source plug-in when
any other exception is raised.

Examples
Trim an external data source:

DECLARE
 SRC ORDSYS.ORDSource;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 res := SRC.trim(ctx,0);
 UPDATE TS SET S=SRC WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Exception caught’);
END;
/

 ORDSource Reference Information 7-57

trim() Method
7.2.8 ORDSource Methods Associated with Read/Write Operations
This section presents reference information on the ORDSource methods associated
with read/write operations.
7-58 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

read() Method
read() Method

Format
read(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer OUT RAW);

Description
Allows you to read a buffer of numBytes from a source beginning at a start position
(startPos).

Parameters

ctx
The source plug-in context information.

startPos
The start position in the data source.

numBytes
The number of bytes to be read from the data source.

buffer
The buffer to where the data will be read.

Usage Notes
This method is not supported for HTTP sources.

To successfully read HTTP source types, the entire URL source must be requested to
be read. If you want to implement a read method for an HTTP source type, you
must provide your own implementation for this method in the modified source
plug-in for the HTTP source type.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.
 ORDSource Reference Information 7-59

read() Method
Pragmas
None.

Exceptions
NULL_SOURCE

This exception is raised if you call the read() method and the data is stored locally
and localData is NULL.

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the read() method and the value of srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the read() method and this method is not sup-
ported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the read() method within a source plug-in when
any other exception is raised.

Examples
Read a buffer from the source:

DECLARE
 SRC ORDSYS.ORDSource;
 i INTEGER;
 buffer RAW(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 i := 20;
 SELECT S INTO SRC FROM TS WHERE N = 1 ;
 SRC.read(ctx, 1, i, buffer);
END;
/

7-60 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

write() Method
write() Method

Format
write(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer IN RAW);

Description
Allows you to write a buffer of numBytes to a source beginning at a start position
(startPos).

Parameters

ctx
The source plug-in context information.

startPos
The start position in the source to where the buffer should be copied.

numBytes
The number of bytes to be written to the source.

buffer
The buffer of data to be written.

Usage Notes
This method assumes that the writable source allows you to write numBytes at a
random byte location. For example, the FILE and HTTP source types are not writ-
able sources and do not support this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.
 ORDSource Reference Information 7-61

write() Method
Pragmas
None.

Exceptions
NULL_SOURCE

This exception is raised if you call the write() method and local is 1 or NULL and
localData is NULL.

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the write() method and the value of srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the write() method and this method is not sup-
ported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the write() method within a source plug-in when
any other exception is raised.

Examples
Write a buffer to the source:

DECLARE
 SRC ORDSYS.ORDSource;
 n INTEGER := 6;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT S INTO SRC FROM TS WHERE N = 1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(SRC.getSourceInformation);
 SRC.write(ctx, 1, n, UTL_RAW.CAST_TO_RAW(’helloP’));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(SRC.getContentLength(ctx)));
 COMMIT;
END;
/

7-62 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

write() Method
7.2.9 ORDSource Methods Associated with Processing Commands to the External
Source

This section presents reference information on the ORDSource methods associated
with processing commands to the external source.
 ORDSource Reference Information 7-63

processCommand() Method
processCommand() Method

Format
processCommand(

 ctx IN OUT RAW,

 command IN VARCHAR2,

 arglist IN VARCHAR2,

 result OUT RAW)

RETURN RAW;

Description
Allows you to send commands and related arguments to the source plug-in. This
method is supported only for user-defined sources.

Parameters

ctx
The source plug-in context information.

command
Any command recognized by the source plug-in.

arglist
The arguments for the command.

result
The result of calling this method returned by the plug-in.

Usage Notes
Use this method to send any commands and their respective arguments to the plug-
in. Commands are not interpreted; they are taken and passed through to be pro-
cessed.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.
7-64 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

processCommand() Method
Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the processCommand() method and the value of
srcType is NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the processCommand() method and this method
is not supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the processCommand() method within a source
plug-in when any other exception is raised.

Examples
Process some commands:

DECLARE
 obj ORDSYS.ORDSource ;
 res RAW(4000);
 result RAW(4000);
 command VARCHAR2(4000);
 argList VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 select s into obj from TS where N =1 for UPDATE;
 command := ’xxx ’;
 argList := ’yyy ’;
 res := obj.processCommand(ctx, command, argList, result);
 UPDATE TS SET s=obj WHERE N=1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’OTHER EXCEPTION caught’);
END;
/

 ORDSource Reference Information 7-65

Packages or PL/SQL Plug-ins
7.3 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided.

Any method invoked from a source plug-in call has the first argument as obj (ORD-
Source) and the second argument as ctx (RAW).

Plug-ins must be named as ORDX_<name>_<module_name> where the
<module_name> is SOURCE for ORDSource. For example, the FILE plug-in
described in Section 7.3.1, is named ORDX_FILE_SOURCE and <name> is the
source type.

Exceptions must be raised from and recorded in a package named as
ORD_<module_name>Exceptions. For example, ORDSource exceptions are raised
and recorded in a package named ORDSourceExceptions (see Appendix H).

7.3.1 ORDPLUGINS.ORDX_FILE_SOURCE Package
The ORDPLUGINS.ORDX_FILE_SOURCE package or PL/SQL plug-in is provided.

CREATE OR REPLACE PACKAGE ORDX_FILE_SOURCE AS
 -- functions/procedures
 FUNCTION processCommand(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
7-66 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 slob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW),
 RETURN INTEGER;
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS);
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);

 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource,
 userArg IN RAW,
 ctx OUT RAW) RETURN INTEGER;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER;
PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
END ORDX_FILE_SOURCE;
/

 ORDSource Reference Information 7-67

Packages or PL/SQL Plug-ins
Table 7–1 shows the methods supported in the ORDX_FILE_SOURCE package and
the exceptions raised if you call a method that is not supported.

7.3.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package
The ORDPLUGINS.ORDX_HTTP_SOURCE package or PL/SQL plug-in is pro-
vided.

CREATE OR REPLACE PACKAGE ORDX_HTTP_SOURCE AS
 -- functions/procedures
 FUNCTION processCommand(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,

Table 7–1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported

import Supported

importFrom Supported

importFrom Supported

export Not supported - raises exception: METHOD_NOT_SUPPORTED

getContentLength Supported

getSourceAddress Supported

open Supported

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Supported

write Not supported - raises exception: METHOD_NOT_SUPPORTED
7-68 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW)
 RETURN INTEGER;
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS);
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);
 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW,
 ctx OUT RAW) RETURN INTEGER;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER;
 PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
 PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 ORDSource Reference Information 7-69

Packages or PL/SQL Plug-ins
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
END ORDX_HTTP_SOURCE;
/

Table 7–2 shows the methods supported in the ORDX_HTTP_SOURCE package and
the exceptions raised if you call a method that is not supported.

7.3.3 ORDPLUGINS.ORDX_<srcType>_SOURCE Package
Use the ORDPLUGINS.ORDX_<srcType>_SOURCE package or PL/SQL plug-in as
a template to create your own source type. Use the
ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_SOURCE
packages as a guide in developing your new source type package.

7.3.4 Extending interMedia to Support a New Data Source
Extending interMedia to support a new data source consists of four steps:

Table 7–2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported

import Supported

importFrom Supported

importFrom Supported

export Not supported - raises exception: METHOD_NOT_SUPPORTED

getContentLength Not supported - raises exception: METHOD_NOT_SUPPORTED

getSourceAddress Supported

open Supported

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Not supported - raises exception: METHOD_NOT_SUPPORTED

write Not supported - raises exception: METHOD_NOT_SUPPORTED
7-70 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
1. Design your new data source.

2. Implement your new data source and name it, for example,
ORDX_MY_SOURCE.SQL.

3. Install your new ORDX_MY_SOURCE.SQL plug-in in the ORDPLUGINS
schema.

4. Grant EXECUTE privileges on your new plug-in, for example,
ORDX_MY_SOURCE.SQL plug-in to PUBLIC.

Section 2.4 briefly describes how to extend interMedia to support a new data source
for audio and video data and describe the interfaces. A package body listing is pro-
vided in Example 7–1 to assist you in this operation. Add your variables to the
places that say "--Your variables go here" and add your code to the places that say
"--Your code goes here".

Example 7–1 Show the Package Body for Extending Support to a New Data Source

CREATE OR REPLACE PACKAGE BODY ORDX_MY_SOURCE
AS
 -- functions/procedures
 FUNCTION processCommand(
 obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END processCommand;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END import;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 ORDSource Reference Information 7-71

Packages or PL/SQL Plug-ins
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END import;
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END importFrom;
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END importFrom;
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END export;

 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW)
 RETURN INTEGER
 IS
7-72 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Packages or PL/SQL Plug-ins
 --Your variables go here
 BEGIN
 --Your code goes here
 END getContentLength;
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END getSourceAddress;
 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW, ctx OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END open;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END close;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER)
 RETURN INTEGER
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END trim;
 PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 ORDSource Reference Information 7-73

Packages or PL/SQL Plug-ins
 END read;
 PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END write;
END ORDX_MY_SOURCE;
/
show errors;
7-74 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Tuning Tips for the
8

Tuning Tips for the DBA

This chapter provides tuning tips for the Oracle DBA who wants to achieve more
efficient storage and management of multimedia data in the database when using
Oracle interMedia.

The goals of your interMedia application determine the resource needs and how
those resources should be allocated. Because application development and design
decisions have the greatest effect on performance, standard tuning methods must be
applied to the system planning, design, and development phases of the project to
achieve optimal results for your interMedia application in a production environ-
ment.

Multimedia data consists of a variety of media types including character text,
images, audio clips, video clips, line drawings, and so forth. All these media types
are typically stored in LOBs, in either internal LOBs (stored in an internal database
tablespace) or in BFILEs (external LOBs in operating system files outside of the
database tablespaces). This chapter discusses only the management of audio, image,
and video data.

Internal LOBs consist of: CLOBs, NCLOBs, and BLOBs and can be up to 4 gigabytes
in size. BFILEs can be as large as the operating system will allow up to a maximum
of 4 gigabytes.

Oracle interMedia manages a variety of LOB types. The following general topics
will help you to better manage your interMedia LOB data:

■ Setting database initialization parameters

■ Issues to consider in creating tables with interMedia objects containing LOBs

■ Improving multimedia data INSERT performance in interMedia objects contain-
ing LOBs

■ Putting into practice user guidelines for best performance results
 DBA 8-1

Setting Database Initialization Parameters
■ Improving interMedia LOB data retrieval and update performance

For more information about LOB partitioning, LOB tuning, and LOB buffering, see
Oracle8i Application Developer’s Guide - Large Objects (LOBs), Oracle Call Interface Pro-
grammer’s Guide, Oracle8i Concepts, and Oracle8i Designing and Tuning for Performance.

For information on restrictions to consider when using LOBs, see Oracle8i Applica-
tion Developer’s Guide - Large Objects (LOBs).

For guidelines on using the DIRECTORY feature in Oracle8i, see Oracle8i Applica-
tion Developer’s Guide - Large Objects (LOBs). This feature enables a simple, flexible,
nonintrusive, and secure mechanism for the DBA to manage access to large files in
the server file system.

8.1 Setting Database Initialization Parameters
The information that follows is an excerpt from Oracle8i Designing and Tuning for
Performance and Oracle8i Reference, and is presented as an overview of the topic.
Refer to Oracle8i Designing and Tuning for Performance and Oracle8i Reference for more
information.

Database tuning of the Oracle instance consists of tuning the system global area
(SGA). The SGA is used to store data in memory for fast access. The SGA consumes
a portion of your system’s physical memory. The SGA must be sufficiently large to
keep your data in memory but neither too small nor so large that performance
begins to degrade. Degrading performance occurs when the operating system
begins to page unused information to disk to make room for new information
needed in memory, or begins to temporarily swap active processes to disk so other
processes needing memory can use it. Excessive paging and swapping can bring a
system to a standstill. The goal in sizing the SGA is to size it for the data that must
be kept in main memory to keep performance optimal. With this in mind, you must
size the SGA required for your interMedia application. This may mean increasing
the physical memory of your system and monitoring your operating system behav-
ior to ensure paging and swapping remains minimal. The size of the SGA is deter-
mined by the values of the following database initialization parameters:
DB_BLOCK_SIZE, DB_BLOCK_BUFFERS, SHARED_POOL_SIZE, and
LOG_BUFFER.

The primary parameters used to size the SGA are DB_BLOCK_SIZE,
DB_BLOCK_BUFFERS, and SHARED _POOL_SIZE; the LOG_BUFFER parameter
represents a very small portion of the SGA. The DB_BLOCK_BUFFERS and
SHARED_POOL_SIZE parameter values are static and can be changed only by
stopping and restarting the database to read the changed values for these parame-
ters from the initialization parameter file (init.ora). Because the DB_BLOCK_SIZE
8-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Setting Database Initialization Parameters
parameter value can only be changed by re-creating the database, change these lat-
ter two parameter values to make adjustments to the size of the SGA.

The following sections describe these and some related initialization parameters
and their importance to interMedia performance.

DB_BLOCK_SIZE
The DB_BLOCK_SIZE parameter is the size in bytes of Oracle database blocks
(2048-32768). Oracle manages the storage space in the data files of a database in
units called data blocks. The data block is the smallest unit of I/O operation used by
a database; this value should be a multiple of the operating system’s block size
within the maximum (port-specific) limit to avoid unnecessary I/O operations. This
parameter value is set for each Oracle database from the DB_BLOCK_SIZE parame-
ter value in the initialization parameter file when you create the database. This
value cannot be changed unless you create the database again.

The size of a database block determines how many rows of data Oracle can store in
a single database page. The size of an average row is one piece of data that a DBA
can use to determine the correct database block size. interMedia objects with instan-
tiated LOB locators range in size from 175 bytes for ORDImage to 260 bytes for
ORDAudio and ORDVideo. This figure does not include the size of the media data.
(The difference in row sizes between instantiated image and audio and video data is
that audio and video data contain a Comments attribute that is about 85 bytes in
size to hold the LOB locator.)

If LOB data is less than 4000 bytes, then it can be stored in line or on the same data-
base page as the rest of the row data. LOB data can be stored in line only when the
block size is large enough to accommodate it.

LOB data that is stored out of line, on database pages that are separate from the row
data, is accessed (read and written) by Oracle in CHUNK size pieces where
CHUNK is specified in the LOB storage clause (see Section 8.2 for more informa-
tion about the CHUNK option). CHUNK must be an integer multiple of
DB_BLOCK_SIZE and defaults to DB_BLOCK_SIZE if not specified. Generally, it is
more efficient for Oracle to access LOB data in large chunks, up to 32 KB. However,
when LOB data is updated, it may be versioned (for read consistency) and logged
both to the rollback segments and the redo log in CHUNK size pieces. If updates to
LOB data are frequent then it may be more efficient space wise to manipulate
smaller chunks of LOB data, especially when the granularity of the update is much
less than 32 KB.

The preceding discussion is meant to highlight the differences between the initial-
ization parameter DB_BLOCK_SIZE and the LOB storage parameter CHUNK. Each
 Tuning Tips for the DBA 8-3

Setting Database Initialization Parameters
parameter controls different aspects of the database design, and though related,
they should not be automatically equated.

Tuning Memory Allocation
Allocating memory to database structures and proper sizing of these structures can
greatly improve database performance when working with LOB data. See Oracle8i
Designing and Tuning for Performance for a comprehensive, in-depth presentation of
this subject, including understanding memory allocation issues as well as detecting
and solving memory allocation problems. The following sections describe a few of
the important initialization parameters specifically useful for optimizing LOB per-
formance relative to tuning memory allocation.

DB_BLOCK_BUFFERS
The DB_BLOCK_BUFFERS parameter is the number of database buffers available in
the buffer cache. The total size of the database buffer cache is DB_BLOCK_SIZE *
DB_BLOCK_BUFFERS; this computed value is the database buffer value that is dis-
played when you issue a SQL SHOW SGA statement. Because you cannot change
the value of the DB_BLOCK_SIZE parameter without re-creating the database,
change the value of the DB_BLOCK_BUFFERS parameter to control the size of the
database buffer cache.

BUFFER_POOL_KEEP and BUFFER_POOL_RECYCLE - Tuning Multiple Buffer
Pools
To greatly reduce I/O operations while reading and processing LOB data, tune the
database instance by partitioning your buffer cache into multiple buffer pools for
the tables containing the LOB columns. By default, all tables are assigned to the
BUFFER_POOL_DEFAULT pool. Tune this main cache buffer using the
DB_BLOCK_BUFFERS initialization parameter and assign the appropriate tables to
the keep pool using the BUFFER_POOL_KEEP initialization parameter and to the
recycle pool using the BUFFER_POOL_RECYCLE initialization parameter.

The keep pool contains buffers that always stay in memory and is intended for fre-
quently accessed tables that contain important data. The recycle pool contains buff-
ers that can always be recycled and is intended for infrequently accessed tables that
contain much less important data. The size of the main buffer cache (DEFAULT) is
calculated from the value specified for the DB_BLOCK_BUFFERS parameter minus
the values specified for the BUFFER_POOL_KEEP and BUFFER_POOL_RECYCLE
parameters. Tables are assigned to respective buffer pools (KEEP, RECYCLE,
DEFAULT) using the STORAGE (buffer_pool) clause of the CREATE or ALTER
table statement. Determine what tables you want allocated to which of these mem-
ory buffers and the ideal size of each buffer when you implement your memory
8-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Setting Database Initialization Parameters
allocation design. These parameter values can be changed only in the initialization
parameter file and take effect only after stopping and restarting the database.

When working with very large images, set the DB_BLOCK_BUFFERS parameter to
a large number for your Oracle instance. For example, for a 40MB image, set this
parameter to a value of 20,000 for a database having a database block size of 2K
bytes to reduce the number of I/O operations needed to read in and process a BLOB
of this size. In a test when this parameter was left at the default value of 100, the
operation to crop a 40MB image took over 12 hours and used many I/O operations.
When this parameter was set to a value of 20,000, the image crop operation on the
same image took 23 seconds. In addition, making the log files larger and setting the
CACHE parameter (table LOB storage parameter) to TRUE also contributed to this
much improved performance (see Section 8.2 for more information). Some general
guidelines to consider when working with LOB data are:

■ You should have enough buffers to hold the object, regardless of table LOB log-
ging and cache settings. See Section 8.2 for more information.

■ When using log files you should make the log files larger, otherwise, more time
is spent waiting for log switches. See Section 8.2 for more information.

■ If the same BLOB is to be accessed frequently, set the table LOB CACHE param-
eter to TRUE. See Section 8.2 for more information.

■ Use a large page size (DB_BLOCK_SIZE) if the database is going to contain pri-
marily large objects.

See Oracle8i Designing and Tuning for Performance for more information about tuning
multiple buffer pools.

SHARED_POOL_SIZE
The SHARED_POOL_SIZE parameter specifies the size in bytes of the shared pool
that contains the library cache of shared SQL requests, shared cursors, stored proce-
dures, the dictionary cache, and control structures, Parallel Execution message buff-
ers, and other cache structures specific to a particular instance configuration. This
parameter value is also adjusted only by stopping and restarting the database to
read a changed value in the initialization parameter file. This parameter represents
most of the variable size value that displays when you issue a SQL SHOW SGA
statement. Specifying a large value improves performance in multi-user systems. A
large value for example, accommodates the loading and execution of interMedia
PL/SQL scripts and stored procedures; otherwise, execution plans are more likely
to be swapped out. A large value can also accommodate many clients connecting to
the server with each client connection using some shared pool space. However,
 Tuning Tips for the DBA 8-5

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
when the shared pool is full, the server is unable to accept additional client connec-
tions.

SHARED_POOL_RESERVED_SIZE
The SHARED_POOL_RESERVED_SIZE parameter specifies the shared pool space
that is reserved for large contiguous requests for shared pool memory. This parame-
ter should be set high enough to avoid performance degradation in the shared pool
from situations where pool fragmentation forces Oracle to search for free chunks of
unused pool to satisfy the current request.

Ideally, this parameter should be large enough to satisfy any request scanning for
memory on the reserved list without flushing objects from the shared pool.

The default value is 5% of the shared pool size, while the maximum value is 50% of
the shared pool size. For interMedia applications, a value at or close to the maxi-
mum can provide performance benefits.

LOG_BUFFER
The LOG_BUFFER parameter specifies the amount of memory, in bytes, used for
buffering redo entries to the redo log file. Redo entries are written to the on disk log
file when a transaction commits or when the LOG_BUFFER is full and space must
be made available for new redo entries. Large values for LOG_BUFFER can reduce
the number of redo log file I/O operations by allowing more data to be flushed per
write. Large values can also eliminate the waits that occur when redo entries are
flushed to make space in the log buffer pool. interMedia applications that have buff-
ering enabled for the LOB data can generate large amounts of redo data when
media is inserted or updated. These applications would benefit from a larger
LOG_BUFFER size.

8.2 Issues to Consider in Creating Tables with interMedia Column
Objects Containing BLOBs

The following information provides some strategies to consider when you create
tables with interMedia column objects containing BLOBs. You can explicitly indi-
cate the tablespace and storage characteristics for each BLOB. These topics are dis-
cussed in more detail and with examples in Oracle8i Application Developer’s Guide -
Large Objects (LOBs). The information that follows is excerpted from Chapter 2 and
is briefly presented to give you an overview of the topic. Refer to Oracle8i Applica-
tion Developer’s Guide - Large Objects (LOBs) for more information.
8-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
8.2.1 Initializing Internal interMedia Column Objects Containing BLOBs to NULL or
EMPTY

An interMedia column object containing a LOB value set to NULL has no locator. By
contrast, an empty LOB stored in a table is a LOB of zero length that has a locator.
So, if you select from an empty LOB column or attribute, you get back a locator,
which you can use to fill the LOB with data using the OCI or DBMS_LOB routines
or ORDxxx.import method.

Setting interMedia Column Objects Containing a BLOB to NULL
You may want to set the BLOB value to NULL upon inserting the row whenever
you do not have the BLOB data at the time of the INSERT operation. In this case,
you can issue a SELECT statement at some later time to obtain a count of the num-
ber of rows in which the value of the BLOB is NULL, and determine how many
rows must be populated with BLOB data for that particular column object.

However, the drawback to this approach is that you must then issue a SQL
UPDATE statement to reset the NULL BLOB column to EMPTY_BLOB(). The point
is that you cannot call the OCI or the PL/SQL DBMS_LOB functions on a BLOB that
is NULL. These functions work only with a locator, and if the BLOB column is
NULL, there is no locator in the row.

Setting an interMedia Column Object Containing a BLOB to EMPTY
If you do not want to set an interMedia column object containing a BLOB to NULL,
another option is to set the BLOB value to EMPTY by using the EMPTY_BLOB()
function in the INSERT statement. Even better, set the BLOB value to EMPTY by
using the EMPTY_BLOB() function in the INSERT statement, and use the RETURN-
ING clause (thereby eliminating a round-trip that is necessary for the subsequent
SELECT statement). Then, immediately call OCI, the import method, or the PL/SQL
DBMS_LOB functions to fill the LOB with data. See Oracle8i Application Developer’s
Guide - Large Objects (LOBs) for an example.

8.2.2 Specifying Tablespace and Storage Characteristics for interMedia Column Objects
Containing BLOBs

When you create tables and define interMedia column objects containing BLOBs,
you can explicitly indicate the tablespace and storage characteristics for each BLOB.
The following guidelines can help you fine-tune BLOB storage.
 Tuning Tips for the DBA 8-7

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
Tablespace
The best performance for interMedia column objects containing BLOBs can often be
achieved by specifying storage for BLOBs in a tablespace that is different from the
one used for the table that contains the interMedia object with a BLOB. See the
ENABLE | DISABLE STORAGE IN ROW clause near the end of this section for fur-
ther considerations on storing BLOB data inline or out of line. If many different
LOBs are to be accessed frequently, it may also be useful to specify a separate
tablespace for each BLOB or attribute in order to reduce device contention. Preallo-
cate the tablespace to the required allocation size to avoid allocation when inserting
BLOB data. See the Oracle8i SQL Reference manual for examples, specifically the
CREATE TABLE statement and the LOB column example. See Example 8–1.

Example 8–1 assumes that you have already issued a CONNECT statement as a
suitably privileged user. This example creates a separate tablespace, called MON-
TANA, that is used to store the interMedia column object containing BLOB data for
the image column. Ideally, this tablespace would be located on its own high-speed
storage device to reduce contention. Other image attributes and the imageID col-
umn are stored in the default tablespace. The initial allocation allows 100MB of stor-
age space. The images to be inserted are about 20KB in size. To improve insert
performance, NOCACHE and NOLOGGING options are specified along with a
CHUNK size of 24KB.

Example 8–1 Create a Separate Tablespace to Store an interMedia Column Object
Containing LOB Data

SVRMGR> CREATE TABLESPACE MONTANA DATAFILE ’montana.tbs’ SIZE 400M;
Statement processed.
SVRMGR> CREATE TABLE images (image ORDSYS.ORDImage, imageID INTEGER)
 LOB (image.source.localData) STORE AS
 (
 TABLESPACE MONTANA
 STORAGE (
 INITIAL 100M
 NEXT 100M
)
 CHUNK 24K
 NOCACHE NOLOGGING
);

LOB Index and LOB_index_clause
The LOB index is an internal structure that is strongly associated with the LOB stor-
age.
8-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
PCTVERSION Option
When an interMedia column object containing a BLOB is modified, a new version of
the BLOB page is made in order to support consistent reading of prior versions of
the BLOB value.

PCTVERSION is the percent of all used LOB data space that can be occupied by old
versions of LOB data pages. As soon as old versions of LOB data pages start to
occupy more than the PCTVERSION amount of used LOB space, Oracle tries to
reclaim the old versions and reuses them. In other words, PCTVERSION is the per-
centage of used LOB data blocks that is available for versions of old LOB data.

One way of approximating PCTVERSION is to set PCTVERSION = (% of LOBs
updated at any given point in time) times (% of each LOB updated whenever a LOB
is updated) times (% of LOBs being read at any given point in time). Allow for a
percentage of LOB storage space to be used as old versions of LOB pages so users
can get consistent read results of data that has been updated.

Setting PCTVERSION to twice the default allows more free pages to be used for old
versions of data pages. Because large queries may require consistent reading of
LOBs, it is useful to keep more old versions of LOB pages around. LOB storage may
increase if you increase the PCTVERSION value because Oracle will not be reusing
free pages aggressively.

The more infrequent and smaller the LOB updates are, the less space that needs to
be reserved for old versions of LOB data. If existing LOBs are known to be read-
only, you could safely set PCTVERSION to 0% because there would never be any
pages needed for old versions of data.

CACHE or NOCACHE Option
Use the CACHE option on interMedia column objects containing BLOBs if the same
BLOB data is to be accessed frequently. The CACHE option puts the data into the
database buffer and makes it accessible for subsequent read operations. If you spec-
ify CACHE, then LOGGING is used; you cannot have CACHE and NOLOGGING.

