Objecteering/UML

Objecteering/lUML Profile Builder
User Guide
Version 5.2.2

() bjecteering

Www.objecteering.com Software

Taking object development one step further

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software
Objecteering/UML version 5.2.2 - CODOBJ 001/002
Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents

Chapter 1: Introduction

Introducing Objecteering/UML Profile Buildercccccooviieeeiiiiieiiiiieieens 1-3
UML Profiling PrOJECLSevviiiiiee ittt 1-7
(€1 (0TS 1Y PRSP 1-9
Chapter 2: First Steps: Creating a module

Creating a UML profiling ProjECtcccuuviiiiiiii e e e 2-3
Creating @ UML Profilecooiiiiiiie et 2-6
Referencing @ Metaclassccvvve e 2-9
Procedure for entering a J methodccccoeviiiee i 2-13
Creating @ MOUUIB........cooiiiiie et sraee s

Configuring @ MOUUIEcooiviiiiiiie e
Testing a UML profiling project

Chapter 3: First Steps: Building a generator

Creating @ gENETALOToiuieieeieeiee sttt sttt b et ne e nbeenneas
Creating a UML profile...............

Creating parameters..................

Creating note types...........cco.....

Creating tagged value types
Creating J attriDULESocviii e
Creating a generation WOrk productcccceeeviieieeniiiieeeniieee e sieee s siieee e
Creating J MEthOUSooiiiie e
Implementing J methods
Creating a module.....................

Creating commands..................

Configuring a module................

TeStiNG @ MOAUIEcoiiiiiiieeiic et e e

Chapter 4: Using Objecteering/UML Profile Builder
Launching Objecteering/UML Profile Builderccccooviviiiieiiiiieiciiiee e
Creating or opening a UML profiling project........cccccocvvveviiivnecnnneen.
Receiving and upgrading UML profiling projects
The MaIN WINAOWeeiiiiiiiieiit e
B LR L] = BT o] (o] = PRSP
The Properties EAItOr........ccvviiiiiiie e

Chapter 5: Elements customizing UML and Objecteering/UML

USIiNG MOAUIEScooovviiiiiiieeiiie e
COMMANAS ..o
Tagged Valuescceevcvveeiiiiie e
NOES ..ottt
Y (=1 £=T0]1Y 0[PPSR
Document and generation templates
WOTK PrOAUCES ..ottt et e s e e e nnnaeas
Other customizable SEIVICES ..o

Chapter 6: Defining UML profiles
Referencing @ Metaclassccvvveiiiiee i
Creating a type of tagged value
Creating a type Of NOLEuviii i
Creating a stereotype................
Creating a constraint.................
Creating a J class attribute
Creating @ J MEtNOG.......cocuiiiiiiie e
Textually editing @ J Methodcooovviiiiiiie e
Redefining @ J Methodooiiiiiiiiiic s
Defining @ module parametercccvvviiiee e
Creating a generation or document templateccccceevvciveeiiiieeeesiiieeene 6-34
Defining a new kind of WOrk productcccccveveiiiieie i 6-47

Chapter 7: Defining modules
Overview of module definition ...
Referencing UML Profil€Scuvii i
USING UML PIOfIlES ..vvviiiiiii ettt
Defining a UML installation profilecccccoviiiiiiiiiie e
Creating COMMEANGSccciiuiiieiiieeesiiie e et e et e e sbee e e s sreeee s sereeesnsbeeenas
Changing the default values of parameters
Specializing a module

Packaging @ MOAUIEcocuuiiiiiiiie e
Chapter 8: Test projects

Test pProject defiNitioNccvvi i 8-3

TestiNg J MEhOUS........vviie i 8-9

Index

Chapter 1: Introduction

Chapter 1: Introduction

Introducing Objecteering/UML Profile Builder

Introduction
Welcome to the Objecteering/UML Profile Builder user guide!

Objecteering/lUML Profile Builder is a unique and powerful tool, used to
parameterize Objecteering/UML, in order to adapt it to your specific needs. With
Objecteering/UML Profile Builder, you can define your own tagged values,
documents and document items, as well as checking, generation and validation
rules. The Objecteering/UML Profile Builder tool is a powerful aid to providing
completely project-oriented model-driven and process-driven development.

