
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

Objecteering/UML Test Designer User Guide

 Version 5.2.2

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/003

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents

Chapter 1: Introduction to Objecteering/UML Test Designer
Introduction ..1-3
Structure of the Objecteering/UML Test Designer user guide1-5
Overview of the two test modules..1-6
Developing applications...1-17
Glossary ...1-18

Chapter 2: Working with the Objecteering/UML Test Designer module
Using the Objecteering/UML Test Designer module.....................................2-3

Chapter 3: Objecteering/UML Test Designer First Steps
Overview of the First Steps ...3-3
Initializing the First Steps project ...3-5
Creating a UML Test Designer test suite ..3-10
Defining tests in the test suite..3-17
Maintaining your test model...3-26
Creating a Tests For Java/EJB generation work product3-29
Generating and compiling test code ..3-32
Running tests with JUnit ..3-36
Generation work product commands ..3-39
Examples ...3-42

Chapter 4: Frequently asked questions (FAQ)
How do I test abstract class implementations? ...4-3
How do I test interface implementations? ...4-5
How do I generate tests for functions with primitive parameters?4-8
How do I add a new context to a test suite?..4-12
How do I add a new test sequence to a context?4-15
How do I write a test method in Java code? ...4-19
How do I define a Setup() called before each test method?4-21
How do I test a message with an assert note? ...4-23
How do I get a returned value with an assert note?....................................4-26
How do I insert an assertion into the test? ..4-28
How do I insert target code into the test? ..4-29
How do I generate and compile a new test suite?4-30
How do I generate and compile a new context? ...4-31
How do I test an EJB? ...4-32

Chapter 5: Principles of Objecteering/UML Test Designer
Selecting and parameterizing the Objecteering/UML Test Designer module5-3
Work products ..5-4
Tagged values, notes and stereotypes ...5-5
Consistency checks ...5-6

Chapter 6: Functions of the Objecteering/UML Test Designer module
Overview of Objecteering/UML Test Designer functions6-3
Tagged value types ...6-4
Note types ..6-5
Stereotypes ..6-6

Chapter 7: Customizing the Objecteering/UML Test Designer module
Defining module parameters ...7-3
Sets of parameters...7-6

Chapter 8: UML Test Designer documentation generation
Overview of UML Test Designer documentation generation8-3
Functions of UML Test Designer documentation generation8-7

Index

Chapter 1: Introduction to
Objecteering/UML Test
Designer

Chapter 1: Introduction to Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 1-3

Introduction

Overview
Welcome to the Objecteering/UML Test Designer module!
Objecteering/UML Test Designer consists of two modules:

♦ The Objecteering/UML Test Designer module

♦ The Objecteering/UML Tests for Java/EJB module
The Objecteering/UML Test Designer module is used to generate a test model
from the model of your application and then to define test cases and test suites.
This module is not subject to an Objecteering/UML license.
The Objecteering/Tests for Java/EJB module allows the generation, compilation
and execution of tests. This module requires a license.
The Objecteering/UML Test Designer module is designed to facilitate the definition
of tests directly from your model. A certain level of knowledge in Java code
generation and UML is presumed, and you must be familiar with the
Objecteering/UML environment, as detailed in the following user guides:

♦ Objecteering/Administrating Objecteering Sites

♦ Objecteering/UML Modeler

♦ Objecteering/Java
Chapter 3 of this user guide, "First Steps", provides the user with a step-by-step
demonstration of the workings of the Objecteering/UML Test Designer module.
We also recommend that all users try out the general "First Steps" project,
detailed in the Objecteering/Introduction user guide, in order to get to know the
various general functions of the Objecteering/UML tool.

Chapter 1: Introduction to Objecteering/UML Test Designer

1-4 Objecteering/UML Test Designer User Guide

Functions of the Objecteering/UML Test Designer module
Using the Objecteering/UML Test Designer module, it is possible to:

♦ create a test suite from your test model:

♦ select in your model those classes which are to be tested

♦ select in your model those classes which are to be stubbed

♦ define a test model made up of several test cases and test suites

♦ define tests inside this model, using UML diagrams or Java code

♦ generate the Java code which will be executed, in order to run tests and
checks results

♦ generate documentation of the test model and a test report after the execution
of the test

Complete model-driven generation
Unlike other CASE tools, Objecteering/UML generates an entire UML Test
Designer application, from the model and its textual specifications and tagged
values, right up to the executables. This means that the user need develop
nothing outside Objecteering/UML itself.
With Objecteering/UML, everything is entered directly into the CASE tool.
Generated source zones can be modified, and model sections corresponding to
the generated code presented. In this way, Objecteering/UML ensures
consistency at all times between the model and the code.

Chapter 1: Introduction to Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 1-5

Structure of the Objecteering/UML Test Designer user
guide

The Objecteering/UML Test Designer user guide is structured as follows:

♦ Chapter 1 - Introduction to the Objecteering/UML Test Designer module

♦ Chapter 2 - Working with the Objecteering/UML Test Designer module

♦ Chapter 3 - Objecteering/UML Test Designer First Steps

♦ Chapter 4 - Frequently asked questions (FAQ)

♦ Chapter 5 - Principles of Objecteering/UML Test Designer

♦ Chapter 6 - Functions of the Objecteering/UML Test Designer module

♦ Chapter 7 - Customizing the Objecteering/UML Test Designer module

♦ Chapter 8 - UML Test Designer documentation generation

Chapter 1: Introduction to Objecteering/UML Test Designer

1-6 Objecteering/UML Test Designer User Guide

Overview of the two test modules

The Objecteering/UML range now provides a complete test environment, from
modeling right through to execution, thanks to the integration of the JUnit
framework into the Objecteering/UML Test Designer module.

Chapter 1: Introduction to Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 1-7

Two powerful tools working together
The JUnit testing framework allows you to write and run test cases and test suites
for Java applications. JUnit tests can be organized into a hierarchy of test suites,
which can be run and re-run automatically after changing the code. This is useful
for automatic regression testing, and ensures complete synergy between coding
and testing.
The Objecteering/UML Modeler tool, based on the MDA (Mode Driven
Architecture) concept, generates code from the UML model of your application.
Its Objecteering/Java module generates Java code from your model, and
permanently maintains consistency between this model and the code generated.
To successfully integrate JUnit into Objecteering/UML, the concept of the test
model has been introduced. JUnit provides complete synergy between application
code and testing code, whilst Objecteering/UML provides complete consistency
between the application's UML model and the code generated. The "test model"
allows you to define test architecture in accordance with the model of your
application. From this test model, test code is automatically generated for JUnit
and can be executed. The user is helped through test definition, and does not
have to write even a single line of code!

Figure 1-1. The test procedure

Chapter 1: Introduction to Objecteering/UML Test Designer

1-8 Objecteering/UML Test Designer User Guide

Overview of the easy definition of tests
With Objecteering/UML Test Designer, it is incredibly simple to define and run
tests in a user-friendly way, simply by carrying out the steps below:

Creating a test model
The first step is the creation of a test model from the model of your application,
which is carried out by running the "Create a test suite" command (as shown in
Figure 1-2).

Figure 1-2. Creating a test suite

Chapter 1: Introduction to Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 1-9

Selecting classes to be tested
The next step is selecting the classes you wish to test (as shown in Figure 1-3).

Figure 1-3. Selecting classes to be tested

Chapter 1: Introduction to Objecteering/UML Test Designer

1-10 Objecteering/UML Test Designer User Guide

Selecting classes to be stubbed
The next step is selecting the classes you wish to stub (as shown in Figure 1-4).

Figure 1-4. Selecting classes to be stubbed

Chapter 1: Introduction to Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 1-11

Result
A test model (shown in Figure 1-5) has been created.

Figure 1-5. The newly created test model

This test model contains:

♦ a stub package in which you can define your stubs

♦ a context package which corresponds to a test case. Test methods can be
defined on this package using sequence diagrams. It also contains an
instance of each class to test or stub. These instances will be used in the test
sequence diagrams.

♦ a copy of each class to test

Chapter 1: Introduction to Objecteering/UML Test Designer

1-12 Objecteering/UML Test Designer User Guide

Defining tests
Tests can now be defined in the test model. This model is organized as a testing
hierarchy familiar to JUnit users:

test: the top level test suite
test Suite 1

context1: test case 1
sequence diagram 1: test method 1
sequence diagram 2: test method 2
...

context1: test case 2
sequence diagram 1: test method 1
sequence diagram 2: test method 2
...

test Suite 2
...