Note: The LOB_index_clause in the CREATE TABLE statement is
deprecated beginning with release 8.1.5. Oracle generates an index
for each LOB column and beginning with release 8.1.5, LOB indexes
are system named and system managed. For information on how
Oracle manages LOB indexes in tables migrated from earlier ver-
sions, see Oracle8i Migration.
 Tuning Tips for the DBA 8-9

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
Use the NOCACHE option (the default) if BLOB data is to be read only once or
infrequently, or if you have too much BLOB data to cache, or if you are reading lots
of images but none more frequently than others.

See Example 8–1.

LOGGING or NOLOGGING Option
An example of when NOLOGGING is useful is with bulk loading or inserting of
data. See Example 8–1. For instance, when loading data into the interMedia column
objects containing BLOBs, if you do not care about redo logging and can just start
the load over if it fails, set the BLOB data segment storage characteristics to
NOCACHE NOLOGGING. This setting gives good performance for the initial load-
ing of data. Once you have successfully completed loading the data, you can use the
ALTER TABLE statement to modify the BLOB storage characteristics for the BLOB
data segment to the desired storage characteristics for normal BLOB operations,
such as CACHE or NOCACHE LOGGING.

CHUNK Option
Set the CHUNK option to the number of blocks of interMedia column objects con-
taining BLOB data that are to be accessed at one time. That is, the number of blocks
that are to be read or written using the object.readFromSource or object.writeTo-
Source interMedia audio and video object methods or call, OCILobRead(), OCILob-
Write(), DBMS_LOB.READ(), or DBMS_LOB.WRITE() during one access of the
BLOB value. Note that the default value for the CHUNK option is 1 Oracle block
and does not vary across systems. If only 1 block of BLOB data is accessed at a time,
set the CHUNK option to the size of 1 block. For example, if the database block size
is 2K, then set the CHUNK option to 2K.

Set the CHUNK option to the next largest integer multiple of database block size
that is slightly larger than the audio, image, or video data size being inserted. Speci-
fying a slightly larger CHUNK option allows for some variation in the actual sizes
of the multimedia data and ensures that the benefit is realized. For large-sized
media data, a general rule is to set the CHUNK option as large as possible. The
maximum is 32K in Oracle8i. For example, if the database block size is 2K or 4K or
8K and the image data is mostly 21K in size, set the CHUNK option to 24K. See
Example 8–1.

INITIAL and NEXT Parameters
If you explicitly specify the storage characteristics for the interMedia column object
containing a BLOB, make sure that the INITIAL and NEXT parameters for the
BLOB data segment storage are set to a size that is larger than the CHUNK size. For
8-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
example, if the database block size is 2K and you specify a CHUNK value of 8K,
make sure that the INITIAL and NEXT parameters are at least 8K, preferably higher
(for example, at least 16K).

For LOB storage, Oracle automatically builds and maintains a LOB index that
allows quick access to any chunk and thus any portion of a LOB. The LOB index
gets the same storage extent parameter values as its LOBs. Consequently, to opti-
mize LOB storage space, you should calculate the size of your LOB index size as
well as the total storage space needed to store the media data including its over-
head.

Assume that N files comprising of M total bytes of media data are to be stored and
that the value C represents the size of the LOB chunk storage parameter. To calcu-
late the total number of bytes Y needed to store the media data:

Y = M + (N*C)

The expression (N*C) accounts for the worst case in which the last chunk of each
LOB contains a single byte. Therefore, an extra chunk is allowed for each file that is
stored. On average, the last chunk will be half full.

To calculate the total number of bytes X to store the LOB index:

X = CEIL(M/C) * 32

The value 32 indicates that the LOB index requires roughly 32 bytes for each chunk
that is stored.

The total storage space needed for the media data plus its LOB index is then X + Y.

The following two examples describe these calculations in detail.

Example 1: Assume you have 500 video clips comprising a total size of 250MB with
an average size is 512K bytes. Assume a LOB chunk size of 32768 bytes. The total
space needed for the media data is 250MB + (5000*32768) or 266MB. The overhead
is 16MB or about 6.5% storage overhead. The total space needed to store the LOB
index is CEIL(250MB/32768) * 32 or 244KB. The total space needed to store the
media data plus its LOB index is then about 266.6MB.

SQL> SELECT 250000000+(500*32768)+CEIL(250000000/32768)*32 FROM dual;

250000000+(500*32768)+CEIL(250000000/32768)*32
--
 266628160

The following table definition could be used to store this amount of data:

CREATE TABLE video_items
 Tuning Tips for the DBA 8-11

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
(
 video_id NUMBER,
 video_clip ORDSYS.ORDVideo
)
-- storage parameters for table in general
TABLESPACE video1 STORAGE (INITIAL 1M NEXT 10M)
-- special storage parameters for the video content
LOB(video_clip.source.localdata) STORE AS
 (TABLESPACE video2 STORAGE (INITIAL 260K NEXT 270M)
 DISABLE STORAGE IN ROW NOCACHE NOLOGGING CHUNK 32768);

Example 2: Assume you have 5000 images comprising a total size of 274MB with an
average size of 56K bytes. Because the average size of the images are smaller than
the video clips in the preceding example, it is more space efficient to choose a
smaller chunk size, for example 8192 bytes to store the data in the LOB. The total
space needed for the media data is 274MB + (5000*8192) or 314MB. The overhead is
about 40MB or about 15% storage overhead. The total space needed to store the
LOB index is CEIL(274MB/8192) * 32 or 1.05MB. The total space needed to store the
media data plus its LOB index is then about 316MB.

SQL> SELECT 274000000+(5000*8192)+CEIL(274000000/8192)*32 FROM dual;

274000000+(5000*8192)+CEIL(274000000/8192)*32

 316030336

The following table definition could be used to store this amount of data:

CREATE TABLE image_items
(
 image_id NUMBER,
 image ORDSYS.ORDImage
)
-- storage parameters for table in general
TABLESPACE image1 STORAGE (INITIAL 1M NEXT 10M)
-- special storage parameters for the image content
LOB(image.source.localdata) STORE AS
 (TABLESPACE image2 STORAGE (INITIAL 1200K NEXT 320M)
 DISABLE STORAGE IN ROW NOCACHE NOLOGGING CHUNK 8192);

When working with very large BLOBs on the order of 1 gigabyte in size, choose a
proportionately large INITIAL and NEXT extent parameter size, for example an
INITIAL value slightly larger than your calculated LOB index size and a NEXT
value of 100 megabytes, to reduce the frequency of extent creation, or commit the
8-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
transaction more often to reuse the space in the rollback segment; otherwise, if the
number of extents is large, the rollback segment can become saturated.

PCTINCREASE Parameter
Set the PCTINCREASE parameter value to 0 to make the growth of new extent sizes
more manageable. When working with very large BLOBs and the BLOB is being
filled up piece by piece in a tablespace, numerous new extents are created in the
process. If the extent sizes keep increasing by the default value of 50 percent each
time one is created, extents will become unmanageably big and eventually will
waste space in the tablespace.

MAXEXTENTS Parameter
Set the MAXEXTENTS parameter value to suit the projected size of the BLOB or set
it to UNLIMITED for safety. That is, when MAXEXTENTS is set to UNLIMITED,
extents will be allocated automatically as needed and this minimizes fragmentation.

ENABLE | DISABLE STORAGE IN ROW Clause
You use the ENABLE | DISABLE STORAGE IN ROW clause to indicate whether
the interMedia column objects containing a BLOB should be stored inline (that is, in
the row) or out of line. You may not alter this specification once you have made it: if
you ENABLE STORAGE IN ROW, you cannot alter it to DISABLE STORAGE IN
ROW or the reverse. The default is ENABLE STORAGE IN ROW.

The maximum amount of LOB data that will be stored in the row is the maximum
VARCHAR size (4000). Note that this includes the control information as well as the
LOB value. If the user indicates that the LOB should be stored in the row, once the
LOB value and control information are larger than 4000 bytes, the LOB value is
automatically moved out of the row.

This suggests the following guideline: If the interMedia column object containing a
BLOB is small (that is, less than 4000 bytes), then storing the BLOB data out of line
will decrease performance. However, storing the BLOB in the row increases the size
of the row. This has a detrimental impact on performance if you are doing a lot of
base table processing, such as full table scans, multiple row accesses (range scans),
or doing many UPDATE or SELECT statements to columns other than the interMe-
dia column objects containing BLOBs. If you do not expect the BLOB data to be less
than 4000 bytes, that is, if all BLOBs are big, then the default is the best choice
because:

■ The LOB data is automatically moved out of line once it gets bigger than 4000
bytes.
 Tuning Tips for the DBA 8-13

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
■ Performance can be better if the BLOB data is small (less than 4000 bytes includ-
ing control information) and is stored inline because the LOB locator and the
BLOB data can be retrieved in the same buffer, thus reducing I/O operations.

8.2.3 Segment Attributes and Physical Attributes
The following physical attribute is important for optimum storage of BLOB data in
the data block and consequently achieving optimum retrieval performance.

PCTFREE Parameter
The PCTFREE parameter specifies the percentage of space in each data block of the
table or partition reserved for future updates to each row of the table. Setting this
parameter to an appropriate value is useful for efficient inline storage of multime-
dia data. The default value is 10%.

Set this parameter to a high enough value to avoid row chaining or row migration.
Because the INSERT statement for BLOBs requires an EMPTY_BLOB column object
initialization followed by an UPDATE statement to load the BLOB data into the
data block, you must set the PCTFREE parameter value to a proper value espe-
cially if the BLOB data will be stored inline. For example, row chaining can result
after a row INSERT operation when insufficient space is reserved in the existing
data block to store the entire row, including the inline BLOB data in the subsequent
UPDATE operation. As a result, the row would be broken into multiple pieces and
each piece stored in a separate data block. Consequently, more I/O operations
would be needed to retrieve the entire row, including the BLOB data, resulting in
poorer performance. Row migration can also result if there is insufficient space in
the data block to store the entire row during the initial INSERT operation, and thus
the row is stored in another data block.

To make best use of the PCTFREE parameter, determine the average size of the
BLOB data being stored inline in each row, and then determine the entire row size,
including the inline BLOB data. Set the PCTFREE parameter value to allow for suffi-
cient free space to store an entire row of data in the data block. For example, if you
have a large number of thumbnail images that are about 3K bytes in size, and each
row is about 3.8K bytes in size, and the database block size is 8K, set the value of
PCTFREE to a value that ensures that two complete rows can be stored in each data
block in the initial INSERT operation. This approach initially uses 1.6K bytes of
space (0.8K bytes/row *2 rows) leaving 6.4K bytes of free space. Because two rows
initially use 20% of the data block and 95% after an UPDATE operation and adding
a third row would initially use 30% of the data block causing a chain to occur when
the third row is updated, set the PCTRFEE parameter value to 75. This setting per-
mits a maximum of two rows to be stored per data block and leaves sufficient space
8-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
to update each row with its 3K image thumbnail leaving about 0.4K bytes free space
minus overhead per data block.

8.2.4 Accommodating Temporary LOBs in the Buffer Cache
Temporary LOBs created when you have set the table LOB CACHE parameter to
TRUE move through the buffer cache; otherwise, they are read directly from and
written to disk if the CACHE parameter is set to FALSE.

Use durations for automatic cleanup to save time and effort. Let the database end a
duration and free all temporary LOBs associated with a duration because this is
more efficient than freeing each one explicitly.

Temporary LOBs create deep copies of themselves on assignments; that is, a new
copy of the temporary LOB is created. Use the OCILobLocatorAssign() call to
assign the source locator to the destination locator when assigning one LOB locator
to another. If the source locator refers to a temporary LOB, specify the equals sign
(=) in the assignment to ensure that the two LOB locator pointers refer to the same
LOB locator; otherwise, the source temporary LOB is deep-copied and a destination
locator is created to refer to the new deep copy of the temporary LOB.

You may also want to consider using pass-by reference semantics in PL/SQL or
declare pointers to locators, because a pointer assignment does not cause a deep
copy. Instead, it causes the pointer to point to the same thing. See the PL/SQL User’s
Guide and Reference, Oracle8i Designing and Tuning for Performance, and Oracle Call
Interface Programmer’s Guide for more information.

8.2.5 Using interMedia Column Objects Containing BLOBs in Table Partitions
Because you can partition tables containing interMedia column objects that have
BLOBs, BLOB segments can be spread between several tablespaces to:

■ Balance I/O load

■ Make backup and recovery operations more manageable

■ Make BLOB maintenance easier

interMedia column objects containing BLOB data can be partitioned to improve I/O
problems and to better balance the I/O load across the data files of the tablespace
containing the BLOB data. You can allocate data storage across devices to further
improve performance in a practice known as striping. This permits multiple pro-
cesses to access different portions of the table concurrently, without disk contention.

interMedia column objects containing BLOB data can be partitioned to tune data-
base backup and recovery operations to make more efficient use of resources. For
 Tuning Tips for the DBA 8-15

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
example, having two or more tablespaces that are partitioned lets you perform par-
tial database backup and recovery operations on specific data files.

Similarly, tablespaces with interMedia column objects containing BLOBs can be par-
titioned for easy maintenance of the BLOB data. This is done by logically grouping
BLOB data together into smaller partitions that are grouped by date, by subject, by
category, and so forth. This makes it easier to add, merge, split, or delete partitions
as needed, based on your application.

See Oracle8i Application Developer’s Guide - Large Objects (LOBs) for examples and
further discussion of each of these topics. See the Oracle8i SQL Reference manual for
examples, specifically the CREATE TABLE statement and the Partitioned Table with
LOB Columns example.

8.2.6 LOB Buffering for Client Applications
Use LOB buffering if you need to repeatedly read or write small pieces of interMe-
dia column objects containing BLOB data to specific regions of the BLOB on the cli-
ent. Typically, Oracle8i options, Web servers, and other applications may need to
buffer the contents of one or more LOBs in the client address space. Using LOB
buffering, you can use up to 512K bytes of buffered access. The advantages of LOB
buffering include:

■ Allowing deferred write operations to the server. Flushing several write opera-
tions in the LOB buffer to the server reduces the number of network round-trips
from the client application to the server, thereby improving overall LOB update
performance.

■ Reducing the overall number of interMedia column objects containing BLOB
update operations on the server reduces the number of BLOB versions and
amount of logging, which improves overall BLOB performance and disk space
usage.

See Oracle8i Application Developer’s Guide - Large Objects (LOBs) for further consider-
ations and the use of LOB buffering.

8.3 Improving Multimedia Data INSERT Performance in interMedia
Objects Containing LOBs

There are a number of bulk loading methods available for loading FILE data into
interMedia objects containing BLOBs. These include:

■ interMedia import() method in a PL/SQL stored procedure

■ SQL*Loader (conventional path load)
8-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
■ OCILobLoadFromFile() relational function

■ DBMS_LOB.LOADFROMFILE() procedure in the DBMS_LOB package

■ Java loadData() method to load media data from a client file

Using interMedia Import() Method in a PL/SQL Stored Procedure
Example 8–2 shows the contents of the load1.bat file, which invokes SQL*Plus and
runs the t1.sql procedure (Example 8–3). The db_block_size for this schema is 8K
bytes.

Example 8–2 Show the Load1.bat File

sqlplus scott/tiger@intertcp @t1

Example 8–3 shows the contents of the t1.sql file. This procedure:

■ Creates two tablespaces.

■ Creates the image_items table and defines the physical properties of the table,
specifically the physical attributes and LOB storage attributes.

■ Partitions the table storage into each tablespace by range using the image_id
value.

■ Creates the load_image stored procedure that:

– Declares a variable nxtseq defined as the ROWID data type.

– Inserts a row into the image_items table and uses the INSERT RETURN-
ING ROWID statement to return the ROWID value for fastest access to the
row for loading the image BLOB data into the object columns of each row
using the import method.

– Sets the image attribute properties automatically (by means of the import
operation) for each loaded image (note that thumbnail images are stored
inline, and regular images are stored out of line).

– Commits the update operation.

Example 8–3 Show the T1.SQL File

spool t1.log
set echo on
connect internal/internal

create tablespace Image_h default storage (initial 30m next 400m pctincrease 0)
 Tuning Tips for the DBA 8-17

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
 datafile ’h:\IMPB\Image_h.DBF’
 size 2501M reuse;

create tablespace Image_i default storage (initial 30m next 400m pctincrease 0)
 datafile ’i:\IMPB\Image_i.DBF’
 size 2501M reuse;

connect scott/tiger

drop table image_items;

create table image_items(
 image_id number,-- constraint pl_rm primary key,
 image_title varchar2(128),
 image_artist varchar2(128),
 image_publisher varchar2(128),
 image_description varchar2(1000),
 image_price number(6,2),
 image_file_path varchar2(128),
 image_thumb_path varchar2(128),
 image_thumb ordsys.ordimage,
 image_clip ordsys.ordimage
)
--
-- physical properties of table
--
 -- physical attributes clause
 pctfree 35 storage (initial 30M next 400M pctincrease 0)

 -- LOB storage clause (applies to LOB column)
 LOB (image_clip.source.localdata)
 store as (disable storage in row nocache nologging chunk 32768)
--
-- table properties (applies to whole table)
--
Partition by range (image_id)
(
Partition Part1 values less than (110001)
Tablespace image_h,
Partition Part2 values less than (maxvalue)
Tablespace image_i
);

connect scott/tiger;
8-18 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
create or replace procedure load_image
(
 image_id number,
 image_title varchar2,
 image_artist varchar2,
 image_publisher varchar2,
 image_description varchar2,
 image_price number,
 image_file_path varchar2,
 image_thumb_path varchar2,
 thumb_dir varchar2,
 content_dir varchar2,
 file_name1 varchar2,
 file_name2 varchar2)
as
 ctx raw(4000) := NULL;
 obj1 ORDSYS.ORDIMAGE;
 obj2 ORDSYS.ORDIMAGE;
 nxtseq rowid;

Begin
 Insert into image_items(
 image_id,
 image_title,
 image_artist,
 image_publisher,
 image_description,
 image_price,
 image_file_path,
 image_thumb_path ,
 image_thumb,
 image_clip)
 values (
 image_id,
 image_title,
 image_artist,
 image_publisher,
 image_description,
 image_price,
 image_file_path,
 image_thumb_path ,
 ORDSYS.ORDIMAGE
 (ORDSYS.ORDSOURCE(EMPTY_BLOB(),
 ’FILE’,upper(thumb_dir),file_name1,null,null),
 null,null,null,null,null,null,null),
 Tuning Tips for the DBA 8-19

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
 ORDSYS.ORDIMAGE
 (ORDSYS.ORDSOURCE(EMPTY_BLOB(),
 ’FILE’,upper(content_dir),file_name2,null,null),
 null,null,null,null,null,null,null))
 returning rowid into nxtseq;

-- load up the thumbnail image
 select t.image_thumb,
t.image_clip
 into obj1, obj2
 from image_items t
 where t.rowid = nxtseq for update;
 obj1.import(ctx); -- import sets properties
 obj2.import(ctx);
 Update image_items I
 set I.image_thumb = obj1,
 I.image_clip = obj2
 where i.rowid = nxtseq;

 Commit;
End;
/
spool off
set echo off

Example 8–4 shows the contents of the load1.sql file. The image load directories are
created and specified for each tablespace and user scott is granted read privilege on
each load directory. The stored procedure named load_image is then executed,
which loads values for each column row. By partitioning the data into different
tablespaces, each partition can be loaded in a parallel data load operation.

Example 8–4 Show the Load1.sql File that Executes the load_image Stored Procedure

connect internal/internal
drop directory IMAGE_H;
drop directory IMAGE_I;
create directory IMAGE_H as ’h:\image_files’;
create directory IMAGE_I as ’i:\image_files’;
grant read on directory IMAGE_H to scott;
grant read on directory IMAGE_I to scott;
EXEC Load_image(100001,’T_100001’,1916,’Publisher’,’Visit our WEB page’
,8.71,’image_I\T_100001.jpg’,’image_I\T_100001_thumb1.jpg’,’image_I’,’image_I’,’
T_100001_thumb1.jpg’,’T_100001.jpg’);
EXEC Load_image(100002,’T_100002’,2050,’Publisher’,’Visit our WEB page’
,9.61,’image_I\T_100002.jpg’,’image_I\T_100002_thumb10.jpg’,’image_I’,’image_I’,
8-20 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
’T_100002_thumb10.jpg’,’T_100002.jpg’);
exit

Using SQL*Loader
For Oracle8i, you can use SQL*Loader to bulk load objects, collections, and interMe-
dia column objects containing BLOBs. The 8.1.5 release of SQL*Loader supports
loading of the following object types:

■ Column objects

■ Row objects

Supported collection types include:

■ Nested tables

■ Varrays

Supported LOB types include the following:

■ BLOB: a LOB containing unstructured binary data

■ CLOB: a LOB containing single-byte character data

■ NCLOB: a LOB containing fixed-size characters from a national character set

■ BFILE: a LOB stored outside of the database tablespaces in a server-side operat-
ing system file

See Oracle8i Utilities for more information on SQL*Loader and Oracle8i Application
Developer’s Guide - Fundamentals for more information on LOBs.

Using SQL*Loader to Load Multimedia Data into Oracle8i Using inter-
Media Column Objects
Example 8–5 shows the use of the control file to load one ORDVideo object per file
into a table named JUKE that has three columns, with the last one being a column
object. Each LOB file is the source of a single LOB and follows the column object
name with the LOBFILE data type specifications. Two LOB files are loaded in this
example.

Example 8–5 Show the Control File for Loading Video Data

LOAD DATA
INFILE *
INTO TABLE JUKE
REPLACE
FIELDS TERMINATED BY ’,’
 Tuning Tips for the DBA 8-21

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
(id integer external,
 file_name char(1000),
 mediacontent column object
 (
 source column object
 (
1) localData_fname FILLER CHAR(128),

 2) localData LOBFILE (mediacontent.source.localData_fname) terminated by EOF

)

)
)

BEGINDATA
1,slynne,slynne.rm
2,Commodores,Commodores - Brick House.rm

Notes:

1. The filler field is mapped to the 128-byte long data field which is read using the
SQL*Loader CHAR data type.

2. SQL*Loader gets the LOB file name from the localData_fname FILLER field. It
then loads the data from the LOB file (using the BLOB data type) from its begin-
ning to the EOF character, whichever is reached first. Note that if no existing
LOB file is specified, the localData field is initialized to empty.

Using the OCILobLoadFromFile() Relational Function
Oracle Call Interface (OCI) is an application programming interface (API) that
allows you to manipulate data and schemas in an Oracle database using a host pro-
gramming language, such as C.

The OCI relational function, OCILobLoadFromFile(), loads or copies all or a por-
tion of a file into an interMedia column object containing a specified BLOB. The data
is copied from the source file to the destination interMedia column objects contain-
ing a BLOB. When binary data is loaded into an interMedia column object contain-
ing a BLOB, no character set conversions are performed. Therefore, the file data
must already be in the same character set as the BLOB in the database. No error
checking is performed to verify this.

See Oracle Call Interface Programmer’s Guide for more information.
8-22 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Loading Multimedia Data Using the interMedia Clipboard
Using the DBMS_LOB.LOADFROMFILE() Procedure in the DBMS_LOB
Package
The DBMS_LOB package provides subprograms to operate on BLOBs, CLOBs,
NCLOBs, BFILEs, and temporary LOBs. You can use the DBMS_LOB package for
access and manipulation of specific parts of an interMedia column object containing
a BLOB, as well as complete BLOBs. DBMS_LOB can read as well as modify BLOBs,
CLOBs, and NCLOBs, and provides read-only operations for BFILEs. The majority
of the LOB operations are provided by this package.

The DBMS_LOB.LOADFROMFILE() procedure copies all, or part of, a source-
external LOB (BFILE) to a destination internal LOB.

You can specify the offsets for both the source LOB (BFILE) and destination interMe-
dia column object containing the BLOB and the number of bytes to copy from the
source BFILE. The amount and src_offset, because they refer to the BFILE, are in
terms of bytes, and the destination offset is either in bytes or characters for BLOBs
and CLOBs respectively.

The input BFILE must have been opened prior to using this procedure. No charac-
ter set conversions are performed implicitly when binary BFILE data is loaded into
a CLOB. The BFILE data must already be in the same character set as the CLOB in
the database. No error checking is performed to verify this. See Oracle8i Supplied PL/
SQL Packages Reference for more information.

Using Java loadData() Method to Load Media Data from a Client File
From the Java client, you can use the Java loadData() method to load media data
from a given file into a server-side media object designated by the corresponding
media locator parameters. You must specify the name of the file from which to load
the data and the method returns true if loading is successful, false otherwise. See
Oracle interMedia Audio, Image, and Video Java Client User’s Guide and Reference for
more information.

8.4 Loading Multimedia Data Using the interMedia Clipboard
You can use the Oracle8i interMedia Clipboard to:

■ Capture multimedia objects from files and URLs and store them in the database

■ Capture image objects from external sources, such as cameras and scanners, and
store them in the database

See Section 3.6 in Using Oracle8i interMedia with the Web for a description of the pro-
cedure on how to store interMedia objects in a database.
 Tuning Tips for the DBA 8-23

Loading Multimedia Data Using interMedia Annotator Utility
8.5 Loading Multimedia Data Using interMedia Annotator Utility
You can use the Oracle interMedia Annotator utility to upload media data and an
associated annotation into an Oracle8i database where Oracle interMedia is
installed. Annotator does this using an Oracle PL/SQL upload template, which con-
tains both PL/SQL calls and Annotator-specific keywords.

See Chapter 5 "Uploading Structured Annotations into a Database" in the Oracle
interMedia Annotator Utility User’s Guide for more information.

8.6 Loading Results of an interMedia Benchmark
The benchmark environment for the hardware and software for the interMedia
BLOB load tests that were performed are described in this section and Section 8.8.
interMedia BLOB I/O tests were conducted in an MS Windows NT environment
running Oracle interMedia.

Benchmark Environment
The server side consisted of a quad 200MHz Pentium Pro processor with 3GB of
memory. The I/O disk subsystem consisted of a raid 0 stripe set supported by four
Adaptec controllers. The system was running MS Windows NT V4.0 Service Pack 3.
The OCI experiments were conducted in a client/server environment where the cli-
ent was also a quad 200MHz Pentium Pro processor linked to the server using a
100Mbits Ethernet connection.

The database was partitioned by range using a range ID such that each client reader
or loader process used a dedicated database partition. Tests were conducted with a
database block size set to 8K and 16K, a LOB chunk size set to 32K, and a read size
(1 round-trip) set to 32K for the interMedia import() method in PL/SQL tests, and a
LOB buffer size set to 32K to 64K for the OCI tests.

Benchmark and Test Description
The benchmark was a very simple setup with the interMedia import() method in
the PL/SQL stored procedures called from the backend server to perform insert
operations into BLOBs in the database. The audio and video BLOB data ranged in
size from 2MB to over 25MB, with most of the BLOBs being between 2 to 4MB in
size.