The Objecteering/UML Profile Builder tool is used to design and implement UML
profiles, which are predefined sets of stereotypes, tagged values, constraints and
notation icons, used to collectively specialize and tailor UML to a specific domain
or process. A UML profile does not extend UML by adding new basic concepts,
but instead provides conventions for applying standard UML to a particular
environment or domain.

UML profiles can, for example, provide UML rules specific to analysis, or
dedicated to technical design, as well as those relative to C++ generation or to the
generation of database schemas. They define UML usage contexts, in order to
adapt the UML to particular needs.

Objecteering/UML Profile Builder User Guide 1-3

Chapter 1: Introduction

Objecteering/lUML Profile Builder uses different workspaces than those of
Objecteering/UML Modeler UML modeling projects. The information stored in
UML profiles is thus managed separately, and represents UML development
know-how. Each UML modeling project can select those UML profiles which are
of interest, and may thus use specific rules, assistance and automation.

LA o oheiies L. Profle Bisdder
. 3 LOWL pvodike cledlind 0 wirkanere
LA oot vy VEBAL .:'.'L'.".l.l.l'.l_"l I.'c'l.!ll.'ﬂ'.'ll'ﬁ:l
e T
-, —_ m aeechng L-'-'fl'._ o -
o ias (i oores)
T — e

Figure 1-1. The know-how contained in UML profiles is applied to UML modeling projects

For example, Objecteering/lUML Profile Builder is used to define new code
generators, to adapt existing generators, to establish consistency checking rules,
to automate design patterns, to carry out inquiries into tool data, to define
document templates or generation templates, and so on. Objecteering/UML
Profile Builder provides a language dedicated to the use of UML by UML profiles,
called the J Language. J language syntax is close to that of Java.

1-4 Objecteering/UML Profile Builder User Guide

Chapter 1: Introduction

Functions of the Objecteering/UML Profile Builder tool

Objecteering/UML Profile Builder can also be used to create modules (for
example, a module to generate documentation or indeed to generate C++), and to
this end offers the following services:

+ the creation of new J services (J methods)
+ definition of parameters, which allow the user to supply module options

¢ definition of commands, which are translated into menus in the
Objecteering/UML Modeler

+ definition of types of notes, types of tagged value and stereotypes
+ definition of generation work products
+ definition of document templates or code generation templates

Objecteering/UML allows the user to edit parameterization environments, which
are structured into UML profiling projects. A UML profiling project is used in the
same way as a UML modeling project in its modeling phase.

Note: For more information on the Objecteering/Metamodel and the
Objecteering/J Libraries, please refer to the related user guides. Similarly,
for further details on the J language, please see the Objecteering/The J
Language user guide (for details on all available modules, please see the
"General Contents" section of the Objecteering/Introduction user guide).

Objecteering/UML Profile Builder User Guide 1-5

Chapter 1: Introduction

Structure

Parameterization elements are structured into UML profiles and modules:

¢ a UML profile contains J methods, parameter definitions, types of notes and
types of tagged values, document templates and generation work products.

+ the module, which is a high-level entity, references one or several UML
profiles. For example, the Objecteering/C++ module references a C++ code
generation UML profile and a C++ makefile generation UML profile. A module
contains commands and parameter values, and can be delivered to users in
the Objecteering/UML Modeler. Users then take advantage of specific menus,
parameters and clean generation processing.

The assumption is made that the user of Objecteering/UML Profile Builder has
some prior knowledge of object modeling.

This user guide makes reference to the following user guides:
¢ Objecteering/The J language user guide
¢ Objecteering/Metamodel user guide (based on the UML 1.4 standard).

Working with the Objecteering/UML Profile Builder tool

For the user of the Objecteering/UML Profile Builder module, the work consists
firstly of organizing parameterization into hierarchical UML profiles. In these UML
profiles, the user defines parameters, tagged value types and notes types. He
also creates attributes and J methods which can, amongst other things, exploit
parameters, notes according to their type and modeling objects according to their
tagged values.

The user must then group his UML profiles into modules. The module is the entity
used by the standard Objecteering/UML user (specifier, designer, etc.). Within
these modules, he creates commands, which activate those J methods which
belong to the module’s UML profiles.

