
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

  Objecteering/VB Developer User Guide

                Version 5.2.2



Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software.  The software described in this document is
furnished under a license agreement.  The software may be used or copied only in accordance
with the terms of the agreement.  It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.  The purchaser may make one copy of
the software for backup purposes.  No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/001

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group.  Rational
ClearCase is a registered trademark of Rational Software.  CM Synergy is a registered
trademark of Telelogic.  PVCS Version Manager is a registered trademark  of Merant.  Visual
SourceSafe is a registered trademark of Microsoft.  All other company or product names are
trademarks or registered trademarks of their respective owners.



Contents

Chapter 1: Introduction to the Objecteering/Visual Basic module
Overview of the Objecteering/Visual Basic module ......................................1-3
Structure of the Objecteering/Visual Basic user guide .................................1-4
Essential Objecteering/UML concepts ..........................................................1-5
Essential Visual Basic concepts ....................................................................1-7
Correspondence between Objecteering/UML and Visual Basic ...................1-8

Chapter 2: Using the Objecteering/Visual Basic module
Working with the Objecteering/Visual Basic module ....................................2-3
The properties editor for the Objecteering/Visual Basic module ..................2-6

Chapter 3: Objecteering/Visual Basic First Steps
Getting started ...............................................................................................3-3
Generating code ............................................................................................3-5
Visualizing generated code ...........................................................................3-8
Editing generated code................................................................................3-11
Running and compiling generated Visual Basic code .................................3-13

Chapter 4: Objecteering/UML elements and Visual Basic equivalence
Classes ..........................................................................................................4-3
Attributes ......................................................................................................4-11
Associations and aggregations ...................................................................4-17
Collections....................................................................................................4-22
Operations....................................................................................................4-25
Operation parameters ..................................................................................4-32
Enumerations ...............................................................................................4-37
MIDL/Visual Basic/Objecteering equivalence .............................................4-40

Chapter 5: Objecteering/Visual Basic : Generalization, interface and types
Generalization, interfaces and polymorphism ...............................................5-3

Chapter 6: The Objecteering/Visual Basic interface
The Objecteering/Visual Basic interface .......................................................6-3

Chapter 7: Parameterizing the Objecteering/Visual Basic module
Overview of module parameterization ...........................................................7-3
Parameter sets...............................................................................................7-4

Index



Chapter 1: Introduction to the
Objecteering/Visual Basic
module



Chapter 1: Introduction to the Objecteering/Visual Basic module

Objecteering/Visual Basic User Guide 1-3

Overview of the Objecteering/Visual Basic module

Overview
Welcome to the Objecteering/VB Developer user guide!
The Objecteering/Visual Basic module is used to generate Visual Basic code
based on UML models and annotations.
The Objecteering/Visual Basic module is designed for Visual Basic designers and
programmers who want to automatically translate their UML design into Visual
Basic code.  A certain level of knowledge in Visual Basic, UML and
Objecteering/UML is presumed.

Functions
Using the Objecteering/Visual Basic module, it is possible to:

♦= generate Visual Basic class modules from UML classes

♦= generate the content (methods, properties, …) of these modules

♦= generate enumerations, types, and so on



Chapter 1: Introduction to the Objecteering/Visual Basic module

1-4 Objecteering/Visual Basic User Guide

Structure of the Objecteering/Visual Basic user guide

The Objecteering/Visual Basic user guide is structured as follows:

♦= Chapter 1: An introduction to the Objecteering/Visual Basic module

♦= Chapter 2: Working with the Objecteering/Visual Basic module

♦= Chapter 3: Objecteering/Visual Basic First Steps

♦= Chapter 4: A description of Objecteering/UML elements and their equivalents in
Visual Basic

♦= Chapter 5: A chapter on generalization, interfaces and polymorphism

♦= Chapter 6: A chapter describing the Objecteering/Visual Basic interface

♦= Chapter 7: Parameterizing the Objecteering/Visual Basic module



Chapter 1: Introduction to the Objecteering/Visual Basic module

Objecteering/Visual Basic User Guide 1-5

Essential Objecteering/UML concepts

Overview
In this section, the user can refresh his memory regarding the Objecteering/UML
concepts of tagged values, notes, stereotypes and generation templates.

Tagged values
Tagged values are used to annotate elements, in order to add a particular
semantic meaning to the element in question.  For example, the addition of the
{persistent} tagged value to a class makes this class persistent.
The availability of tagged values depends on which Objecteering/UML modules
have been chosen, as well as on the nature of the element edited.
It is possible to add from 0 to n parameters to a tagged value.
Conceptually speaking, tagged values are used to annotate predefined UML
types.  For example, the {persistent} tagged value is a boolean annotation, which
can be added to a class.  It is not found in the code generated for this class, but
will, for example, drive an SQL code generator.

Notes
Notes are particular cases of tagged values, to which a single text type parameter
is associated.  Objecteering/UML uses notes to store things like:

♦= documentation on the annotated element

♦= operation code



Chapter 1: Introduction to the Objecteering/Visual Basic module

1-6 Objecteering/Visual Basic User Guide

Stereotypes
Stereotypes are used to specialize a type of element, so as to limit or specialize its
definition.
For example, an operation can be stereotyped «create».  If this is the case, the
operation will then have the properties, constraints and behavior of a constructor.
Conceptually speaking, stereotypes are used to define new UML predefined
element sub-types.  For example, the «create» stereotype defines a new type of
operation.

Generation templates
The Objecteering/Visual Basic module has been realized using the so-called
"generation template" technique.  This technique is used to describe the generator
in a simple hierarchical way, in order that it be:

♦= Easily understandable

♦= Easily parameterizable

♦= Easily maintained



Chapter 1: Introduction to the Objecteering/Visual Basic module

Objecteering/Visual Basic User Guide 1-7

Essential Visual Basic concepts

Overview
In this section, the user can refresh his memory on certain basic Visual Basic
concepts.

The project in Visual Basic
A Visual Basic project is defined as a set made up of forms, modules and at least
one precompiled resource (*.res) file.  Classes and modules define the
application's objects and their functions.  The project (project file (*.vbp) ) also
includes a list of OCX components, which are to be included for the generation
(link) of exe code.
Unlike a simple model, a class module has a pseudo-constructor (Initialize) and a
pseudo-destructor (Terminate).  The same is true for Visual Basic Forms, which
also have a pseudo-constructor (Form_Load) and a pseudo-destructor
(Form_Unload).  None of these methods take parameters.

Visual Basic components
Visual Basic components are installable libraries, which are used to link functions
(OLE or OLE servers) to a project.  In Visual Basic, almost everything is OLE.
Components can be presented in very different forms: OLB, OCX, ActiveX
(internet OCX), DLL, PKG, and so on.  Each component can be considered as an
object.  A file of components (OCX or other) can contain several objects.
Basic checks (those defined in the tool box, generally presented on the left of the
screen) are also contained in a (one of the) OLE server(s) (VBxxx.dll).



Chapter 1: Introduction to the Objecteering/Visual Basic module

1-8 Objecteering/Visual Basic User Guide

Correspondence between Objecteering/UML and Visual
Basic

Overview
A Visual Basic component more or less corresponds to a package in UML.
Since a component can be broken down into several modules, classes, forms and
other integrated components, the range is managed on a component (a Visual
Basic project).  Unlike Objecteering/UML (UML), a Visual Basic component cannot
be abstract and must always, therefore, be instantiated (here, this concerns an
OLE server).
Figure 1-1 shows "Visual Basic-style" encapsulation by ActiveX type OLE servers.