Multiple processes were submitted to run in parallel with the aim of maximizing
the throughput and identifying the system performance limitations. The OCI tests
were also conducted in a similar setup and with the same goals. Load tests were
conducted with LOB caching enabled and disabled, as well as with table logging
8-24 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Loading Results of an interMedia Benchmark
enabled and disabled. SQL*Loader tests were conducted with logging enabled and
caching set, and with no logging and no cache set. SQL*Loader tests used conven-
tional path writes.

The performance metrics included the following:

■ Protocol (TCP/IP, Interprocess Communication (IPC), or bequeath) selected for
the particular test

■ Database connections that ranged from 8 to 12 for the BLOB load tests, with
each connection doing loads

■ Disk or network I/O operations or both expressed as throughput per second
and presented in megabytes/second

■ The LOB chunk size in K bytes

interMedia Import() Method BLOB Load Tests and Results
interMedia import() method BLOB load tests were conducted with PL/SQL scripts
built to load BLOBs into the database and with SQL*Loader.

The best bulk load results were attained using interMedia import() method in PL/
SQL scripts with BLOB caching disabled and table logging disabled.

The protocol (TCP/IP, IPC, bequeath), in the case of the interMedia import()
method in PL/SQL script load tests, seemed to show that there was no effect on the
results. Increasing the number of connections with each connection loading data
also further improved load performance.

Overall, the performance results seemed to be limited by the I/O subsystem in the
case where logging was disabled, and slowed by the database logging where log-
ging was enabled.

Sample PL/SQL scripts are shown in Example 8–2, Example 8–3, and Example 8–4.

A slightly better performance gain was realized when using no table logging and no
caching when loading data using SQL*Loader. Increasing the number of connec-
tions with each connection loading data also further improved load performance.
Bulk loading using the SQL*Loader with logging and caching turned off yielded the
highest throughput.

Note: SQL*Loader does not support direct path write operations
with LOB data with release 8.1.6.
 Tuning Tips for the DBA 8-25

Reading Data from an ORDVideo Object Using the interMedia readFromSource() Method in a PL/SQL Script
A sample SQL*Loader control file is shown in Example 8–5.

For bulk data load operations of BLOB data, you would gain a significant perfor-
mance improvement of almost two-fold when using the interMedia import()
method in PL/SQL stored procedures versus using a SQL*Loader conventional
path load.

For this reason, you might consider using the interMedia import() method in PL/
SQL stored procedure scripts for loading large volumes of multimedia data. How-
ever, the ease of use of using SQL*Loader may offset this advantage when consider-
ing using other SQL*Loader functions to operate on non-media columns. For
example, SQL*Loader offers a number of ease of use features such as data type con-
version for non-multimedia column data. This feature facilitates the data loading
operation if you have many columns that must undergo data type conversion as
part of the data loading operation.

8.7 Reading Data from an ORDVideo Object Using the interMedia
readFromSource() Method in a PL/SQL Script

Example 8–6 shows the contents of the readvideo1.sql file. This procedure reads
data from an ORDVideo object with the video stored in a BLOB in the database
using the readFromSource method in a PL/SQL script until no more data is found.
The procedure then returns a NO_DATA_FOUND exception when the read opera-
tion is complete and displays an "End of data" message.

Example 8–6 Read Data from an ORDVideo Column Object Using interMedia read-
FromSource() Method in a PL/SQL Stored Procedure

create or replace procedure readVideo1(i integer) as

 obj ORDSYS.ORDVideo;
 buffer RAW (32767);
 numbytes BINARY_INTEGER := 32767;
 startpos integer := 1;
 read_cnt integer := 1;
 ctx RAW(4000) := NULL;

BEGIN

Note: This example can be modified to work with the ORDAudio
and ORDImage objects too.
8-26 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Reading Results of an interMedia Benchmark
 Select mediacontent into obj from juke where id = 100001;

 LOOP
 obj.readFromSource(ctx,startpos,numbytes,buffer);
 startpos := startpos + numBytes;
 read_cnt := read_cnt + 1;

 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
 DBMS_OUTPUT.PUT_LINE(’doing read ’|| read_cnt);
 DBMS_OUTPUT.PUT_LINE(’start position :’|| startpos);

END;

/
show errors

8.8 Reading Results of an interMedia Benchmark
See Section 8.6 for a description of the benchmark environment.

BLOB I/O tests were conducted in an MS Windows NT environment running Ora-
cle interMedia. BLOB read tests were conducted with the interMedia readFrom-
Source() method in a PL/SQL script to read BLOBs from the database, as well as
making OCI calls without callbacks to perform BLOB read operations from C++.
Parallel processes were submitted on the client system to read BLOBs residing on
the server side making use of the 100 megabit network bandwidth. Database con-
nections ranged from 6 to 16 for the BLOB read tests.

A benchmark was performed to measure the performance of an Oracle-based sys-
tem in a setting modeling a real-life audio server application. The Oracle server
serves multiple requests by clients to a set of CDs. CDs are stored in Oracle8i using
the Oracle interMedia audio option. The CD access pattern is modeled by an expo-
nential distribution to simulate that some CDs are more popular than others. A cli-
ent has a tolerance on the response time of a request. Each request asks for a
particular amount of audio data. The throughput of the server, defined by the
amount of audio data provided per unit time, is measured, subjected to the follow-
ing constraints:

■ Number of users
 Tuning Tips for the DBA 8-27

Getting the Best Performance Results
■ Maximum or average response time of requests

■ Size of each request

■ Access patterns

Throughput levels as high as 29 MB/second using a large cache of 1.7GB, a LOB
chunk size set to 32K, and with OCI using buffered read operations to read BLOBs
locally on the backend, memory-rich server. Using a less memory-rich server sys-
tem with a 320MB cache buffer size, throughput decreased by one third to a low of
20MB/second level.

The performance-limiting factor was the 100 megabit bandwidth, which became
saturated in the client/server tests. All tests with OCI had caching turned on. Using
the interMedia readFromSource() method in a PL/SQL procedure, and with no
cache set, the throughput was limited to 18MB/second. The limiting factor for per-
formance for reading BLOB data was the I/O subsystem in the absence of caching.

8.9 Getting the Best Performance Results
The following guidelines can be used to help you achieve the best performance
when working with interMedia objects:

■ Because interMedia objects are big, you can attain the best performance by read-
ing and writing large chunks of an interMedia object value at a time. This helps
in several respects:

– If you are accessing the interMedia object from the client side and the client
is on a different node than the server, large read/write operations reduce
network overhead.

– If you are using the NOCACHE option, each small read/write operation
incurs an I/O impact. Reading and writing large quantities of data reduces
the I/O impact.

– Writing to the interMedia object creates a new version of the interMedia
object chunk. Therefore, writing small amounts at a time will incur the cost
of a new version for each small write operation. If logging is on, the chunk
is also stored in the redo log.

■ If you need to read or write small pieces of interMedia object data on the client,
use LOB buffering (see OCILobEnableBuffering(), OCILobDisableBuffering(),
OCILobFlushBuffer(), OCILobWrite(), OCILobRead() in Oracle Call Interface
Programmer’s Guide for more information.). Turn on LOB buffering before read-
ing or writing small pieces of interMedia object data.
8-28 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Improving Multimedia LOB Data Retrieval and Update Performance
■ Use interMedia methods (readFromSource() and writeToSource()) for audio
and video data or OCILobWrite() and OCILobRead() with a callback for image
data so media data is streamed to and from the BLOB. Ensure that the length of
the entire write operation is set in the numBytes parameter using interMedia
methods or in the amount parameter using OCI calls on input. Whenever possi-
ble, read and write in multiples of the LOB chunk size.

■ Use a checkout/checkin model for LOBs. LOBs are optimized for the following:

– Updating interMedia object data: SQL UPDATE operations, which replaces
the entire BLOB value.

– Copying the entire LOB data to the client, modifying the LOB data on the
client side, and copying the entire LOB data back to the database. This can
be done using OCILobRead() and OCILobWrite() with streaming.

See Oracle8i Application Developer’s Guide - Large Objects (LOBs) for more informa-
tion.

8.10 Improving Multimedia LOB Data Retrieval and Update
Performance

Once the LOB data is stored in the database, a modified strategy must be used to
improve the performance of retrieving and updating the LOB data compared to the
insertion strategy described in Section 8.3. The following guidelines should be con-
sidered:

■ Use the CACHE option on LOBs if the same LOB data is to be accessed fre-
quently by other users.

■ Increase the number of buffers if you are going to use the CACHE option.

■ Have enough buffers to hold the object. Using a small number of buffers for
large objects is not good. Set the DB_BLOCK_BUFFERS parameter to a value
that you know will hold the object.

■ Ensure that your redo log files are much larger than they usually are; other-
wise, you may be waiting for log switches, especially if you are making many
updates to your LOB data.

■ Ensure that you use a larger page size (DB_BLOCK_SIZE), especially if the
majority of the data in the database is LOB data.
 Tuning Tips for the DBA 8-29

Improving Multimedia LOB Data Retrieval and Update Performance
8-30 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Audio File and Compression Fo
A

Audio File and Compression Formats

A.1 Supported Audio File and Compression Formats
The following tables describe the file and compression formats and other audio fea-
tures supported by interMedia audio.

To use these tables, find the data format you are interested in, and then determine
the supported formats. For example, Table shows that interMedia audio supports
AIFF format for single channel, stereo, 8-bit and 16-bit samples, linear PCM encod-
ing, and uncompressed format.

Table A–1 AIFF Data Format

Format Audio Feature

AIFF

Format ID ‘AIFF’
File Format: ‘AIFF’
File Ext: .aff
MIME type: audio/x-aiff

Single channel
Stereo
8-bit samples
16-bit samples
Linear PCM encoding

Format Encoding/CompressionType

Standard AIFF Uncompressed TWOS
rmats A-1

Supported Audio File and Compression Formats
Table A–2 AIFF-C Data Format

Format Audio Feature

AIFF-C

Format ID ‘AIFC’
File Format: ‘AIFC’
File Ext: .afc
MIME type: audio/x-aiff

Single channel
Stereo
8-bit samples
16-bit samples

Format Encoding/CompressionType

Choose one of these com-
pression formats1

Not compressed
ACE 2-to-1
ACE 8-to-3
MACE 3-to-1
MACE 6-to-1
1 Other than "uncompressed (TWOS)", all other codes are the FourCC

(uppercased) directly from the compressionType field of Common
Chunk of the AIFC file. The table lists only the ones known.

Uncompressed (TWOS)
ACE2
ACE8
MAC3
MAC6
A-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Supported Audio File and Compression Formats
Table A–3 AU Data Format

Format Audio Feature

AU

Format ID ‘AUFF’
File Format: ‘AUFF’
File Ext: .au
MIME type: audio/basic

Single channel
Stereo
8-bit samples
16-bit samples
Mu-law encoding
Linear PCM encoding

Format Encoding/CompressionType

Choose one of these compression formats:
Unspecified format
8-bit mu-law samples
8-bit linear samples
16-bit linear samples
24-bit linear samples
32-bit linear samples
Floating-point samples
Double-precision float samples
Fragmented sample data
Nested format

UNSPECIFIED
MULAW
LINEAR
LINEAR
LINEAR
LINEAR
FLOAT
DOUBLE
FRAGMENTED
NESTED

DSP program
8-bit fixed-point samples
16-bit fixed-point samples
24-bit fixed-point samples
32-bit fixed-point samples
Unknown AU’s format
Non-audio display data
Squelch format
16-bit linear with emphasis
16-bit linear with compression

DSP_CORE
DSP_DATA
DSP_DATA
DSP_DATA
DSP_DATA
UNKNOWN
DISPLAY
MULAW_SQUELCH
EMPHASIZED
COMPRESSED

16-bit linear with emphasis and compression
Music Kit DSP commands
DSP commands samples
adpcm G721
adpcm G722
adpcm G723_3
adpcm G723_5
8-bit a-law samples

COMPRESSED_EMPHASIZED
DSP_COMMANDS
DSP_COMMANDS_SAMPLES
ADPCM_G721
ADPCM_G722
ADPCM_G723_3
ADPCM_G723_5
ALAW
 Audio File and Compression Formats A-3

Supported Audio File and Compression Formats

Table A–4 WAV Data Format

Format Audio Feature

WAV

Format ID ‘WAVE’
File Format: ‘WAVE’
File Ext: .wav
MIME type: audio/x-wav

Single channel
Stereo
8-bit samples
16-bit samples
Linear PCM encoding

Format Encoding/CompressionType

Choose one of these compression formats:

Unknown Wave Format
Microsoft PCM Wave Format

UNKNOWN
MS_PCM

Microsoft ADPCM Wave Format
IBM CVSD Wave Format
Microsoft aLaw Wave Format
Microsoft uLaw Wave Format
OKI ADPCM Wave Format
Intel DVI/IMA ADPCM Wave Format
VideoLogic Media Space ADPCM Wave Format
Sierra Semiconductor ADPCM Wave Format
Antex Electronics G723 ADPCM Wave Format
DSP Solutions DIGISTD Wave Format

MS_ADPCM
IBM_CVSD
ALAW
MULAW
OKI_ADPCM
DVI_ADPCM
MEDIASPACE_ADPCM
SIERRA_ADPCM
ANTEX_G723_ADPCM
DIGISTD

DSP Solutions DIGIFIX Wave Format
Dialogic OKI ADPCM Wave Format
Yamaha ADPCM Wave Format
Speech Compression Sonarc Wave Format
DSP Group TrueSpeech Wave Format
Echo Speech Wave Format
Audiofile AF36 Wave Format
Audio Processing Technology Wave Format
Audiofile AF10 Wave Format
Dolby AC-2 Wave Format

DIGIFIX
DIALOGIC_OKI_ADPCM
YAMAHA_ADPCM
SONARC
DSPGROUP_TRUESPEECH
ECHOSC1
AUDIOFILE_AF36
APTX
AUDIOFILE_AF10
DOLBY_AC2
A-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Supported Audio File and Compression Formats

Microsoft GSM 610 Wave Format
Antex Electronics ADPCME Wave Format
Control Resources VQLPC Wave Format
DSP Solutions DIGIREAL Wave Format
DSP Solutions DIGIADPCM Wave Format
Control Resources CR10 Wave Format
Natural Microsystems NMS VBXADPCM Wave Format
Crystal Semiconductor IMA ADPCM Wave Format
Antex Electronics G721 ADPCM Wave Format
MPEG-1 Audio Wave Format

MS_GSM610
ANTEX_ADPCME
CONTROL_RES_VQLPC
DIGIREAL
DIGIADPCM
CONTROL_RES_CR10
NMS_VBXADPCM
CS_IMAADPCM
ANTEX_G721_ADPCM
MPEG

Creative Labs ADPCM Wave Format
Creative Labs FastSpeech8 Wave Format
Creative Labs FastSpeech10 Wave Format
Fujitsu FM Towns Wave Format
Olivetti GSM Wave Format
Olivetti ADPCM Wave Format
Olivetti CELP Wave Format
Olivetti SBC Wave Format
Olivetti OPR Wave Format

CREATIVE_ADPCM
CREATIVE_FASTSPEECH8
CREATIVE_FASTSPEECH10
FM_TOWNS_SND
OLIGSM
OLIADPCM
OLICELP
OLISBC
OLIOPR

Table A–5 Audio MPEG Data Format

Format Audio Feature

MPEG

Format ID ‘MPEG’
File Format: ‘MPGA’
File Ext: .mpg
MIME type: audio/mpeg

Layer I
Layer II
Layer III

Format Encoding/CompressionType

Choose one of these com-
pression formats:
MPEG Audio, Layer I
MPEG Audio, Layer II
MPEG Audio, Layer III

LAYER1
LAYER2
LAYER3

Table A–4 WAV Data Format
 Audio File and Compression Formats A-5

Supported Audio File and Compression Formats
A-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Image File and Compression Fo
B

Image File and Compression Formats

B.1 Supported Image File and Compression Formats
The following tables describe the image file and compression formats supported by
Oracle interMedia.

To use these tables, find the data format in which you are interested, and then deter-
mine the supported formats. For example, Table B–1 shows that interMedia image
supports BMP format in monochrome, for read and write access, and in 32-bit RGB
for read access.

Table B–1 BMP Data Format

Format Pixel Format Support

BMP

File Format: ‘BMPF’

File Ext: .bmp

Mime: image/bmp

Monochrome

4-bit LUT

8-bit LUT

16-bit RGB

24-bit RGB

32-bit RGB

Read/Write

Read

Read/Write

Read

Read/Write

Read

Compression Format Support

Choose one of these compression formats: Uncompressed

BMPRLE (for 8-bit LUT)

Read/Write

Read/Write

Data Description Support

Choose one or more of these content formats: Inverse DIB

OS/2 format

Read

Read
rmats B-1

Supported Image File and Compression Formats

Table B–2 CALS Raster Data Format

Format Pixel Format Support

CALS Raster

File Format: ‘CALS’

File Ext: .cal

Mime: image/x-ora-cals

Monochrome Read/Write

Compression Format Support

FAX4 (CCITT G4) Read/Write

Data Description Support

 NA NA

Table B–3 EXIF Data Format

Format Pixel Format Support

EXIF

File Format: ‘JFIF’

File Ext: .jpg

Mime: image/jpeg

8-bit grayscale

24-bit RGB

Read/Write

Read/Write

Compression Support

JPEG Read/Write

Data Description Support

 NA NA
B-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Supported Image File and Compression Formats

Table B–4 GIF Data Format

Format Pixel Format Support

GIF

File Format: ‘GIFF’

File Ext: .gif

Mime: image/gif

NOTE: interMedia image has limited sup-
port for animated GIF images; there is set-
Properties() support; however, processing
using the process() and processCopy() (or
Analyze) methods is not supported.

Monochrome

8-bit LUT

Read

Read/Write

Compression Format Support

GIFLZW (LZW) Read/Write

Data Description Support

 NA NA

Table B–5 JFIF Data Format

Format Pixel Format Support

JFIF

File Format: ‘JFIF’

File Ext: .jpg

Mime: image/jpeg

8-bit grayscale

24-bit RGB

Read/Write

Read/Write

Compression Support

JPEG Read/Write

Data Description Support

 NA NA
 Image File and Compression Formats B-3

Supported Image File and Compression Formats

Table B–6 PCX Data Format

Format Pixel Format Support

PCX v 5

File Format: ‘PCXF’

File Ext: .pcx

Mime: image/x-ora-pcxf

Monochrome

2-bit LUT

4-bit LUT

8-bit LUT

1-bit RGB

2-bit RGB

4-bit RGB

8-bit RGB

24-bit RGB

Read

Read

Read

Read

Read

Read

Read

Read

Read

Compression Format Support

RLE Read

Data Description Support

 NA NA

Table B–7 PICT Data Format

Format Pixel Format Support

PICT v. 1 & 2

File Format: ‘PICT’

File Ext: .pct

Mime: image/pict

Monochrome

2-bit LUT

4-bit LUT

8-bit LUT

16-bit RGB

24-bit RGB

Read/Write

Read

Read

Read/Write

Read

Read/Write

Compression Format Support
B-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Supported Image File and Compression Formats

Choose one of these compression formats: Packbits

JPEG (8-bit grayscale and RGB)

Read/Write

Read/Write

Data Description Support

Choose one or more of these content formats: Vector/object graphics Not supported

Table B–8 Raw Pixel Data Format

Format Pixel Format Support

Raw Pixel

File Format: ‘RPIX’

File Ext: .rpx

Mime: image/x-ora-rpix

Monochrome

8-bit grayscale

24-bit RGB

Read/Write

Read/Write

Read/Write

Compression Format Support

Choose one of these compression formats: Uncompressed

FAX3 (CCITT G3)

FAX4 (CCITT G4)

Read/Write 8-bit
grayscale and RGB

Read/Write mono-
chrome only

Read/Write mono-
chrome only

Data Description Support

 Inverse scanline order

Reverse pixel order

BIP, BIL, or BSQ interleave

Alternative band order

>3 bands

Read/Write

Read/Write

Read/Write

Read/Write

Read

Table B–7 PICT Data Format (Cont.)
 Image File and Compression Formats B-5

Supported Image File and Compression Formats

Table B–9 Sun Raster Data Format

Format Pixel Format Support

Sun Raster

File Format: ‘RASF’

File Ext: .ras

Mime:
image/x-ora-rasf

Monochrome

8-bit grayscale

8-bit LUT

24-bit RGB

Read/Write

Read/Write

Read/Write

Read/Write

Compression Format Support

Choose one of these compression formats: Uncompressed

SUNRLE (RLE)

Read/Write

Read/Write

Data Description Support

 NA NA

Table B–10 Targa Data Format

Format Pixel Format Support

Targa

File Format: ‘TGAF’

File Ext: .tga

Mime:
image/x-ora-tgaf

8-bit grayscale

8-bit LUT

16-bit RGB

24-bit RGB

32-bit RGB

Read/Write

Read/Write

Read

Read/Write

Read

Compression Format Support

Choose one of these compression formats: Uncompressed

TARGARLE (RLE)

Read/Write

Read/Write

Data Description Support

 NA NA
B-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Supported Image File and Compression Formats
Table B–11 TIFF Data Format

Format Pixel Format Support

TIFF v.4/5/6

File Format: ‘TIFF’

File Ext: .tif

Mime: image/tiff

Monochrome

8-bit grayscale

4 bit LUT

8-bit LUT

24-bit RGB

Read/Write

Read/Write

Read

Read/Write

Read/Write

Compression Format Support

Choose one of these compression formats: Uncompressed

Packbits

Huffman

FAX3 (CCITT G3)

FAX4 (CCITT G4)

LZW

LZWHDIFF

JPEG (8-bit gray & RGB)

Read/Write

Read/Write

Read/Write

Read/Write

Read/Write

Read/Write

Read/Write

Read/Write

Data Description Support

Choose one or more of these content formats: Planar data

Tiled data

Photometric interpretation

MSB / LSB

Not supported

Read

Read/Write

Read/Write
 Image File and Compression Formats B-7

Supported Image File and Compression Formats
B-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Video File and Compression Fo
C

Video File and Compression Formats

C.1 Supported Video File and Compression Formats
The following tables describe the file and compression formats supported by inter-
Media video.

To use these tables, find the data format you are interested in, and then determine
the supported formats. For example, Table shows that interMedia video supports
Apple QuickTime 3.0 MOOV file format and a variety of compression formats from
Cinepak to Sorenson Video.
rmats C-1

Supported Video File and Compression Formats
Table C–1 Apple QuickTime 3.0 Data Format

Format

Apple QuickTime 3.0

File Format: ‘MOOV’
File Ext: .mov
MIMR type: video/quicktime

Compression Format

Choose one of these compression
formats1:
Cinepak
JPEG
Uncompressed RGB
Uncompressed YUV422
Graphics
Animation: Run Length Encoded
Apple Video Compression
Kodak Photo CD
QuickDraw GX
MPEG Still Image
Motion-JPEG (Format A)
Motion-JPEG (Format B)
Sorenson Video
1 All codes are the FourCC (uppercased) directly obtained from the dataFor-

mat field of the video sample description entry of ’stsd’ Atom of the Quick-
Time file. The table lists only the ones known.

CVID
JPEG
RGB
YUV2
SMC
RLE
RPZA
KPCD
QDGX
MPEG
MJPA
MJPB
SVQ1
C-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Supported Video File and Compression Formats
Table C–2 Microsoft Video for Windows (AVI) Data Format

Format

Microsoft AVI

File Format: ‘AVI’
File Ext: .avi
MIME type: video/x-msvideo

Compression Format

Choose one of these
compression formats1:
Microsoft Video 1
Intel Indeo 3.1
Intel Indeo 3.2
Intel Indeo 4.0
Intel Indeo 4.1
Intel Indeo 5.0
Intel Indeo 5.1
Cinepak
1 All codes are the FourCC (uppercased) directly obtained from the compres-

sion field of ’strf’ Chunk of the AVI file. The table lists only the ones
known.

CRAM
IV31
IV32
IV40
IV41
IV50
IV51
CVID

Table C–3 RealNetworks Real Video Data Format

Format

RealNetworks Real Video

File Format: ‘RMFF’
File Ext: .rm
MIME type: application/x-vnd.realmedia
 Video File and Compression Formats C-3

Supported Video File and Compression Formats
C-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Image process() and processCopy() Ope
D

Image process() and processCopy()

Operators

This appendix describes the command options, or operators, used in the
process() and processCopy() methods.

The available operators fall into three broad categories, each described in its own
section:

■ Section D.2, “Image Formatting Operators”

■ Section D.3, “Image Processing Operators”

■ Section D.4, “Format-Specific Operators”

Section D.1, “Common Concepts” describes the relative order of these operators.

D.1 Common Concepts
This section describes concepts common to all the image operators and the
process() and processCopy() methods.

D.1.1 Source and Destination Images
The process() and processCopy() methods operate on one image, called the source
image, and produce another image, called the destination image. In the case of the
process() method, the destination image is written into the same storage space as
the source image, replacing it permanently. For the processCopy() method, the stor-
age for the destination image is distinct from the storage for the source image.
rators D-1

Image Formatting Operators
D.1.2 process() and processCopy()
The process() and processCopy() methods are functionally identical except for the
fact that process() writes its output into the same BLOB from which it takes its
input while processCopy() writes its output into a different BLOB. Their command
string options are identical and no distinction is drawn between them.

For the rest of this appendix, the names process() and processCopy() are used
interchangeably, and the use of the name process() implies both process() and pro-
cessCopy() unless explicitly noted otherwise.

D.1.3 Operator and Value
All of the process() operators appear in the command string in the form <opera-
tor> = <value>. No operator takes effect merely by being present in the command
string. The right-hand side of the expression is called the value of the operator, and
determines how the operator will be applied.

D.1.4 Combining Operators
In general, any number of operators can be combined in the command string passed
into the process() method if the combination makes sense. However, certain opera-
tors are supported only if other operators are present or if other conditions are met.
For example, the compressionQuality operator is supported only if the compres-
sion format of the destination image is JPEG. Other operators require that the
source or destination image be a Raw Pixel or foreign image.

The flexibility in combining operators allows a single operation to change the for-
mat of an image, reduce or increase the number of colors, compress the data, and
cut or scale the resulting image. This is highly preferable to making multiple calls to
do each of these operations sequentially.

D.2 Image Formatting Operators
At the most abstract level, the image formatting operators are used to change the
layout of the data within the image storage. They do not change the semantic con-
tent of the image, and unless the source image contains more information than the
destination image can store, they do not change the visual appearance of the image
at all. Examples of a source image with more information than the destination
image can store are:

■ Converting a 24-bit image to an 8-bit image (too many bits per pixel)
D-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Formatting Operators
■ Converting a color image to a grayscale or monochrome image (too many color
planes)

■ Converting an uncompressed image, or an image stored in a lossless compres-
sion format, to a lossy compression format (too much detail)

D.2.1 FileFormat
The FileFormat operator determines the image file type, or format, of the output
image. The value of this operator is a 4-character code, which is a mnemonic for the
new file format name. The list of allowable values for the file format operator is
shown in Table 5–1. Appendix B contains basic information about each file format,
including its mnemonic (file format), typical file extension, allowable compression
and content formats, and other notable features.