Chapter 1: Introduction to Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 1-13

The main particularity is that tests methods are defined in a sequence diagram.
You can add as many test methods as you wish to a context, as many contexts as
you wish to a test suite and as many test suites as you wish to the top level test
suite.
A test method is created with a sequence diagram. "Assert" notes, which allow
the specification of a test, can be added to return messages. The code
corresponding to that test method is automatically generated and inserted into a
JUnit test case class.

Figure 1-6. An example of a test method

Chapter 1: Introduction to Objecteering/UML Test Designer

1-14 Objecteering/UML Test Designer User Guide

Execution with JUnit
To execute tests, you need not write a single line of code! All you have to do is
simply generate and compile the tests in the test model, before launching JUnit
from the test model. The test hierarchy presented in the JUnit window
corresponds to the test hierarchy of your test model.

Figure 1-7. Generate compilable code for tests

Chapter 1: Introduction to Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 1-15

From your test model, you can now launch the JUnit test runner and check your
tests.

Figure 1-8. Running the test with the JUnit test runner

Chapter 1: Introduction to Objecteering/UML Test Designer

1-16 Objecteering/UML Test Designer User Guide

Other features
It is also possible to automatically generate documentation of your tests in HTML
format, describing your test suites and your test cover.
An additional command allows you to check the consistency between your test
model and your application model.
Many user facilities are available:

♦ the creation of a test sequence diagram

♦ the creation of a context

♦ the updating of a test suite

Chapter 1: Introduction to Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 1-17

Developing applications

The development of an application and its test model consists of:

♦ creating a UML test model from your UML model

♦ defining tests in the generated test model either using sequence diagrams or
Java code in "testCase" notes

♦ generating and compiling tests

♦ launching the JUnit test runner

Notes are used to enter text, which will be inserted into the generated code. For
example, the UML Test Designer "testCase" note is used to enter Java code for
an method, which will be executed while running tests.
Tagged values inform the generator of the implementation rules applied. For
example, the {TestedPackage} tagged value on a test suite package indicates the
package tested by the test suite.
For further information, please refer to chapter 5, "Principles of Objecteering/UML
Test Designer", of this user guide.

Chapter 1: Introduction to Objecteering/UML Test Designer

1-18 Objecteering/UML Test Designer User Guide

Glossary

♦ Assert note: this note is used in a test sequence diagram to check the return
value of a method and carry out a test.

♦ Class under test: a class that will be tested. Tests will be carried out on its
methods.

♦ Context package: this package is located in a test suite and contains a set of
instances (of tested or stubbed classes) used to define the test sequence
diagrams.

♦ Organization test suite: the package which represents the test suite.

♦ setUp note: this may be defined on a context package to set the context (set of
instances) before the execution of each test.

♦ Stubbed class: if a class is needed to test a class under test, but is not
available (for example, not implemented), a stubbed class is created to
simulate its behavior.

♦ Test: stereotype of a test sequence diagram.

♦ Test case: a single test represented by a note or a sequence diagram.

♦ Test case note: this note may be defined on a test suite package to write a test
method in Java code.

♦ Test suite: a set of elements used to test a package (package, sequence
diagrams, test case notes).

♦ Tested package: a test suite is created on a "tested package", which contains
the classes which are to be tested.

Chapter 2: Working with the
Objecteering/UML Test
Designer module

Chapter 2: Working with the Objecteering/UML Test Designer module

Objecteering/UML Test Designer User Guide 2-3

Using the Objecteering/UML Test Designer module

Prerequisites
In order to use the Objecteering/UML Test Designer module, the
Objecteering/UML CASE tool (version 5.1 and later) must already have been
installed, and the OBJING_PATH environment variable already positioned.
You also need the JUnit toolkit, available from www.junit.org or in the
OBJING_PATH\Objecteering\modules\2.0 directory.
You must have the correct license in order to be able to use Objecteering/UML
Test Designer.

Note: <$OBJING_PATH> designates the Objecteering/UML installation
directory.

Using the module
Before starting work with Objecteering/UML Test Designer, the following steps
should be carried out:

♦ create a UML modeling project. For further details on this operation, please
refer to the "Creating a UML modeling project" section in chapter 3 of the
Objecteering/UML Modeler user guide.

♦ select the module for the current UML modeling project. For further details on
this operation, please refer to the "Selecting modules in the current UML
modeling project" section in chapter 3 of the Objecteering/Introduction user
guide.

Chapter 3: Objecteering/UML Test
Designer First Steps

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-3

Overview of the First Steps

Introduction
The Objecteering/UML Test Designer module First Steps present a UML Test
Designer demonstration project, designed to help you discover the different
features of the Objecteering/UML Test Designer module, step by step.
We recommend that before starting, every user carry out the general
Objecteering/UML First Steps in the Objecteering/Introduction user guide.
The Objecteering/UML Test Designer First Steps will demonstrate:

♦ how to initialize the First Steps project

♦ how to create a UML Test Designer test suite

♦ how to define tests in the test suite

♦ how to maintain your test model

♦ how to create a Tests For Java generation work product

♦ the generation work product menus available for Tests For Java

♦ how to generate Tests For Java code

♦ how to visualize generated Tests For Java code

♦ how to compile

♦ how to run tests with JUnit
These First Steps, which demonstrate the principal features of the
Objecteering/UML Test Designer and Objecteering/Tests For Java modules, last
about 45 minutes for a new user.

Chapter 3: Objecteering/UML Test Designer First Steps

3-4 Objecteering/UML Test Designer User Guide

Sources
As a basis for your demonstration project, you need a Java application for which
code has already been generated.
You can import a demonstration project from the properties editor, by simply
selecting your project's root package and choosing a project in the "Tests for
Java/EJB" tab (as shown in Figure 3-1 below):

Figure 3-1. Importing a demonstration project from the properties editor

The "Tests for Java" first steps project contains a small Java application which
can be generated and compiled with the Objecteering/Java module, and its test
model which can be generated and compiled too. Have a look at the test model
structure and its test suites and test cases during these first steps.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-5

Initializing the First Steps project

Preparation steps
Before starting work with the Objecteering/UML Test Designer module in a UML
modeling project, you must first prepare the working environment, by creating a
UML modeling project and selecting the UML Test Designer and Tests For
Java/EJB modules.

Importing a model into the First Steps project
A UML modeling project, which will serve as the model for the First Steps, has to
be imported into your UML modeling project. This is done by activating the
"Tools/Import..." menu. The UML modeling project that you are going to import
should contain at least one package containing a few classes. You can also
import a demonstration project from the "Tests for Java/EJB" tab of the properties
editor, as shown in the previous section of this user guide.

Chapter 3: Objecteering/UML Test Designer First Steps

3-6 Objecteering/UML Test Designer User Guide

Selecting the UML Test Designer and Tests For Java/EJB modules
into your project

Launch the Objecteering/UML Modeler tool for your UML modeling project. Next,

open the window used to select modules, by clicking on the "UML modeling
project modules" icon, and carry out the steps illustrated in Figure 3-2.

Figure 3-2. Selecting the Objecteering/UML Test Designer module

Steps:
1 - Select the Objecteering/UML Test Designer module from the list of available

modules on the left-hand side of the window.
2 - Click on the "Add" button. The UML Test Designer module then appears in

the right-hand "Modules used" list.
3 - Click on "OK" to confirm. If the "Keep selection as default" tickbox is checked,

the UML Test Designer module will automatically be available during future
Objecteering/UML sessions.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-7

Configuring the UML Test Designer and Tests For Java/EJB
modules

We are now going to open the module configuration window and enter the
complete path for the editor which will be used to visualize files containing
package and class metrics.

The module configuration window can be opened either by clicking on the
"Modify module parameter configuration" icon, or through the "Tools/Modify
configuration" menu.

Chapter 3: Objecteering/UML Test Designer First Steps

3-8 Objecteering/UML Test Designer User Guide

Configuring the Objecteering/UML Test Designer module

Figure 3-3. Editing the configuration of the Objecteering/UML Test Designer module

Steps:
1 - Click on the "External editor" section of the "UML Test Designer" parameter

category.
2 - Define the fields for your project:

♦ "Primitive tests": used to specify the target language used to execute
tests. For the moment, you need the Objecteering/Java module to
execute your tests in Java.