Figure 1-1 " Visual Basic-style" encapsulation using ActiveX type OLE servers

A Visual Basic component is very similar to a DLL and can be loaded as and when
(late binding) or directly integrated into the client application (direct instantiation of
an ActiveX component).
Visual Basic is a functional language like C (furthermore, it can very easily be
interfaced with C).
In Visual Basic, containers called "Collections" exist, and an iterator is generated
on each collection by a loop:
« For Each <obj> In <collectionInst> .. Next ».



Chapter 2: Using the
Objecteering/Visual Basic
module



Chapter 2: Using the Objecteering/Visual Basic module

Objecteering/Visual Basic User Guide 2-3

Working with the Objecteering/Visual Basic module

Introduction
Before the Objecteering/Visual Basic module can be used, the following steps
must be carried out:
1 -  Create a working UML modeling project.
2 -  Select the module.

Creating a working UML modeling project
For information on how to create a UML modeling project, please refer to the
"Creating or opening a UML modeling project" section in chapter 3 of the
Objecteering/UML Modeler user guide.



Chapter 2: Using the Objecteering/Visual Basic module

2-4 Objecteering/Visual Basic User Guide

Selecting the VBModule module for the new UML modeling project
Launch the Objecteering/UML Modeler editor on your newly-created UML

modeling project.  The  "UML modeling project modules" icon launches the
window used to select the module (as shown in Figure 2-1).

Figure 2-1. Selecting the Visual Basic module



Chapter 2: Using the Objecteering/Visual Basic module

Objecteering/Visual Basic User Guide 2-5

Steps:

1 -  Select the "VBModule" module from the available modules list on the left-hand
side of the screen.

2 -  Click on the "Add" button.  The "VBModule" module then appears in the right-
hand "Modules used" column.

3 -  Click on "OK" to confirm.  If the "Keep selection as default" box is checked, the
"VBModule" module will automatically be available during future
Objecteering/UML sessions.

For further information on this operation, please refer to the "Selecting modules in
the current UML modeling project" section in chapter 3 of the
Objecteering/Introduction user guide.



Chapter 2: Using the Objecteering/Visual Basic module

2-6 Objecteering/Visual Basic User Guide

The properties editor for the Objecteering/Visual Basic
module

The "VB" tab of the properties editor for a package

Figure 2-2. The "VB" tab of the properties editor on a package

Key:
1 -  This indicates the name of the package selected in the explorer.
2 -  This field is used to add the {NoCode} tagged value.
3 -  This field is used to add the {VBName} tagged value.
4 -  The "Generate" button is used to launch VB code generation on the selected

package.



Chapter 2: Using the Objecteering/Visual Basic module

Objecteering/Visual Basic User Guide 2-7

The "VB" tab of the properties editor for a class

Figure 2-3. The "VB" tab of the properties editor on a class

Key:
1 -  This indicates the name of the class selected in the explorer.
2 -  This field is used to add the {NoCode} tagged value.
3 -  This field is used to add the {VBNoSet} tagged value.
4 -  This field is used to add the <<interface>> stereotype.
5 -  This field is used to add the {VBName} tagged value.
6 -  The "Generate" button is used to generate VB code for a class.
7 -  The "Visualize" button is used to visualize the generated code.



Chapter 2: Using the Objecteering/Visual Basic module

2-8 Objecteering/Visual Basic User Guide

The "VB" tab of the properties editor for an operation

Figure 2-4. The "VB" tab of the properties editor on an operation

Key:
1 -  This indicates the name of the operation selected in the explorer.
2 -  The "Visibility" buttons are used to select the visibility of the operation.
3 -  The "Operation type" buttons are used to select the type of the operation.
4 -  This field is used to add the {NoCode} tagged value to the operation.
5 -  This field is used to add the {VBName} tagged value to the operation.
6 -  This field is used to enter or modify the operation's code.



Chapter 2: Using the Objecteering/Visual Basic module

Objecteering/Visual Basic User Guide 2-9

The "VB" tab of the properties editor for an attribute

Figure 2-5. The "VB" tab of the properties editor on an attribute

Key:
1 -  This indicates the name of the attribute selected in the explorer.
2 -  The "Visibility" buttons are used to select the visibility of the attribute.
3 -  This field is used to add the {NoCode} tagged value to the attribute.
4 -  This field is used to add the {VBNoProperties} tagged value to the attribute.
5 -  This field is used to add the {VBFilterProperties} tagged value to the attribute,

by checking the tickbox and adding the value of the filter (get and/or set)
separated by a comma.

6 -  This field is used to add the {VBName} tagged value to the attribute, by
checking the tickbox and entering a name in the text field.

7 -  This field is used to specify the value of the attribute's multiplicity
8 -  This field is used to specify the initial value of the attribute.



Chapter 2: Using the Objecteering/Visual Basic module

2-10 Objecteering/Visual Basic User Guide

The "VB" tab of the properties editor for an association

Figure 2-6. The "VB" tab of the properties editor on an association

Key:
1 -  This indicates the name of the association selected in the explorer.
2 -  The "Visibility" buttons are used to select the visibility of the association.
3 -  This field is used to add the {NoCode} tagged value to the association.
4 -  This field is used to add the {VBNoProperties} tagged value to the association.
5 -  This field is used to add the {VBFilterProperties} tagged value to the

association, by checking the tickbox and adding the value of the filter (get
and/or set) separated by a comma.

6 -  This field is used to add the {VBName} tagged value to the association, by
checking the tickbox and entering a name in the text field.

7 -  The "Min" and "Max" fields are used to specify the value of the association's
multiplicity.



Chapter 3: Objecteering/Visual Basic
First Steps



Chapter 3: Objecteering/Visual Basic First Steps

Objecteering/Visual Basic User Guide 3-3

Getting started

Introduction
In these First Steps, we are going to use the "Ordersys" demonstration UML
modeling project, in order to present the different features of the
Objecteering/Visual Basic module step by step.



Chapter 3: Objecteering/Visual Basic First Steps

3-4 Objecteering/Visual Basic User Guide

Initializing the First Steps UML modeling project
After having created a new UML modeling project named "Vbproject" and selected
the Objecteering/Visual Basic module for this new UML modeling project, the next
step is to import the Visual Basic First Steps UML modeling project (Figure 3-1).

Figure 3-1. Importing the Visual Basic first steps project

Steps:
1 -  Right-click on the UML model root (in this case, "Vbproject"), in order to

display the context menu.
2 -  Run the "Visual Basic/Import of the first steps project' command.
The Objecteering/Visual Basic first steps project is then imported into your newly
created UML modeling project.



Chapter 3: Objecteering/Visual Basic First Steps

Objecteering/Visual Basic User Guide 3-5

Generating code

Creating a generation work product
For the purposes of these first steps, this operation is not necessary, since all the
generation work products are already present in the first steps project you have
just imported.

Note: The creation of a generation work product is an essential step in the code
generation procedure.  For further information on the creation of
generation work products, please refer to the "The Objecteering/Visual
Basic interface" in chapter 6 of this user guide.



Chapter 3: Objecteering/Visual Basic First Steps

3-6 Objecteering/Visual Basic User Guide

Generating code
We are now going to generate the code for the "ordersys" package (Figure 3-2).

Figure 3-2. Generating Visual Basic code on the "ordersys_VB" generation work product



Chapter 3: Objecteering/Visual Basic First Steps

Objecteering/Visual Basic User Guide 3-7

Steps:
1 -  Right-click on the "ordersys_VB" generation work product in the "Items" tab of

the properties editor to display the context menu.
2 -  Run the "Visual Basic/Generate" command.