The value given to the file format operator is the single most important detail when
specifying the output for process(). This value determines the range of allowable
content and compression formats, whether or not compression quality will be use-
ful, and whether or not the format-specific operators will be useful.

If the FileFormat operator is not used in the process() command string, interMedia
image will determine the file format of the source image and use that as the default
file format value. If the file format of the source image does not support output,
then an error will occur. If the source image is a foreign image, then the output
image will be written as Raw Pixel.

D.2.2 ContentFormat
The ContentFormat operator determines the format of the image content. The con-
tent means the number of colors supported by the image and the manner in which
they are supported. Depending on which file format is used to store the output
image, some or most of the content formats may not be supported.

The supported values for the ContentFormat operator fall into three broad classes,
with three additional special values. The actual mnemonics for these values are
listed in Table 5–1.

The content formats whose name includes grayscale or greyscale support only
shades of gray. The differences between these content formats is how many shades
are allowed. The “4bit” formats support 16 shades while the formats with “8bit”
support 256 shades of gray. There is no distinction between grayscale and greyscale.

The content formats whose name includes LUT use a color lookup table to support
various colors. The “1bitlut” format allows 2 distinct colors, the “2bitlut” format
 Image process() and processCopy() Operators D-3

Image Formatting Operators
supports 4 colors, “4bitlut” supports 16 unique colors, and “8bitlut” supports 256
colors.

The content formats whose name includes RGB store the color values directly in the
pixel data as a Red, Green, Blue triplet. The number of bits of total RGB data is spec-
ified in the format name and individual formats allocate these bits to red, green, and
blue in different ways. However, more bits of data allow for finer distinctions
between different shades. Not all bits are used by some image formats.

The monochrome content format allows only black and white to be stored, with no
gray shades in between. The “raw” and “24bitplanar” formats are not currently
supported.

If the ContentFormat operator is not passed to the process() method, then interMe-
dia image attempts to duplicate the content format of the source image if it is sup-
ported by the file format of the destination image. Otherwise, a default content
format is chosen depending on the destination file format.

D.2.3 CompressionFormat
The CompressionFormat operator determines the compression algorithm used to
compress the image data. The range of supported compression formats depends
heavily upon the file format of the output image. Some file formats support but a
single compression format, and some compression formats are supported only by
one file format.

The supported values for the CompressionFormat operator are listed in Table 5–1.

All compression formats that include RLE in their mnemonic are run-length encod-
ing compression schemes, and work well only for images that contain large areas of
identical color. The PACKBITS compression type is a run-length encoding scheme
that originates from the Macintosh system but is supported by other systems. It has
limitations that are similar to other run-length encoding compression formats. For-
mats that contain LZW or HUFFMAN are more complex compression schemes that
examine the image for redundant information and are more useful for a broader
class of images. FAX3 and FAX4 are the CCITT Group 3 and Group 4 standards for
compressing facsimile data and are useful only for monochrome images. All the
compression formats mentioned in this paragraph are lossless compression
schemes, which means that compressing the image does not discard data. An image
compressed into a lossless format and then decompressed will look the same as the
original image.

The JPEG compression format is a special case. Developed to compress photo-
graphic images, the JPEG format is a lossy format, which means that it compresses
the image typically by discarding unimportant details. Because this format is opti-
D-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Processing Operators
mized for compressing photographic and similarly noisy images, it often produces
poor results for other image types, such as line art images and images with large
areas of similar color. JPEG is the only lossy compression scheme currently sup-
ported by interMedia image.

If the CompressionFormat operator is not used, then interMedia image will attempt
to use the compression format of the source image if the source image has the same
file format as the destination image. If the content format of the destination has
been altered during processing and the new content format does not support the
compression format of the source image, then a default compression format will be
chosen; often this default is "None" or "No Compression."

If the CompressionFormat operator is not used and the file format of the destina-
tion image is different from that of the source image, then a default compression
format will be selected depending on the destination image file format. This default
compression is often "None" or "No Compression."

D.2.4 CompressionQuality
The CompressionQuality operator determines the relative quality of an image com-
pressed with a lossy compression format. This operator has no meaning for lossless
compression formats, and therefore is not currently supported for any compression
format except JPEG.

The CompressionQuality operator accepts five values, ranging from most com-
pressed image (lowest visual quality) to least compressed image (highest visual
quality): MAXCOMPRATIO, HIGHCOMP, MEDCOMP, LOWCOMP, and MAXIN-
TEGRITY. Using the MAXCOMPRATIO value allows the image to be stored in the
smallest amount of space but may introduce visible aberrations into the image.
Using the MAXINTEGRITY value keeps the resulting image more faithful to the
original but will require more space to store.

If the CompressionQuality operator is not supplied and the destination compres-
sion format supports compression quality control, the quality will default to MED-
COMP for medium quality.

D.3 Image Processing Operators
The image processing operators supported by interMedia image directly change the
way the image looks on the display. The operators supported by interMedia image
represent only a fraction of all possible image processing operations, and are not
intended for users performing intricate image analysis.
 Image process() and processCopy() Operators D-5

Image Processing Operators
D.3.1 Cut
The Cut operator is used to create a subset of the original image. The values sup-
plied to the cut operator are the origin coordinates (x,y) of the cut window in the
source image, and the width and height of the cut window in pixels. This operator
is applied before any scaling that is requested.

If the Cut operator is not supplied, the entire source image is used.

D.3.2 Scale
The Scale operator enlarges or reduces the image by the ratio given as the value for
the operator. If the value is greater than 1.0, then the destination image will be
scaled up (enlarged). If the value is less than 1.0, then the output will be scaled
down (reduced). A scale value of 1.0 has no effect, and is not an error. No scaling is
applied to the source image if the Scale operator is not passed to the process()
method.

There are two scaling techniques used by interMedia image. The first technique is
“scaling by sampling” and is used only if the requested compression quality is
MAXCOMPRATIO or HIGHCOMP, or if the image is being scaled up in both
dimensions. This scaling technique works by selecting the source image pixel that is
closest to the pixel being computed by the scaling algorithm and using the color of
that pixel. This technique is faster, but results in a poorer quality image.

The second scaling technique is “scaling by averaging,” and is used in all other
cases. This technique works by selecting several pixels that are close to the pixel
being computed by the scaling algorithm and computing the average color. This
technique is slower, but results in a better quality image.

If the Scale operator is not used, the default scaling value is 1.0. This operator can-
not be combined with other scaling operators.

D.3.3 XScale
The XScale operator is similar to the scale operator but only affects the width
(x-dimension) of the image. The important difference between XScale and Scale is
that with XScale, scaling by sampling is used whenever the image quality is speci-
fied to be MAXCOMPRATIO or HIGHCOMP, and is not dependent on whether the
image is being scaled up or down.

This operator may be combined with the YScale operator to scale each axis differ-
ently. It may not be combined with other scaling operators (Scale, FixedScale,
MaxScale).
D-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Image Processing Operators
D.3.4 YScale
The YScale operator is similar to the scale operator but only affects the height
(y-dimension) of the image. The important difference between YScale and Scale is
that with YScale, scaling by sampling is used whenever the image quality is speci-
fied to be MAXCOMPRATIO or HIGHCOMP, and is not dependent on whether the
image is being scaled up or down.

This operator may be combined with the XScale operator to scale each axis differ-
ently. It may not be combined with other scaling operators (Scale, FixedScale,
MaxScale).

D.3.5 FixedScale
The FixedScale operator provides an alternate method for specifying scaling val-
ues. The Scale, XScale, and YScale operators all accept floating-point scaling ratios,
while the FixedScale (and MaxScale) operators specify scaling values in pixels. This
operator is intended to simplify the creation of images with a specific size, such as
thumbnail images.

The two integer values supplied to the FixedScale operator are the desired dimen-
sions (width and height) of the destination image. The supplied dimensions may be
larger or smaller (or one larger and one smaller) than the dimensions of the source
image.

The scaling method used by this operator will be the same as used by the Scale
operator in all cases. This operator cannot be combined with other scaling opera-
tors.

D.3.6 MaxScale
The MaxScale operator is a variant of the FixedScale operator that preserves the
aspect ratio (relative width and height) of the source image. MaxScale also accepts
two integer dimensions, but these values represent the maximum value of the
appropriate dimension after scaling. The final dimension may actually be less than
the supplied value.

Like the FixedScale operator, this operator is also intended to simplify the creation
of images with a specific size. MaxScale is even better suited to thumbnail image
creation than the FixedScale operator because thumbnail images created using Max-
Scale will have the correct aspect ratios.

The MaxScale operator scales the source image to fit within the dimensions speci-
fied while preserving the aspect ratio of the source image. Because the aspect ratio
is preserved, only one dimension of the destination image may actually be equal to
 Image process() and processCopy() Operators D-7

Format-Specific Operators
the values supplied to the operator. The other dimension may be smaller than or
equal to the supplied value. Another way to think of this scaling method is that the
source image is scaled by a single scale factor that is as large as possible with the
constraint that the destination image fit entirely within the dimensions specified by
the MaxScale operator.

If the Cut operator is used in conjunction with the MaxScale operator, then the
aspect ratio of the cut window is preserved instead of the aspect ratio of the input
image.

The scaling method used by this operator is the same as used by the Scale operator
in all cases. This operator cannot be combined with other scaling operators.

D.4 Format-Specific Operators
The following operators are supported only when the destination image file format
is Raw Pixel, with the exception of the InputChannels operator, which is supported
only when the source image is Raw Pixel or a foreign image. It does not matter if
the destination image format is set to Raw Pixel explicitly using the FileFormat
operator, or if the Raw Pixel format is selected by interMedia image automatically
because the source format is Raw Pixel or a foreign image.

D.4.1 ChannelOrder
The ChannelOrder operator determines the relative order of the red, green, and
blue channels (bands) within the destination Raw Pixel image. The order of the
characters R, G, and B within the mnemonic value passed to this operator deter-
mine the order of these channels within the output. The header of the Raw Pixel
image will be written such that this order is not lost.

For more information about the Raw Pixel file format and the ordering of channels
in that format, see Appendix E.

D.4.2 Interleaving
The Interleaving operator controls the layout of the red, green, and blue channels
(bands) within the destination Raw Pixel image.The three mnemonic values sup-
ported by this operator: BIP, BIL, and BSQ force the output image to be “band inter-
leaved by pixel,” “band interleaved by line,” and “band sequential” respectively.

For more information about the Raw Pixel file format, the interleaving of channels
in that format, or the meaning of these interleaving values, see Appendix E.
D-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Format-Specific Operators
D.4.3 PixelOrder
The PixelOrder operator controls the direction of pixels within a scanline in a Raw
Pixel Image. The value Normal indicates that the leftmost pixel of a scanline will
appear first in the image data stream. The value Reverse causes the rightmost pixel
of the scanline to appear first.

For more information about the Raw Pixel file format and pixel ordering, see
Appendix E.

D.4.4 ScanlineOrder
The ScanlineOrder operator controls the order of scanlines within a Raw Pixel
image. The value Normal indicates that the top display scanline will appear first in
the image data stream. The value Inverse causes the bottom scanline to appear first.

For more information about the Raw Pixel file format and scanline ordering, see
Appendix E.

D.4.5 InputChannels
As stated in Section D.4, the InputChannels operator is supported only when the
source image is in Raw Pixel format or if the source is a foreign image.

The InputChannels operator assigns individual bands from a multiband image to be
the red, green, and blue channels for later image processing. Any band within the
source image can be assigned to any channel. If desired, only a single band may be
specified and the selected band will be used as the gray channel, resulting in a gray-
scale output image. The first band in the image is number 1, and the band numbers
passed to the Input Channels operator must be greater than or equal to one, and less
than or equal to the total number of bands in the source image. Only the bands
selected the by InputChannels operator are written to the output. Other bands are
not transferred, even if the output image is in Raw Pixel format.

It should be noted that every Raw Pixel or foreign image has these input channel
assignments written into its header block, but that this operator overrides those
default assignments.

For more information about the Raw Pixel file format and input channels, see
Appendix E.
 Image process() and processCopy() Operators D-9

Format-Specific Operators
D-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Image Raw Pixel F
E

Image Raw Pixel Format

This appendix describes the Oracle Raw Pixel image format and is intended for
developers and advanced users who wish to use the Raw Pixel format to import
unsupported image formats into interMedia image, or as a means to directly access
the pixel data in an image.

Much of this appendix is also applicable to foreign images.

E.1 Raw Pixel Introduction
interMedia image supports many popular image formats suitable for storing art-
work, photographs, and other images in an efficient, compressed way, and pro-
vides the ability to convert between these formats. However, most of these formats
are proprietary to at least some degree, and the format of their content is often
widely variable and not suited for easy access to the pixel data of the image.

The Raw Pixel format is useful for applications that need direct access to the pixel
data without the burden of the complex computations required to determine the
location of pixels within a compressed data stream. This simplifies reading the
image for applications that are performing pixel-oriented image processing, such as
filtering and edge detection. This format is even more useful to applications that
need to write data back to the image. Because changing even a single pixel in a com-
pressed image can have implications for the entire image stream, providing an
uncompressed format enables applications to write pixel data directly, and later
compress the image with a single process() command.

This format is also useful to users who have data in a format not directly supported
by interMedia image, but is in a simple, uncompressed format. These users can
prepend a Raw Pixel identifier and header onto their data and import it into inter-
Media image. For users who only need to read these images (such as for import or
conversion), this capability is built into interMedia image as “Foreign Image Sup-
ormat E-1

Raw Pixel Image Structure
port”. How this capability is related to the Raw Pixel format is described in
Section E.10.

In addition to supporting image types not already built into interMedia image, the
Raw Pixel format also permits the interpretation of N-band imagery, such as satel-
lite images. Using Raw Pixel, one or three bands of an N-band image may be
selected during conversion to another image format, allowing easy visualization
within programs that do not otherwise support N-band images. Note that images
written with the Raw Pixel format still may only have one or three bands.

The current version of the Raw Pixel format is “1.0”. This appendix is applicable to
Raw Pixel images of this version only, as the particulars of the format may change
with other versions.

E.2 Raw Pixel Image Structure
A Raw Pixel image consists of a 4-byte image identifier, followed by a 30-byte image
header, followed by an arbitrary gap of zero or more bytes, followed by pixel data.

It is worth noting that Raw Pixel images are never color-mapped, and therefore do
not contain color lookup tables.

The Raw Pixel header consists of the “Image Identifier” and the “Image Header”.
The Image Header is actually composed of several fields.

Note that the first byte in the image is actually offset ‘0’. All integer fields are
unsigned and stored in big endian byte order.

Name Byte(s) Description

Image Identifier 0:3 4-byte character array containing ASCII values for
RPIX.

This array identifies the image as a Raw Pixel image.

Image Header Length 4:7 Length of this header in bytes, excluding the identi-
fier field.

The value of this field may be increased to create a
gap between the header fields and the pixel data in
the image.

Major Version 8 Major version number of the Raw Pixel format used
in the image.

Minor Version 9 Minor version number of the Raw Pixel format used
in the image.

Image Width 10:13 Width of the image in pixels.
E-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Raw Pixel Header Field Descriptions
E.3 Raw Pixel Header Field Descriptions
This section describes the fields of the Raw Pixel Header in greater detail.

Image Identifier
Occupying the first 4 bytes of a Raw Pixel image, the identifier string must always
be set to the ASCII values “RPIX” (hex 52 50 49 58). These characters identify the
image as being encoded in RPIX format.

This string is currently independent of the Raw Pixel version.

Image Header Length
The Raw Pixel reader uses the value stored in this field to find the start of the pixel
data section within a Raw Pixel image. To find the offset of the pixel data in the
image, the reader adds the length of the image identifier (always ‘4’) to the value in

Image Height 14:17 Height of the image in pixels.

Compression Type 18 Compression type of the image: None, CCITT FAX
Group 3, or CCITT FAX Group 4.

Pixel Order 19 Pixel order of the image: Normal or Reverse.

Scanline Order 20 Scanline order of the image: Normal or Inverse.

Interleave 21 Interleave type of the image: BIP, BIL, or BSQ.

Number of Bands 22 Number of bands in the image. Must be in the range
1 to 255.

Red Channel Number 23 The band number of the channel to use as a default
for red.

This field is the gray channel number if the image is
grayscale.

Green Channel Num-
ber

24 The band number of the channel to use as a default
for green.

This field is zero if the image is grayscale.

Blue Channel Number 25 The band number of the channel to use as a default
for blue.

This field is zero if the image is grayscale.

Reserved Area 26:33 Not currently used. All bytes must be zero.
 Image Raw Pixel Format E-3

Raw Pixel Header Field Descriptions
the image header length field. Thus, for Raw Pixel 1.0 images with no post-header
gap, the pixel data starts at offset 34.

For Raw Pixel version 1.0 images, this field normally contains the integer value ‘30’,
which is the length of the Raw Pixel image header (not including the image identi-
fier). However, the Raw Pixel format allows this field to contain any value equal to
or greater than 30. Any information in the space between the end of the header data
and the start of the pixel data specified by this header length is ignored by the Raw
Pixel reader. This is useful for users who wish to prepend a Raw Pixel header onto
an existing image whose pixel data area is compatible with Raw Pixel. In this case,
the header length would be set to 30 plus the length of the existing header. The
maximum length of this header is 4,294,967,265 bytes (the maximum value that can
be stored in the 4-byte unsigned field minus the 30-byte header required by Raw
Pixel). This field is stored in big endian byte order.

Major Version
A single-byte integer containing the major version number of the Raw Pixel format
version used to encode the image. The current Raw Pixel version is “1.0”, therefore
this field is ‘1’.

Minor Version
A single-byte integer containing the minor version number of the Raw Pixel format
version used to encode the image. The current Raw Pixel version is “1.0”, therefore
this field is ‘0’.

Image Width
The width (x-dimension) of the image in pixels.

Although this field is capable of storing an image dimension in excess of 4 billion
pixels, limitations within interMedia image require that this field be in the range
1<= width <= 32767. This field is stored in big endian byte order.

Image Height
The height (y-dimension) of the image in pixels.

Although this field is capable of storing an image dimension in excess of 4 billion
pixels, limitations within interMedia image require that this field be in the range
1 <= height <= 32767. This field is stored in big endian byte order.
E-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Raw Pixel Header Field Descriptions
Compression Type
This field contains the compression type of the Raw Pixel image. As of version 1.0,
this field may contain the following values:

For grayscale, RGB, and N-band images, the image is always uncompressed, and
only a value of 0 is valid. If the compression type is value 1 or 2, then the image is
presumed to be monochrome. In this case the image is presumed to contain only a
single band, and must specify normal pixel order, normal scanline order, and BIP
interleave.

Pixel Order
This field describes the pixel order within the Raw Pixel image. Normally, pixels in
a scanline are ordered from left to right, along the traditional positive x-axis. How-
ever, some applications require that scanlines be ordered from right to left.

This field may contain the following values:

This field cannot contain 0, as this indicates an unspecified pixel order; this would
mean the image could not be interpreted. For images with CCITT G3 and G4 com-
pression types, this field must contain the value ‘1’.

Scanline Order
This field describes the scanline order within the Raw Pixel image. Normally, scan-
lines in an image are ordered from top to bottom. However, some applications
require that scanlines are ordered from bottom to top.

Value Name Compression

1 NONE No compression

2 FAX3 CCITT Group 3 compression

3 FAX4 CCITT Group 4 compression

Value Name Pixel Order

1 NORMAL Leftmost pixel first

2 REVERSE Rightmost pixel first
 Image Raw Pixel Format E-5

Raw Pixel Header Field Descriptions
This field may contain the following values:

This field cannot contain 0, as this indicates an unspecified scanline order; this
would mean the image could not be interpreted. For images with CCITT G3 and G4
compression types, this field must contain the value 1.

Interleave
This field describes the interleaving of the various bands within a Raw Pixel image.
For more information on the meaning of the various interleave options, see
Section E.5.3.

This field may contain the following values:

This field cannot contain 0, as this indicates an unspecified interleave; this would
mean the image could not be interpreted. For images with CCITT G3 and G4 com-
pression types, this field must contain the value 1.

Number of Bands
This field contains the number of bands or planes in the image, and must be in the
range 1 <= number of bands <= 255. This field may not contain the value 0.

For CCITT images, this field must contain the value 1.

Red Channel Number
This field contains the number of the band that is to be used as the red channel dur-
ing image conversion operations. This may be used to change the interpretation of a
normal RGB image, or to specify a default band to be used as red in an N-band
image. This default may be overridden using the inputChannels operator in the
process() or processCopy() methods.

Value Name Scanline Order

1 NORMAL Topmost scanline first

2 INVERSE Bottommost scanline first

Value Name Interleave

1 BIP Band Interleave by Pixel, or “chunky”

2 BIL Band Interleave by Line

3 BSQ Band SeQuential, or “planar”
E-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Raw Pixel Post-Header Gap
If the image has only one band, or only one band from an N-band image should be
selected for display, then the band number should be encoded as the red channel. In
this case, the green and blue channels should be set to 0.

This field may not contain the value 0; only values in the range (1 <= red <= num-
ber of bands) may be specified.

Green Channel Number
This field contains the number of the band that is to be used as the green channel
during image conversion operations. This may be used to change the interpretation
of a normal RGB image, or to specify a default band to be used as green in an
N-band image. This default may be overridden using the inputChannels operator in
the process() or processCopy() method.

If the image has only one band, or only one band from an N-band image should be
selected for display, then the band number should be encoded as the red channel. In
this case, the green and blue channels should be set to 0.

This field may contain values in the range 0 <= green <= number of bands.

Blue Channel Number
This field contains the number of the band that is to be used as the blue channel
during image conversion operations. This may be used to change the interpretation
of a normal RGB image, or to specify a default band to be used as blue in an N-band
image. This default may be overridden using the inputChannels operator in the
process() or processCopy() method.

If the image has only one band, or only one band from an N-band image should be
selected for display, then the band number should be encoded as the red channel. In
this case, the green and blue channels should be set to 0.

This field may contain values in the range 0 <= blue <= number of bands.

Reserved Area
The application of these 8 bytes titled Reserved Area is currently under develop-
ment, but they are reserved even within Raw Pixel 1.0 images. These bytes must all
be cleared to zero. Failure to do so will create undefined results.

E.4 Raw Pixel Post-Header Gap
Apart from the image identifier and the image header, Raw Pixel version 1.0 images
contain an optional post-header gap, which precedes the actual pixel data. Unlike
the reserved area of the image header, the bytes in this gap can contain any values
 Image Raw Pixel Format E-7

Raw Pixel Data Section and Pixel Data Format
you want. This is useful to store additional metadata about the image, which in
some cases may be the actual image header from another file format.

However, because there is no standard for the information stored in this gap, care
must be taken if metadata is stored in this area as other users may interpret this
data differently. It is also worth noting that when a Raw Pixel image is processed,
information stored in this gap is not copied to the destination image. In the case of
the process() method, which writes its output to the same location as the input, the
source information will be lost unless the transaction in which the processing took
place is rolled back.

E.5 Raw Pixel Data Section and Pixel Data Format
The data section of a Raw Pixel image is where the actual pixel data of an image is
stored; this area is sometimes called the bitmap data. This section describes the lay-
out of the bitmap data.

For images using CCITT compression, the bitmap data area stores the raw CCITT
stream with no additional header. The rest of this section applies only to uncom-
pressed images.

Bitmap data in a Raw Pixel image is stored as 8-bit per plane, per pixel, direct color,
packed data. There is no pixel, scanline, or band blocking or padding. Scanlines
may be presented in the image as either topmost first, or bottommost first. Within a
scanline, pixels may be ordered leftmost first, or rightmost first. All these options
are affected by interleaving in a relatively straightforward way; see the sections that
follow for examples.

E.5.1 Scanline Ordering
On the screen, an image may look like the following:

1111111111…
2222222222…
3333333333…
4444444444…

Each digit represents a single pixel; the value of the digit is the scanline that the
pixel is on.

Generally the scanline that forms the upper or topmost row of pixels is stored in the
image data stream before lower scanlines. The preceding image would appear as
follows in the bitmap data stream:

…1111111111…2222222222…3333333333…4444444444…
E-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Raw Pixel Data Section and Pixel Data Format
Note that the first scanline appears earlier than the remaining scanlines. The Raw
Pixel format refers to this scanline ordering as normal.

However, some applications prefer that the bottommost scanline appear in the data
stream first:

…4444444444…3333333333…2222222222…1111111111…

The Raw Pixel format refers to this scanline ordering as inverse.

E.5.2 Pixel Ordering
On the screen, a scanline of an image may look like the following:

…123456789…

Each digit represents a single pixel; the value of the digit is the column that the
pixel is on.

Generally the data that forms the leftmost pixels is stored in the image data stream
before pixels toward the right. The preceding scanline would appear as follows in
the bitmap data stream:

…123456789…
Note that the left pixel appears earlier than the remaining pixels. The Raw Pixel for-
mat refers to this pixel ordering as normal.

However, some applications prefer that the rightmost pixel appear in the data
stream first:

…987654321…
The Raw Pixel format refers to this pixel ordering as reverse.

E.5.3 Band Interleaving
Band interleaving describes the relative location of different bands of pixel data
within the image buffer.

Bands are ordered by their appearance in an image data stream, with 1 being the
first band, n being the last band. Band 0 would indicate no band or no data.