♦ "Parameter values for tests": test cases can be generated for the
methods whose parameter are all of primitive type. In this case, you
have to specify for each type a set of values to be used in the test.

♦ "Parameter default values for tests": for each primitive type, specify a
default value to be used in the generated tests.

3 - Confirm by clicking on the "OK" button.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-9

Configuring the Objecteering/Tests For Java/EJB module

Figure 3-4. Editing the configuration of the Objecteering/Tests For Java/EJB module

Steps:
1 - Specify the "JUnit" options for your project:

♦ Select "Generate and compile application before launching tests", if
you have made a correction to your application model.

♦ Select "Generate and compile tests before launching tests", if your test
model has changed.

2 - Specify the "Test report" options for your project:

♦ A test report is automatically generated after each execution of the
tests. In this field, you can select one of the two available XLS files for
your test report.

3 - Confirm by clicking on the "OK" button.

Chapter 3: Objecteering/UML Test Designer First Steps

3-10 Objecteering/UML Test Designer User Guide

Creating a UML Test Designer test suite

Introduction
To test your model, you will create one or several test suites. A "test" package will
be created under the root of your UML modeling project. Each test suite
corresponds to a package that is created in this " test" package.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-11

Running the "UML Test Designer/Create a Test Suite" command
From the package you wish to test, run the "Create a Test Suite" command, as
shown in Figure 3-5.

Figure 3-5. Creating a Test Suite

Steps:
1 - Right-click on the package for which you wish to create a test suite. The

context menu then appears.
2 - Run the "Create a Test Suite" command.

Note: The purpose of this command is to define a test suite associated to a
package. A test suite can be created on each package.

Chapter 3: Objecteering/UML Test Designer First Steps

3-12 Objecteering/UML Test Designer User Guide

Naming your test suite

Figure 3-6. Naming your test suite

Enter a name for your test suite and click on the "Next ->" button. The window
shown in Figure 3-7 then appears.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-13

Selecting classes to be tested
Testable classes are those classes contained in your tested package.

Figure 3-7. Selecting classes to be tested

Steps:
1 - Select a class.
2 - Click on the "Add" button.
3 - When all the classes you wish to test have been selected, click on " Next".

Chapter 3: Objecteering/UML Test Designer First Steps

3-14 Objecteering/UML Test Designer User Guide

Selecting classes to be stubbed
Stubbable classes are:

♦ those classes of your tested package, without the "under test classes"

♦ those classes accessible from your tested package

Figure 3-8. Selecting classes to be stubbed

Steps:
1 - Select a class.
2 - Click on the "Add" button.
3 - When all the classes you wish to stub have been selected, click on "OK" to

create the test suite.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-15

Result
The result of these operations is a structure like the one below (Figure 3-9).

Figure 3-9. The structure of the test model

Description of the newly created test suite
A test suite package has been created in the "test" package.
The "test" package:

♦ is created under the UML model root

♦ is stereotyped "OrganizationTestSuite"

♦ contains all the project's test suite packages

Chapter 3: Objecteering/UML Test Designer First Steps

3-16 Objecteering/UML Test Designer User Guide

The "test suite" package:

♦ is created in the "test" package

♦ is stereotyped "OrganizationTestSuite"

and contains:

♦ a copy of all the "under test classes"

♦ a "context" package (see the description below)

♦ a "PackageStub" package, which contains a skeleton for each class to be
stubbed

♦ a description note

♦ a summary note

♦ a "testCase" note

The "context" package:

♦ is created in the "test suite" package

♦ is stereotyped "TestContext"

and contains:

♦ an instance of each under test class

♦ an instance of each stubbed class

♦ a sequence diagram stereotyped "Test"

♦ a summary note

♦ a description note

♦ a "setUp" note

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-17

Defining tests in the test suite

Introduction
Once your test suite has been created, you have to define tests in the test suite
package. To get an overview of the test definition possibilities, we recommend
that you have a look at the demonstration project, which can be imported from
your root package.

Defining stubbed classes
Each stubbed class in your test suite has to be checked and completed, in order
to be compilable. Instances of these stubbed classes can also be used in the
context package.

Chapter 3: Objecteering/UML Test Designer First Steps

3-18 Objecteering/UML Test Designer User Guide

Defining test methods with sequence diagrams on the context
package

The context package contains an instance of each class under test of the test
suite.
These instances may be used in a sequence diagram to define a test method.
For each element of the test sequence diagram, you can use the "UML Test
Designer" tab of the properties editor. Simply select the item in the diagram and
specify its content in the tab.

Example: Select a return message on your test sequence (1) and specify the
content of the assert note in the properties editor (2). Only one assert note
per message is allowed.

Figure 3-10. Defining test methods in sequence diagrams

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-19

Control structures: loop
Graphically, a sequence diagram loop is presented as a self invocation of the
method for(a;b;c) on the Main Tester.
The values for a, b and c are defined in the target list of the method (Figure 3-11).

Figure 3-11. The loop control structure

Chapter 3: Objecteering/UML Test Designer First Steps

3-20 Objecteering/UML Test Designer User Guide

Control structures: if () then {} else
This structure is represented with the self invocation of the "choice" method on the
Main Tester. A guard is used to specify the condition. An instance creation is not
allowed in a choice construction.
The following example (Figure 3-12) corresponds to:
if (x>2) then CallAction()
else if (x<2) then CallAction2()
else CallAction3

Figure 3-12. The if () then {} else control structure

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-21

Creating an instance
The instances of the context are automatically declared in the generated code.
For example, "ClassA myInstance".
There are two different ways of creating the instance:

♦ in the "setUp" note of the context (Figure 3-13). For example, "myInstance =
new ClassA (parameter1, parameter2).

Figure 3-13. The context's "setUp" note is used to create an instance

Steps:
1 - Right-click on the context's "setUp" note in the "Items" tab of the properties

editor.
2 - Run the "Modify" command from the context menu which then appears.
3 - Enter the contents shown above.

Chapter 3: Objecteering/UML Test Designer First Steps

3-22 Objecteering/UML Test Designer User Guide

♦ in the sequence diagram, with a creation message sent to the "myInstance"
instance

Figure 3-14. Creating instances in a sequence diagram

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-23

Running the test in the sequence diagram
The test is realized with an "assert" note on a return message. Syntax is as
follows:

? == myValue

"myValue" can be an instance of the diagram or a primitive-type value. In case
the type of "myValue" is different from the type of the returned value, a CAST is
generated.
It is also possible to get the return value of a message with this "assert" note,
using the following syntax:

myValue = ?

If "myValue" is an instance of the context, it will be updated. If not, a local variable
will be created.

Chapter 3: Objecteering/UML Test Designer First Steps

3-24 Objecteering/UML Test Designer User Guide

Figure 3-15. A simple test method

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-25

Defining Java test methods with "testCase" notes on the test suite
package

For Java developers, it is also possible to write Java code in a "testCase" note of
the test suite package. In this case, the developer need only write the body of his
test method.
A test is made with the following possibilities:

♦ assert (boolean expression)

♦ assertEquals (object1, object2)
For further information, please refer to the "How to write a test method in Java
code" section in chapter 4 of this user guide.

Creating new contexts
A test suite can have several different contexts. To create a new context, run the
"Create a context" command on a test suite.

Creating new sequence diagrams
A context may have several sequence diagrams (in other words, several test
methods). To add a test sequence, run the "Create a test sequence" command
on the context package.

Creating new test case notes
A test suite package can have several test case notes (in other words, several test
methods). As many "testCase" description notes as desired can be added to a
test suite.

Chapter 3: Objecteering/UML Test Designer First Steps

3-26 Objecteering/UML Test Designer User Guide

Maintaining your test model

The generation of a test model and of code from the model of your application
have not modified your application model.
However, if you have modified your application model, your test model has to be
updated. To do this, run the "UML Test Designer/Update a Test Suite" command
from your test suites (as shown in Figure 3-16).

Figure 3-16. Updating a test suite belonging to your test model

Steps:
1 - Right-click on the test suite you wish to update.
2 - Run the "UML Test Designer/Update a test suite" command.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-27

If you wish to check the global consistency between your application and your test
model, use the "UML Test Designer/Check" command (as shown in Figure 3-17).

Figure 3-17. Checking the test model

Steps:
1 - In the explorer, right-click on the package for which you created a test suite.
2 - Run the "UML Test Designer/Check" command.