A UML modeling project which uses this modules will now have new menus
available. Thus, for each module command, a menu item is added to the
contextual menu available for model elements (class, operation, etc), whose type
is, or specializes, the metaclass which the J method references.

Objecteering/UML Profile Builder User Guide

Chapter 1: Introduction

UML profiling projects

Definition
A UML profiling project is to Objecteering/UML Profile Builder what a UML
modeling project is to the Objecteering/UML Modeler. It is a development
environment that contains UML profiles organized into a certain hierarchy. These
UML profiles structure tool parameters, J methods and attributes, as well as note
and tagged value types, and stereotypes.

A UML profiling project also contains modules which group together UML profiles
and commands, as well as providing default values for parameters. For the end
user, modules correspond to functional and coherent "packages”. (for example,
Gen C++, Gen Doc, etc.). Several users can work at the same time on different
UML profiling projects.

UML profiles

UML profiles group together a set of J methods and module parameters for a
given theme (for example, Java code generation, makefile generation or RDB
generation). They organize, in hierarchical order, J rules, which are added to the
model's metaclasses.

In a UML profile, it is possible to:

¢ create a child UML profile which can then redefine some of the parent UML
profile's methods (UML profile generalization)

create a reference to a metaclass
create a parameter

create a type of work product

create a generation document template

* & & o o

create a document template

Objecteering/UML Profile Builder User Guide 1-7

Chapter 1: Introduction

Default UML profiles

A UML profiling project is initialized with a certain number of UML profiles. These
cannot be modified (Figure 1-2). A UML profile is always created from a parent
UML profile.

Eq] cetat

B nterna
LB o4
L kel
o) edemal
— Ea o
-

Figure 1-2. Default UML profiles supplied with a UML profiling project

Note: Default UML profiles can neither be destroyed nor modified.

The module

A module is a set of consistent features developed using J methods on the
metamodel’s classes.

From a module, it is possible to:
+ reference UML profiles

¢ use UML profiles

¢ create a command
.

specialize the UML profiling project's module

1-8 Objecteering/UML Profile Builder User Guide

Chapter 1: Introduction

Glossary

Command: module component and entry point for a J method. A command will
appear in Objecteering/UML Modeler as a context menu (pop-up menu) entry for
model elements. The J method referenced by the command is defined once the
metaclass which is concerned (model elements in Objecteering/lUML Modeler)
contains the command in its context menu.

Document item: description of information that should be included in
documentation.

Document template project: hierarchy, composed of "document items", describing
the typical form of documentation.

Generation item: description of information which should be included in source
code.

Generation template project: Hierarchy composed of "generation classes" which
describe the typical source code form.

J attribute: "class" attribute added to a metaclass, used by the J language.

J method: method defined on a metaclass, in a UML profile, which contains
operations used to exploit the metamodel.

Metaclass: metamodel element. It is used to structure J methods, J attributes,
note types and tagged value types in a UML profile. "Class" or "Attribute", for
example, are metaclasses.

Metamodel: model used to describe another model. All the elements supported by
Objecteering/lUML Modeler are described in the metamodel.

Module: a "functional and consistent" group of UML profiles and commands.

Module parameters: information entered by the user which has an impact on the
execution of J methods.

Module transformation: mechanism that applies transformation rules in order to
modify a model. The J language is used to describe these rules.

Note type: definition of a note for the objects of a given metaclass. For example,
the "description” note type is used to attach "description" notes to "Class" type
objects.

Objecteering/UML Profile Builder User Guide 1-9

Chapter 1: Introduction

Objecteering/UML Profile Builder: module used to customize the tool's through the
addition of new features.

Stereotype: (UML Notion) specific adaptation of ModelElement semantics.
Through stereotypes, the end user can create new icons and new adaptations of
model elements.

Tagged value: (UML term) A tagged value is an annotation of a model element.
This term covers note types and tagged value types defined below.

Tagged value type: definition of a tagged value for the objects of a given
metaclass. For example, the "persistent" tagged value type on the "Class"
metaclass allows you to annotate a "Client” class in a model with the "{persistent}"
tagged value.

Test project: project allowing you to simultaneously test the modules developed in
a UML profiling project.