Band Interleaved by Pixel (BIP), or Chunky
BIP, or chunky, images place the various bands or channels of pixel data sequen-
tially by pixel, so that all data for one pixel is in one place. If the bands of the image
are the red, green, and blue channels, then a BIP image might look like this:

scanline 1: RGBRGBRGBRGBRGBRGBRGB…
scanline 2: RGBRGBRGBRGBRGBRGBRGB…
 Image Raw Pixel Format E-9

Raw Pixel Data Section and Pixel Data Format
scanline 3: RGBRGBRGBRGBRGBRGBRGB…
…

Band Interleaved by Line (BIL)
BIL images place the various bands of pixel data sequentially by scanline, so that
data for one pixel is spread across multiple notional rows of the image. This reflects
the data organization of a sensor that buffers data by scanline. If the bands of the
image are the red, green, and blue channels, then a BIL image might look like this:

scanline 1: RRRRRRRRRRRRRRRRRRRRR…
 GGGGGGGGGGGGGGGGGGGGG…
 BBBBBBBBBBBBBBBBBBBBB…
scanline 2: RRRRRRRRRRRRRRRRRRRRR…
 GGGGGGGGGGGGGGGGGGGGG…
 BBBBBBBBBBBBBBBBBBBBB…
scanline 3: RRRRRRRRRRRRRRRRRRRRR…
 GGGGGGGGGGGGGGGGGGGGG…
 BBBBBBBBBBBBBBBBBBBBB…
…

Band Sequential (BSQ), or Planar
Planar images place the various bands of pixel data sequentially by bit plane, so
that data for one pixel is spread across multiple planes of the image. This reflects the
data organization of some video buffer systems, which control the different elec-
tron guns of a display from different locations in memory. If the bands of the image
are the red, green, and blue channels, then a planar image might look like this:

plane 1: RRRRRRRRRRRRRRRRRR… (part of scanline 1)
 RRRRRRRRRRRRRRRRRR… (part of scanline 2)
 RRRRRRRRRRRRRRRRRR… (part of scanline 3)
…
plane 2: GGGGGGGGGGGGGGGGGG… (part of scanline 1)
 GGGGGGGGGGGGGGGGGG… (part of scanline 2)
 GGGGGGGGGGGGGGGGGG… (part of scanline 3)
…
plane 3: BBBBBBBBBBBBBBBBBB… (part of scanline 1)
 BBBBBBBBBBBBBBBBBB… (part of scanline 2)
 BBBBBBBBBBBBBBBBBB… (part of scanline 3)
…

E-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Raw Pixel Header “C” Structure
E.5.4 N-Band Data
The Raw Pixel format supports up to 255 bands of data in an image. The relative
location of these bands of data in the image is described in Section E.5.3, which
gives examples of interleaving for 3 bands of data.

In the case of a single band of data, there is no interleaving; all three schemes are
equivalent. Examples of interleaving other numbers of bands are given in the fol-
lowing table. All images have three scanlines and four columns. Each band of each
pixel is represented by a single-digit band number. Normal text numbers in italic
represent the second scanline of the image, and numbers in boldface represent the
third scanline of the image.

E.6 Raw Pixel Header “C” Structure
The following C language structure describes the Raw Pixel header in a program-
matic way. This structure is stored unaligned in the image file (that is, fields are
aligned on 1 byte boundaries) and all integers are stored in big endian byte order.

struct RawPixelHeader
{
unsigned char identifier[4]; /* Always "RPIX" */

unsigned longhdrlength; /* Length of this header in bytes */
/* Including the hdrlength field */
/* Not including the identifier field */
/* &k.hdrlength + k.hdrlength = pixels */

unsigned char majorversion; /* Major revision # of RPIX format */

Bands BIP BIL BSQ

2 12121212
12121212
12121212

11112222
11112222
11112222

111111111111
222222222222

4 1234123412341234
1234123412341234
1234123412341234

1111222233334444
1111222233334444
1111222233334444

111111111111
222222222222
333333333333
444444444444

5 12345123451234512345
12345123451234512345
12345123451234512345

11112222333344445555
11112222333344445555
11112222333344445555

111111111111
222222222222
333333333333
444444444444
555555555555
 Image Raw Pixel Format E-11

Raw Pixel Header “C” Constants
unsigned char minorversion; /* Minor revision # of RPIX format */

unsigned long width; /* Image width in pixels */
unsigned long height; /* Image height in pixels */
unsigned char comptype; /* Compression (none, FAXG3, FAXG4, ...) */
unsigned char pixelorder; /* Pixel order */
unsigned char scnlorder; /* Scanline order */
unsigned char interleave; /* Interleaving (BIP/BIL/Planar) */

unsigned char numbands; /* Number of bands in image (1-255) */
unsigned char rchannel; /* Default red channel assignment */
unsigned char gchannel; /* Default green channel assignment */
unsigned char bchannel; /* Default blue channel assignment */
/* Grayscale images are encoded in R */
/* The first band is ’1’, not ’0’ */
/* A value of ’0’ means "no band" */

unsigned char reserved[8]; /* For later use */
};

E.7 Raw Pixel Header “C” Constants
The following C language constants define the values used in the Raw Pixel header.

#define RPIX_IDENTIFIER "RPIX"

#define RPIX_HEADERLENGTH 30

#define RPIX_MAJOR_VERSION 1
#define RPIX_MINOR_VERSION 0

#define RPIX_COMPRESSION_UNDEFINED 0
#define RPIX_COMPRESSION_NONE 1
#define RPIX_COMPRESSION_CCITT_FAX_G3 2
#define RPIX_COMPRESSION_CCITT_FAX_G4 3
#define RPIX_COMPRESSION_DEFAULT RPIX_COMPRESSION_NONE

#define RPIX_PIXEL_ORDER_UNDEFINED 0
#define RPIX_PIXEL_ORDER_NORMAL 1
#define RPIX_PIXEL_ORDER_REVERSE 2
#define RPIX_PIXEL_ORDER_DEFAULT RPIX_PIXEL_ORDER_NORMAL

#define RPIX_SCANLINE_ORDER_UNDEFINED 0
#define RPIX_SCANLINE_ORDER_NORMAL 1
E-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Raw Pixel Images Using CCITT Compression
#define RPIX_SCANLINE_ORDER_INVERSE 2
#define RPIX_SCANLINE_ORDER_DEFAULT RPIX_SCANLINE_ORDER_NORMAL

#define RPIX_INTERLEAVING_UNDEFINED 0
#define RPIX_INTERLEAVING_BIP 1
#define RPIX_INTERLEAVING_BIL 2
#define RPIX_INTERLEAVING_BSQ 3
#define RPIX_INTERLEAVING_DEFAULT RPIX_INTERLEAVING_BIP

#define RPIX_CHANNEL_UNDEFINED 0

Note that the various macros for the UNDEFINED values are meant to be illustra-
tive and not necessarily used, except for "RPIX_CHANNEL_UNDEFINED" which is
used for the green and blue channels of single band images.

E.8 Raw Pixel PL/SQL Constants
The following PL/SQL constants define the values used in the raw pixel informa-
tion. The constants represent the length of the RPIX image identifier plus the length
of the RPIX header.

CREATE OR REPLACE PACKAGE ORDImageConstants AS
 RPIX_HEADER_LENGTH_1_0 CONSTANT INTEGER := 34;
END ORDImageConstants;

E.9 Raw Pixel Images Using CCITT Compression
Although the Raw Pixel format is generally aimed at uncompressed direct color
images, provision is also made to store monochrome images using CCITT Fax
Group 3 or Fax Group 4 compression. This is useful for storing scans of black and
white pages, such as for document management applications. These images are
generally impractical to store as even grayscale, as the unused data bits combined
with the very high resolution used in these images would use excessive disk space.

Raw Pixels images using CCITT compression are treated as normal Raw Pixel
images, with the following restrictions:

■ The “compression type” field must contain the value 1 or 2 as outlined in
Section E.3 (FAX3 or FAX4).

■ The “pixel order” field must contain the value 1 (normal pixel order).

■ The “scanline order” field must contain the value 1 (normal scanline order).

■ The “interleave” field must contain the value 1 (BIP interleave).
 Image Raw Pixel Format E-13

Foreign Image Support and the Raw Pixel Format
■ The “number of bands” field must contain the value 1 (one band).

■ The “red channel number” field must contain the value 1.

■ The “green channel number” and “blue channel number” fields must contain
the value 0 (no band).

In addition to these restrictions, applications which attempt to access pixel data
directly will need to understand how to read and write the CCITT formatted data.

E.10 Foreign Image Support and the Raw Pixel Format
interMedia image provides support for reading certain foreign images that can be
described in terms of a few simple parameters, and whose data is arranged in a cer-
tain straightforward way within the image file. There is no list of the supported for-
mats because the list would be so large and continually changing. Instead, there are
some simple guidelines to determine if an image can be read using the foreign
image support in interMedia image. These rules are summarized in the following
sections.

Header
Foreign images may have any header (or no header), in any format, as long as its
length does not exceed 4,294,967,265 bytes. As has been noted before, all informa-
tion in this header will be ignored.

Image Width
Foreign images may be up to 32,767 pixels wide.

Image Height
Foreign images may be up to 32,767 pixels high.

Compression Type
Foreign images must be uncompressed or compressed using CCITT Fax Group 3 or
Fax Group 4. Other compression schemes, such as run-length encoding, are not cur-
rently supported.

Pixel Order
Foreign images may store pixels from left-to-right or right-to-left. Other pixel order-
ing schemes, such as boustrophedonic ordering, are not currently supported.
E-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Foreign Image Support and the Raw Pixel Format
Scanline Order
Foreign images may have top-first or bottom-first scanline orders. Scanlines that are
adjacent in the image display must be adjacent in the image storage. Some image
formats stagger their image scanlines so that, for example, scanlines 1,5,9, and so
forth are adjacent, and then 2,6,10 are also adjacent. This is not currently supported.

Interleaving
Foreign images must use BIP, BIL, or BSQ interleaving. Other arrangements of data
bands are not allowed, nor may bands have any pixel, scanline, or band-level block-
ing or padding.

Number of Bands
Foreign images may have up to 255 bands of data. If there are more bands of data,
the first 255 can be accessed if the interleaving of the image is “band sequential.” In
this case, the additional bands of data lie past the accessible bands and do not affect
the layout of the first 255 bands. Images with other interleaving types may not have
more than 255 bands because the additional bands will change the layout of the bit-
map data.

Trailer
Foreign images may have an image trailer following the bitmap data, and this
trailer may be of arbitrary length. However, such data is completely ignored by
interMedia image, and there is no method (or need) to specify the presence or length
of such a trailer.

If an image with such a trailer is modified with the process() or processCopy()
methods, the resulting image will not contain this trailer. In the case of the process-
Copy() method, the source image will still be intact.
 Image Raw Pixel Format E-15

Foreign Image Support and the Raw Pixel Format
E-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Sample Prog
F

Sample Programs

Oracle interMedia includes a number of scripts and sample programs that you can
use.

Sample Oracle interMedia scripts and programs are available in the following direc-
tories after you install this product:

$ORACLE_HOME/ord/aud/demo/
$ORACLE_HOME/ord/img/demo/
$ORACLE_HOME/ord/vid/demo/

F.1 Sample Audio Scripts
The audio scripts consist of the following files:

■ auddemo.sql - audio demonstration (demo) that shows features of the audio
object including:

– Checking interMedia objects

– Creating a sample table with audio in it

– Inserting NULL rows into the audio table

– Checking the rows out

– Checking all the audio attributes directly

– Checking all the audio attributes by calling methods

– Installing your own format plug-in using the two files, fplugins.sql and
fpluginb.sql described in the next two list items and in Section 2.1.12 on
how to extend interMedia audio to support a new audio data format

■ fplugins.sql - demo format plug-in specification that you can use as a guideline
to write any format plug-in you want to support
rams F-1

Sample Program for Modifying Images or Testing the Image Installation
■ fpluginb.sql - demo format plug-in body that you can use as a guideline to
write any format plug-in you want to support

See the README.txt file in the$ORACLE_HOME/ord/aud/demo directory for require-
ments and instructions on running this SQL demo.

F.2 Sample Program for Modifying Images or Testing the Image
Installation

Once you have installed Oracle interMedia image, you may choose to run the Ora-
cle interMedia image demonstration program. This program can also be used as a
test to confirm successful installation.

This section contains the steps required to build and run the interMedia image
demo.

The interMedia image demo files are located in <ORACLE_HOME>/ord/img/demo,
where <ORACLE_HOME> is the ORACLE_HOME directory.

F.2.1 Demonstration (Demo) Installation Steps
For interMedia image, see the README.txt file at <ORACLE_HOME>/ord/aud/
demo/README.txt (on UNIX), and
<ORACLE_HOME>\ord\img\demo\README.txt (on Windows NT), where
<ORACLE_HOME> is the ORACLE_HOME directory.

F.2.2 Running the Demo
The file imgdemo is a sample program that shows how Oracle interMedia image
can be used from within a program. The demo is written in C and uses OCI, Oracle
Call Interface, to access the database and exercise Oracle interMedia image.

The program operates on imgdemo.dat, which is a bitmap (BMP) image in the
demo directory. Optionally, you can supply an image file name on the command
line, provided the file resides in the same directory as the demo. In either case, once
the image has been manipulated by Oracle interMedia image, the resulting image is
written to the file imgdemo.out and can then be viewed with common rendering
tools that you supply.

When the demo is run, it deletes and re-creates a table named IMGDEMOTAB in
the SCOTT/TIGER schema of the default database. This table is used to hold the
demo data. Once the table is created, a reference to the image file is inserted into the
table. The data is then loaded into the table and converted to JFIF using the
processCopy() method of ORDImage.
F-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Sample Program for Modifying Images or Testing the Image Installation
The image properties are extracted within the database using the setProperties()
method. An UPDATE command is issued after the setProperties() invocation. This
is required because the setProperties() invocation has only updated a local copy of
the type attributes.

Next, the Oracle interMedia image process() method is used to cut and scale the
image within the database. This is followed by an update that commits the change.
The program cuts a portion of the image 100 pixels wide by 100 pixels high starting
from pixel location (100,100). This subimage is scaled to twice its original size and
the resulting image is written out to the file system in a file named imgdemo.out.

Upon completion, the demo program leaves the imgdemo.out file in the current
directory. It also leaves the table IMGDEMOTAB in the SCOTT/TIGER schema of
the database.

Example F–1 Execute the Demo from the Command Line

Execute the demo by typing imgdemo on the command line. Optionally, a different
image can be used in the demo by first copying the file to the directory in which the
demo resides and then specifying its file name on the command line as an argu-
ment to imgdemo.

Use the following command:

 $ imgdemo <optional-image-filename>

The demo displays a number of messages describing its progress, along with any
errors encountered in the event that something was not set up correctly. Expect to
see the following messages:

Dropping table IMGDEMOTAB...
Creating and populating table IMGDEMOTAB...
Loading data into cartridge...
Modifying image characteristics...
Writing image to file imgdemo.out...
Disconnecting from database...
Logged off and detached from server.
Demo completed successfully.

If the program encounters any errors, it is likely that either Oracle interMedia image
software has not been installed correctly or the database has not been started. If the
program completes successfully, the original image and the resultant image, which
has undergone the cutting and scaling described earlier, can be viewed with com-
mon image rendering tools.
 Sample Programs F-3

Sample Video Scripts
F.3 Sample Video Scripts
The video scripts consist of the following files:

■ viddemo.sql - video demo that shows features of the video object including:

– Checking interMedia objects

– Creating a sample table with video in it

– Inserting NULL rows into the video table

– Checking the rows out

– Checking all the video attributes directly

– Checking all the video attributes by calling methods

– Installing your own format plug-in using the two files, fplugins.sql and
fpluginb.sql described in the next two list items and in Section 2.3.12 on
how to extend interMedia video to support a new video data format

■ fplugins.sql - demo format plug-in specification that you can use as a guideline
to write any format plug-in you want to support

■ fpluginb.sql - demo format plug-in body that you can use as a guideline to
write any format plug-in you want to support

See the README.txt file in the $ORACLE_HOME/ord/vid/demo directory for require-
ments and instructions on how to run this SQL demo.

F.4 Java Demo
A Java demo has been provided to help you learn to use both the audio and video
client-side Java classes so you can build your own applications. In these two demos,
the audio and video object is instantiated at the client side and a number of acces-
sor methods are invoked. The audio Java demo files are located in the ORACLE_HOME/
ord/aud/demo directory and the video Java demo files are located in the
$ORACLE_HOME/ord/vid/demo directory. See the README.txt file in each directory for
requirements and instructions on how to run each respective Java demo.
F-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Frequently Asked Ques
G

Frequently Asked Questions

A text file containing a list of frequently asked questions is available on line after
installing Oracle interMedia.

This text file can be found as follows:

$ORACLE_HOME/ord/admin/imfaq.txt
tions G-1

G-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Exceptions and Error Mess
H

Exceptions and Error Messages

H.1 Exceptions
The following sections describe the exceptions and error messages of interMedia
objects.

H.1.1 ORDAudioExceptions Exceptions
The following exceptions are associated with the ORDAudio object:

LOCAL_DATA_SOURCE_REQUIRED
Cause: This exception is raised if the data source is external.

Action: Set the source information to a local source.

DESCRIPTION_IS_NOT_SET
Cause: This exception is raised when calling the getDescription function and
the description attribute is not set.

Action: Set the description attribute.

INVALID_DESCRIPTION
Cause: This exception is raised when you call the setDescription() method
with a value that is not valid.

Action: Set the value of the user_description parameter to an acceptable value.

INVALID_MIME_TYPE
Cause: This exception is raised if the MIME parameter value of the setMime-
Type procedure is NULL.

Action: Set the MIME parameter value to a known value.

AUDIO_FORMAT_IS_NULL
ages H-1

Exceptions
Cause: This exception is raised when calling the getFormat function and the
format is NULL.

Action: Set the format for the audio object to a known format.

AUDIO_ENCODING_IS_NULL
Cause: This exception is raised when calling the getEncoding function and the
encoding is NULL.

Action: Set the encoding for the audio object to a known value.

AUDIO_NUM_CHANNELS_IS_NULL
Cause: This exception is raised when calling the getNumberOf Channels func-
tion and the number of channels is NULL.

Action: Set the number of channels for the audio object to a known value.

AUDIO_SAMPLING_RATE_IS_NULL
Cause: This exception is raised when calling the getSamplingRate function and
the sampling rate is NULL.

Action: Set the sampling rate for the audio object to a known value.

AUDIO_SAMPLE_SIZE_IS_NULL
Cause: This exception is raised when calling the getSampleSize function and
the sample size is NULL.

Action: Set the sample size for the audio object to a known value.

AUDIO_DURATION_IS_NULL
Cause: This exception is raised when calling the getAudioDuration function
and the duration is NULL.

Action: Set the duration for the audio object to a known value.

NULL_INPUT_VALUE
Cause: This exception is raised if the knownFormat parameter value of the set-
Format procedure is NULL.

Action: Set these parameters with known values.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

AUDIO_PLUGIN_EXCEPTION
H-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Exceptions
Cause: This exception is raised when the audio plug-in raises an exception.

Action: Refer to Section 4.4.1 for more information.

H.1.2 ORDImageExceptions Exceptions
The following exceptions are associated with the ORDImage object:

NULL_LOCAL_DATA
Cause: This exception is raised when source.localData is NULL.

Action: Initialize source.localData with an empty_blob().

NULL_PROPERTIES_DESCRIPTION
Cause: This exception is raised when the description parameter to setProper-
ties is not set.

Action: Set the description attribute if you are using a foreign image. Other-
wise, do not pass the description parameter.

NULL_DESTINATION
Cause: This exception is raised when the destination image is NULL.

Action: Pass an initialized destination image.

DATA_NOT_LOCAL
Cause: This exception is raised when the source information is not set to local.

Action: Reset the source attribute information to a local image source. Call the
import() or importFrom() method to import the data into the local BLOB.

NULL_CONTENT
Cause: This exception is raised when the content attribute of an ORDImgB or
ORDImgF image is NULL.

Action: Initialize the content attribute.

NULL_SOURCE
Cause: This exception is raised when the source image is NULL.

Action: Pass an initialized source image.

H.1.3 ORDVideoExceptions Exceptions
The following exceptions are associated with the ORDVideo object:

LOCAL_DATA_SOURCE_REQUIRED
 Exceptions and Error Messages H-3

Exceptions
Cause: This exception is raised if the data source is external.

Action: Set the source information to a local source.

DESCRIPTION_IS_NOT_SET
Cause: This exception is raised when calling the getDescription function and
the description attribute is not set.

Action: Set the description attribute.

INVALID_MIME_TYPE
Cause: This exception is raised if the MIME parameter value of the setMime-
Type procedure is NULL.

Action: Set the MIME parameter value to a known value.

VIDEO_FORMAT_IS_NULL
Cause: This exception is raised when calling the getFormat function and the
format is NULL.

Action: Set the format for the video object to a known format.

NULL_INPUT_VALUE
Cause: This exception is raised if either the knownWidth or knownHeight
parameter values of the setFrameSize procedure is NULL.

Action: Set these parameters with known values.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

VIDEO_PLUGIN_EXCEPTION
Cause: This exception is raised when the video plug-in raises an exception.

Action: Refer to Section 6.4.1 for more information.

H.1.4 ORDSourceExceptions Exceptions
The following exceptions are associated with the ORDSource object:

INCOMPLETE_SOURCE_INFORMATION
Cause: This exception is raised when the source information is incomplete or
srcType is NULL and data is not stored locally in the BLOB.
H-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDAudio Error Messages
Action: Check your source information and set srcType, srcLocation, or src-
Name attributes as needed.

INCOMPLETE_SOURCE_LOCATION
Cause: This exception is raised when the value of srcLocation is NULL.

Action: Check your source location and set the srcLocation attribute.

INCOMPLETE_SOURCE_NAME
Cause: This exception is raised when the value of srcName is NULL.

Action: Check your source name and set the srcName attribute.

EMPTY_SOURCE
Cause: This exception is raised when the source is local but the source is
NULL.

Action: Pass an initialized source.

NULL_SOURCE
Cause: This exception is raised when the local source is NULL.

Action: Pass an initialized source.

INVALID_SOURCE_TYPE
Cause: This exception is raised when the getBFile method detects a source type
other than ’FILE’.

Action: Ensure that the source type is ’FILE’.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

SOURCE_PLUGIN_EXCEPTION
Cause: This exception is raised when the source plug-in raises an exception.

Action: Refer to Section 7.3.1, Section 7.3.2, and Section 7.3.3 for more informa-
tion.

H.2 ORDAudio Error Messages
AUD-00702 unable to initialize audio processing environment

Cause: The initalization of the audio processing external procedure failed.
 Exceptions and Error Messages H-5

ORDAudio Error Messages
Action: See the database administrator to make sure that enough memory has
been allocated to JServer. If JServer does have enough memory, contact Oracle
Customer Support Services.

AUD-00703 unable to read audio data
Cause: An error occurred while accessing the audio source.

Action: Make sure the audio source is valid. For external sources, make sure all
access priviliges are granted.

AUD-00704 invalid input format
Cause: The audio data in the source was not in the format specified by the for-
mat field of the audio object. In some unusual case, the audio data is actually
corrupted.

Action: Provide a correct value in the format field. If the correct value is
unknown, put NULL in the format field to invoke the DEFAULT format
plug-in.

AUD-00705 unsupported input format
Cause: The file format of the audio data was not supported. This error can only
occur in the DEFAULT format plug-in package.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for supported formats.

AUD-00706 unsupported or corrupted input format
Cause: The audio data was either corrupted or the file format was not sup-
ported.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for supported formats. If the audio data is not corrupted and is in a sup-
ported file format, contact Oracle Customer Support Services.

AUD-00713 internal error while parsing audio data
Cause: An internal error occurred during parsing.

Action: Contact Oracle Customer Support Services.

AUD-00714 internal error
Cause: An internal error occurred.

Action: Contact Oracle Customer Support Services.
H-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDImage Error Messages
H.3 ORDImage Error Messages
IMG-00001, "unable to initialize Oracle8i interMedia environment"

Cause: The image processing external procedure initialization process failed.

Action: Contact Oracle Customer Support Services.

IMG-00502, "invalid scale value"
Cause: An invalid scale value was found while parsing the parameters for the
image process function.

Action: Correct the statement by using a valid scale value. Refer to Oracle inter-
Media Audio, Image, and Video User’s Guide and Reference documentation for a
description of the correct usage and syntax for the image processing command
string.

 IMG-00505, "missing value in CUT rectangle"
Cause: An incorrect number of values was used to specify a rectangle.

Action: Use exactly four integer values for the lower left and upper right verti-
ces.

IMG-00506, "extra value in CUT rectangle"
Cause: An incorrect number of values were used to specify a rectangle.

Action: Use exactly four integer values for the lower left and upper right verti-
ces.

IMG-00510, application-specific-message
Cause: A syntax error was found while parsing the parameters for the image
process function.

Action: Correct the statement by using valid parameter values. Refer to Oracle
interMedia Audio, Image, and Video User’s Guide and Reference documentation for a
description of the correct usage and syntax for the image processing command
string.

IMG-00511, application-specific-message
Cause: An error was found while accessing image data.

Action: Contact Oracle Customer Support Services.

IMG-00512, "multiple incompatible scaling parameters found"
 Exceptions and Error Messages H-7

ORDImage Error Messages
Cause: Multiple incompatible scaling parameters were found in the image pro-
cess command string. With the exception of XSCALE and YSCALE which can
be used together in a process command string, scaling functions are mutually
exclusive and cannot be combined.

Action: Remove scaling functions until only one remains (or two if they are
XSCALE and YSCALE).

IMG-00513, "missing value in scaling operation"
Cause: An incorrect number of values was used to specify image dimensions.
fixedScale and maxScale require exactly two integer values for the X and Y
dimensions of the desired image.

Action: Use two values for fixedScale and maxScale.

IMG-00514, "extra value in scaling operation"
Cause: An incorrect number of values was used to specify image dimensions.
fixedScale and maxScale require exactly two integer values for the X and Y
dimensions of the desired image.

Action: Use two values for fixedScale and maxScale.

IMG-00515, "incorrect number of input channels"
Cause: An incorrect number of values was used to specify input channels.
InputChannels requires either one or three channel numbers for the gray or red,
green, and blue channel assignments.

Action: Use either one or three values to specify the input channels.

IMG-00516, "default channel out of range"
Cause: An incorrect value was used to specify the default channel selection.

Action: Use a channel number that is less than or equal to the number of bands
and greater than zero.

IMG-00517, "height or width not present in parameter string"
Cause: Height and/or width were not specified in the setProperties parameter
string.

Action: Specify both the height and width.

IMG-00518, "invalid value for height or width"
Cause: Height and width must be positive integers.

Action: Specify both the height and width as positive integers.
H-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDImage Error Messages
IMG-00519, "illegal combination of parameters"
Cause: Other than height, width, dataOffset, and userString, no other parame-
ters may be specified in the setProperties parameter string when CCITTG3 or
CCITTG4 is used as the compressionFormat.

Action: Supply only the height and width when compressionFormat is either
CCITTG3 or CCITTG4. The dataOffset and userString may optionally be sup-
plied as well.

IMG-00520, "invalid value for numberOfBands"
Cause: NumberOfBands must be a positive integer.

Action: Specify numberOfBands as a positive integer.

IMG-00521, "invalid value for dataOffset"
Cause: dataOffset must be a positive integer.

Action: Specify dataOffset as a positive integer.

IMG-00530, "internal error while parsing command"
Cause: An internal error occurred while parsing the command passed to the
image processing function or the foreign image setProperties function.

Action: Check the command passed to the function. Refer to Oracle interMedia
Audio, Image, and Video User’s Guide and Reference for a description of the correct
usage and syntax for the image processing command string or the foreign
image setProperties function. If you are certain that your command is correct,
then contact Oracle Customer Support Services.

IMG-00531, "empty or null image processing command"
Cause: An empty or null image processing command was passed to the image
process function.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for a description of the correct usage and syntax for the image processing
command string.

IMG-00599, "internal error"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services.

IMG-00601, "out of memory while copying image"
Cause: Operating system process memory has been exhausted while copying
the image.
 Exceptions and Error Messages H-9

ORDImage Error Messages
Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00602, "unable to access image data"
Cause: An error occurred while reading or writing image data.