Chapter 3: Objecteering/UML Test Designer First Steps

3-28 Objecteering/UML Test Designer User Guide

These two commands can also be launched from the properties editor (as shown
in Figure 3-18 below).

Figure 3-18. Running commands from the properties editor

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-29

Creating a Tests For Java/EJB generation work product

Overview
The UML Test Designer module is used to create your test model, whilst the Tests
For Java/EJB module is used to generate the Java code of the tests.
In Objecteering/UML, the Tests For Java/EJB generation work product provides
the commands for generating code, compiling, launching JUnit and generating
documentation. It can also be used to manage the files that have been produced.
Thus, if you destroy the generation work product, you will also destroy the files
produced.

Chapter 3: Objecteering/UML Test Designer First Steps

3-30 Objecteering/UML Test Designer User Guide

Creating a Tests For Java/EJB generation work product
The first step is the creation of a Tests For Java/EJB generation work product on
the "test" package selected in the Objecteering/UML explorer.

Figure 3-19. Creating the Tests For Java/EJB generation work product on the "test" package

Steps:
1 - Select the "test" package in the Objecteering/UML explorer.

2 - Click on the "Tests For Java/EJB work product" icon in the "Items" tab of
the properties editor.

3 - Specify the generation and compilation path for generated code.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-31

Continue by creating a Java generation work product for each "PackageStub".

Figure 3-20. Creating the Java generation work product on the "PackageStub"

Steps:
1 - Select the "PackageStub" in the Objecteering/UML explorer.

2 - Click on the "Java generation work product" icon in the "Items" tab of the
properties editor.

3 - Select the "Tests For Java" module and then click on "Apply".
4 - Specify the generation and compilation path for generated code.
5 - Click on "OK" to confirm.

Chapter 3: Objecteering/UML Test Designer First Steps

3-32 Objecteering/UML Test Designer User Guide

Generating and compiling test code

Generating and compiling code
Once the generation work products have been created, you are then able to
generate and compile your tests' Java code.
First carry out the steps shown in Figure 3-21.

Figure 3-21. The "Propagate" command

Steps:
1 - Select the "test" package in the explorer.
2 - Run the "Propagate" command on the package's JUnit generation work

product in the properties editor.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-33

Continue by following the steps shown in Figure 3-22.

Figure 3-22. Generating and compiling

Steps:
1 - Run the "Tests For Java/EJB//Generate and compile the tests" command from

the JUnit generation work product.

Note: If compilation fails, use the "Analyze the compilation" command.

Chapter 3: Objecteering/UML Test Designer First Steps

3-34 Objecteering/UML Test Designer User Guide

It is also possible to generate and compile tests from a "testSuite" or a "context"
package.
These commands are accessed in the "Tests for Java/EBJ" tab in the properties
editor (Figure 3-23).

Figure 3-23. Commands available in the "Tests for Java/EJB" tab of the properties editor

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-35

Generated Tests For Java/EJB code
To run this command, you need to have already generated the Java code of your
application.
When the "Generate" command is run on the selected work product, a Java type
file is generated for the package referenced by the Tests For Java work product.
The file generated on a context package corresponds to a JUnit TestCase. The
generated class contains test methods named "testxxx()", which are executed
when the test runner is launched.
The file generated on a test suite package corresponds to a JUnit TestSuite. The
generated class:

♦ contains test methods named "testxxx()" defined in the test case notes of the
test suite package

♦ includes all the TestCases generated on the "context" sub-packages of the test
suite.

Chapter 3: Objecteering/UML Test Designer First Steps

3-36 Objecteering/UML Test Designer User Guide

Running tests with JUnit

If your tests have been successfully compiled, you can now launch the JUnit Test
Runner from the "test" package, or from a "testSuite" package or "context"
package (as shown in Figure 3-24).

Figure 3-24. Launching the JUnit Test Runner

Steps:
1 - Select the generation work product in the "Items" tab of the properties editor.
2 - Run the "Tests For Java/Launch tests" command.

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-37

Commands can also be accessed from the properties editor (Figure 3-25).

Figure 3-25. Accessing commands through the properties editor

Chapter 3: Objecteering/UML Test Designer First Steps

3-38 Objecteering/UML Test Designer User Guide

All the test suites will then be executed (Figure 3-26).

Figure 3-26. JUnit Test Runner

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-39

Generation work product commands

All the commands for generating, editing, compiling and executing Tests For
Java/EJB are grouped together in the Tests For Java/EJB context menu (as
shown in Figure 3-27).

Figure 3-27. The Tests For Java/EJB generation work product context menu

Chapter 3: Objecteering/UML Test Designer First Steps

3-40 Objecteering/UML Test Designer User Guide

These commands are also accessible from the properties editor (Figure 3-28).

Figure 3-28. Commands accessible from the properties editor

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-41

Services available

The ... menu command called from... is used to...
Generate tests a "context" package generate the Java code of a

test case.

Generate tests a "test suite" package generate the Java code of a
test suite.

Generate tests the "test" package generate the Java code of
the whole test suite.

Visualize tests visualize the generated Java
code.

Edit tests edit and modify the
generated Java code.

Generate tests makefile generate the makefile for the
java files.

Visualize tests makefile

Compile tests

Analyze the compilation

Launch tests a "context" package launch JUnit TestRunner to
execute all the test methods
of the context and display
the results.

Launch tests a "test suite" package launch JUnit TestRunner to
execute all the test methods
of the test suite and display
the results.

Launch tests the "test" package launch JUnit TestRunner to
execute all the test methods
of the test suites and display
the results.

Generate and compile tests

Chapter 3: Objecteering/UML Test Designer First Steps

3-42 Objecteering/UML Test Designer User Guide

Examples

Visualizing generated Tests For Java/EJB code
Generated Tests For Java/EJB code can also be visualized. The "Visualize"
command can only be launched on a work product to which a ".java" file is
associated, in other words, on a work product of a package for which code has
been generated.
To visualize generated Tests For Java/EJB code, simply click on the generation
work product in question using the right mouse button, and run the "Tests For
Java/EJB/Visualize" command from the context menu which then appears. This
command opens a window contained the generated code. It is not possible to
modify the code directly in this window.

Figure 3-29. Visualizing generated code

Chapter 3: Objecteering/UML Test Designer First Steps

Objecteering/UML Test Designer User Guide 3-43

Editing generated code
The Tests For Java/EJB code generated for the element in question can be edited
using the editor chosen, as shown in Figure 3-30. Zones represented between
markers can be modified, and modifications are directly incorporated into the
model when the editor is closed.

Figure 3-30. Editing the code generated on the "test" package

Chapter 4: Frequently asked questions
(FAQ)

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-3

How do I test abstract class implementations?

Introduction
When different classes implement the same abstract class, it may be possible to
define a generic scenario which will be played out with all those classes'
instances.

Note: In order to help test abstract classes, we strongly recommend that you
have a look at the "First Steps" chapter of this user guide.

User interactions in the test model
The first step is to create a test suite with the abstract class.
The abstract class has to be selected during the test suite creation. An abstract
class implementation is created in the "Test Suite". Instances of this class may be
used in the "Sequence diagram" of the test.

Figure 4-1. Abstract class implementation

Chapter 4: Frequently asked questions (FAQ)

4-4 Objecteering/UML Test Designer User Guide

Next, we have to define the test.
Create one or several sequence diagrams with an instance of the abstract class
implementation.
In the context package, create an instance of a concrete child class of the abstract
class. The test will be played out with this instance.
If you have several children classes, you can create an instance for each class.
This means you will have one test for each class.

Figure 4-2. Creating sequence diagrams

Finally, we are now going to initialize the context.
The generated test sequence is a template defined for a generic instance. To
execute it with different concrete instances, proceed as follows:

♦ add instances of the classes which inherit from the tested abstract class

♦ initialize these instances in the "setUp" note of the context.
For example:
aDepositAccnt = new DepositAccnt(1111,1000,false);
aBankBook = new BankBook(1111,1000,3);
anotherBankBook = new BankBook(2233,1001,3);

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-5

How do I test interface implementations?

Introduction
When different classes realize the same interface, it may be possible to define a
test scenario to be applied to each class.

Note: In order to help test interfaces we highly recommend that you have a look
at the "First Steps" chapter provided in this user guide.