UML Profile: a UML profile is a way of structuring J methods. A UML profile
represents a certain way of viewing a model, for a functional purpose. A
metaclass has different J methods according to the current UML profile.

UML profiling project: environment for developing UML profiles and modules.

Work product: reference to one or more work products or deliverables created for
a model element. A product appears in the properties editor, and can represent
documentation, generated source codes, etc. It manages the external elements of
the model and their consistency. It is possible to create new types of work
products with Objecteering/UML Profile Builder.

1-10 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a
module

Chapter 2: First Steps: Creating a module

Creating a UML profiling project

Introduction

The following example illustrates how to create a module, which will be used to
study the impact of the modification of a class in Objecteering/UML Modeler. You
must work in an existing UML modeling project, since this will allow you to
immediately test work carried out in the UML profiling project.

In the example, you are going to create the "NewUMLProfilingProject" UML
profiling project, the "Calculatelmpact” module and the "default#external#Impact"
UML profile.

Objecteering/UML Profile Builder User Guide 2-3

Chapter 2: First Steps: Creating a module

Creating a UML profiling project

2-4

Figure 2-1. Creating a UML profiling project

Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Steps:

1- Click on the i'}' Objecteering/UML Profile Builder icon in your desktop. The
window shown in Figure 2-1 will then appear.

2 - Click on the "File/New" menu. The "Create a UML profiling project" window
will then open.

3 - In the "UML profiling project name" field, enter the "NewUMLProfilingProject"
name.

4 - In the "UML profiling project path" field, enter the path of the directory where

the new UML profiling project is to be created. You may also use the J
icon to open a file browser through which you can select your UML profiling
project path.

5 - Confirm by clicking on the "OK" button.

Note: Document templates are created by checking the "Document template
project” tickbox.

Objecteering/UML Profile Builder User Guide 2-5

Chapter 2: First Steps: Creating a module

Creating a UML Profile

Creating a child UML Profile

The first step in our example is to create an "Impact" UML profile in the UML
profiling project's default UML profile (Figure 2-2).

E el menreg LI H]L Pinddes Bukd

Ele E® Lok Teg I
~. R@E 8| @ ® g

] = { Clssac g S
=i
il g sl

B h wdamnaE

==
BHIE s
(LR, = [u Mo

Disgraire Wit |

Figure 2-2. Creating the "Impact" UML Profile

Steps:
1 - Expand the UML profiling project and select the "default” UML profile.

2 - Click on the Fjil "Create a child UML profile" button.
3 - Enter the name directly in the explorer and confirm by left-clicking.

Note: If you press the "Return" key on your keyboard, a new UML profile will be
created (through the continuous entry creation mode).

2-6 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Creating a module parameter

We are now going to create the "Scan the child classes" module parameter in the
"Impact" UML profile.

= Dbject =eing/UML Profile Buillde

1 Ele ER Yook Tegl I

\aa:m; @@ oo FOCH

o j
?—‘% = ca
o B Clase
%
te

¢_ E:u:‘- m Paramatun duliniline

i B Coratiard _ | ir'
2 TR FrpsE | Teswd v | e | |l
fl
3 -N='-_=\ HH' S B child classes
| i T
=5 T I'Hﬂm =)
{} [Giscarp
4 | Coloudatm impact =

e B Dots Help

Figure 2-3. Creating the "Scan the child classes" module parameter

Objecteering/UML Profile Builder User Guide 2-7

Chapter 2: First Steps: Creating a module

Steps:
1 - Select the "Impact" UML profile.

&
2 - Click on the %" "Create a parameter" button.

3 - Enter the name and select the parameter type from the scrolling list. Please
note that seven parameter types are now available: Boolean, String,
Enumeration, File open (String), File save (String), Directory (String) and
Password (String).

4 - In the "Group" field, type "Calculate impact". This field is used to group
parameters together in the different categories you specify. Several default
groups are available for selection, but you may also, as in our example, create
new groups.

5 - Confirm.

Create three other boolean parameters ("Scan the heir classes"”, "Scan the
method parameters" and "Scan the linked classes") in the same group ("Calculate
impact") and within the same UML profile.

Note: These parameters are visible during the "model configuration" phase (see
figure 2-11).

Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Referencing a metaclass

Procedure

When a metaclass is referenced, (shown in Figure 2-4) you can designate those
metaclasses that are of interest to different methods, according to the current UML
profile. In a metaclass, we can define a UML profile's J methods, J attributes, note
types and tagged value types.

ObjectesimgUIHL Piolile Bulide - Mewll

fis B Took Teg 2
= | @l oa oo

|:l'.l|lr|\."l:rc|l'1,|_‘§t:
BB detsd

w By el
B Fspor
o= -

o Gnen e chid casses

Tagmped wahaz | Ilu.u|

rmwaiﬂ

;I' S pan e hew clagses M ares
1 TR | s j
B Scan e linked clarzs. [Atnbeielink 3
- Cla Atnbedellcourencs =1
ol i St el che
[
.] i o pees | e |

Figure 2-4. Referencing the "Class" metaclass

Objecteering/UML Profile Builder User Guide 2-9

Chapter 2: First Steps: Creating a module
Steps:
1 - Select the "Impact" UML profile.

2 - Click on the @ "Create a metaclass reference" button.
3 - Select the "Class" metaclass from the scrolling list.
4 - Confirm.

2-10 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Creating a J method

We are now going to create the "Printimpact” method(Figure 2-5) for the "Class"
metaclass.

EI.:L-H:I."I:I'IIIr.|.'.||H| Pialdile Hislder - Mewl sl

1._\ e Edi Jook Tegt o 3
H‘xaﬁﬂli el e R

,?‘__. Scan the child classss
- Sean the ber class

_Disgrams e

Figure 2-5. Creating the "Printimpact” J method

Objecteering/UML Profile Builder User Guide 2-11

Chapter 2: First Steps: Creating a module

Steps:

1 - Select the "Class" metaclass.

2 - Click on the @ "Create a J method" button.

3 - Enter the "Printimpact" name directly in the explorer and left-click to stop the

continuous entry creation mode.

Note: If you wish to modify this name, right-click on the method, and choose the

"Modify" option from the context menu which appears.

2-12

Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Procedure for entering a J method

Procedure

We are now going to launch an editor on the J method. The code which must be

entered during the third step is given on the following page.

[LF ek Tag |
uﬂim:hl-:mq:li r_‘::_
| OB i {i =
TIL e Lpragres
- B P SLELRE el -
"&‘b - Stricg Hamsgel = "ila hair clapsss &Srs
i iy : Herseseld = “the chtlid cleseew aze
= ol T Hessmaged = "ithe linhsd clasass ars
1 Siricyg Hewseped » " Llw sribol peressdiss -
i! Sk e rIF if jguilarremtHedulaParassrerValus| " Soss tha haor clsosss”
A b b “dedauli e T mmwld)]
2 Suim bw e il |Twwult == “TREIE")
i { Sy 8L LAY Ll ratal i BA L 10E
[Hampagel corcsl |Fuss
Filnpml| Rt wpite {Messsgel, HL)
1 [TE] i
|
| 1t (ywiLarrmnt oo sferasoterva o | “Somm. the chold
(]] |I cleases” "deleul i Tepeci L o]
1 i
il liewile == “TRIE"|
i OriginTos. Desrllacs 1[
—I -I—— o | e tow
Diagrwms o |
Figure 2-6. Entering the J code
Steps:

1- Select the J method.

2 - Double-click on the method's "JCode" Note.
3 - Enter the code.

4 - Confirm.

Objecteering/UML Profile Builder User Guide

2-13

Chapter 2: First Steps: Creating a module

Content of the J method

The following J code is entered. If you find entering the following code too long,
simply enter "StdOut.write ("hello world");" (Figure 2-6):

String result ;
String Messagel
String Message?2
String Message3
String Message4

"the heir classes are : ";

"the child classes are : ";
"the linked classes are : ";
"the nethod paraneter classes are : ";

i

i f (getCurrent Modul ePar anet er Val ue(" Scan the heir
cl asses", "defaul t #l npact”, result))

if (result == "TRUE")
{ Speci al i zati onGeneral i zati on. <SubTyped ass
Messagel. concat (Name, ", ");