Action: Contact your system administrator.

IMG-00603, "unable to access source image data"
Cause: The source image SOURCE attribute is invalid.

Action: Ensure that the SOURCE attribute of the source image is populated
with image data.

IMG-00604, "unable to access destination image data"
Cause: The destination image SOURCE attribute is invalid.

Action: Ensure that the SOURCE attribute of the destination image is popu-
lated with image data.

IMG-00606, "unable to access image data"
Cause: An attempt was made to access an invalid image.

Action: Ensure that the SOURCE attribute of the image is populated with
image data.

IMG-00607, "unable to write to destination image"
Cause: The destination image SOURCE attribute is invalid.

Action: Ensure that the SOURCE attribute of the destination image is initial-
ized correctly and that you have sufficient tablespace.

IMG-00609, "unable to read image stored in a BFILE"
Cause: The image stored in a BFILE cannot be opened for reading.

Action: Ensure that the access privileges of the image file and the image file’s
directory allow read access.

IMG-00701, "unable to set the properties of an empty image"
Cause: There is no data in the image object.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for information on how to populate image data into the image object.

IMG-00702, "unable to initialize image processing environment"
Cause: The image processing external procedure initialization process failed.
H-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDImage Error Messages
Action: Contact Oracle Customer Support Services.

IMG-00703, "unable to read image data"
Cause: There is no image data in the image object.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for information on how to populate image data into the image object.

IMG-00704, "unable to read image data"
Cause: There is no image data in the image object.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for information on how to populate image data into the image object.

IMG-00705, "unsupported or corrupted input format"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00706, "unsupported or corrupted output format"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00707, "unable to access image data"
Cause: An error occurred while reading or writing image data.

Action: Contact your system administrator.

IMG-00710, "unable write to destination image"
Cause: The destination image is invalid.

Action: Ensure that the SOURCE attribute of the destination image is initial-
ized and that you have sufficient tablespace.

IMG-00711, "unable to set properties of destination image"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00712, "unable to write to destination image"
Cause: The destination image is invalid.

Action: Ensure that the SOURCE attribute of the destination image is initial-
ized and that you have sufficient tablespace. Ensure the row containing the des-
tination image has been locked (this does not apply to temporary BLOBs).
 Exceptions and Error Messages H-11

ORDVideo Error Messages
IMG-00713, "unsupported destination image format"
Cause: A request was made to convert an image to a format that is not sup-
ported.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for supported formats.

IMG-00714, "internal error"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00715, "Unable to open image stored in a BFILE"
Cause: The image stored in a BFILE could not be opened for reading.

Action: Ensure that the access privileges of the image file and the image file’s
directory allow read access.

IMG-00716, "source image format does not support process options"
Cause: A request was made to apply a processing option not supported by the
source image format.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for a discussion of supported processing options.

IMG-00717, "destination image format does not support process options"
Cause: A request was made to apply a processing option not supported by the
destination image format.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for a discussion of supported processing options.

IMG-00718, "the same Temporary LOB cannot be used as both source and desti-
nation"
Cause: A call was made to processCopy with the same Temporary LOB being
specified as both the source and destination.

Action: Specify a different LOB for parameter "dest".

H.4 ORDVideo Error Messages
VID-00702 unable to initialize video processing environment

Cause: The initialization of the video processing procedure failed.
H-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDVideo Error Messages
Action: See the database administrator to make sure that enough memory has
been allocated to JServer. If JServer does have enough memory, contact Oracle
Customer Support Services.

VID-00703 unable to read video data
Cause: An error occurred while accessing the video source.

Action: Make sure the video source is valid. For external sources, make sure all
access priviliges are granted.

VID-00704 invalid input format
Cause: The video data in the source was not in the format specified by the for-
mat field of the video object. In some unusual case, the video data is actually
corrupted.

Action: Provide a correct value in the format field. If the correct value is
unknown, put NULL in the format field to invoke the DEFAULT format
plug-in.

VID-00705 unsupported input format
Cause: The file format of the video data was not supported. This error can only
occur in the DEFAULT format plug-in package.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for supported formats.

VID-00706 unsupported or corrupted input format
Cause: The video data was either corrupted or the file format was not sup-
ported.

Action: Refer to Oracle interMedia Audio, Image, and Video User’s Guide and Refer-
ence for supported formats. If the video data is not corrupted and is in a sup-
ported file format, contact Oracle Customer Support Services.

VID-00713 internal error while parsing video data
Cause: An internal error occurred during parsing.

Action: Contact Oracle Customer Support Services.

VID-00714 internal error
Cause: An internal error occurred.

Action: Contact Oracle Customer Support Services.
 Exceptions and Error Messages H-13

ORDVideo Error Messages
H-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Deprecated Image Object Types and M
I

Deprecated Image Object Types and

Methods

For release 8.1.4 and earlier, Oracle8 Image Cartridge described a set of image object
types and methods that are deprecated for release 8.1.5. A deprecated feature is a
feature that ships on the software kit and is working for the current release; how-
ever, it will not be enhanced in a future release, and may become obsolete and
deleted in the future. These deprecated features are described here for reference and
to help you migrate your release 8.1.4 and earlier image applications to release 8.1.5
interMedia image applications. This appendix describes these deprecated image
object types and methods.

These deprecated features consists of two object types:

■ ORDImgB supports images stored in an Oracle8 binary large object (BLOB)

■ ORDImgF supports images stored in an Oracle8 external binary file (BFILE)

The cartridge (release 8.1.4) includes the following functions and procedures:

Note: The objects described in this appendix will be removed and
become obsolete in the next functional release.

Table I–1 Functions and Procedures

Function or Procedure Description

checkProperties Verifies the stored image attributes match the actual image.

copyContent Creates a copy of an image in another BLOB (available only for
BLOBs, and not BFILEs).

deleteContent Deletes the image content.
ethods I-1

When you are storing or copying images in an ORDImgB object, you must first cre-
ate an empty BLOB in the table. The examples in this chapter assume that the fol-
lowing table, ordimgtab, has been created to store three images. Three empty rows
have been created as follows:

create table ordimgtab(col1 number, col2 ORDSYS.ORDImgB);
insert into ordimgtab values
 (1, ORDSYS.ORDImgB(empty_blob(), NULL, NULL, NULL, NULL, NULL, NULL));
insert into ordimgtab values
 (2, ORDSYS.ORDImgB(empty_blob(), NULL, NULL, NULL, NULL, NULL, NULL));
insert into ordimgtab values
 (3, ORDSYS.ORDImgB(empty_blob(), NULL, NULL, NULL, NULL, NULL, NULL));
commit;

When storing images in an ORDImgF object, you must populate the type with an
initializer.

create table ordimgtab(col1 number,col2 ORDSYS.ORDImgF);
insert into ordimgtab values
 (1, ORDSYS.ORDImgF(bfilename
 (’ORDIMGDIR’,’jdoe.gif’),NULL,NULL,
 NULL,NULL,NULL,NULL));

getMimeType Returns the MIME type of an image.

getCompressionFormat Returns the type of compression used on the image.

getContent Returns the BLOB or BFILE containing the image.

getContentFormat Returns the format of the image.

getContentLength Returns the size of the image in bytes.

getFileFormat Returns the file type of an image.

getHeight Returns the height of the image in pixels.

getWidth Returns the width of the image in pixels.

process Performs in-place image processing on a BLOB.

processCopy Performs image processing while copying an image to another
BLOB.

setProperties Fills in the attribute fields of an image (ORDImgB or
ORDImgF data type).

Table I–1 Functions and Procedures

Function or Procedure Description
I-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

The ’bfilename’ argument ’ORDIMGDIR’ is a directory referring to a file system
directory. Note that the directory name in a bfilename constructor must be in upper-
case. The following sequence creates a directory named ORDIMGDIR:

connect internal
create or replace directory ORDIMGDIR as ’<myimage directory>’;
grant read on directory ORDIMGDIR to <user-or-role> with grant option;
 Deprecated Image Object Types and Methods I-3

ORDImgB Object Type
ORDImgB Object Type

The ORDImgB object type is used for basic storage and retrieval of image data
within an Oracle database. This object type is defined as follows:

CREATE TYPE ORDImgB AS OBJECT
(
-- TYPE ATTRIBUTES
content BLOB,
height INTEGER,
width INTEGER,
contentLength INTEGER,
fileFormat VARCHAR2(64),
contentFormat VARCHAR2(64),
compressionFormat VARCHAR2(64),
--- METHOD DECLARATION
 MEMBER PROCEDURE copyContent(dest IN OUT NOCOPY BLOB),
 MEMBER PROCEDURE setProperties(SELF IN OUT ORDImgB),
 MEMBER PROCEDURE process (SELF IN OUT ORDImgB,
 command IN VARCHAR2)
 MEMBER PROCEDURE processCopy(command IN VARCHAR2,
 dest IN OUT NOCOPY BLOB)
 MEMBER FUNCTION getMimeType RETURN VARCHAR2,
 MEMBER FUNCTION getContent RETURN BLOB,
 MEMBER FUNCTION getContentLength RETURN INTEGER,
 MEMBER PROCEDURE deleteContent (SELF IN OUT ORDImgB),
 MEMBER FUNCTION getHeight RETURN INTEGER,
 MEMBER FUNCTION getWidth RETURN INTEGER,
 MEMBER FUNCTION getFileFormat RETURN VARCHAR2,
 MEMBER FUNCTION getContentFormat RETURN VARCHAR2,
 MEMBER FUNCTION getCompressionFormat RETURN VARCHAR2,
 MEMBER FUNCTION checkProperties RETURN BOOLEAN
);
where:

■ content: is the stored image

■ height: is the height of the image in pixels

■ width: is the width of image in pixels

■ contentLength: is the size of the on-disk image file in bytes

■ fileFormat: is the file type of image (such as, TIFF, JFIF)
I-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDImgB Object Type
■ contentFormat: is the type of image (such as, monochrome, 8-bit grayscale)

■ compressionFormat: is the compression type of image

In PL/SQL, data is moved with the DBMS LOB package. From the client, data is
moved using OCI LOB calls. The ORDImgB object type does not supply piece-wise
routines for moving data.
 Deprecated Image Object Types and Methods I-5

ORDImgF Object Type
ORDImgF Object Type

The ORDImgF object type is used for retrieval of image data stored in external files.
BFILE images are assumed to be read-only and this is reflected in the member pro-
cedures defined on the object type.

CREATE TYPE ORDImgF AS OBJECT
(
-- TYPE ATTRIBUTES
content BFILE,
height INTEGER,
width INTEGER,
contentLength INTEGER,
fileFormat VARCHAR2(64),
contentFormat VARCHAR2(64),
compressionFormat VARCHAR2(64),

-- METHOD DECLARATION
MEMBER PROCEDURE copyContent(dest IN OUT NOCOPY BLOB),
MEMBER PROCEDURE setProperties(SELF IN OUT ORDImgF),
MEMBER PROCEDURE processCopy(command IN VARCHAR2,
 dest IN OUT NOCOPY BLOB),
MEMBER FUNCTION getMimeType RETURN VARCHAR2,
MEMBER FUNCTION getContent RETURN BFILE,
MEMBER FUNCTION getContentLength RETURN INTEGER,
MEMBER FUNCTION getHeight RETURN INTEGER,
MEMBER FUNCTION getWidth RETURN INTEGER,
MEMBER FUNCTION getFileFormat RETURN VARCHAR2,
MEMBER FUNCTION getContentFormat RETURN VARCHAR2,
MEMBER FUNCTION getCompressionFormat RETURN VARCHAR2,
MEMBER FUNCTION checkProperties RETURN BOOLEAN

);

where:

■ content: is the stored image

■ height: is the height of the image in pixels

■ width: is the width of image in pixels

■ contentLength: is the size of the on-disk image file in bytes
I-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

ORDImgF Object Type
■ fileFormat: is the file type of image (such as, TIFF, JFIF)

■ contentFormat: is the type of image (such as, monochrome, 8-bit grayscale)

■ compressionFormat: is the compression type of image
 Deprecated Image Object Types and Methods I-7

checkProperties Method
checkProperties Method

Format
checkProperties RETURN BOOLEAN;

Description
Verifies that the properties stored in attributes of the image object match the proper-
ties of the image stored in the BLOB or BFILE. This method should not be used for
foreign images.

Parameters
None.

Returns
BOOLEAN

Usage Notes
Use this method to verify that the image attributes match the actual image.

Examples
Check the image attributes.

imgb1 ORDSYS.ORDImgB;
properties_match BOOLEAN;

...
properties_match := imgb1.checkProperties;
I-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

copyContent Method
copyContent Method

Format
copyContent (dest IN OUT NOCOPY BLOB);

Description
Copies an image without changing it.

Parameters

dest
The destination of the new image.

Usage Notes
This method copies the image data into the supplied BLOB.

Examples
Create a copy of the image in type image1 into a BLOB called myblob:

image1.copyContent(myblob);
 Deprecated Image Object Types and Methods I-9

deleteContent Method
deleteContent Method

Format
deleteContent;

Description
Deletes the contents of the image.

Parameters
None.

Usage Notes
Use this method to delete the contents of the image BLOB. This method works only
with BLOBS, not BFILES.

Examples
Delete the image.

imgb1 ORDSYS.ORDImgB;

...
imgb1.deleteContent;
I-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getCompressionFormat Method
getCompressionFormat Method

Format
getCompressionFormat RETURN VARCHAR2;

Description
Returns the compression type of an image. This method does not actually read the
LOB, it is a simple accessor method that returns the value of the compressionFor-
mat attribute.

Parameters
None.

Returns
VARCHAR2

Usage Notes
Use this method rather than accessing the compressionFormat attribute directly to
protect yourself from potential changes to the internal representation of the
ORDImgB or ORDImgF object.

Examples
Get the compression type of an image:

imgb1 ORDSYS.ORDImgB;
compressionFormat VARCHAR2(64);

...
compressionFormat := imgb1.getCompressionFormat;
 Deprecated Image Object Types and Methods I-11

getContent Method
getContent Method

Format
getContent RETURN BLOB;

getContent RETURN BFILE;

Description
Returns the LOB locator of the BLOB or BFILE containing the image. This is a sim-
ple accessor method that returns the value of the content attribute.

Parameters
None.

Returns
BLOB or BFILE, corresponding to how the image is stored.

Usage Notes
Use this method rather than accessing the content attribute directly to protect your-
self from potential changes to the internal representation of the ORDImgB or
ORDImgF object.

Examples
Get the LOB locator for an image:

imgb1 ORDSYS.ORDImgB;
content BLOB;
...
content := imgb1.getContent;

I-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getContentFormat Method
getContentFormat Method

Format
getContentFormat RETURN VARCHAR2;

Description
Returns the type of an image (such as monochrome or 8-bit grayscale). This method
does not actually read the LOB, it is a simple accessor method that returns the value
of the contentFormat attribute.

Parameters
None.

Returns
VARCHAR2

Usage Notes
Use this method rather than accessing the contentFormat attribute directly to pro-
tect yourself from potential changes to the internal representation of the ORDImgB
or ORDImgF object.

Examples
Get the type of an image:

imgb1 ORDSYS.ORDImgB;
contentFormat VARCHAR2(64);

...
contentFormat := imgb1.getContentFormat;
 Deprecated Image Object Types and Methods I-13

getContentLength Method
getContentLength Method

Format
getContentLength RETURN INTEGER;

Description
Returns the size of the on-disk image in bytes. This method does not actually read
the LOB, it is a simple accessor method that returns the value of the contentLength
attribute.

Parameters
None.

Returns
INTEGER

Usage Notes
Use this method rather than accessing the contentLength attribute directly to pro-
tect yourself from potential changes to the internal representation of the ORDImgB
or ORDImgF object.

Examples
Get the content length of an image:

imgb1 ORDSYS.ORDImgB;
contentLength INTEGER;

...
contentLength := imgb1.getContentLength;

I-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getFileFormat Method
 getFileFormat Method

Format
getFileFormat RETURN VARCHAR2

Description
Returns the file type of an image (such as TIFF or JFIF). This method does not actu-
ally read the LOB, it is a simple accessor method that returns the value of the file-
Format attribute.

Parameters
None.

Returns
VARCHAR2

Usage Notes
Use this method rather than accessing the fileFormat attribute directly to protect
yourself from potential changes to the internal representation of the ORDImgB or
ORDImgF object.

Examples
Get the file type of an image:

imgb1 ORDSYS.ORDImgB;
fileFormat VARCHAR2(64);

...
fileFormat := imgb1.getFileFormat;

 Deprecated Image Object Types and Methods I-15

getHeight Method
getHeight Method

Format
getHeight RETURN INTEGER;

Description
Returns the height of an image in pixels. This method does not actually read the
LOB, it is a simple accessor method that returns the value of the height attribute.

Parameters
None.

Returns
INTEGER

Usage Notes
Use this method rather than accessing the height attribute directly to protect your-
self from potential changes to the internal representation of the ORDImgB or
ORDImgF object.

Examples
Get the height of an image:

imgb1 ORDSYS.ORDImgB;
height INTEGER;

...
height := imgb1.getHeight;
I-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getMimeType Method
getMimeType Method

Format
getMimeType RETURN VARCHAR2;

Description
Returns the MIME (Multipurpose Internet Mail Extension) type of an image (such
as image/jpeg or image/tiff). This method returns the MIME type based on the file-
Format of the image. See Appendix B for the MIME type associated with each sup-
ported file format.

Parameters
None.

Returns
VARCHAR2

Usage Notes
Use this method to obtain the MIME type of the image. The MIME type is required
by Web browsers along with the image content. It tells the Web browser how to
interpret the image content.

For unrecognized file formats, this method returns image/binary.

Examples
Get the MIME type of an image:

imgb1 ORDSYS.ORDImgB;
mimeType VARCHAR2(64);

...
mimeType := imgb1.getMimeType;
 Deprecated Image Object Types and Methods I-17

getWidth Method
getWidth Method

Format
getWidth RETURN INTEGER;

Description
Returns the width of an image in pixels. This method does not actually read the
LOB, it is a simple accessor method that returns the value of the width attribute.

Parameters
None.

Returns
INTEGER

Usage Notes
Use this method rather than accessing the width attribute directly to protect your-
self from potential changes to the internal representation of the ORDImgB or
ORDImgF object.

Examples
Get the width of an image:

imgb1 ORDSYS.ORDImgB;
width INTEGER;

...
width := imgb1.getWidth;
I-18 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

process Method
process Method

Format
process (command IN VARCHAR2);

Description
Performs one or more image processing techniques on a BLOB, writing the image
back on itself.

Parameters

command
A list of image processing changes to make for the image.

Usage Notes
You can change one or more of the image attributes shown inTable I–2. Table I–3
shows additional changes that can be made only to raw pixel and foreign images.
See Appendix B for information on all the supported format combinations. See
Appendix D for a more complete description of each operator.

Table I–2 Image Processing Operators

Operator Name Usage Values

compressionFormat compression type/format JPEG, SUNRLE, BMPRLE, TARGARLE,
LZW, LZWHDIFF, FAX3, FAX4,
HUFFMAN3, Packbits, GIFLZW

compressionQuality compression quality MAXCOMPRATIO, MAXINTEGRITY,
LOWCOMP, MEDCOMP, HIGHCOMP

contentFormat image type/pixel/data format MONOCHROME, 8 BITGRAYSCALE,
 8 BITGREYSCALE, 8BITLUT, 24BITRGB,

cut window to cut or crop (origin.x ori-
gin.y width height)

(Integer Integer Integer Integer)
maximum value is 65535

fileFormat file format of the image BMPF, CALS, GIFF, JFIF, PICT, RASF, RPIX,
TGAF, TIFF

fixedScale scale to a specific size in pixels
(width, height)

(INTEGER INTEGER)
 Deprecated Image Object Types and Methods I-19

process Method
Examples
Example 1: Change the file format of image1 to GIF:

maxScale scale to a specific size in pixels,
while maintaining the aspect ratio
(maxWidth, maxHeight)

(INTEGER INTEGER)

scale scale factor (for example, 0.5 or 2.0) <FLOAT> positive

xScale X-axis scale factor (default is 1) <FLOAT> positive

yScale Y-axis scale factor (default is 1) <FLOAT> positive

Table I–3 Additional Image Processing Operators for Raw Pixel and Foreign Images

Operator Name Usage Values

ChannelOrder Indicates the relative position of the red,
green, and blue channels (bands) within the
image.

RGB (default), RBG, GRB, GBR, BRG,
BGR

InputChannels For multiband images, specify either one
(grayscale) or three integers indicating
which channels to assign to red (first),
green (second), and blue (third). Note that
this parameter affects the source image, not
the destination.

INTEGER or
INTEGER INTEGER INTEGER

Interleave Controls band layout within the image:
 Band Interleaved by Pixel
 Band Interleaved by Line
 Band Sequential

BIP (default), BIL, BSQ

PixelOrder If NORMAL, then the leftmost pixel
appears first in the image.

NORMAL (default), REVERSE

ScanlineOrder If NORMAL, then the top scanline appears
first in the image.

NORMAL (default), INVERSE

Note: When specifying values that include floating-point num-
bers, you must use double quotation marks (" ") around the value.
If you do not, this may result in incorrect values being passed and
you will get incorrect results.

Table I–2 Image Processing Operators

Operator Name Usage Values
I-20 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

process Method
image1.process(’fileFormat=GIFF’);

Example 2: Change image1 to use lower quality JPEG compression and double the
length of the image along the X-axis:

image1.process(’compressionFormat=JPEG, compressionQuality=LOWCOMP,
xScale="2.0"’);
image1.setproperties;

Note that changing the length on only one axis (for example, xScale=2.0) does not
affect the length on the other axis, and would result in image distortion. Also, only
the xScale and yScale parameters can be combined in a single operation. Any other
combinations of scale operators result in an error.

Example 3: The maxScale and fixedScale operators are especially useful for creating
thumbnail images from various-sized originals. The following line creates 32-by-32
pixel thumbnail image, preserving the original aspect ratio:

image1.process(’maxScale=32 32’);
 Deprecated Image Object Types and Methods I-21

processCopy Method
processCopy Method

Format
processCopy (command IN VARCHAR2,

 dest IN OUT NOCOPY BLOB);

Description
Process an image BLOB or BFILE to another BLOB.

Parameters

command
A list of image processing changes to make for the image in the new copy.

dest
The destination of the new image.

Usage Notes
See Table I–2, “Image Processing Operators” and Table I–3, “Additional Image Pro-
cessing Operators for Raw Pixel and Foreign Images”.

When using temporary LOBs, you cannot specify the same temporary LOB as both
the source and destination.

Examples
Copy an image, changing the file format, compression format, and data format in
the destination image:

create or replace procedure copyit is
 imgB1 ORDSYS.ORDImgB;
 imgB4 ORDSYS.ORDImgB;
 mycommand VARCHAR2(400);
begin
 select col2 into imgB1 from ordimgtab where col1 = 1;
 select col2 into imgB4 from ordimgtab where col1 = 4 for update;
 command:= ’fileFormat=tiff compressionFormat = packbits
 contentFormat = 8bitlut’;
 imgB1.processcopy(mycommand,imgB4.content);
 imgB4.setproperties;
I-22 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

processCopy Method
 update ordimgtab set col2 = imgB4 where col1 = 4;
end;
 Deprecated Image Object Types and Methods I-23

setProperties Method
setProperties Method

Format
setProperties();

Description
Writes the characteristics of an image (BLOB or BFILE) into the appropriate
attribute fields.

Parameters
None.

Usage Notes
After you have copied, stored, or processed a native format image, call this proce-
dure to set the current characteristics of the new content.

This procedure sets the following information about an image:

■ Height in pixels

■ Width in pixels

■ Data size of the on-disk image in bytes

■ File type (TIFF, JFIF, and so forth)

■ Image type (monochrome, 8-bit grayscale, and so forth)

■ Compression type (JPEG, LZW, and so forth)

Examples
Select the image, and then set the attributes using the setProperties method:

imgB1 ORDSYS.imgB;
.
.
.
select col2 into imgB1 from ordimgtab where col1 = 1 for update;
imgB1.setProperties;
dbms_output.put_line(’image width = ’|| imgB1.width);
dbms_output.put_line(’image height = ’|| imgB1.height);
I-24 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setProperties Method
dbms_output.put_line(’image size = ’|| imgB1.contentLength);
dbms_output.put_line(’image file type = ’|| imgB1.fileFormat);
dbms_output.put_line(’image type = ’|| imgB1.contentFormat);
dbms_output.put_line(’image compression = ’|| imgB1.compressionFormat);

Example output:

image width = 360
image height = 490
image size = 59650
image file type = JFIF
image type = 24BITRGB
image compression = JPEG
 Deprecated Image Object Types and Methods I-25

setProperties() Method for Foreign Images
setProperties() Method for Foreign Images

Format
SetProperties(description IN VARCHAR2);

Description
Allows you to write the characteristics of a foreign image (BLOB or BFILE) into the
appropriate attribute fields.

Parameters

description
Specifies the image characteristics to set for the foreign image.

Usage Notes
After you have copied, stored, or processed a foreign image, call this method to set
the characteristics of the new image content. Unlike the native image types
described in Appendix B, foreign images either do not contain information on how
to interpret the bits in the file or interMedia image does not understand the informa-
tion. In this case, you must set the information explicitly.

You can set the following image characteristics for foreign images, as shown in
Table I–4.

Table I–4 Image Characteristics for Headerless Files

Field Data Type Description

CompressionFormat STRING Value must be CCITTG3, CCITTG4, or NONE (default).

DataOffset INTEGER The offset allows the image to have a header that interMedia
image does not try to interpret. Set the offset to ignore any
potential header. The value must be a positive integer less than
the LOB length.
Default is zero.

DefaultChannelSelection INTEGER For multiband images, specify either one (grayscale) or three
integers indicating which channels to assign to red (first), green
(second), and blue (third).
I-26 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

setProperties() Method for Foreign Images
The values supplied to setProperties() are written to the existing ORDImgB and
ORDImgF object attributes. The fileFormat is set to "OTHER:" and includes the
user string, if supplied.

Examples
Select the image type, and then set the attributes using the setProperties method.

imgB1 ORDSYS.ORDIMgB;
select col2 into imgB1 from ordimgtab where col1 = 1 for update;
imgB1.setProperties(’width=380 height=407 dataOffset=128 bandOrder=BIL
 userString="LSAT"’);

Height INTEGER Height of the image in pixels. Value must be a positive integer.
There is no default, and a value must be specified.

Interleaving STRING Band layout within the image. Valid styles are:

■ BIP (default) Band Interleaved by Pixel

■ BIL Band Interleaved by Line

■ BSQ Band Sequential

NumberOfBands INTEGER Value must be a positive integer less than 255 describing the
number of color bands in the image.
Default is 3.

PixelOrder STRING If NORMAL (default), the leftmost pixel appears first in the
file. If REVERSE, the rightmost pixel appears first.