User interactions in the test model
The first step is to create a test suite with the interface.
Firstly, you have to select an interface during the test suite creation.
An implementation class of the interface is created in the “Test Suite". This class
will be used in the “Sequence Diagram” of the test.

Figure 4-3. Implementation class of the interface

Chapter 4: Frequently asked questions (FAQ)

4-6 Objecteering/UML Test Designer User Guide

Next, we have to define the test.
Create a diagram sequence and use the instance of the implementation class of
the interface to carry out your test.
In the context package, create instances of a concrete implementation class of the
interface. The test scenario will be played out with this instance.
Those instances have to be instantiated in the "setUp" note of the context.
If you have several implementation classes, you can create an instance for each
class. This means you will have one test for each class.

Figure 4-4. Creating sequence diagrams

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-7

Finally, we are now going to initialize the context.
The generated test sequence is a template defined for a generic instance. To
execute it with different concrete instances, proceed as follows:

♦ add instances of the classes which realizes the tested interface

♦ initialize those instances in the setup note of the context
For example:
aBankATM = new BankATM();
aBillCardMachine = new BillCardMachine();
anotherBillCardMachine =new BillCardMachine();

Chapter 4: Frequently asked questions (FAQ)

4-8 Objecteering/UML Test Designer User Guide

How do I generate tests for functions with primitive
parameters?

Introduction
A test scenario can be automatically generated for the functions of a class whose
parameters are all of primitive type.

Note: In order to help generate tests, we strongly recommend you have a look at
the "First Steps" chapter provided in this user guide.

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-9

User interactions in the test model
Start by configuring the UML Test Designer module. The following fields have to
be defined:

♦ "Parameter values for tests": Specify the values used for each type in the test
scenario (Figure 8-5).

Figure 4-5. Configuring parameter values for tests

Chapter 4: Frequently asked questions (FAQ)

4-10 Objecteering/UML Test Designer User Guide

♦ "Parameter default values for tests": Specify the default values used for each
type in the test scenario.

Figure 4-6. Configuring parameter default values for tests

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-11

Next, launch the "Generate primitive tests" command from the UML Test Designer
menu on the class under test. If the class owns one or several operations with
only primitive parameters, a test scenario is created with different calls to these
operations.

Continue by checking the instance creation. An instance of the tested class is
used in the test sequence diagram. You have to specify the instance creation in
the sequence diagram or in the "setUp" note of the context.

Finally, generate the code. The testable methods are called with different sets of
parameters and the corresponding code can be generated.

Chapter 4: Frequently asked questions (FAQ)

4-12 Objecteering/UML Test Designer User Guide

How do I add a new context to a test suite?

Introduction
Several different contexts can be defined in a test suite. This makes it possible to
separate your test methods, and use different instances.

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-13

The "Create a context" command
To create a context, carry out the steps illustrated in Figure 4-7.

Figure 4-7. The "Create a context" command

Steps:
1 - Right-click on a test suite in the Objecteering/UML explorer.
2 - Run the "UML Test Designer/Create a context" command.

Chapter 4: Frequently asked questions (FAQ)

4-14 Objecteering/UML Test Designer User Guide

You can also select a test suite and launch the command from the property box
button (as shown in Figure 4-8).

Figure 4-8. Launching the command from the properties editor.

A new context package is then created, inside which you can define tests.

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-15

How do I add a new test sequence to a context?

Introduction
Several test sequences can be defined within a context. Each sequence will be
translated into a JUnit test method.

Chapter 4: Frequently asked questions (FAQ)

4-16 Objecteering/UML Test Designer User Guide

The "Create a test sequence" command
To create a test sequence, carry out the steps illustrated in Figure 4-9.

Figure 4-9. The "Create a test sequence" command

Steps:
1 - Right-click on a context package in the Objecteering/UML explorer.
2 - Run the "UML Test Designer/Create a test sequence" command.

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-17

Continue by naming the test sequence diagram (Figure 4-10).

Figure 4-10. Naming the test sequence

Chapter 4: Frequently asked questions (FAQ)

4-18 Objecteering/UML Test Designer User Guide

A new test sequence is automatically created, with a default structure in which you
can define your test (as shown in Figure 4-11).

Figure 4-11. The default structure created for the new test sequence

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-19

How do I write a test method in Java code?

Introduction
It can be useful to use Java code instead of a sequence diagram to define a test
method.

User operations in the test model
To write a test method in Java code, carry out the following steps:
1 - Create a "testCase" note on a test suite. Indeed, the Java code has to be

written in a "testCase" note on a test suite. To define several methods in a
test suite, simply add notes stereotyped <<testCase>>.

2 - Write the method body. The code written in this note is inserted into a test
method during code generation. This code must contain a JUnit assertion.
This insertion is carried out either using "assert (boolean)" or with
"assertEquals(Object1, Object2)".

Chapter 4: Frequently asked questions (FAQ)

4-20 Objecteering/UML Test Designer User Guide

Example
The contents of the "testCase" note are as follows:

//to test the updateRemuneration method of class BankAccnt
int theAmount;
BankAccnt myBankAccnt = new BankAccnt(77746 , 15000);
theAmount = myBankAccnt.updateRemuneration(120401);
assertEquals(15001 , theAmount);

The generated test method is as follows:

public void testBankingSystemTestSuite7_testCase1()
{
//BeginIdTxt..............................T/5HG3/CLM4LL1:SD1
//to test the updateRemuneration method of class BankAccnt
int theAmount;
BankAccnt myBankAccnt = new BankAccnt(77746 , 15000);
theAmount = myBankAccnt.updateRemuneration(120401);
assertEquals(15001 , theAmount);
//EndIdTxt................................E/5HG3/CLM4LL1:SD1
}

The corresponding code will be generated from the test suite JUnit generation
work product.

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-21

How do I define a Setup() called before each test
method?

Introduction
A context package can own many test methods. Each of these methods uses the
same instances of the context.
JUnit provides the user with the possibility of defining a "setUp()" method which is
called before each of the context's test methods.
This method's body can be written in the context's "setUp" note.

User operations in the test model
To define a "Setup()"called before each test method, carry out the following
operations:
1 - Edit the "setUp" note of the selected context.
2 - Write the method body. The code may be used to initialize instances of the

context. It is not necessary to declare the instance, as this is automatically
done in the generated code.

Chapter 4: Frequently asked questions (FAQ)

4-22 Objecteering/UML Test Designer User Guide

Example
The contents of the "setUp()" note are as follows:

//called before each test method
Card2 =new Card(12457,4444);

The generated "setUp()" method is as follows:
protected void setUp()
{
//BeginIdTxt...............................T/SCG2/4EHPGN1:3L
4
//called before each test method
Card2 =new Card(12457,4444);
//EndIdTxt.................................E/SCG2/4EHPGN1:3L
4
}

The corresponding code will be generated from the context.

The "tearDown" method
It is also possible to define a "tearDown" method with a "tearDown" note defined
on a context. The corresponding method will be called after each test method.

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-23

How do I test a message with an assert note?

Introduction
Inside a test sequence diagram, tests are made on return messages with an
"assert" note.

User operations
To test a message with an "assert" note, carry out the following steps:
1 - Add a note with the <<assert>> stereotype on a return message.
2 - Complete this note using the syntax described in the paragraph below.

Syntax
To compare the returned object with another object:
? == aValue

or
?==aValue

To test a boolean expression:
? == false

or
? == true

To compare reals:
? == aValue , delta

Chapter 4: Frequently asked questions (FAQ)

4-24 Objecteering/UML Test Designer User Guide

Example 1

Figure 4-12. First example

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-25

Example 2

Figure 4-13. Second example

Chapter 4: Frequently asked questions (FAQ)

4-26 Objecteering/UML Test Designer User Guide

How do I get a returned value with an assert note?

Introduction
It is also possible to instantiate or create a variable with an "assert" note.

Syntax
To get the return value of a method invocation, an "assert" note is created on the
return message, with the following syntax:

myValue = ?

Interpretation
If "myValue" is the name of one of the context's instances, it will be instantiated
using the following code:

myValue = theDiagramInstance.method(param, ...)

If "myValue" is unknown in the diagram, a local variable is created with the
following code:

myValueType myValue = the DiagramInstance.method(param, ...)