Visual Basic code is then generated in the generation directory specified when the
generation work product is created.  In this case, the generation work product was
previously created, and the "C:\Projects\vb\ordersys" generation directory defined.
All the code will be generated in this directory.



Chapter 3: Objecteering/Visual Basic First Steps

3-8 Objecteering/Visual Basic User Guide

Visualizing generated code

To visualize the code generated during the previous step, simply carry out the
steps indicated below (Figure 3-3).

Figure 3-3. Visualizing the code generated on the "Article" class



Chapter 3: Objecteering/Visual Basic First Steps

Objecteering/Visual Basic User Guide 3-9

Steps:
1 -  Select the "Article" class in the explorer.
2 -  Right-click on the "Article_VB" generation work product in the "Items" tab of

the properties editor to display the context menu.
3 -  Run the "Visual Basic/Visualize" command.

This command opens a window containing the VB code generated on the "Article"
class (Figure 3-4).

Figure 3-4. The Visual Basic code generated on the "Article" class



Chapter 3: Objecteering/Visual Basic First Steps

3-10 Objecteering/Visual Basic User Guide

If you double-click on the blue text, a dialog box containing this text then opens, in
which you can modify the code (Figure 3-5).

Figure 3-5. Editing generated code



Chapter 3: Objecteering/Visual Basic First Steps

Objecteering/Visual Basic User Guide 3-11

Editing generated code

It is also possible to edit the code generated by following the steps shown in
Figure 3-6.

Figure 3-6. Editing generated code



Chapter 3: Objecteering/Visual Basic First Steps

3-12 Objecteering/Visual Basic User Guide

Steps:
1 -  Select the "Article" class in the explorer.
2 -  Right-click on the "Article_VB" generation work product in the "Items" tab of

the properties editor to open the context menu.
3 -  Run the "Visual Basic/Edit" command.

This command opens Visual Basic (if the access path has been defined at module
configuration level), in order to edit the generated "Article.cls" file.

Note: You can also update previously generated Visual Basic code, by right-
clicking on the generation work product and running the "Visual
Basic/Update from Visual Basic code" command.



Chapter 3: Objecteering/Visual Basic First Steps

Objecteering/Visual Basic User Guide 3-13

Running and compiling generated Visual Basic code

Before running the code, you should first retrieve the different files and directories
which are necessary to the execution of this First Steps project, which are found in
the "C:\Program Files\Objecteering\modules\VBModule\1.0\Samples\ordersys\"
directory.
The seven files, "Db.bas", "dlg_orde.frm", "dlg_ordr.frm", "fish.ico", "ordersys.vbp",
"ordersys.vbw" and "ordrsysm.bas", as well as the entire "database" directory
found in this directory, should be copied into the "C:\Projects\vb\ordersys"
generation directory.
The Visual Basic code must be run in Visual Basic itself.
To open the "ordersys" project, launch Visual Basic 6.0 and run the "Fichier/Ouvrir
un projet" command.  Select "ordersys.vbp" in the generation directory.
This command opens the "ordersys" project directly in Visual Basic.



Chapter 3: Objecteering/Visual Basic First Steps

3-14 Objecteering/Visual Basic User Guide

Before running the program, you should select an option from the "Projet" menu,
as shown in Figure 3-7.

Figure 3-7. Running options

Steps:
1 -  Click on the "Projet" menu in the Visual Basic menu bar.
2 -  Select the "Références" option.



Chapter 3: Objecteering/Visual Basic First Steps

Objecteering/Visual Basic User Guide 3-15

This command opens a new dialog box, used in the selection of several
references (Figure 3-8).

Figure 3-8. Choosing a reference

Steps:
1 -  Select the "Microsoft DAO" reference.
2 -  Click on the "OK" button to confirm.



Chapter 3: Objecteering/Visual Basic First Steps

3-16 Objecteering/Visual Basic User Guide

Now, all that remains to be done is to run the program, by carrying out the steps
illustrated in Figure 3-9.

Figure 3-9. Running

Steps:
1 -  Either press F5 or click on "Exécution/Exécuter".



Chapter 4: Objecteering/UML
elements and Visual Basic
equivalence



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-3

Classes

Introduction
A class represents a pattern for an object's creation and has an extended
description in the model.  A class represents its instances, and can have attributes
and operations, as well as dependency links, associations and generalization
links.

Objecteering/UML class dialog box
The dialog box used to modify information on a class is shown in Figure 4-1:

Figure 4-1. The "Class" dialog box in Objecteering/UML



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-4 Objecteering/Visual Basic User Guide

Figure 4-2 shows the Visual Basic menu used to list those objects which may be
added to a Visual Basic project:

Figure 4-2. The Visual Basic menu used to add objects to a Visual Basic project

A class is generated as a Visual Basic class module ( .cls file ).



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-5

Generation templates
The general form of a generated class module file is as follows:
'VB properties declaration zone, for example
VERSION 1.0 CLASS
BEGIN

MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "Article"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = False
Attribute VB_Ext_KEY = "SavedWithClassBuilder6" ,"Yes"
Attribute VB_Ext_KEY = "Top_Level" ,"Yes"
'END OF MODIFIABLE ZONE

' Class <class name> : <class documentation>, for example:
' Class Article : An article in stock, uniquely identified
by ' an article number.
...
'START OF MODIFIABLE ZONE@OBJID@33654@270271284:2241@T@24
' specific VB code
Option Base 0 ' for example
'END OF MODIFIABLE ZONE@OBJID@33654@270271284:2241@E@27
...
'-------------------------------
' Enumerations
'-------------------------------
'Enumerations declarations
...
'-------------------------------
' Types
'-------------------------------
'Types declarations
...
'-------------------------------
' ATTRIBUTES DECLARATION SECTION
'-------------------------------
'Attributes declarations
...
'---------------------------------
' ASSOCIATIONS DECLARATION SECTION



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-6 Objecteering/Visual Basic User Guide

'---------------------------------
'Associations declarations
...
'-----------------------------
' ATTRIBUTES ACCESSORS SECTION
'-----------------------------
'Attributes accessors (property get/let/set) declarations
...
'-------------------------------
' ASSOCIATIONS ACCESSORS SECTION
'-------------------------------
'Associations accessors (property get/let/set) declarations
...
'-------------------
' OPERATIONS SECTION
'-------------------
'Operations declarations
...
'------------
' CONSTRUCTOR
'------------
'Constructor declaration
...
'-----------
' DESTRUCTOR
'-----------
'Destructor declaration



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-7

Description of Objecteering/UML dialog box and equivalence in
Visual Basic

The following table provides a description of the Objecteering/UML element, as
well as its equivalent in Visual Basic.

Objecteering/UML Description Equivalent in Visual Basic
Name Name of the class The module's "Name" property

Primitive Determines whether
or not a class is
primitive.

No Visual Basic equivalent

Abstract An Abstract class is
defined in a very
general way, and has
no direct instances.

No Visual Basic equivalent

Root This is said of a class
which is not derived
from any other class

No direct Visual Basic equivalent

Highest level Visual Basic Class
Modules

Main A main class is a
class whose unique
instance represents
the application.

No direct Visual Basic equivalent

In a Visual Basic project, the
activation (and consequently the
instantiations which result) is
carried out via a module (Sub
Main) or a Form unique to client
applications.

This can be envisaged when
forms and modules are
implemented.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-8 Objecteering/Visual Basic User Guide

Objecteering/UML Description Equivalent in Visual Basic
Visibility Visibility can be either

public or private.  A
public class is
accessible from any
package which uses
the current package.
A private class can
only be accessed
from the current
package or a
specializing package.