ScanlineOrder STRING If NORMAL (default), the top scanline appears first in the file.
If INVERSE, then the bottom scanline appears first.

UserString STRING A 4-character descriptive string. If used, the string is stored in
the fileFormat field, appended to the file format ("OTHER:").
Default is blank.

Width INTEGER Width of the image in pixels. Value must be a positive integer.
There is no default, and a value must be specified.

Table I–4 Image Characteristics for Headerless Files (Cont.)

Field Data Type Description
 Deprecated Image Object Types and Methods I-27

setProperties() Method for Foreign Images
I-28 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

 Deprecated Audio and Video Me
J

Deprecated Audio and Video Methods

The following ORDAudio and ORDVideo get methods that accept a ctx parameter
were deprecated in release 8.1.6:

ORDAudio
 getFormat(ctx IN OUT RAW) RETURN VARCHAR2
 getEncoding(ctx IN OUT RAW) RETURN VARCHAR2
 getNumberOfChannels(ctx IN OUT RAW) RETURN INTEGER
 getSamplingRate(ctx IN OUT RAW) RETURN INTEGER
 getSampleSize(ctx IN OUT RAW) RETURN INTEGER
 getCompressionType(ctx IN OUT RAW) RETURN VARCHAR2
 getAudioDuration(ctx IN OUT RAW) RETURN INTEGER

ORDVideo
 getFormat(ctx IN OUT RAW) RETURN VARCHAR2
 getFrameSize(SELF IN OUT NOCOPY ORDVideo,
 ctx IN OUT RAW,
 retWidth OUT INTEGER,
 retHeight OUT INTEGER)
 getFrameResolution(ctx IN OUT RAW) RETURN INTEGER
 getFrameRate(ctx IN OUT RAW) RETURN INTEGER
 getVideoDuration(ctx IN OUT RAW) RETURN INTEGER
 getNumberOfFrames(ctx IN OUT RAW) RETURN INTEGER
 getCompressionType(ctx IN OUT RAW) RETURN VARCHAR2
 getNumberOfColors(ctx IN OUT RAW) RETURN INTEGER
 getBitRate(ctx IN OUT RAW) RETURN INTEGER

These methods are described in more detail in Section J.1 and Section J.2.
thods J-1

Deprecated ORDAudio Methods
J.1 Deprecated ORDAudio Methods
The following deprecated ORDAudio methods were shipped in 8.1.6, but they will
not be enhanced and they may be removed in a future release.

Each of these ORDAudio methods reads the media data to extract the desired
attribute. Rather than reading the media data for each attribute, Oracle Corporation
recommends calling the setProperties method. This method extracts attributes from
the media and populates the object attributes. The getxxx methods (with no ctx
parameter) return the values stored in object attributes. These are the recom-
mended ORDAudio methods to use for release 8.1.6 and later.
J-2 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getFormat() Method
getFormat() Method

Format
getFormat(ctx IN OUT RAW) RETURN VARCHAR2;

Description
Calls the format plug-in to read the format embedded in the stored audio data.

Parameters

ctx
The format plug-in context information.

Usage Notes
If the format found in the object is NULL, then the getFormat() method uses the
default format plug-in to read the audio data to determine the format; otherwise, it
uses the plug-in specified by the format. AUFF, AIFF, AIFC, and WAVE plug-ins are
provided, so users may use these plug-ins too.

Audio file format information can be extracted from the audio data itself. You can
extend support to a file format not known by the ORDAudio object by implement-
ing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports that file for-
mat. See Section 2.1.12 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getFormat() method and the audio plug-in
raises an exception.

Examples
Call the format plug-in to read the actual format embedded in the stored audio
data:
 Deprecated Audio and Video Methods J-3

getFormat() Method
DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting audio file format’);
 DBMS_OUTPUT.PUT_LINE(’-------------------------’);
 DBMS_OUTPUT.PUT_LINE(obj.getFormat(ctx));
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.PUT_LINE(’AUDIO_PLUGIN_EXCEPTION caught’);
END;
/

J-4 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getEncoding() Method
getEncoding() Method

Format
getEncoding(ctx IN OUT RAW) RETURN VARCHAR2;

Description
Calls the format plug-in to read the encoding embedded in the stored audio data.

Parameters

ctx
The format plug-in context information.

Usage Notes
If the format found in the object is NULL, then the getEncoding() method uses the
default format plug-in to read the audio data to determine the encoding; otherwise,
it uses the plug-in specified by the format.

Audio encoding information can be extracted from the audio data itself. You can
extend support to a format that is not understood by the ORDAudio object by
implementing an ORDPLUGIN.ORDX_<format>_AUDIO package that supports
that format. See Section 2.1.12 for more information.

This function returns the value UNKNOWN, if the encoding type cannot be deter-
mined.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getEncoding() method and the audio plug-in
raises an exception.
 Deprecated Audio and Video Methods J-5

getEncoding() Method
Examples
Call the format plug-in to read the actual encoding embedded in the stored audio
data:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting audio encoding’);
 DBMS_OUTPUT.PUT_LINE(’----------------------’);
 DBMS_OUTPUT.PUT_LINE(obj.getEncoding(ctx));
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.PUT_LINE(’AUDIO_PLUGIN_EXCEPTION caught’);
END;
/

J-6 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getNumberOfChannels() Method
getNumberOfChannels() Method

Format
getNumberOfChannels(ctx IN OUT RAW) RETURN INTEGER;

Description
Calls the format plug-in to read the number of audio channels embedded in the
stored audio data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The number of audio channels information is available from the header of the for-
matted audio data.

If the format found in the object is NULL, then the getNumberOfChannels()
method uses the default format plug-in to read the audio data to determine the
number of channels; otherwise, it uses the plug-in specified by the format.

Audio number of channels information can be extracted from the audio data itself.
You can extend support to a format that is not understood by the ORDAudio object
by implementing an ORDPLUGINS.ORDX_<format>_AUDIO package that sup-
ports that format. See Section 2.1.12 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getNumberOfChannels() method and the
audio plug-in raises an exception.
 Deprecated Audio and Video Methods J-7

getNumberOfChannels() Method
Examples
Call the format plug-in to read the actual number of audio channels embedded in
the stored audio data:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting audio channels’);
 DBMS_OUTPUT.PUT_LINE(’-------------------------’);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getNumberOfChannels(ctx)));
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.PUT_LINE(’AUDIO_PLUGIN_EXCEPTION caught’);
END;
/

J-8 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSamplingRate() Method
getSamplingRate() Method

Format
getSamplingRate(ctx IN OUT INTEGER);

Description
Calls the format plug-in to read the sampling rate embedded in the stored audio
data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The audio sampling rate information is available from the header of the formatted
audio data. The unit is Hz.

If the format found in the object is NULL, then the getSamplingRate() method uses
the default format plug-in to read the audio data to determine the sampling rate;
otherwise, it uses the plug-in specified by the format.

Audio sampling rate information can be set to a known sampling rate for the audio
data. You can extend support to a format not understood by the ORDAudio object
by implementing an ORDPLUGINS.ORDX_<format>_AUDIO package that sup-
ports that format. See Section 2.1.12 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getSamplingRate() method and the audio
plug-in raises an exception.
 Deprecated Audio and Video Methods J-9

getSamplingRate() Method
Examples
Return the sampling rate for audio data stored in the database:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting sampling rate’);
 DBMS_OUTPUT.PUT_LINE(’---------------------’);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getSamplingRate(ctx))||’ KHz’);
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.PUT_LINE(’AUDIO_PLUGIN_EXCEPTION caught’);
END;

/

J-10 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getSampleSize() Method
getSampleSize() Method

Format
getSampleSize(ctx IN OUT RAW) RETURN INTEGER;

Description
Calls the format plug-in to read the sample size embedded in the stored audio data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The audio sample size information is available from the header of the formatted
audio data.

If the format found in the object is NULL, then the getSampleSize() method uses
the default format plug-in to read the audio data to determine the sample size for-
mat; otherwise, it uses the plug-in specified by the format.

Audio sample size information can be extracted from the audio data itself. You can
extend support to a format not understood by the ORDAudio object by implement-
ing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports that for-
mat. See Section 2.1.12 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getSampleSize() method and the audio
plug-in raises an exception.

Examples
Return the sample size for audio data stored in the database:
 Deprecated Audio and Video Methods J-11

getSampleSize() Method
DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting sampling size’);
 DBMS_OUTPUT.PUT_LINE(’---------------------’);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getSampleSize(ctx))||’ bits’);
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.PUT_LINE(’AUDIO_PLUGIN_EXCEPTION caught’);
END;
/

J-12 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getCompressionType() Method
getCompressionType() Method

Format
getCompressionType(ctx IN OUT RAW) RETURN VARCHAR2;

Description
Calls the format plug-in to read the compression type embedded in the stored audio
data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The audio compression type information is available from the header of the format-
ted audio data.

If the format found in the object is NULL, then the getCompressionType() method
uses the default format plug-in to read the audio data to determine the compres-
sion type; otherwise, it uses your user-defined format plug-in.

Audio compression type information can be extracted from the audio data itself.
You can extend support to a format not understood by the ORDAudio object by
implementing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports
that format. See Section 2.1.12 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getCompressionType() method and the audio
plug-in raises an exception.
 Deprecated Audio and Video Methods J-13

getCompressionType() Method
Examples
Return the type of compression used for audio data stored in the database:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting compression type ’);
 DBMS_OUTPUT.PUT_LINE(’---------------------’);
 DBMS_OUTPUT.PUT_LINE(obj.getCompressionType(ctx)|| ’ ’);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’AUDIO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’AUDIO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);
END;
/

J-14 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getAudioDuration() Method
getAudioDuration() Method

Format
getAudioDuration(ctx IN OUT RAW) RETURN INTEGER;

Description
Calls the format plug-in to read the audio duration embedded in the stored audio
data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The audio duration information is available from the header of the formatted audio
data.

If the format found in the object is NULL, then the getAudioDuration() method
uses the default format plug-in to read the audio data to determine the audio dura-
tion; otherwise, it uses your user-defined format plug-in.

Audio duration information can be extracted from the audio data itself. You can
extend support to a format not understood by the ORDAudio object by implement-
ing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports that for-
mat. See Section 2.1.12 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the setAudioDuration() method and the audio
plug-in raises an exception.
 Deprecated Audio and Video Methods J-15

Deprecated ORDVideo Methods
Examples
Return the duration or time to play the audio data stored in the database:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 for update;
 DBMS_OUTPUT.PUT_LINE(’getting audio duration’);
 DBMS_OUTPUT.PUT_LINE(’---------------------’);
 obj.setFormat(’WAVE’);
 DBMS_OUTPUT.PUT_LINE(obj.getAudioDuration(ctx));
 update taud set aud = obj where n =1;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’AUDIO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’AUDIO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught ’);
END;
/

J.2 Deprecated ORDVideo Methods
The following deprecated ORDVideo methods were shipped in 8.1.6, but they will
not be enhanced and they may be removed in a future release.

Each of these ORDVideo methods reads the media data to extract the desired
attribute. Rather than reading the media data for each attribute, Oracle Corporation
recommends calling the setProperties method. This method extracts attributes from
the media and populates the object attributes. The getxxx methods (with no ctx
parameter) return the values stored in object attributes. These are the recom-
mended ORDVideo methods to use for release 8.1.6 and later.
J-16 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getFormat() Method
getFormat() Method

Format
getFormat(ctx IN OUT RAW) RETURN VARCHAR2;

Description
Calls the format plug-in to read the format embedded in the stored video data.

Parameters

ctx
The format plug-in context information.

Usage Notes
If the format found in the object is NULL, then the getFormat() method uses the
default format plug-in to read the video data to determine the format; otherwise, it
uses your user-defined format plug-in.

Video file format information can be extracted from the formatted video data itself.
You can extend support to a file format not known by the ORDVideo object by
implementing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that file format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getFormat() method and the video plug-in
raises an exception when calling this method.

Examples
Return the file format for video data stored in the database:

DECLARE
 obj ORDSYS.ORDVideo;
 res VARCHAR2(4000);
 Deprecated Audio and Video Methods J-17

getFormat() Method
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 res := obj.getFormat(ctx);
 DBMS_OUTPUT.put_line(res);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’method not supported’);
END;
/

J-18 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getFrameSize() Method
getFrameSize() Method

Format
getFrameSize(

 ctx IN OUT RAW,

 width OUT INTEGER,

 height OUT INTEGER);

Description
Calls the format plug-in to read the frame size embedded in the stored video data.

Parameters

ctx
The format plug-in context information.

width
The frame width in pixels.

height
The frame height in pixels.

Usage Notes
The video frame size information is available from the header of the formatted
video data.

If the format found in the object is NULL, then the getFrameSize() method uses the
default format plug-in to read the video data to determine the frame size; other-
wise, it uses your user-defined format plug-in.

Video frame size information can be extracted from the video data itself. You can
extend support to a format that is not understood by the ORDVideo object by
implementing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 2.3.13 for more information.

Pragmas
None.
 Deprecated Audio and Video Methods J-19

getFrameSize() Method
Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getFrameSize() method and the video
plug-in raises an exception when calling this method.

Examples
Call the format plug-in to read the actual frame size embedded in the stored video
data:

DECLARE
 obj ORDSYS.ORDVideo;
 width VARCHAR2(4000);
 height VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 obj.getFrameSize(ctx,width, height);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’method not supported’);
END;
/

J-20 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getFrameResolution() Method
getFrameResolution() Method

Format
getFrameResolution(ctx IN OUT RAW) RETURN INTEGER;

Description
Calls the format plug-in to read the frame resolution embedded in the stored video
data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The video frame resolution information is available from the header of the format-
ted video data.

If the format found in the object is NULL, then the getFrameResolution() method
uses the default format plug-in to read the video data to determine the frame reso-
lution; otherwise, it uses your user-defined format plug-in.

Video frame resolution information can be extracted from the video data itself. You
can extend support to a format not understood by the ORDVideo object by imple-
menting an ORDPLUGINS.ORDX_<format>_VIDEO package that supports that
format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getFrameResolution() method and the video
plug-in raises an exception when calling this method.
 Deprecated Audio and Video Methods J-21

getFrameResolution() Method
Examples
Call the format plug-in to read the actual frame resolution embedded in the stored
video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 res := obj.getFrameResolution(ctx);
 DBMS_OUTPUT.put_line(res);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’method not supported’);
END;
/

J-22 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getFrameRate() Method
getFrameRate() Method

Format
getFrameRate(ctx IN OUT RAW) RETURN INTEGER;

Description
Calls the format plug-in to read the frame rate embedded in the stored video data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The video frame rate information is available from the header of the formatted
video data.

If the format found in the object is NULL, then the getFrameRate() method uses the
default format plug-in to read the video data to determine the frame rate; other-
wise, it uses your user-defined format plug-in.

Video frame rate information can be extracted from the video data itself. You can
extend support to a format not understood by the ORDVideo object by implement-
ing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports that format.
See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getFrameRate() method and the video
plug-in raises an exception when calling this method.
 Deprecated Audio and Video Methods J-23

getFrameRate() Method
Examples
Call the format plug-in to read the actual frame rate embedded in the stored audio
data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 res := obj.getFrameRate(ctx);
 DBMS_OUTPUT.put_line(res);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’method not supported’);
END;
/

J-24 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getVideoDuration() Method
getVideoDuration() Method

Format
getVideoDuration(ctx IN OUT RAW) RETURN INTEGER;

Description
Calls the format plug-in to read the video duration embedded in the stored video
data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The video duration information is available from the header of the formatted video
data.

If the format found in the object is NULL, then the getVideoDuration() method uses
the default format plug-in to read the video data to determine the video duration;
otherwise, it uses your user-defined format plug-in.

Video duration information can be extracted from the video data itself. You can
extend support to a format that is not understood by the ORDVideo object by
implementing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getVideoDuration() method and the video
plug-in raises an exception when calling this method.
 Deprecated Audio and Video Methods J-25

getVideoDuration() Method
Examples
Calls the format plug-in to read the actual video duration embedded in the stored
video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 res := obj.getVideoDuration(ctx);
 --DBMS_OUTPUT.put_line(res);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’method not supported’);
END;
/

J-26 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getNumberOfFrames() Method
getNumberOfFrames() Method

Format
getNumberOfFrames(ctx IN OUT RAW) RETURN INTEGER;

Description
Calls the format plug-in to read the number of frames embedded in the stored video
data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The total number of frames information is available from the header of the format-
ted video data.

If the format found in the object is NULL, then the getNumberOfFrames() method
uses the default format plug-in to read the video data to determine the number of
frames; otherwise, it uses your user-defined format plug-in.

Total number of frames information can be extracted from the video data itself. You
can extend support to a format that is not understood by the ORDVideo object by
preparing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports that
format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getNumberOfFrames() method and the video
plug-in raises an exception when calling this method.
 Deprecated Audio and Video Methods J-27

getNumberOfFrames() Method
Examples
Call the format plug-in to read the actual number of frames embedded in the stored
video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 res := obj.getNumberOfFrames(ctx);
 DBMS_OUTPUT.put_line(res);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’method not supported’);
END;
/

J-28 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getCompressionType() Method
getCompressionType() Method

Format
getCompressionType(ctx IN OUT RAW) RETURN VARCHAR2;

Description
Calls the format plug-in to read the compression type embedded in the stored video
data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The video compression type information is available from the header of the format-
ted video data.

If the format found in the object is NULL, then the getCompressionType() method
uses the default format plug-in to read the video data to determine the compres-
sion type; otherwise, it uses your user-defined format plug-in.

Video compression type information can be extracted from the audio data itself. You
can extend support to a format that is not understood by the ORDVideo object by
preparing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports that
format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the setCompressionType() method and the video
plug-in raises an exception when calling this method.
 Deprecated Audio and Video Methods J-29

getCompressionType() Method
Examples
Call the format plug-in to read the actual compression type embedded in the stored
video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 res := obj.getCompressionType(ctx);
 DBMS_OUTPUT.put_line(res);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’method not supported’);
END;
/

J-30 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getNumberOfColors() Method
getNumberOfColors() Method

Format
getNumberOfColors(ctx IN OUT RAW) RETURN INTEGER;

Description
Calls the format plug-in to read the number of colors embedded in the stored video
data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The total number of colors information is available from the header of the format-
ted video data.

If the format found in the object is NULL, then the getNumberOfColors() method
uses the default format plug-in to read the video data to determine the number of
colors; otherwise, it uses your user-defined format plug-in.

Total number of colors information can be extracted from the video data itself. You
can extend support to a format that is not understood by the ORDVideo object by
implementing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getNumberOfColors() method and the video
plug-in raises an exception when calling this method.
 Deprecated Audio and Video Methods J-31

getNumberOfColors() Method
Examples
Calls the format plug-in to read the actual number of colors embedded in the stored
video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 res := obj.getNumberOfColors(ctx);
 DBMS_OUTPUT.put_line(res);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’method not supported’);
END;
/

J-32 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

getBitRate() Method
getBitRate() Method

Format
getBitRate(ctx IN OUT RAW) RETURN INTEGER;

Description
Calls the format plug-in to read the bit rate embedded in the stored video data.

Parameters

ctx
The format plug-in context information.

Usage Notes
The video bit rate information is available from the header of the formatted video
data.

If the format found in the object is NULL, then the getBitRate() method uses the
default format plug-in to read the video data to determine the bit rate; otherwise, it
uses your user-defined format plug-in.

Video bit rate information can be extracted from the video data itself. You can
extend support to a format that is not understood by the ORDVideo object by pre-
paring an ORDPLUGINS.ORDX_<format>_VIDEO package that supports that for-
mat. See Section 2.3.13 for more information.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getBitRate() method and the video plug-in
raises an exception when calling this method.
 Deprecated Audio and Video Methods J-33

getBitRate() Method
Examples
Call the format plug-in to read the actual bit rate embedded in the stored video
data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 res := obj.getBitRate(ctx);
 DBMS_OUTPUT.put_line(res);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’method not supported’);
END;
/

J-34 Oracle interMedia Audio, Image, and Video User’s Guide and Reference

Index

A
adding images, 2-20
advantages of using

LOB buffering, 8-16
AIFF data format, A-1, C-2
AIFF-C data format, A-2, C-3
appendToComments() method, 4-68, 6-70
AU data format, A-3, C-3

B
BFILE, 2-22, 2-23, I-6
BLOB, I-4
BLOBs in table partitions

using interMedia column objects, 8-15
BMP data format, B-1
BUFFER_POOL_KEEP parameter, 8-4
BUFFER_POOL_RECYCLE parameter, 8-4
bulk data loading methods, 8-16

C
CACHE option, 8-9
CALS Raster Data Format, B-2
checkProperties() method, 4-107, 5-30, 6-116
CHUNK option, 8-10
clearLocal method, 4-34, 5-16, 5-40, 6-35, 7-11
close() method, 7-54
closeSource() method, 4-59, 6-61
codecs, 1-4
compareComments() method, 4-82, 6-84
compatibility, 3-1
compatibilityInit() method, 3-3

compressing images, I-19
compression

formats, A-1, B-1, C-1
converting an image, 2-26
copy() method, 5-15
copyCommentsOut() method, 4-80, 6-82
copyContent() method, I-9
copying images, 2-25
cropping images, I-19
cutting images, I-19

D
data

loading multimedia, 1-13
data format, 1-6
database initialization parameter

BUFFER_POOL_KEEP, 8-4
BUFFER_POOL_RECYCLE, 8-4
DB_BLOCK_BUFFERS, 8-2, 8-4, 8-29
DB_BLOCK_SIZE, 8-2, 8-3, 8-29
LOG_BUFFER, 8-6
setting, 8-2
SHARED_POOL_RESERVED_SIZE, 8-6
SHARED_POOL_SIZE, 8-2, 8-5

DB_BLOCK_BUFFERS parameter, 8-2, 8-4, 8-29
DB_BLOCK_SIZE parameter, 8-2, 8-3, 8-29
DBA tuning tips, 8-1
DBMS_LOB package

loading data, 8-23
deleteComments method, 4-77, 6-79
deleteContent method, 4-54, 5-54, 6-56
deleteLocalContent method, 7-50
 Index-1

E
empty BLOB, I-2
ensuring future compatibility

with evolving interMedia object types, 3-1
eraseFromComments() method, 4-76, 6-78
evolving interMedia object types

ensuring future compatibility, 3-1
examples

retrieving video data (simple read), 2-47
exceptions and error messages, H-1
export() method, 4-47, 5-65, 6-48, 7-37
extending interMedia

audio default format, 4-117
new audio format, 2-9, 4-120
new audio object type, 2-9
new data source, 2-58, 7-70
new image object type, 2-27
new video format, 2-48, 6-129
new video object type, 2-48
video default format, 6-126

F
file format, A-1, B-1, C-1
formats

compression, A-1, B-1, C-1
file, A-1, B-1, C-1

frequently asked questions (FAQ), G-1

G
getAllAttributes() method, 4-111, 6-120
getAttribute() method, 4-109, 6-118
getAudioDuration method, 4-100
getAudioDuration() method, J-15
getBFILE method, 4-55, 5-52, 6-57
getBFile method, 7-23
getBitRate method, 6-108
getCommentLength() method, 4-84, 6-86
getCompressionFormat() method, 5-37
getCompressionType method, 4-98, 6-104
getCompressionType() method, J-29
getContent method, 4-53, 5-51, 6-54
getContentFormat() method, 5-36
getContentInLob() method, 4-51, 6-52

getContentInTempLob() method, 7-47
getContentLength method, 5-34
getContentLength() method, 4-50, 6-51, 7-41
getDescription method, 4-23, 6-24
getEncoding method, 4-90
getEncoding() method, J-5
getFileFormat() method, 5-35
getFormat method, 4-88, 6-90
getFormat() method, J-3, J-17
getFrameRate method, 6-98
getFrameResolution method, 6-96
getFrameResolution() method, J-21
getFrameSize() method, 6-93, J-19
getHeight() method, 5-32
getLocalContent method, 7-45
getMimeType method, 4-27, 5-46, 6-28
getNumberOfChannels method, 4-91, 4-92
getNumberOfChannels() method, J-7
getNumberOfColors method, 6-106
getNumberOfColors() method, J-31
getNumberOfFrames method, 6-102
getNumberOfFrames() method, J-27
getSampleSize() method, 4-96, J-11
getSamplingRate() method, 4-94, J-9
getSource method, 4-37, 5-57, 6-38
getSourceAddress() method, 7-43
getSourceInformation method, 7-19
getSourceLocation method, 4-40, 5-59, 6-41, 7-21
getSourceName method, 4-41, 5-60, 6-42, 7-22
getSourceType method, 4-38, 5-58, 6-39, 7-20
getUpdateTime method, 4-18, 5-43, 6-19, 7-14
getVideoDuration method, 6-100
getVideoDuration() method, J-25
getwidth() method, 5-33
GIF Data Format, B-3

I
import() method, 4-42, 5-61, 6-43, 7-26, 7-28
importFrom() method, 4-44, 5-63, 6-45, 7-31, 7-34
init() method, 4-9, 5-7, 6-9
init(srcType,srcLocation,srcName) method, 4-11,

5-9, 6-11
INITIAL and NEXT parameters, 8-10
initializing interMedia column objects, 8-7
Index-2

inserting images, 2-21
interchange format, 1-7
interMedia

guidelines for best performance results, 8-28
improving multimedia LOB data retrieval and

update performance, 8-29
initializing column objects, 8-7
media data storage model, 1-2
objects types, 1-2
reading data from an object, 8-26
setting column object to empty, 8-7
setting column objects to NULL, 8-7
strategies with column objects, 8-6

interMedia benchmark
loading data, 8-24
reading data, 8-27

interMedia Clipboard
loading data, 8-23

interMedia column objects
tablespace, 8-8

interMedia object types evolution
ensuring future compatibility, 3-1

inverted index, 1-19
isLocal method, 4-32, 5-41, 6-33, 7-12

J
JFIF Data Format, B-2, B-3

L
loadCommentsFromFile() method, 4-78, 6-80
loading data

bulk methods, 8-16
interMedia benchmark, 8-24
multimedia, 1-13
using DBMS_LOB package, 8-23
using interMedia Clipboard, 1-13, 8-23
using OCI, 8-22
using PL/SQL, 1-13, 8-17
using SQL*Loader, 1-13, 8-21

loading FILE data into interMedia objects, 8-16
LOB buffering

advantages of using, 8-16
LOB index

using with interMedia column objects, 8-8
locateInComments() method, 4-73, 6-75
LOG_BUFFER parameter, 8-6
LOGGING option, 8-10
lossless compression, 1-7
lossy compression, 1-7