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-27

Example

Figure 4-14. Example of getting a return value with an "assert" note

In this example, the "newCard=?" assert note will be translated into:

newCard = (bankingSystem.Card) aCard.cloneCard();

Chapter 4: Frequently asked questions (FAQ)

4-28 Objecteering/UML Test Designer User Guide

How do I insert an assertion into the test?

Introduction
It also possible to add an assertion in the test sequence.

User interactions
1 - Add a note with the stereotype <<assert>> on a returned message. Only one

“assert” note is allowed on a returned message.
2 - Complete it using the following syntax.

Syntax
The content of the note has to be a boolean expression, “myInstance.Name ==
12” for example and is written in target code.

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-29

How do I insert target code into the test?

Introduction
It may be useful to add directly source code in a test sequence when the
interactions are hard to represent in a UML sequence diagram.

User interactions
1 - Add a note with the stereotype <<javaTargetCode>> on a returned message.

Only one note (“assert” or “javaTargetCode”) is allowed on a returned
message.

2 - Complete it with Java code.

Test execution
This code is inserted in the generated file after the returned message assertions.

Chapter 4: Frequently asked questions (FAQ)

4-30 Objecteering/UML Test Designer User Guide

How do I generate and compile a new test suite?

The "UML Test Designer/Create a test suite" command is used from the
application model to create new test suites. To make test suites executable, carry
out the following steps:
1 - From the test model JUnit work product in the "Items" tab of the properties

editor, run the "Propagate" command.

Figure 4-15. The "Propagate" command

2 - Create a Java generation work product on the test suite stub package with the
"Tests For Java" element.

3 - Launch the "Tests For Java/Generate and compile" from the test package
JUnit work product. This command can also be launched from the test suite
package.

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-31

How do I generate and compile a new context?

Introduction
The "UML Test Designer/Create a context" command is used from a test suite to
create new contexts. To make these executable, carry out the following steps:
1 - From the test model JUnit work product in the "Items" tab of the properties

editor, run the "Propagate" command.
2 - Launch the "Tests For Java/Generate and compile" from the test package

JUnit work product. This command can also be launched from the context
package.

Chapter 4: Frequently asked questions (FAQ)

4-32 Objecteering/UML Test Designer User Guide

How do I test an EJB?

Introduction
It is possible to test an EJB in a real J2EE server environment using the
Objecteering/Tests For Java/EJB module.
The EJB selected for tests could be a stateful, a stateless or entity one.

Note: In order to help test EJBs, we strongly recommend that you have a look at
the "First steps" chapter in this user guide.

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-33

User interactions in the test model
The first step is to create a test suite for the EJB.
Once the Stateless EJB has been generated, compiled and deployed, select the
EJB sub-system and create a test suite (Figure 4-16).

Figure 4-16. Creating a test suite

A dialog box is open to enter the test suite name and to select the class to be
tested.

Warning:It is not possible to select stubs.

Chapter 4: Frequently asked questions (FAQ)

4-34 Objecteering/UML Test Designer User Guide

Continue by defining the test for the EJB.
Select the created test suite (Figure 4-17).

Figure 4-17. Selecting the test suite

Next, create one or several sequence diagrams on its context package (Figure
4-18).

Figure 4-18. Creating sequence diagrams

Chapter 4: Frequently asked questions (FAQ)

Objecteering/UML Test Designer User Guide 4-35

Finally, build and launch EJB tests.
Create a JUnit work product at the root of test suite package and generate and
compile the tests.

Figure 4-19. JUnit generation work product

Launch the tests. The JUnit control panel is launched and the results of tests are
displayed.

Note: Your server must be running to enable Objecteering/Tests For Java/EJB to
connect to it. The EJB must be deployed before running the test.

Chapter 5: Principles of
Objecteering/UML Test
Designer

Chapter 5: Principles of Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 5-3

Selecting and parameterizing the Objecteering/UML Test
Designer module

Selecting the Objecteering/UML Test Designer module
Before being able to use the Objecteering/UML Test Designer module in your
UML modeling project, it must first be selected. This operation is detailed in the
"Selecting modules in the current UML modeling project" section in chapter 3 of
the Objecteering/Introduction user guide.

Parameterizing the Objecteering/UML Test Designer module
The Objecteering/UML Test Designer and Objecteering/Tests For Java modules
provide various ways of customizing the Tests For Java generator, in order to
adapt it to your specific programming style.

♦ Parameterization through general UML Test Designer module parameters (for
further information, please refer to chapter 7, "Parameterization" of this user
guide).

♦ Parameterization using the UML Profile Builder tool. Code generation can be
adapted by redefining the J methods in charge of producing zones of Tests For
Java code. Through Objecteering/UML Profile Builder, you can define your
own tagged values, documents and items, as well as rules for checking,
generating and validating (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Chapter 5: Principles of Objecteering/UML Test Designer

5-4 Objecteering/UML Test Designer User Guide

Work products

The Objecteering/Tests For Java/EJB module is used to generate Tests For
Java/EJB code from a UML model created in Objecteering/UML.
Before generating Tests For Java/EJB code, a work product must be created.
Work products represent elements external to Objecteering/UML, which are
delivered externally or which are used by other tools. These can be deliverables,
such as documentation, source code (C++, Java, etc), database SQL schemas or
any other element produced by Objecteering/UML. Work products can be
accessed in the "Items" tab of the properties editor. They maintain consistency
with related external elements (typically files), and provide services specific to the
target and the external element, such as "Generate" or "Visualize".
Work products follow the project's composition structure
(project/package/class/logic). If you create a work product on a package during
the first generation, a work product will be created for each component (sub-
package or class) that can have such a work product. If components are added
after the last generation, subsequent generation will create work products on the
new components that can have such work products. In this way, these work
products will maintain consistency with the model.
For further information on work products, please refer to chapter 6, "Functions of
the Objecteering/UML Test Designer module", of this user guide.

Chapter 5: Principles of Objecteering/UML Test Designer

Objecteering/UML Test Designer User Guide 5-5

Tagged values, notes and stereotypes

Objecteering/UML is a multi-target workshop used to model a large quantity of
application elements, whatever the language used.
However, during the technical designing and programming phases, certain
implementation details expressed in the target language have to be specified and
added to the model. This information, used to complete the model before
generation, is entered using:

♦ Tagged values, which provide implementation rules for the generator

♦ Notes, which correspond to the zones inserted directly into the generated code

♦ Stereotypes, which provide implementation rules for the generator, different to
those of a non-stereotyped element

Tagged values, stereotypes and notes specific to UML Test Designer can be
added to a model element only if the Objecteering/UML Test Designer module has
been selected. For further information on tagged values, notes and stereotypes,
please refer to the related sections in chapter 6 of this user guide.

Chapter 5: Principles of Objecteering/UML Test Designer

5-6 Objecteering/UML Test Designer User Guide

Consistency checks

Objecteering/UML consistency checks
The Objecteering/UML CASE tool provides over 200 consistency checks in real
time, used to guarantee the quality and coherence of the model produced. The
advantages of these consistency checks are clear:

♦ Model consistency is checked when elements are entered, thus ensuring that
inconsistent names or elements are not entered.

♦ Model consistency is maintained when elements are modified, thus allowing
the user to avoid having to manually update all instances of the modified
element.

For further information on consistency checks, please refer to the "Consistency
checks" section in chapter 1 of the Objecteering/UML Modeler user guide.

Removable consistency checks
However, the user may, in some modeling situations, prefer to have a certain
degree of flexibility with regard to the consistency checks applied to his model.
This can be the case, for example, during the preliminary phases of a project
(analysis, specifications, and so on), when users can prefer to have freer, less
restrictive use of the CASE tool. Similarly, when importing models from other
CASE tools that do not necessarily employ the same level of consistency checks
as Objecteering/UML, it can also be useful to be able to deactivate certain checks.
For this reason, certain Objecteering/UML consistency checks are removable. For
further information on removable consistency checks, please refer to the
"Removable consistency checks" section in chapter 3 of the Objecteering/UML
Modeler user guide.

The "UML Test Designer/Check" command
The "UML Test Designer/Check" command checks that:

♦ modifications made to the application model have been taken into account in
the test model. If this is not the case, a call to the "UML Test Designer/Update"
command is needed.

♦ the test model contains all the information required to execute a test suite
correctly.