Visibility impacts "functions" and
data within modules and not the
actual modules themselves.  By
default, modules (objects) are
public in the project/component.

Leaf Defines a class which
cannot have sub-
classes (specializing
classes).

No direct Visual Basic
equivalent.

Active Defines a class
whose instances are
active

An Event in Visual Basic is not
an object, but rather a User
CallBack.

It is local to the module in which
it is generated.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-9

Notes and tagged values used to drive the generation of classes
The following tagged values are used when generating Visual Basic code:

The ... tagged value is used to ...
{VBExtern} (on a class or a
package)

tell the generator not to generate visual basic code on
this unit.

{VBName} (on a class or a
package)

replace the name of the unit by the value of the
tagged value when generating VB code. For a
package, this is the corresponding project name.

{VBNoSet} tell the generator NOT to generate a collection for this
class. (see collections chapter).



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-10 Objecteering/Visual Basic User Guide

The following notes are used when generating Visual Basic code:

The ... note is used to ...
VBProperties generate the first piece of VB code of a cls file. This

part typically contains some code such as:
VERSION 1.0 CLASS
BEGIN

MultiUse = -1 'True
Persistable = 0

'NotPersistable
DataBindingBehavior = 0

'vbNone
DataSourceBehavior = 0

'vbNone
MTSTransactionMode = 0

'NotAnMTSObject
END
Attribute VB_Name = "Class1"
Attribute VB_GlobalNameSpace =
False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId =
False
Attribute VB_Exposed = False
Attribute VB_Ext_KEY =
"SavedWithClassBuilder6" ,"Yes"
Attribute VB_Ext_KEY =
"Top_Level" ,"Yes"

This text is not intended to be modified by hand but
through the Visual Basic windows.

VBCode generate some specific Visual Basic code that either
you don’t want to be or you can’t have modeled. You
may modify this code in VB or Objecteering/UML.

Summary generate the class documentation at the top of the cls
file.  It may be modified in Objecteering/UML only.

Description generate documentation for the class if the summary
note cannot be found.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-11

Attributes

Introduction
Attributes are generated in the form of Visual Basic properties, and are
accompanied by their accessors (Get/Let/Set).
For example, for the Variant type ArticleId attribute, the following is obtained:
'-------------------------------
' ATTRIBUTES DECLARATION SECTION
'-------------------------------
' ArticleId : A unique article identifier. Also the article
' number used for identifying articles in stock.
Public mvarArticleId As Variant
...
'-----------------------------
' ATTRIBUTES ACCESSORS SECTION
'-----------------------------
Public Property Let ArticleId (ByVal vData As Variant)
On Error GoTo Article_ArticleId__exception

mvarArticleId = vData
Exit Property

Article_ArticleId__exception:
Resume Article_ArticleId__end

Article_ArticleId__end:
Exit Property

End Property

Public Property Get ArticleId () As Variant
On Error GoTo Article_ArticleId__exception

If IsObject(mvarArticleId) Then
Set ArticleId = mvarArticleId

Else
ArticleId = mvarArticleId

End If
Exit Property

Article_ArticleId__exception:
Resume Article_ArticleId__end

Article_ArticleId__end:
Exit Property

End Property



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-12 Objecteering/Visual Basic User Guide

Objecteering/UML attribute dialog box
The dialog box used to modify information on an attribute is shown in Figure 4-3:

Figure 4-3. The "Attribute" dialog box in Objecteering/UML



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-13

Description Objecteering/UML dialog box and equivalence in
Visual Basic

Objecteering/UML Description Equivalent in Visual Basic
Name Name of the attribute Name of the Visual Basic variable

The variable name is made up of
"mvar"+Name and the name of
the Get/Let accessors will be
Name (see the example above)

Visibility Visibility of the attribute
(none, public, protected or
private).

None: the association is not
generated.

Private : Explicit declaration with
Private+ Private accessors

Public : Explicit declaration with
Public+ Public accessors.

Protected : Explicit declaration
with Private + Friend accessors.

Class Determines the attribute's
type class. A help list
selects "primitive" classes,
as well as classes
available through the
current class.

Attribute type (please refer to the
chapter on types)

Is Class Specifies a class member,
i.e. one shared by all
instances of this class.

No equivalent.

Please refer to notes below.

Dynamic Dependancy Determines whether or not
the attribute is a dynamic
dependency, i.e. whether
its value is calculated
dynamically through an
expression. This also
corresponds to "derived"
attributes.

No equivalent.

Will later be implemented by a
property get function.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-14 Objecteering/Visual Basic User Guide

Objecteering/UML Description Equivalent in Visual Basic
Expression of value For a dynamic

dependency,  this field
contains the expression of
the dynamic calculation in
the target language.
Otherwise, this is the
default value of the
attribute.

No equivalent.

Will subsequently be
implemented in the Initialize
method.

Type Constraint Provides an indication of
the instantiation of the
attribute's elementary
class. For example, in the
case of a string attribute,
TypeConstraint
determines the size of the
string (*, 10, etc.).

For strings only (by default,
almost unlimited if the size is not
specified).

Access Mode Determines the type of
authorized access to the
attribute (none, read, write,
read/write)

No equivalent.

Can subsequently be used to find
out which accessors (GET/LET)
should be implemented on the
attribute.

Target is Class Indicates that the type is a
metaclass.

No Visual Basic equivalent.

Set size If its value is 1, the
attribute is not a set,
otherwise the size of the
set is indicated (* for sets
of unlimited size).

1 The attribute is
not a set.

>1 fixed size Specified size :
Dim A(T) As …

>1 variable
size

Collection.
Please refer to
the chapter on
collections



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-15

Notes and tagged values used to drive the generation of attributes
The following tagged values are used when generating Visual Basic code:

The ... tagged
value

is used to ...

{VBLong} on an
integer or a real
type attribute

tell the generator the attribute is a Long or a Double (see types
correspondances).

{VBTypeExpr} replace the type of the unit by the value of the tagged value when
generating VB code. For example, you could have an attribute with
this tagged value valued at “StdFont” to generate a StdFont attribute.

{VBNoProperties} tell the generator NOT to generate any properties accessors
(get/set/let) on this attribute.

{VBFilterProperties
}

tell the generator that those properties that are listed in the tagged
value parameters and only these ones do not have to be generated.
For example, use {VBFilterProperties = Set} to generate only the
set/let accessor.

{Nocode} tell the generator not to generate code on this attribute.

{VBName} replace the unit name by the value of the tagged value in the
generated code.