M
MAXEXTENTS parameter, 8-13
memory allocation

tuning, 8-4
messages, error, exceptions, H-1
methods, 4-13, 5-11, 6-13, 7-7

appendToComments(), 4-68, 6-70
checkProperties(), 4-107, 5-30, 6-116
clearLocal, 4-34, 5-16, 5-40, 6-35, 7-11
close(), 7-54
closeSource(), 4-59, 6-61
compareComments(), 4-82, 6-84
compatibilityInit(), 3-3
copy(), 5-15
copyCommentsOut(), 4-80, 6-82
deleteComments, 4-77, 6-79
deleteContent, 4-54, 5-54, 6-56
deleteLocalContent, 7-50
eraseFromComments(), 4-76, 6-78
export(), 4-47, 5-65, 6-48, 7-37
getAllAttributes(), 4-111, 6-120
getAttribute(), 4-109, 6-118
getAudioDuration, 4-100
getAudioDuration(), J-15
getBFILE, 4-55, 5-52, 6-57
getBFile, 7-23
getBitRate, 6-108
getCommentLength(), 4-84, 6-86
getCompressionFormat(), 5-37
getCompressionType, 4-98, 6-104
getCompressionType(), J-29
getContent, 4-53, 5-51, 6-54
getContentFormat(), 5-36
getContentInLob(), 4-51, 6-52
getContentInTempLob(), 7-47
getContentLength, 5-34
getContentLength(), 4-50, 6-51, 7-41
 Index-3

getDescription, 4-23, 6-24
getEncoding, 4-90
getEncoding(), J-5
getFileFormat(), 5-35
getFormat, 4-88, 6-90
getFormat(), J-3, J-17
getFrameRate, 6-98
getFrameResolution, 6-96
getFrameResolution(), J-21
getFrameSize(), 6-93, J-19
getHeight(), 5-32
getLocalContent, 7-45
getMimeType, 4-27, 5-46, 6-28
getNumberOfChannels, 4-91, 4-92
getNumberOfChannels(), J-7
getNumberOfColors, 6-106
getNumberOfColors(), J-31
getNumberOfFrames, 6-102
getNumberOfFrames(), J-27
getSampleSize(), 4-96, J-11
getSamplingRate(), 4-94, J-9
getSource, 4-37, 5-57, 6-38
getSourceAddress(), 7-43
getSourceInformation, 7-19
getSourceLocation, 4-40, 5-59, 6-41, 7-21
getSourceName, 4-41, 5-60, 6-42, 7-22
getSourceType, 4-38, 5-58, 6-39, 7-20
getUpdateTime, 4-18, 5-43, 6-19, 7-14
getVideoDuration, 6-100
getVideoDuration(), J-25
getWidth(), 5-33
import(), 4-42, 5-61, 6-43, 7-26, 7-28
importFrom(), 4-44, 5-63, 6-45, 7-31, 7-34
init(), 4-9, 5-7, 6-9
init(srcType,srcLocation,srcName), 4-11, 5-9,

6-11
isLocal, 4-32, 5-41, 6-33, 7-12
loadCommentsFromFile(), 4-78, 6-80
locateInComments(), 4-73, 6-75
migrateFromORDImgB(), 5-68
migrateFromORDImgF(), 5-70
open(), 7-52
openSource(), 4-57, 6-59
process(), 5-18
processAudioCommand(), 4-114

processCommand(), 7-64
processCopy(), 5-22
processSourceCommand(), 4-29, 6-30
processVideoCommand(), 6-123
read(), 7-59
readFromComments(), 4-72, 6-74
readFromSource(), 4-63, 6-65
setAudioDuration(), 4-99
setBitRate(), 6-107
setCompressionType(), 4-97, 6-103
setDescription(), 4-21, 6-22
setEncoding(), 4-89
setFormat(), 4-86, 6-88
setFrameRate(), 6-97
setFrameResolution(), 6-95
setFrameSize(), 6-91
setKnownAttributes(), 4-101, 6-109
setLocal, 4-33, 5-39, 6-34, 7-10
setMimeType(), 4-25, 5-48, 6-26
setNumberOfColors(), 6-105
setNumberOfFrames(), 6-101
setProperties, 5-25
setProperties(), 4-103, 6-112
setProperties() (XML), 4-105, 6-114
setProperties() for foreign images, 5-27
setSampleSize(), 4-95
setSamplingRate(), 4-93
setSource(), 4-35, 5-55, 6-36
setSourceInformation(), 7-17
setUpdateTime(), 4-19, 5-44, 6-20, 7-15
setVideoDuration(), 6-99
trim, 7-56
trimComments(), 4-75, 6-77
trimSource(), 4-61, 6-63
write(), 7-61
writeToComments(), 4-70, 6-72
writeToSource(), 4-65, 6-67

migrateFromORDImgB() method, 5-68
migrateFromORDImgF() method, 5-70
multimedia LOB data retrieval and update

performance
improving, 8-29
Index-4

O
object relational technology, 1-8
object types, I-4, I-6

ORDAudio, 4-3
ORDImage, 5-3
ORDSource, 7-3
ORDVideo, 6-3

object views, 2-10, 2-29, 2-49
OCI

loading data, 8-22
open() method, 7-52
openSource() method, 4-57, 6-59
ORDAudio, 4-1
ORDAudio methods

audio attributes, 4-67, 4-85
description attribute, 4-20
mimeType attribute, 4-24
processing audio data, 4-113
source attribute, 4-28
source file operation methods, 4-56
updateTime attribute, 4-17

ORDAudio object type
reference information, 4-3

ORDImage, 5-1
ORDImage methods

updateTime attribute, 5-14
ORDImage object type

reference information, 5-3
ORDImgB object type, I-4
ORDImgF object type, I-6
ORDPLUGINS.ORDX_<srcType>_SOURCE

package, 7-70
ORDPLUGINS.ORDX_DEFAULT_VIDEO

package, 6-126
ORDPLUGINS.ORDX_FILE_SOURCE

package, 7-66
ORDPLUGINS.ORDX_HTTP_SOURCE

package, 7-68
ORDSource, 7-1
ORDSource methods

import and export operations, 7-25
local attribute, 7-9
localData, srcType, srcLocation, srcName

attributes, 7-16

processing commands, 7-63
read/write operations, 7-58
source content operations, 7-40
source file operation methods, 7-51
updateTime attribute, 7-13

ORDSource object type
reference information, 7-3

ORDVideo, 6-1, 6-69
ORDVideo methods

comments attribute, 6-69
description attribute, 6-21
mimeType attribute, 6-25
processing video data, 6-122
source attribute, 6-29
source file operation methods, 6-58
updateTime attribute, 6-18
video attributes, 6-87

ORDVideo object type
reference information, 6-3

ORDX_DEFAULT_AUDIO package, 4-117

P
packages

ORDPLUGINS.ORDX_<srcType>_SOURCE, 7-
70

ORDPLUGINS.ORDX_DEFAULT_VIDEO, 6-12
6

ORDPLUGINS.ORDX_FILE_SOURCE, 7-66
ORDPLUGINS.ORDX_HTTP_SOURCE, 7-68
ORDX_DEFAULT_AUDIO, 4-117

packages or PL/SQL plug-ins, 4-117, 6-126, 7-66
PCTFREE parameter, 8-14
PCTINCREASE parameter, 8-13
PCTVERSION option, 8-9
PCX Data Format, B-4
performance results

guidelines for using interMedia objects, 8-28
PICT Data Format, B-4
PL/SQL

loading data, 1-13
example, 8-17

populating rows, 2-21
process() method, 5-18, I-19
processAudioCommand() method, 4-114
 Index-5

processCommand() method, 7-64
processCopy() method, 5-22, I-22
processSourceCommand() method, 4-29, 6-30
processVideoCommand() method, 6-123
properties

setting, I-26
protocol, 1-7

Q
querying rows, 2-24

R
Raw Pixel Data Format, B-5
read() method, 7-59
readFromComments() method, 4-72, 6-74
readFromSource() method, 4-63, 6-65
reading data

interMedia benchmark, 8-27
reading data from an interMedia object, 8-26
reading interMedia data

example, 8-26
reference information, 3-1, 4-1, 5-1, 6-1, 7-1
related documents, xxvi
retrieving

video data from table, 2-47
roll back, 2-27

S
sample program, F-1, I-1, J-1
scaling images, I-20
segment and physical attributes

PCTFREE parameter, 8-14
setAudioDuration() method, 4-99
setBitRate() method, 6-107
setCompressionType() method, 4-97, 6-103
setDescription() method, 4-21, 6-22
setEncoding() method, 4-89
setFormat() method, 4-86, 6-88
setFrameRate() method, 6-97
setFrameResolution() method, 6-95
setFrameSize() method, 6-91
setKnownAttributes() method, 4-101, 6-109

setLocal method, 4-33, 5-39, 6-34, 7-10
setMimeType() method, 4-25, 5-48, 6-26
setNumberOfColors() method, 6-105
setNumberOfFrames() method, 6-101
setProperties method, 5-25
setProperties()

reference information, I-26
setProperties() method, 4-103, 6-112, I-24
setProperties() method (XML), 4-105, 6-114
setProperties() method for foreign images, 5-27
setSampleSize() method, 4-95
setSamplingRate() method, 4-93
setSource() method, 4-35, 5-55, 6-36
setSourceInformation() method, 7-17
setting

column object to empty, 8-7
column objects to NULL, 8-7
properties, I-26

setting database initialization parameters, 8-2
setUpdateTime() method, 4-19, 5-44, 6-20, 7-15
setVideoDuration() method, 6-99
SGA, 8-2

database initialization parameters, 8-2
sizing, 8-2
sizing using DB_BLOCK_BUFFERS

parameter, 8-2
sizing using DB_BLOCK_SIZE parameter, 8-2
sizing using SHARED_POOL_SIZE

parameter, 8-2
SHARED_POOL_RESERVED_SIZE parameter, 8-6
SHARED_POOL_SIZE parameter, 8-2, 8-5
SQL*Loader

example loading multimedia data, 8-21
loading data, 1-13, 8-21

storage characteristics
CACHE option, 8-9
CHUNK option, 8-10
DB_BLOCK_SIZE parameter, 8-3
INITIAL and NEXT parameters, 8-10
LOGGING option, 8-10
MAXEXTENTS parameter, 8-13
PCTINCREASE parameter, 8-13
PCTVERSION option, 8-9
STORAGE IN ROW clause, 8-13

STORAGE IN ROW clause, 8-13
Index-6

strategies for column objects, 8-6
Sun Raster Data Format, B-6
supported image formats, B-1
system global area

See SGA

T
table partitions

using interMedia column objects containing
BLOBs, 8-15

tablespace characteristics
LOB index, 8-8
tablespace, 8-8

Targa Data Format, B-6
temporary conversions, 2-27
thumbnail images, 5-20, I-20, I-21
TIFF Data Format, B-7
trim method, 7-56
trimComments() method, 4-75, 6-77
trimSource() method, 4-61, 6-63
tuning

memory allocation, 8-4

W
WAV data format, A-4, A-5
write() method, 7-61
writeToComments() method, 4-70, 6-72
writeToSource() method, 4-65, 6-67
 Index-7

Index-8

	PDF Directory
	User’s Guide and Reference
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documents
	Conventions
	Changes to This Guide

	1 Introduction
	1.1� Oracle interMedia Audio, Image, and Video
	1.2� Audio Concepts
	1.2.1� Digitized Audio
	1.2.2� Audio Components

	1.3� Image Concepts
	1.3.1� Digitized Images
	1.3.2� Image Components

	1.4� Video Concepts
	1.4.1� Digitized Video
	1.4.2� Video Components

	1.5� Object Relational Technology
	1.5.1� Multimedia Object Types and Methods
	1.5.2� ORDSource Object Type and Methods
	1.5.2.1� Storing Multimedia Data
	1.5.2.2� Querying Multimedia Data
	1.5.2.3� Accessing Multimedia Data

	1.6� Extending Oracle interMedia
	1.6.1� Supporting Other External Sources and Other Audio, Image, and Video Data Formats
	1.6.2� Supporting Audio Data Processing
	1.6.3� Supporting Video Data Processing

	1.7� Loading Multimedia Data into Oracle8i Using interMedia
	1.8� Reading Data from a LOB
	1.9� interMedia Architecture
	1.9.1� interMedia Text Services
	1.9.2� Annotation Services for Multimedia Data
	1.9.3� Streaming Content from an Oracle Database
	1.9.4� Support for Web Technologies
	1.9.5� Geocoding Services

	2 interMedia Examples
	2.1� Audio Data Examples
	2.1.1� Defining a Song Object
	2.1.2� Creating an Object Table SongsTable
	2.1.3� Creating a List Object Containing a List of References to Songs
	2.1.4� Defining the Implementation of the songList Object
	2.1.5� Creating a CD Object and a CD Table
	2.1.6� Inserting a Song into the SongsTable Table
	2.1.7� Inserting a CD into the CdTable Table
	2.1.8� Loading a Song into the SongsTable Table
	2.1.9� Inserting a Reference to a Song Object into the Songs List in the CdTable Table
	2.1.10� Adding a CD Reference to a Song
	2.1.11� Retrieving Audio Data from a Song in a CD
	2.1.12� Extending interMedia to Support a New Audio Data Format
	2.1.13� Extending interMedia with a New Type
	2.1.14� Using Audio Types with Object Views
	2.1.15� Scripts for Creating and Populating an Audio Table from a BFILE Data Source

	2.2� Image Data Examples
	2.2.1� Adding Image Types to an Existing Table
	2.2.2� Adding Image Types to a New Table
	2.2.3� Inserting a Row Using BLOB Images
	2.2.4� Populating a Row Using BLOB Images
	2.2.5� Inserting a Row Using BFILE Images
	2.2.6� Populating a Row Using BFILE Images
	2.2.7� Querying a Row
	2.2.8� Importing an Image from an External File into the Database
	2.2.9� Copying an Image
	2.2.10� Converting an Image Format
	2.2.11� Copying and Converting in One Step
	2.2.12� Extending interMedia with a New Type
	2.2.13� Using Image Types with Object Views
	2.2.14� Scripts for Creating and Populating an Image Table from a BFILE Data Source
	2.2.15� Scripts for Populating an Image Table from an HTTP Data Source
	2.2.16� Addressing National Language Support (NLS) Issues

	2.3� Video Data Examples
	2.3.1� Defining a Clip Object
	2.3.2� Creating an Object Table ClipsTable
	2.3.3� Creating a List Object Containing a List of Clips
	2.3.4� Defining the Implementation of the clipList Object
	2.3.5� Creating a Video Object and a Video Table
	2.3.6� Inserting a Video Clip into the ClipsTable Table
	2.3.7� Inserting a Row into the VideoTable Table
	2.3.8� Loading a Video into the ClipsTable Table
	2.3.9� Inserting a Reference to a Clip Object into the Clips List in the VideoTable Table
	2.3.10� Inserting a Reference to a Video Object into the Clip
	2.3.11� Retrieving a Video Clip from the VideoTable Table
	2.3.12� Extending interMedia to Support a New Video Data Format
	2.3.13� Extending interMedia with a New Object Type
	2.3.14� Using Video Types with Object Views
	2.3.15� Scripts for Creating and Populating a Video Table from a BFILE Data Source

	2.4� Extending interMedia to Support a New Data Source

	3 Ensuring Future Compatibility with Evolving interMedia Object Types
	3.1� When and How to Call the Compatibility Initialization Function
	compatibilityInit() Method

	4 ORDAudio Reference Information
	4.1� Object Types
	ORDAudio Object Type

	4.2� Constructors
	init() Method
	init(srcType,srcLocation,srcName) Method

	4.3� Methods
	4.3.1� Example Table Definitions
	4.3.2� ORDAudio Methods Associated with the updateTime Attribute
	getUpdateTime Method
	setUpdateTime() Method
	4.3.3� ORDAudio Methods Associated with the description Attribute
	setDescription() Method
	getDescription Method
	4.3.4� ORDAudio Methods Associated with the mimeType Attribute
	setMimeType() Method
	getMimeType Method
	4.3.5� ORDAudio Methods Associated with the source Attribute
	processSourceCommand() Method
	isLocal Method
	setLocal Method
	clearLocal Method
	setSource() Method
	getSource Method
	getSourceType Method
	getSourceLocation Method
	getSourceName Method
	import() Method
	importFrom() Method
	export() Method
	getContentLength() Method
	getContentInLob() Method
	getContent Method
	deleteContent Method
	getBFILE Method
	4.3.6� ORDAudio Methods Associated with File-Like Operations
	openSource() Method
	closeSource() Method
	trimSource() Method
	readFromSource() Method
	writeToSource() Method
	4.3.7� ORDAudio Methods Associated with the comments Attribute
	appendToComments() Method
	writeToComments() Method
	readFromComments() Method
	locateInComments() Method
	trimComments() Method
	eraseFromComments() Method
	deleteComments Method
	loadCommentsFromFile() Method
	copyCommentsOut() Method
	compareComments() Method
	getCommentLength() Method
	4.3.8� ORDAudio Methods Associated with Audio Attributes Accessors
	setFormat() Method
	getFormat Method
	setEncoding() Method
	getEncoding Method
	setNumberOfChannels() Method
	getNumberOfChannels Method
	setSamplingRate() Method
	getSamplingRate Method
	setSampleSize() Method
	getSampleSize Method
	setCompressionType() Method
	getCompressionType Method
	setAudioDuration() Method
	getAudioDuration Method
	setKnownAttributes() Method
	setProperties() Method
	setProperties() Method (XML)
	checkProperties() Method
	getAttribute() Method
	getAllAttributes() Method
	4.3.9� ORDAudio Methods Associated with Processing Audio Data
	processAudioCommand() Method

	4.4� Packages or PL/SQL Plug-ins
	4.4.1� ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
	4.4.2� Extending interMedia to Support a New Audio Data Format

	5 ORDImage Reference Information
	5.1� Object Types
	ORDImage Object Type

	5.2� Constructors
	init() Method
	init(srcType,srcLocation,srcName) Method

	5.3� Methods
	5.3.1� Example Table Definitions
	5.3.2� ORDImage Methods Associated with Copy Operations
	copy() Method
	5.3.3� ORDImage Methods Associated with Process Operations
	process() Method
	processCopy() Method
	5.3.4� ORDImage Methods Associated with Properties Set and Check Operations
	setProperties Method
	setProperties() Method for Foreign Images
	checkProperties Method
	5.3.5� ORDImage Methods Associated with Image Attributes
	getHeight Method
	getWidth Method
	getContentLength Method
	getFileFormat Method
	getContentFormat Method
	getCompressionFormat Method
	5.3.6� ORDImage Methods Associated with the local Attribute
	setLocal Method
	clearLocal Method
	isLocal Method
	5.3.7� ORDImage Methods Associated with the date Attribute
	getUpdateTime Method
	setUpdateTime() Method
	5.3.8� ORDImage Methods Associated with the mimeType Attribute
	getMimeType Method
	setMimeType() Method
	5.3.9� ORDImage Methods Associated with the source Attribute
	getContent Method
	getBFILE Method
	deleteContent Method
	setSource() Method
	getSource Method
	getSourceType Method
	getSourceLocation Method
	getSourceName Method
	import() Method
	importFrom() Method
	export() Method
	5.3.10� ORDImage Methods Associated with Image Migration
	migrateFromORDImgB() Method
	migrateFromORDImgF() Method

	6 ORDVideo Reference Information
	6.1� Object Types
	ORDVideo Object Type

	6.2� Constructors
	init() Method
	init(srcType,srcLocation,srcName) Method

	6.3� Methods
	6.3.1� Example Table Definitions
	6.3.2� ORDVideo Methods Associated with the updateTime Attribute
	getUpdateTime Method
	setUpdateTime() Method
	6.3.3� ORDVideo Methods Associated with the description Attribute
	setDescription() Method
	getDescription Method
	6.3.4� ORDVideo Methods Associated with the mimeType Attribute
	setMimeType() Method
	getMimeType Method
	6.3.5� ORDVideo Methods Associated with the source Attribute
	processSourceCommand() Method
	isLocal Method
	setLocal Method
	clearLocal Method
	setSource() Method
	getSource Method
	getSourceType Method
	getSourceLocation Method
	getSourceName Method
	import() Method
	importFrom() Method
	export() Method
	getContentLength() Method
	getContentInLob() Method
	getContent Method
	deleteContent Method
	getBFILE Method
	6.3.6� ORDVideo Methods Associated with File-Like Operations
	openSource() Method
	closeSource() Method
	trimSource() Method
	readFromSource() Method
	writeToSource() Method
	6.3.7� ORDVideo Methods Associated with the comments Attribute
	appendToComments() Method
	writeToComments() Method
	readFromComments() Method
	locateInComments() Method
	trimComments() Method
	eraseFromComments() Method
	deleteComments Method
	loadCommentsFromFile() Method
	copyCommentsOut() Method
	compareComments() Method
	getCommentLength() Method
	6.3.8� ORDVideo Methods Associated with Video Attributes Accessors
	setFormat() Method
	getFormat Method
	setFrameSize() Method
	getFrameSize() Method
	setFrameResolution() Method
	getFrameResolution Method
	setFrameRate() Method
	getFrameRate Method
	setVideoDuration() Method
	getVideoDuration Method
	setNumberOfFrames() Method
	getNumberOfFrames Method
	setCompressionType() Method
	getCompressionType Method
	setNumberOfColors() Method
	getNumberOfColors Method
	setBitRate() Method
	getBitRate Method
	setKnownAttributes() Method
	setProperties() Method
	setProperties() Method (XML)
	checkProperties() Method
	getAttribute() Method
	getAllAttributes() Method
	6.3.9� ORDVideo Methods Associated with Processing Video Data
	processVideoCommand() Method

	6.4� Packages or PL/SQL Plug-ins
	6.4.1� ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
	6.4.2� Extending interMedia to Support a New Video Data Format

	7 ORDSource Reference Information
	7.1� Object Types
	ORDSource Object Type

	7.2� Methods
	7.2.1� Example Table Definitions
	7.2.2� ORDSource Methods Associated with the local Attribute
	setLocal Method
	clearLocal Method
	isLocal Method
	7.2.3� ORDSource Methods Associated with the updateTime Attribute
	getUpdateTime Method
	setUpdateTime() Method
	7.2.4� ORDSource Methods Associated with the srcType, srcLocation, and srcName Attributes
	setSourceInformation() Method
	getSourceInformation Method
	getSourceType Method
	getSourceLocation Method
	getSourceName Method
	getBFile Method
	7.2.5� ORDSource Methods Associated with Import and Export Operations
	import() Method
	import() Method (Deprecated)
	importFrom() Method
	importFrom() Method (Deprecated)
	export() Method
	7.2.6� ORDSource Methods Associated with the localData Attribute
	getContentLength() Method
	getSourceAddress() Method
	getLocalContent Method
	getContentInTempLob() Method
	deleteLocalContent Method
	7.2.7� ORDSource Methods Associated with File Operations
	open() Method
	close() Method
	trim() Method
	7.2.8� ORDSource Methods Associated with Read/Write Operations
	read() Method
	write() Method
	7.2.9� ORDSource Methods Associated with Processing Commands to the External Source
	processCommand() Method

	7.3� Packages or PL/SQL Plug-ins
	7.3.1� ORDPLUGINS.ORDX_FILE_SOURCE Package
	7.3.2� ORDPLUGINS.ORDX_HTTP_SOURCE Package
	7.3.3� ORDPLUGINS.ORDX_<srcType>_SOURCE Package
	7.3.4� Extending interMedia to Support a New Data Source

	8 Tuning Tips for the DBA
	8.1� Setting Database Initialization Parameters
	8.2� Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
	8.2.1� Initializing Internal interMedia Column Objects Containing BLOBs to NULL or EMPTY
	8.2.2� Specifying Tablespace and Storage Characteristics for interMedia Column Objects Containing...
	8.2.3� Segment Attributes and Physical Attributes
	8.2.4� Accommodating Temporary LOBs in the Buffer Cache
	8.2.5� Using interMedia Column Objects Containing BLOBs in Table Partitions
	8.2.6� LOB Buffering for Client Applications

	8.3� Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
	8.4� Loading Multimedia Data Using the interMedia Clipboard
	8.5� Loading Multimedia Data Using interMedia Annotator Utility
	8.6� Loading Results of an interMedia Benchmark
	8.7� Reading Data from an ORDVideo Object Using the interMedia readFromSource() Method in a PL/S...
	8.8� Reading Results of an interMedia Benchmark
	8.9� Getting the Best Performance Results
	8.10� Improving Multimedia LOB Data Retrieval and Update Performance

	A Audio File and Compression Formats
	A.1� Supported Audio File and Compression Formats

	B Image File and Compression Formats
	B.1� Supported Image File and Compression Formats

	C Video File and Compression Formats
	C.1� Supported Video File and Compression Formats

	D Image process() and processCopy() Operators
	D.1� Common Concepts
	D.1.1� Source and Destination Images
	D.1.2� process() and processCopy()
	D.1.3� Operator and Value
	D.1.4� Combining Operators

	D.2� Image Formatting Operators
	D.2.1� FileFormat
	D.2.2� ContentFormat
	D.2.3� CompressionFormat
	D.2.4� CompressionQuality

	D.3� Image Processing Operators
	D.3.1� Cut
	D.3.2� Scale
	D.3.3� XScale
	D.3.4� YScale
	D.3.5� FixedScale
	D.3.6� MaxScale

	D.4� Format-Specific Operators
	D.4.1� ChannelOrder
	D.4.2� Interleaving
	D.4.3� PixelOrder
	D.4.4� ScanlineOrder
	D.4.5� InputChannels

	E Image Raw Pixel Format
	E.1� Raw Pixel Introduction
	E.2� Raw Pixel Image Structure
	E.3� Raw Pixel Header Field Descriptions
	E.4� Raw Pixel Post-Header Gap
	E.5� Raw Pixel Data Section and Pixel Data Format
	E.5.1� Scanline Ordering
	E.5.2� Pixel Ordering
	E.5.3� Band Interleaving
	E.5.4� N-Band Data

	E.6� Raw Pixel Header “C” Structure
	E.7� Raw Pixel Header “C” Constants
	E.8� Raw Pixel PL/SQL Constants
	E.9� Raw Pixel Images Using CCITT Compression
	E.10� Foreign Image Support and the Raw Pixel Format

	F Sample Programs
	F.1� Sample Audio Scripts
	F.2� Sample Program for Modifying Images or Testing the Image Installation
	F.2.1� Demonstration (Demo) Installation Steps
	F.2.2� Running the Demo

	F.3� Sample Video Scripts
	F.4� Java Demo

	G Frequently Asked Questions
	H Exceptions and Error Messages
	H.1� Exceptions
	H.1.1� ORDAudioExceptions Exceptions
	H.1.2� ORDImageExceptions Exceptions
	H.1.3� ORDVideoExceptions Exceptions
	H.1.4� ORDSourceExceptions Exceptions

	H.2� ORDAudio Error Messages
	H.3� ORDImage Error Messages
	H.4� ORDVideo Error Messages

	I Deprecated Image Object Types and Methods
	J Deprecated Audio and Video Methods
	J.1� Deprecated ORDAudio Methods
	J.2� Deprecated ORDVideo Methods

	Index