}
StdQut.wite (Messagel, NL); }

i f (getCurrent Modul ePar anet er Val ue("Scan the child
cl asses", "defaul t #l npact”, result))

if (result == "TRUE")
{ OriginUse. <User C ass
{ Message2. concat (Name, ", ");

}
StdQut.wite (Message2, NL);
}
}

2-14 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

i f (getCurrent Modul eParanet er Val ue(" Scan the |inked
cl asses", "def aul t #l npact"”, result))

{ if (result == "TRUE")
{PartAssoci ati onEnd. <get OpposedRel ati onLi nk. <Oamner d ass
Message3. concat (Nanme, ", ");
St EjOJt .write (Message3, NL);
} }

i f (getCurrent Modul eParanet er Val ue(" Scan t he net hod
paraneters", "defaul t #l npact", result))

{ if (result == "TRUE")
{ CccurenceParanet er
Message4. concat (Nane, ", ");
St%jQJt.write (Message4, NL);
} }

Objecteering/UML Profile Builder User Guide 2-15

Chapter 2: First Steps: Creating a module

Creating a module

We are now going to create a module called "Calculatelmpact" in the UML
profiling project (Figure 2-7).

Figure 2-7. Creating the "Calculatelmpact” module

Steps:
1 - Select the UML profiling project.

2 - Click on the % "Create a module" button.
3 - Fillin the necessary information (please see table below).
4 - Confirm.

2-16 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

The ... field isusedto ...

Name give a name to the module which is being created (used
internally).

Label provide a label for the module. This will appear in the

pop-up menus and other interfaces.

Working directory enter the packaging target directory and the directory
containing the module's external resources. If the
"Working directory" field is left blank, then the working
directory is
$OBJIING_PATH/modules/<ModuleName>/<Version>.
Otherwise, the user may specify the working directory
of his choice.

Number of major version indicate the first number in the version number (for
example, if the complete version number is "4.6", then
the major version number is 4.

Number of minor version indicate the second number in the version number (for
example, if the complete version number is "4.6", then
the minor version number is 6.

Release information indicate the release number for the module (for
example, "a").

Minimum binary version indicate Objecteering/UML binary requirements for the

compatibility module.

Mask parents mask the parameters and menus of the parent of the

module which has been selected. If this box is not
checked, the module's parameters and menus will
cohabit with those of its parents. This box has no effect
on modules which do not have parents.

Objecteering/UML Profile Builder User Guide 2-17

Chapter 2: First Steps: Creating a module

Referencing a UML profile for the module

The "Calculatelmpact” module must reference a UML profile. This operation
allows you to proceed with the creation of commands (Figure 2-9).

EIJ bjectesing ML Prodile Builder - Hew
Bl Edt Took Teg “Wiwow: I

SE-R-ER N

E mumun;_sn
o
B cetnat
6B etena
El-ﬁ Fapod
B B Impeact
=1 n T
Calculatebnpact El".l:-:n:ll:le slements
— [Dsopzone
&5
.) O |n-u'.qlﬂh'q'm
el Aipcassible slarenis

i) celaesk -

= |
T B deladBeden
EM By delaibSaeamalliCods
“ B delsdSadematiCodstiH

e b Eeskeina HH ok i
i .:l;;;}hq@umm

1| I_l*lj

5 e Close Helo

Figure 2-8. Referencing the "Calculatelmpact" module

2-18 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Steps:
1 - Select the "Calculatelmpact" module.

2 - Click on the [FHl "Reference a UML Profile" button.

3 - Click on the "Search" button.

4 - Select the "default#lmpact" UML profile.

5 - Confirm.

Note: It is possible to use the drag and drop function to select the "Impact" UML

profile, by selecting it in the explorer and dragging it into the drop zone.
Click on "Apply" to confirm.

Objecteering/UML Profile Builder User Guide 2-19

Chapter 2: First Steps: Creating a module

Creating a command
We can now create a command that references a module UML profile method.

:'_'.'Ill "THH LML Pralile Budk

Figure 2-9. Creating a command

2-20 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Steps:
1 - Select the "Calculatelmpact" module.

2 - Click on the ﬂg "Create a command" button.

3 - Enter the name.

4 - Enter the label.

5 - Select the "default#Iimpact” UML Profile.