The following notes are used when generating Visual Basic code:

The ... note is used to ...
Description generate the attribute documentation at the top of its declaration. It

may be modified in Objecteering/UML only.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-16 Objecteering/Visual Basic User Guide

Notes
A function or a class member declared Friend will be visible throughout the current
component, but not outside it.  This does not exactly correspond to the description
of protected, which means “visible in the class and its sub-classes”.
A fixed length string declared as being public cannot be used in (object) class
modules.
Where no type has been specified in Visual Basic, the VARIANT default type is
used (please refer to the chapter on Objecteering/Visual Basic type equivalence).
A class attribute cannot be declared as being STATIC.  Its range is specific to the
module, unless specified by PUBLIC (a variable in a function can be static).  In the
future, this will result in the generation of a "class" pseudo-member through a
global property of a module (.bas).
We recommend that you use Collection objects (containers) rather than dynamic
tables for sets.  Please refer to the "Collections" section in the current chapter of
this user guide for further information.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-17

Associations and aggregations

Introduction
Associations and aggregations are implemented by Visual Basic properties in the
same way as attributes.  They are accompanied by their accessors (Get/Set).
The fundamental difference between attributes and associations is that an
attribute is typed by a base type, whilst an association is directed towards another
class and is, therefore, "typed" by this class.
For example, for the navigable association from Order towards Customer, whose
role is Purchaser, the following is obtained in Order:
'---------------------------------
' ASSOCIATIONS DECLARATION SECTION
'---------------------------------

' Purchaser : the customer that purchased the order
Public mvarPurchaser As Customer
...
'-------------------------------
' ASSOCIATIONS ACCESSORS SECTION
'-------------------------------
Public Property Set Purchaser(ByVal vData As Customer)
On Error GoTo Order_Purchaser__exception

Set mvarPurchaser = vData
Exit Property

Order_Purchaser__exception:
Resume Order_Purchaser__end

Order_Purchaser__end:
Exit Property

End Property

Public Property Get Purchaser() As Customer
On Error GoTo Order_Purchaser__exception

Set Purchaser = mvarPurchaser
Exit Property

Order_Purchaser__exception:
Resume Order_Purchaser__end

Order_Purchaser__end:
Exit Property

End Property



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-18 Objecteering/Visual Basic User Guide

Objecteering/UML association dialog box
The dialog box used to modify information on an association is shown in Figure 4-
4:

Figure 4-4. The "Binary association" dialog box in Objecteering/UML



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-19

Description of Objecteering/UML dialog box and equivalence in
Visual Basic

Objecteering/UML Description Equivalent in Visual Basic
In the association or
aggregation

Name of the association. No Visual Basic equivalent

The class Name of classes which are
the extremities of the link.

Visual Basic property type

Has the role of The role played by the class
in the link vis-a-vis the other
class.

Visual Basic property name

The name of the variable is made
up of "mvar"+Role and the name
of the accessors.  Get/Set will be
Role (see the example above)

Quantity (min-max) Interval cardinality in
"min*max" form, where "min"
designates the minimum
number of instances of the
other class, and "max"
designates the maximum
number of instances of the
other class.  The "*" symbol
designates an unlimited
number.

0-1 or1-1 Generation of a
Class type
property

0-N or 1-N (N
fixed)

Generation of a
DIM type
property (N)

As Class

0-* or 1-* Generation of a
collection



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-20 Objecteering/Visual Basic User Guide

Objecteering/UML Description Equivalent in Visual Basic
Association kind Determines whether or not

the representatives of the
class concerned are :

Composition : strong
composition

Aggregation : shared
composition.

Association : standard
association

In all three cases, a Visual Basic
property is generated.

Subsequently, it is possible, for
aggregates, to create and
destroy corresponding objects in
Class_Initialize and
Class_Terminate.

Is Changeable The instance at the end of
this association can be
modified.

No Visual Basic equivalent.

Is Navigable The instance at the end of
this link can be accessed
from this association's
opposite class

The Visual Basic property which
corresponds to the association
will only be generated if it is
navigable.

Accessible the following
way 

Visibility of the member
(none, public, protected or
private).

None : the attribute is not
generated.

Private : Explicit declaration with
Private+ Private accessors

Public : Explicit declaration with
Public + Public accessors.

Protected : Explicit declaration
with Private + Friend accessors.

Abstract Determines whether or not
the role is abstract.

No Visual Basic equivalent.

Class Determines whether or not
the role is class.

Please refer to the notes on
attributes

For relationships of 0-* or 1-* type, it is preferable to use a Collection object
(Container with integrated iterator) rather than a dynamic table, in order to
preserve object encapsulation.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-21

Notes and tagged values used to drive the generation of
associations

The following tagged values are used when generating Visual Basic code:

The ... tagged
value

Is used to ...

{VBTypeExpr} replace the type of the unit by the value of the tagged value when
generating VB code. For example, you could have an association with
this tagged value valued at “StdPicture” to generate a StdPicture
association.

{VBNoProperties} tell the generator NOT to generate any properties accessors (get/set)
on this association.

{VBFilterProperties
}

tell the generator that only those properties that are listed in the
tagged value parameters have to be generated. For example, use
{VBFilterProperties = Set} to generate only the set accessor.

{Nocode} tell the generator not to generate code on this association.

{VBName} replace the unit name by the value of the tagged value in the
generated code.

The following notes are used when generating Visual Basic code:

The ... note is used to ...
Description generate the association documentation at the top of its declaration. It

may be modified in Objecteering/UML only.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-22 Objecteering/Visual Basic User Guide

Collections

Introduction
For every XXX class, an XXXs collection is implemented.
This collection is generated in a separate file named XXXs.cls for the XXX class.
For example, for the navigable association from Order towards the OrderRow
class (cardinality 0-*), whose role is Orderrows, an OrderRows class is generated
and the following is obtained in Order :
'---------------------------------
' ASSOCIATIONS DECLARATION SECTION
'---------------------------------
' Orderrows : rows of the order
Private mvarOrderrows As Orderrows
...
'-------------------------------
' ASSOCIATIONS ACCESSORS SECTION
'-------------------------------
Private Property Set Orderrows(ByVal vData As Orderrows)
On Error GoTo Order_Orderrows__exception

Set mvarOrderrows = vData
Exit Property

Order_Orderrows__exception:
Resume Order_Orderrows__end

Order_Orderrows__end:
Exit Property

End Property

Private Property Get Orderrows() As Orderrows
On Error GoTo Order_Orderrows__exception

Set Orderrows = mvarOrderrows
Exit Property

Order_Orderrows__exception:
Resume Order_Orderrows__end

Order_Orderrows__end:
Exit Property

End Property



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-23

Class module code
This class module typically contains the following code for the Orders collection of
the Order class:
'COLLECTION FOR Class Order
Private mCol As Collection
Public Sub Add(vItem As Order, Optional sKey As String)

If Len(sKey) = 0 Then
mCol.Add vItem

Else
mCol.Add vItem, sKey

End If
End Sub

Public Property Get Item(vntIndexKey As Variant) As Order
Set Item = mCol(vntIndexKey)

End Property

Public Property Get Count() As Integer
Count = mCol.Count

End Property

Public Sub Remove(vntIndexKey As Variant)
mCol.Remove vntIndexKey

End Sub

Public Property Get NewEnum() As IUnknown
Set NewEnum = mCol.[_NewEnum]

End Property

Private Sub Class_Initialize()
Set mCol = New Collection

End Sub

Private Sub Class_Terminate()
Set mCol = Nothing

End Sub



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-24 Objecteering/Visual Basic User Guide

Notes
If you do not wish this class module to be generated, you may add the {VBNoSet}
tagged value to the class.  In this case, you must deal yourself with the class
collection code, either by writing your own collection class (named XXXs) or by
using an existing one and by using the {VBTypeExpr = <collection class name>}
on your n-ary association.
The "Add", "Item" and "Remove" functions allow you to add an item to the
collection, get an item from the collection or remove an item from the collection.
The "Count" function returns the number of items in the collection.
The "NewEnum" function helps in enumerating the collection in a “for each” loop.
You MUST reference  the OLE automation lib in your VB project in order to include
"IUnknown".



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-25

Operations

Introduction
Class operations are implemented by functions in Visual Basic class modules.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-26 Objecteering/Visual Basic User Guide

Objecteering/UML operation dialog box
The dialog box used to modify information on an operation is shown in Figure 4-5:

Figure 4-5. The "Operation" dialog box in Objecteering/UML



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-27

Description of Objecteering/UML dialog box and equivalence in
Visual Basic

Objecteering
/UML

Description Equivalent in Visual Basic

Name Name of the operation Name of the operation (please
refer to the notes below)

Visibility Visibility of the member (none,
public, protected or private).