Chapter 6: Functions of the
Objecteering/UML Test
Designer module

Chapter 6: Functions of the Objecteering/UML Test Designer module

Objecteering/UML Test Designer User Guide 6-3

Overview of Objecteering/UML Test Designer functions

Introduction
The Objecteering/UML Test Designer module provides the following functions to
create and complete a test model:

♦ Create a test suite: This command is used from a package of your application
model to select classes to test and classes to stub, in order to create a test
suite package.

♦ Update a test suite: This command is used from a tested package to update
one of its test suites after a modification.

♦ Create a context: This command is used from a test suite package to add a
context package and its elements (instances, instance diagram, etc.).

♦ Create a test sequence: This command is used from a context package to add
a sequence diagram to define a test.

♦ Check: This command is used from the test model to check consistency
between the test suites and the application package.

The Objecteering/Tests For Java/EJB module provides the following functions, to
generate code and execute tests with JUnit TestRunner:

♦ Generate tests

♦ Visualize tests

♦ Edit tests

♦ Generate tests makefile

♦ Compile tests

♦ Analyze the compilation

♦ Launch tests

♦ Generate and compile tests

Using tagged values, notes and stereotypes
Tagged values, notes and stereotypes are used in the test model to define the
type of each element and provide useful information. They are described in the
following sections of this chapter.

Chapter 6: Functions of the Objecteering/UML Test Designer module

6-4 Objecteering/UML Test Designer User Guide

Tagged value types

The tagged values used by Objecteering/UML Test Designer are all generated by
one of the commands, and cannot be modified by the user.
For example, the {TestedPackage} tagged value on a test suite package provides
an identification of the package tested by the test suite.

Chapter 6: Functions of the Objecteering/UML Test Designer module

Objecteering/UML Test Designer User Guide 6-5

Note types

Overview
Objecteering/UML note types are used to complete the UML test model with texts
in UML Test Designer syntax.

Note types on a test suite package

The ... note type is used to ...
summary provide a summary of the package contents for

documentation purposes.

description provide a description of the package contents for
documentation purposes.

testCase insert the Java code of a test method.

Note types on a context package

The ... note type is used to ...
setUp instantiate the context before calling a test method.

The contents of this note are inserted into a method
called before each test method of the context.

Only one "setUp" note is allowed on a test package.

Chapter 6: Functions of the Objecteering/UML Test Designer module

6-6 Objecteering/UML Test Designer User Guide

Stereotypes

Overview
Objecteering/UML Test Designer defines stereotypes, used to designate certain
objects as being concerned by the generation of Tests For Java code.
The stereotypes used in Objecteering/UML Test Designer are generated
automatically. However, it may be useful to know what they are used for.

Stereotypes on a package

The ... stereotype is applied to ...
OrganizationTestSuite a test suite package.

PackageStub a package containing stubs.

TestContext a context package.

Stereotypes on a class

The ... stereotype is applied to ...
ClassUnderTest a tested class in a test suite package.

ClassifierStub a stubbed class in a test suite package.

Chapter 7: Customizing the
Objecteering/UML Test
Designer module

Chapter 7: Customizing the Objecteering/UML Test Designer module

Objecteering/UML Test Designer User Guide 7-3

Defining module parameters

Introduction
The user can parameterize the following elements of Objecteering/UML Test
Designer:

♦ Primitive tests

♦ Parameter values for tests

♦ Parameter default values for tests

♦ General

♦ Editors

♦ RTF generation

The following elements of Objecteering/Tests For Java/EJB can be parameterized
by the user:

♦ JUnit

♦ Test report

Chapter 7: Customizing the Objecteering/UML Test Designer module

7-4 Objecteering/UML Test Designer User Guide

Configuring the modules
The Objecteering/UML Test Designer and Objecteering/Tests For Java modules
can be parameterized through the "Modifying configuration" window (as shown in
Figures 7-1 and 7-2 respectively). This window is opened either by clicking on the

 "Modify module parameter configuration" icon or through the "Tools/Modify
configuration" menu.

Figure 7-1. The "UML Test Designer" section of the "Modifying configuration" dialog box

Chapter 7: Customizing the Objecteering/UML Test Designer module

Objecteering/UML Test Designer User Guide 7-5

Figure 7-2. The "Tests For Java/EJB" section of the "Modifying configuration" dialog box

Chapter 7: Customizing the Objecteering/UML Test Designer module

7-6 Objecteering/UML Test Designer User Guide

Sets of parameters

In the UML Test Designer sub-category of parameter, six sets of parameters are
available.

Figure 7-3. The "Parameter default values for tests" set of UML Test Designer parameters

Chapter 7: Customizing the Objecteering/UML Test Designer module

Objecteering/UML Test Designer User Guide 7-7

In the Tests For Java/EJB sub-category of parameters, two sets of parameters are
available.

Figure 7-4. The "JUnit" set of UML Test Designer parameters

Chapter 8: UML Test Designer
documentation generation

Chapter 8: UML Test Designer documentation generation

Objecteering/UML Test Designer User Guide 8-3

Overview of UML Test Designer documentation
generation

Two kinds of documentation can be generated on your tests:

♦ documentation of your test model

♦ the test report after execution of the tests with JUnit (only available with the
Tests For Java/EJB module)

First, create a new document by selecting a test package (either the root test
package or a test suite package in the Objecteering/UML explorer) and then

clicking on the "Create a document" icon in the "Items" tab of the properties
editor (as shown in Figure 8-1).

Figure 8-1. Creating a new document

Chapter 8: UML Test Designer documentation generation

8-4 Objecteering/UML Test Designer User Guide

A window then appears. In this window, select the UML Test Designer module
(Figure 8-2).

Figure 8-2. Selecting the Objecteering/UML Test Designer module

Steps:
1 - Click on the UMLTestDesigner module.
2 - Click on "Apply" to confirm your choice.

Chapter 8: UML Test Designer documentation generation

Objecteering/UML Test Designer User Guide 8-5

The "Documentation generation" window then appears (Figure 8-3).

Figure 8-3. Creating documentation

Chapter 8: UML Test Designer documentation generation

8-6 Objecteering/UML Test Designer User Guide

Generating the test report of the executed tests
Once tests have been executed once, a test report is available. This test report in
an XML file available in the same location as your test model documentation or in
the default directory if the test model documentation has not already been
generated.
The XSL file associated with the XML file has to be specified at Tests For
Java/EJB module configuration level.
Two kinds of XSL file are available in your Objecteering/UML module directory
(Figure 8-4).

Figure 8-4. Test report module parameters

Chapter 8: UML Test Designer documentation generation

Objecteering/UML Test Designer User Guide 8-7

Functions of UML Test Designer documentation
generation

Once the documentation generation work product has been created, you can
generate and visualize documentation corresponding to your tests.

The "UML Test Designer/Generate test documentation" command

Figure 8-5. The "UML Test Designer/Generate test documentation" command

Steps:
1 - Select the documentation work product in the "Items" tab of the properties

editor.
2 - Run the "UML Test Designer/Generate test documentation" command.

Chapter 8: UML Test Designer documentation generation

8-8 Objecteering/UML Test Designer User Guide

The "UML Test Designer/Visualize test documentation" command

Figure 8-6. The "UML Test Designer/Visualize test documentation" command

Steps:
1 - Select the documentation work product in the "Items" tab of the properties

editor.
2 - Run the "UML Test Designer/Visualize test documentation" command.