Public Public operation

Protected Friend : Operation
which is public in
the component but
not outside.

Private Private

Abstract Determines abstract operations,
i.e. operations not implemented
at this level.

No equivalent in Visual Basic.

Cannot be
specialized

Determines an operation which
cannot be redefined in a
subclass.

All Visual basic operations are
non-derivable.

Class Defines a "class" operation, i.e.
shared by all its instances.

Should use a global function in a
separate Bas module (as for class
attributes).

Passing Mode The operation's passing mode
(in or inout). Determines whether
the object  is modified (inout) or
not (in) by the operation.

By default, inout. (no in alone in
Visual Basic).



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-28 Objecteering/Visual Basic User Guide

Notes
By default, Visual Basic code contains modular functions.  These functions may
be separated from one another using syntax, which depends on the name of the
"object" dealt with.
For example, Class = File ; Operation = Destroy could give the following in Visual
Basic:

Sub File_Destroy()
‘ proceeding

End Sub

Syntax : <Object> _ <method> ( <List params> )
This (Sub) != function (Function) procedure (like in Pascal) is run as follows:

...
File_Destroy
...



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-29

Code generation
The Visual Basic code for operations is stored in Objecteering/UML in the form of
"Visual Basic" notes named VBCode.
For example, in the "Customer" class, the "Fetch" method code is generated is as
follows:
' Fetch : Fetches a customer, from the database, given a
customer id.
Public Sub Fetch (ByVal Id As Integer)
On Error GoTo Customer_Fetch__exception

'START OF MODIFIABLE ZONE@OBJID@36050@270271284:2509@T@152
'Set the Article Id query parameter and get the customer
mvarStorage.theQueryDef.Parameters!Id = Id
mvarStorage.Execute
If mvarStorage.RecordsExists Then

Customer
CustomerId:=mvarStorage.theRecordSet!CustomerId,
Name:=mvarStorage.theRecordSet!Name,
Address:=mvarStorage.theRecordSet!Address

Else
Clear

End If
'END OF MODIFIABLE ZONE@OBJID@36050@270271284:2509@E@161

Exit Sub
Customer_Fetch__exception:

Resume Customer_Fetch__end
Customer_Fetch__end:

Exit Sub
End Sub

The code contained in the "VBCode" note is generated between "START OF
ZONE..." and "END OF ZONE ..." markers.  It can then be modified directly in
Visual Basic.  The modified code can be reintroduced into the "VBCode" note in
Objecteering/UML via an update command.  (Please refer to chapter 6, "The
Objecteering/Visual Basic interface" of this user guide for further information.)
The automatic generation of certain method parts as debug code has been hard
coded.  Furthermore, whether or not this code is generated depends on certain
module parameters.  The error code itself should be improved, in order to really
handle exceptions, instead of just resuming execution.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-30 Objecteering/Visual Basic User Guide

Stereotypes, notes and tagged values used to drive the generation
of operations

The following stereotypes are used when generating Visual Basic code:

The ...
stereotype

is used to ...

Create represent a class constructor and is implemented by the
Class_Initialize method, whatever its name.
This operation takes no parameters.
Furthermore, attribute and association initialization code will
automatically be generated in the Class_Initialize method.

Destroy represent a class destructor and is implemented by the
Class_Terminate method, whatever its name.
Furthermore, attribute and association destruction code will
be generated in the Class_Terminate method.

VBGet generate a Property Get method instead of a function.

VBSet generate a Property Set method instead of a procedure (Sub).

VBLet generate a Property Let method instead of a procedure (Sub).



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-31

The following tagged values are used when generating Visual Basic code:

The ... tagged
value

Is used to ...

{Nocode} tell the generator not to generate code on this association.

{VBName} replace the unit name by the value of the tagged value in the
generated code.

The following notes are used when generating Visual Basic code:

The note ... is used to ...
Summary generate the operation documentation at the top of its declaration.  It

may be modified in Objecteering/UML only.

Description generate the operation documentation if no summary note can be
found.

VBCode generate the Visual Basic code.  This note contains the real
application code of the operation.  It may be modified either in
Objecteering/UML or in the Visual Basic IDE.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-32 Objecteering/Visual Basic User Guide

Operation parameters

Introduction
UML operation parameters are transformed into their Visual Basic equivalent.
For example, for a private operation, "M", with an integer type in parameter, "PI",
and a char type out parameter, "PO", which returns a boolean, the following is
obtained:
Public Function M(ByVal PI As Integer, PO As Byte) As
Boolean
…
End Function



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-33

Objecteering/UML parameter and return parameter dialog boxes
Figures 4-6 and 4-7 show the Objecteering/UML dialog boxes used to enter or
modify parameters and return parameters :

Figure 4-6. The "Parameter" dialog box in Objecteering/UML



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-34 Objecteering/Visual Basic User Guide

Figure 4-7. The "Return parameter" dialog box in Objecteering/UML



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-35

Description of Objecteering/UML dialog box and equivalence in
Visual Basic

Objecteering/UML Description Equivalent in Visual Basic
Name The name of the

element.
Name of the parameter

Parameter Passing
Mode

Determines whether the
parameter value is
provided by the caller
(in or in/out), or
modified by the
triggered operation
(in/out or out).

In In parameter (ByVal)

Out Out parameter (ByRef
by default)

InOut InOut parameter
(ByRef by default)

Set size If the value is other than
1, the parameter is a
set of indicated size (* if
unlimited, constant or
integer).

1 the parameter is not a
set

>1 Collection

Type Constraint Construction parameter
for the parameter class
(size of character string,
for example).

For strings (by default, almost
unlimited if no size if specified).

Default Value The parameter's default
value (when needed).

Is generated if the parameter is
declared at the end of the
argument list AND the parameter
is tagged VBOptional

Class Defines the class to
which the parameter
belongs.

Parameter type.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-36 Objecteering/Visual Basic User Guide

Tagged values used to drive the generation of parameters
The following tagged values are used when generating Visual Basic code:

The ... tagged
value

is used to ...

{VBTypeExpr} replace the type of the unit by the value of the tagged value when
generating VB code.  For example, you could have a parameter with
this tagged value valued at “StdPicture” to generate a StdPicture
parameter.

{VBLong} on an
integer or real
parameter

generate a Long or Double parameter instead of a Integer or Single
one. See types correspondances.

{VBOptional} generate an optional VB parameter.

{VBName} replace the unit name by the value of the tagged value in the
generated code.

Notes
All types can be contained in a Variant.
In Visual Basic, parameters are passed by default via Reference.
A VARIANT can contain all types of Visual Basic data.  An object can be passed to
an operation through an OBJECT type parameter.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-37

Enumerations

Introduction
Enumerations are generated in the form of VB enumerates.  For example, a UML
Color enumeration containing the values Red, Green and Blue will be mapped in
Visual Basic by:
'------------------------------
' Enumerations
' -----------------------------
' Enumeration Color : basic RGB colors
Public Enum Color

Blue
Green
Red

End Enum



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-38 Objecteering/Visual Basic User Guide

Objecteering/UML enumeration type dialog box
Figure 4-8 shows the Objecteering/UML dialog box used to enter or modify
enumerations:

Figure 4-8. The "Enumeration type" dialog box in Objecteering/UML



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-39

Description of Objecteering/UML dialog box and equivalence in
Visual Basic

Objecteering/
UML

Description Equivalent in Visual Basic

Name The name of the enumeration The name of the enumeration

Visibility Visibility of the member (none,
public, protected or private).

Public Enumeration declared
Public (visible throughout
the project)

Other Enumeration declared
Private (visible only in the
module)

Enumeration
Literal Value

List of literal values of the
enumeration. A constant value
can be associated to the name
using the syntax
<name>=<value>

Name of the Visual Basic
enumeration member.



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

4-40 Objecteering/Visual Basic User Guide

MIDL/Visual Basic/Objecteering equivalence

Visual Basic base types are mapped as shown in the table which follows:

Visual Basic MIDL Objecteering/UML
Integer Short integer

Long Long integer { VBLong }

Single Float real

Double Double real { VBLong }

Byte Unsigned char char

Boolean Boolean or VARIANT_BOOL boolean

String BSTR (OLEstring) string

Variant VARIANT undefined or VB::Variant

Date DATE VB::Date

Currency CURRENCY or CY VB::Currency

Object IDispatch * VB::Object

IUnknown IUnknown VB::IUnknown



Chapter 4: Objecteering/UML elements and Visual Basic equivalence

Objecteering/Visual Basic User Guide 4-41

Note: integer {VBLong} indicates the integer type, annotated with the {VBLong}
tagged value.  VB::Date indicates the predefined Date type as described in
the VB package in Objecteering/UML.

If you wish to use a predefined Visual Basic type which does not exist in
Objecteering/UML, you may use one of the following methods:

♦= Add a data type, an enumerate or a class to the VB package, and then use it.

♦= Create your own VB types package to which you will add your external data
types, enumerates and classes. Your other packages must have a use link to
this package, in order to use its types.

♦= Add a data type, an enumerate or a class to your package, mark this new type
as external ({VBExtern} tagged value) and then use it.

Used data types will be translated as simple types (Let properties) whose name
will be their modeled name or the content of the {VBName} tagged value if it
exists.



Chapter 5: Objecteering/Visual Basic :
Generalization, interface
and types



Chapter 5: Objecteering/Visual Basic : Generalization, interface and types

Objecteering/Visual Basic User Guide 5-3

Generalization, interfaces and polymorphism

Introduction
Pseudo-generalizations implemented as polymorphism at the functional level exist
through Visual Basic "interfaces".  These pseudo-generalizations are a sub-set of
COM (Component Object Model) definitions.

Generalization, interfaces and polymorphism
These interfaces are "abstract classes", which generate a derivable component
prototype (DLL or ActiveX, formerly OLE Server).  The abstract component thus
has the functions of the interface (pseudo-IDL), which allow their redefinition in
"derived" module(s).  No code is generic in interfaces (everything must be re-
implemented in derived classes).  Nevertheless, interface objects can be used, by
creating one or several instances of derived objects and then allocating the
chosen instance to an interface object.  The Collection object is used to manage
interface objects, as terminal objects (iterator).
Interfaces are COM composed elements, used to make a class polymorphous.
They are defined by implementing an "abstract class", which will be inserted into
the list of GUIDs in the registry base as being an "object model".
This model is simply a skeleton to be implemented by the user interface.
Intuitive mapping using UML consists of considering Visual Basic interfaces as
UML classes stereotyped «interface».  In UML, the implementation of an interface
by a module is denoted by a realization link from the class towards the interface.



Chapter 5: Objecteering/Visual Basic : Generalization, interface and types

5-4 Objecteering/Visual Basic User Guide

Example of simple use
Figure 5-1 shows an example of simple use:

Figure 5-1. An example of simple use

The functions of Animal have no code.  However, the Flea and Tyrannosaur
objects have the Animal object's code.  Polymorphism is obtained, by adding
functions to derived objects (see Roar() ).  Instantiation then allows one or other of
the objects to be used, as shown in the following example :
Dim tyr as New Tyranosaur
Dim fle as New Flea ‘ mandatory instantiation
Dim obj as Object ‘ creation of a reference
Set obj = tyr
obj.Bite(fle) : obj.Roar()
Set obj = fle
obj. Bite(tyr) : obj.Move(10)



Chapter 6: The Objecteering/Visual
Basic interface



Chapter 6: The Objecteering/Visual Basic interface

Objecteering/Visual Basic User Guide 6-3

The Objecteering/Visual Basic interface

Creating a generation work product
In Objecteering/UML, a Visual Basic generation work product can be associated

to a package or a class, using the  "Create a Visual Basic generation work
product" icon, which is found in the "Items" of the properties editor (as shown in
Figure 6-1).

Figure 6-1. Associating a Visual Basic generation work product to a package

Steps:
1 -  Select the "ordersys" package in the explorer.



Chapter 6: The Objecteering/Visual Basic interface

6-4 Objecteering/Visual Basic User Guide

2 -  Click on the  "Create a Visual Basic generation work product" icon in the
"Items" tab of the properties editor.  The following dialog box then appears.

Figure 6-2. The "VB Generation" dialog box

The ... field is used to ...
Name specify the name of the generation work product.

Generation specify the location of the files created when generation
is run.

Visual Basic project name specify the name of the Visual Basic project.



Chapter 6: The Objecteering/Visual Basic interface

Objecteering/Visual Basic User Guide 6-5

Note: If you select, for example, C:\projects\VB as the generation path for the
"ordersys" package, the cls files will be generated in
C:\projects\VB\ordersys.

 The work product created appears in the " Items" tab of the properties editor.
 
 Now carry out the following steps:
1 -  Select the newly created generation work product, and open its context menu,

by clicking on the right mouse button.
2 -  Generate the Visual Basic code by running the “Generate” menu item

available in the context menu on the Visual Basic generation work product.

Note: Using the "Generate" command at package level generates VB code for all
classes in the package.

3 -  Use Visual Basic to create your Visual Basic project with the same name and
in the same directory as the package (c:\projects\VB\ordersys\ordersys.vbp in
our example).  In Visual Basic, use the “Project/Add File…” menu item to add
all the generated cls files.  This step only has to be carried out once, but each
time you add a new class in Objecteering/UML, you will have to add it to your
VB project.  Exit Visual Basic.

Note: You can use the {VBName = ...} tagged value on a package to change the
VB project name.  For example, if you put the {VBName = My_VB_Project}
tagged value on the "ordersys" package, the code will be generated in
C:\projects\VB\My_VB_Project, instead of C:\projects\VB\ordersys, and
your VB project should be stored in C:\projects\vb\My_VB_Project.vbp.

4 -  Edit your VB project in Visual Basic  You can modify the code in the “START
OF MODIFIABLE ZONE…” and “END OF MODIFIABLE ZONE …” zones.

5 -  Update the Objecteering/UML contents from the modification you made to your
VB code, by running the “Update from VB Code” menu command, available in
the context menu on the Visual Basic generation work product.

Note: You can visualize code generated for a class, by running the "Visualize"
command, available in the context menu on the Visual Basic generation
work product.



Chapter 7: Parameterizing the
Objecteering/Visual Basic
module



Chapter 7: Parameterizing the Objecteering/Visual Basic module

Objecteering/Visual Basic User Guide 7-3

Overview of module parameterization

Introduction
The Objecteering/Visual Basic module provides the user with the possibility of
customizing the following parameters:

♦= the editor used when editing generated code

♦= VB code generation parameters

The "Edit configuration" window
The window through which the Objecteering/Visual Basic module can be

configured is opened either by clicking on the  "Modify module parameter
configuration" icon or by clicking on the "Tools/Modify configuration..." menu in the
Objecteering/UML menu bar.
In the "Edit configuration" window, the behavior of VB code generation can be
modified, through the following elements:

♦= Generation directory

♦= Generation options

♦= UML profile containing the J rules

♦= Generation template



Chapter 7: Parameterizing the Objecteering/Visual Basic module

7-4 Objecteering/Visual Basic User Guide

Parameter sets

The "External edition" parameter set

Figure 7-1. The "External edition" set of parameters for the Visual Basic module

The ... parameter indicates ...
Generate identifiers whether or not the markers used to retrieve text entered

using an external text editor should be generated.