Index

"assert" note 3-23, 4-23, 4-26
"description" note 6-5
"setUp" method 4-22
"setUp" note 1-18, 4-21, 6-5
"summary" note 6-5
"tearDown" method 4-22
"tearDown" note 4-22
"testCase" note 1-17, 3-25, 4-19, 6-5
{TestedPackage} tagged value 1-17,

6-4
<<assert>> stereotype 4-23
<<ClassifierStub>> stereotype 6-6
<<ClassUnderTest>> stereotype 6-6
<<OrganizationTestSuite>>

stereotype 6-6
<<PackageStub>> stereotype 6-6
<<testCase>> stereotype 4-19
<<TestContext>> stereotype 6-6
Adding a new context to a test suite

4-12
Adding a new test sequence to a

context 4-15
Annotating the model 5-5
Assert note 1-18, 3-18
Class under test 1-18
Command for compiling 3-29
Command for generating code 3-29
Command for generating

documentation 3-29
Command for launching JUnit 3-29
Complete model-driven generation

1-4
Configuring modules 7-4
Consistency 1-4, 1-7
Consistency checks 5-6
Context package 1-18, 3-16, 3-41

Contexts 3-25
Creating a document work product

8-3
Creating a test model 1-8
Creating a UML modeling project 2-3
Creating test suites 3-10
Customizing the Tests For Java

generator 5-3
Defining a Setup() called before each

test method 4-21
Defining documents 5-3
Defining items 5-3
Defining rules 5-3
Defining tagged values 5-3
Defining test cases 1-3
Defining test suites 1-3
Developing applications

Creating a UML test model from
your UML model 1-17

Defining tests in the generated test
model 1-17

Generating and compiling tests 1-
17

Launching the JUnit test runner 1-
17

Document work product 8-3, 8-7
Documentation generation window

8-5
Editing generated code 3-43
Execution with JUnit 1-14
FAQ

Adding a new context to a test suite
4-12

Adding a new test sequence to a
context 4-15

Defining a Setup() called before
each test method 4-21

Generating and compiling a new
context 4-31

Generating and compiling a new
test suite 4-30

Generating tests for functions with
primitive parameters 4-8

Getting a returned value with an
assert note 4-26

Inserting an assertion into the test
4-28

Inserting target code into the test
4-29

Testing a message with an assert
note 4-23

Testing abstract class
implementations 4-3

Testing an EJB 4-32
Testing interface implementations

4-5
Writing a test method in Java code

4-19
First Steps

Compiling 3-3
Creating a Tests For Java

generation work product 3-3
Creating a Tests For Java/EJB

generation work product 3-30
Creating a UML Test Designer test

suite 3-3
Creating an instance 3-21
Creating new contexts 3-25
Creating new sequence diagrams

3-25
Creating new test case notes 3-25
Defining Java test methods 3-25
Defining stubbed classes 3-17
Defining test methods with

sequence diagrams on the
context package 3-18

Defining tests in the test suite 3-3
Description of the newly created test

suite 3-15
Generating Tests For Java code

3-3, 3-35
Generation work product commands

3-39
Initializing the First Steps project

3-3
Maintaining your test model 3-3, 3-

26
Naming your test suite 3-12
Running tests with JUnit 3-3
Running the "UML Test

Designer/Create a Test Suite"
command 3-11

Running the test in the sequence
diagram 3-23

Selecting classes to be stubbed 3-
14

Selecting classes to be tested 3-
13

Sources 3-4
Tests For Java generation work

product menus 3-3
Visualizing generated Tests For

Java code 3-3
Functions of the Objecteering/UML

Test Designer module 1-4
Defining tests inside a test model

1-4
Generating a test model 1-4
Generating Java code to be

executed 1-4
Selecting classes to be stubbed 1-

4
Selecting classes to be tested 1-4

General first steps 1-3, 3-3
Generated Tests For Java/EJB code

3-35

Generating a test model 1-3
Generating and compiling a new

context 4-31
Generating documentation 8-3, 8-7
Generating test documentation 1-16
Generating tests for functions with

primitive parameters 4-8
Generating the test report of the

executed tests 8-6
Generating, compiling and executing

tests 1-3
Generation work product 3-29
Getting a returned value with an

assert note 4-26
if () then {} else 3-20
Initializing the First Steps project

Configuring modules 3-7
Configuring the Objecteering/Tests

For Java/EJB module 3-9
Configuring the Objecteering/UML

Test Designer module 3-8
Creating a UML modeling project

3-5
Importing a model into the First

Steps project 3-5
Selecting modules 3-6
Selecting the UML Test Designer

and Tests For Java modules 3-5
Inserting an assertion into the test 4-

28
Inserting target code into the test 4-

29
Integrating JUnit into

Objecteering/UML 1-7
J methods 5-3
Java generation work product 3-31,

4-30
Java generation work product window

3-31

Java notes 1-17
JUnit assertion 4-19
JUnit framework 1-6
JUnit test runner 1-15
JUnit TestCase 3-35
JUnit TestRunner 3-41
JUnit toolkit 2-3
JUnit window 3-30
JUnit work product 4-30
loop 3-19
Model consistency 5-6
Module configuration window 3-7
Note types on a context package 6-5
Note types on a test suite package

6-5
Notes 1-17, 5-5, 6-3

"assert" 3-23, 4-23, 4-26
"description" 6-5
"setUp" 1-18, 4-21, 6-5
"summary" 6-5
"tearDown" 4-22
"testCase" 1-17, 3-25, 6-5

Objecteering/Administrating
Objecteering Sites 1-3

Objecteering/Introduction 2-3, 3-3, 5-
3

Objecteering/Java 1-3
Objecteering/UML license 1-3, 2-3
Objecteering/UML Modeler 1-3, 2-3,

5-6
Objecteering/UML Profile Builder 5-3
OBJING_PATH environment variable

2-3
Organization test suite 1-18
Parameterizing the Objecteering/UML

Test Designer module 5-3

Prerequisites for use of the
Objecteering/UML Test Designer
module 2-3

Propagate command 4-30, 4-31
Properties editor 3-30, 5-4, 8-3, 8-7

Items tab 3-30, 5-4, 8-3, 8-7
Redefining J methods 5-3
Removable consistency checks 5-6
Selecting classes to be stubbed 1-

10
Selecting classes to be tested 1-9
Selecting modules 3-6
Selecting the module for the current

UML modeling project 2-3
Selecting the Objecteering/UML Test

Designer module 5-3
Sequence diagrams 1-17, 3-25
Stereotypes 5-5, 6-3

<<ClassifierStub>> 6-6
<<ClassUnderTest>> 6-6
<<OrganizationTestSuite>> 6-6
<<PackageStub>> 6-6
<<TestContext>> 6-6

Stereotypes on a class 6-6
Stereotypes on a package 6-6
Stub packages 1-11
Stubbable classes 3-14
Stubbed class 1-18, 3-17
Tagged values 1-4, 1-17, 5-3, 5-5, 6-

3
{TestedPackage} tagged value 1-

17, 6-4
Test 1-18
Test case 1-18
Test case note 1-18
Test case notes 3-25
Test definition

Overview 1-8

Test documentation 1-4
Test methods 3-35

"testxxx()" 3-35
Test packages 3-10, 3-41
Test report 1-4
Test suite 1-18
Test suite packages 3-15, 3-41
Testable classes 3-13
Tested package 1-18
Testing a message with an assert note

4-23
Testing abstract class

implementations 4-3
Testing an EJB 4-32
Testing interface implementations 4-

5
Tests For Java commands

Analyze the compilation 3-33
Generate and compile 3-33, 4-30,

4-31
Tests For Java generation work

product 3-29, 3-35
Tests For Java module parameters

7-3
Tests For Java//EJB commands

Generate tests 3-41
Tests For Java/EJB commands 3-

29, 3-39
Analyze the compilation 3-41
Compile tests 3-41
Edit tests 3-41
Generate 3-35
Generate and compile tests 3-41
Generate tests makefile 3-41
Launch tests 3-41
Visualize tests 3-41
Visualize tests makefile 3-41

Tests For Java/EJB functions 6-3

Analyzing the compilation 6-3
Compiling tests 6-3
Editing tests 6-3
Generating and compiling tests 6-

3
Generating tests 6-3
Generating the tests makefile 6-3
Launching tests 6-3
Visualizing tests 6-3

Tests For Java/EJB generation work
product 5-4

Tests For Java/EJB module
parameters
JUnit 7-3
Test report 7-3

UML Test Designer commands 3-11
Check 3-27, 5-6
Create a context 4-13, 4-31
Create a test sequence 4-16
Create a test suite 3-11, 4-30
Generate test documentation 8-7
Update 5-6
Update a test suite 3-26, 3-27
Visualize test documentation 8-8

UML Test Designer first steps 1-3

UML Test Designer functions 6-3
Checking 6-3
Creating a context 6-3
Creating a test sequence 6-3
Creating a test suite 6-3
Updating a test suite 6-3

UML Test Designer module
parameters 7-3
Editors 7-3
General 7-3
Parameter default values for tests

7-3
Parameter values for tests 7-3
Primitive tests 7-3
RTF generation 7-3

Updating your test model 3-26
Using tagged values, notes and

stereotypes 6-3
Using the Objecteering/UML Test

Designer module 2-3
Visualizing documentation 8-7
Visualizing generated Tests For

Java/EJB code 3-42
Writing a test method in Java code

4-19