Visual Basic executable full path the command used to launch an editor to modify the
generated code.



Chapter 7: Parameterizing the Objecteering/Visual Basic module

Objecteering/Visual Basic User Guide 7-5

The "Code generation" parameter set

Figure 7-2. The "Code generation" set of parameters for the Visual Basic module

The ... parameter indicates ...
Code generation root the root in which .cls files are generated.

Types translation package the name of the project used for translation
types and the generation of accessors.

Visual Basic generator profile the UML profile used to generate VB code.

Visual Basic generator template VB code generation template used for
classes.

Generate "Option explicit" statement that the option will be generated in the file
header.



Index



.cls files    4-10

.res files    1-7

.vbp files    1-7
{NoCode} tagged value    2-6, 4-15, 4-

21, 4-31
{persistent} tagged value    1-5
{VBExtern} tagged value    4-9, 4-41
{VBFilterProperties} tagged value    2-

9, 4-15, 4-21
{VBLong} tagged value    4-15, 4-36,

4-41
{VBName} tagged value    2-6, 4-9, 4-

15, 4-21, 4-31, 4-36, 4-41
{VBNoProperties} tagged value    2-9,

4-15, 4-21
{VBNoSet} tagged value    2-7, 4-9, 4-

24
{VBOptional} tagged value    4-36
{VBTypeExpr} tagged value    4-15, 4-

21, 4-36
<<create>> stereotype    1-6, 4-30
<<Destroy>> stereotype    4-30
<<VBGet>> stereotype    4-30
<<VBLet>> stereotype    4-30
<<VBSet>> stereotype    4-30
Accessors    4-11
ActiveX    1-7, 1-8, 5-3
ActiveX type OLE servers    1-8
Associations    4-3
Attributes    4-3
Choosing a reference in Visual Basic

3-15
Class attributes    4-16
Class module code    4-23
Class modules    1-7, 4-4, 4-25
Classes    4-3
Code generation    4-29

Code generation parameters    7-5
Code generation procedure    3-5
Collections    1-8, 4-16
COM    5-3
Component Object Model    5-3
Creating a generation work product

3-5, 6-3
Creating a UML modeling project    2-3
Creating a working UML modeling

project    2-3
Customizing module parameters    7-3
Defining new UML predefined element

sub-types    1-6
Dependencies    4-3
Description note    4-10, 4-15, 4-21, 4-

31
DLL    1-7, 1-8, 5-3
Editing generated code    3-9
Enumerations    1-3
Explorer    3-9, 3-12
External edition parameters    7-4
Friend    4-16
Generalization    5-3
Generalizations    4-3
Generating code    3-6
Generating module content    1-3
Generating Visual Basic class

modules from UML classes    1-3
Generation directory    3-7, 7-3
Generation options    7-3
Generation template    7-3
Generation templates    1-6, 4-5
Generation work products    3-5, 3-9,

3-12
Importing the Visual Basic first steps

project    3-4



Initializing the First Steps UML
modeling project    3-4

Instances    4-3
Interfaces    5-3
Internet OCX    1-7
Late binding    1-8
Note types    4-16
Notes    1-5, 4-9, 4-15, 4-21, 4-24, 4-

28, 4-30, 4-36
Description    4-10, 4-15, 4-21, 4-31
Summary    4-10, 4-31
VBCode    4-10, 4-29, 4-31
VBProperties    4-10

Notes and tagged value for driving
generation of attributes    4-15

Notes and tagged values for driving
generation of associations    4-21

Notes and tagged values used to drive
the generation of classes    4-9

Notes and tagged values used to drive
the generation of operations    4-30

Notes and tagged values used to drive
the generation of parameters    4-36

Object encapsulation    4-20
Objecteering/Introduction    2-5
Objecteering/UML association dialog

box    4-18
Objecteering/UML attribute dialog box

4-12
Objecteering/UML class dialog box

4-3
Objecteering/UML dialog box and

equivalence in Visual Basic    4-7, 4-
13, 4-19, 4-27, 4-35, 4-39

Objecteering/UML enumeration type
dialog box    4-38

Objecteering/UML Modeler    2-3
Objecteering/UML operation dialog

box    4-26

Objecteering/UML parameter dialog
box    4-33

Objecteering/UML return parameter
dialog box    4-33

OCX    1-7
OCX components    1-7
OLB    1-7
OLE    1-7
OLE automation lib    4-24
OLE Server    5-3
OLE servers    1-7, 1-8
Operations    4-3
PKG    1-7
Polymorphism    5-3
Properties editor    3-7, 3-9, 3-12, 6-5

The "VB" tab of the properties editor
for a class    2-7

The "VB" tab of the properties editor
for a package    2-6

The "VB" tab of the properties editor
for an association    2-10

The "VB" tab of the properties editor
for an attribute    2-9

The "VB" tab of the properties editor
for an operation    2-8

Pseudo-constructors    1-7
Pseudo-destructor    1-7
Pseudo-destructors    1-7
Pseudo-generalizations    5-3
Running code    3-13
Running options in Visual Basic    3-14
Selecting the Objecteering/Visual

Basic module    2-3
Selecting the VBModule for a new

UML modeling project    2-4
SQL code generator    1-5
Stereotypes    1-6, 4-30

<<create>> stereotype    1-6, 4-30



<<Destroy>> stereotype    4-30
<<interface>> stereotype    2-7
<<VBGet>> stereotype    4-30
<<VBLet>> stereotype    4-30
<<VBSet>> stereotype    4-30

Summary note    4-10, 4-31
Tagged values    1-5, 4-9, 4-15, 4-21,

4-30
{NoCode} tagged value    2-6, 4-15,

4-21, 4-31
{persistent} tagged value    1-5
{VBExtern} tagged value    4-9, 4-41
{VBFilterProperties} tagged value

2-9, 4-15, 4-21
{VBLong} tagged value    4-15, 4-

36, 4-41
{VBName} tagged value    2-6, 4-9,

4-15, 4-21, 4-31, 4-36, 4-41
{VBNoProperties} tagged value    2-

9, 4-15, 4-21
{VBNoSet} tagged value    2-7, 4-9,

4-24
{VBOptional} tagged value    4-36
{VBTypeExpr} tagged value    4-15,

4-21, 4-36
The Visual Basic menu used to add

objects to a Visual Basic project    4-
4

Translating UML design into Visual
Basic code    1-3

Types    1-3

UML annotations    1-3
UML classes    1-3
UML models    1-3
UML operation parameters    4-32
UML profile containing the J rules    7-

3
UML types    1-5
VB code generation parameters    7-3
VB enumerates    4-37
VBCode note    4-10, 4-31
VBProperties note    4-10
Visual Basic base types    4-40
Visual Basic class modules    1-3, 4-4,

4-25
Visual Basic code    1-3
Visual Basic commands

Edit    3-12
Generate    3-7, 6-5
Update from VB code    6-5
Update from Visual Basic code    3-

12
Visualize    3-9, 6-5

Visual Basic components    1-7, 1-8
Visual Basic Forms    1-7
Visual Basic generation work products

3-5, 6-3
Visual Basic project    1-7
Visual Basic properties    4-11