6 - Select the "Class:default#lmpact#Printimpact" J method.
7 - Confirm.

This command is now available in a pop-up menu available in all the UML
modeling projects which use this module. We will have a look at this later in the
test project.

Objecteering/UML Profile Builder User Guide 2-21

Chapter 2: First Steps: Creating a module

Configuring a module

We are now going to define the default values of the module’s parameters. The

"Calculatelmpact" module configuration window is opened from the main window
(Figure 2-10).

HI:If.l|-.'|.ll.'|:||||u-'|.|H| Profede Huslidei - Mewd
Eb= Edk| Jook Tedl 2

o 'E'I HubHIML profilng progscts
- o
lE FrontlnpsctCles s Frnbimposci
B By detus
i g edensl
@ B3 Repo
B Bl gt
1= -5':'!::
P Prirdl rpact]
Sizan e chid rlazpac

+
'JI__ Sizmn s haa clagneg

?,. Gizan fre malna patsresis
W Soan e nked clises
1 | §
[ra— |
3
' dejaiit
iri=l
=1
Diagrans e

Figure 2-10. Configuring the "Calculatelmpact” module

Select the "Tools" menu in the menu bar and then select the "Configure UML
profiling project..." option.

2-22 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Module configuration window

This configuration window allocates a part of the displayed hierarchy to each UML
profiling project module which has at least one parameter. In this example, there
is, therefore, only one section, "Calculate impact", with the four parameters
previously created in the "Impact" UML profile. In figure 2-11, the default value
has been set to "TRUE".

EH odifyirsg configuraleen

Hodule Caboudsie mpact

B LbAL M odebay [Scar the child clacses
Interiace [F Scan the hei classes
Diagrams v Soan the msthod paismelss
[Paschoms
Franialini [+ Soan the inked classes
LIL. pincd =

EF UKL prodis budder
Etenisl mdifioe

EF Impact chudy

| Hr. | Canesl | Heip |

Figure 2-11. The module configuration window

Note: The configuration window of a module is updated automatically when the
module has been modified (for example, when a new UML profile is
referenced, when a parameter is added or deleted in a referenced UML
profile).

Objecteering/UML Profile Builder User Guide 2-23

Chapter 2: First Steps: Creating a module

Testing a UML profiling project

Selecting a test project

To carry out a test on the UML profiling project, you must first select a test project
(Figure 2-12).

E bl @nimg AL Piabile Holides - Masd 1ML Pl
Ee Eck Took | Teg v 3
| [B G Goesiea e puinct

m wawm.
o w(E & I8t et
W Exploer

5 g dei; MPost el project
& By eeeina
Bl P Fregon
B B Ingact
B Clazz
[o] Partimpact)

E '.-!C G the child dlasse

[~ Scan the bei classe: =

f- Sian Hha st pad |l |

: - Scan the Fnked claes

b

2 | '

a1

i) 8
Caloulobelmpact '
4 |

Figure 2-12. Selecting a test project.

2-24 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Steps:

1 - Select the "Select a test project..." option from the "Test" menu.

2 - Select the test project concerned.

3 - Confirm. An explorer for this test project then opens automatically.

Note: To create a test project, simply select the "Create a test project" option and
enter a name. The new test project then automatically opens.

Objecteering/UML Profile Builder User Guide 2-25

Chapter 2: First Steps: Creating a module

Test project

We are now going to complete our example by entering classes in a test project.
This will allow us to execute J code on the user model. If the project already has a
model, this operation is optional.

Bo i e T Tag ek
BEe ima s~ AODA LA™

] i
e E———
B ki Ul Faiiepyct
g s
[T Ty g FEFEAAT bl rlrm ey 1] - | o
ol B —— J — o
q = 4 (=3 al .?_n. [Es o
e B | . T |
-8 =]
i b
i o
[T] [EECE & | Paksi
p'l il .j.L_ J.I r =
- - o 3 o]]
o L= | 1 = | |
Al
- T a
- L&
1 |
T‘ 11 ||-|EI
Figure 2-13. Selecting test project classes

Steps:

1 - Select the "testProject" package in the test project explorer. Once selected,
the properties editor is activated for this element.

2 - Create a class diagram by clicking on the "Create a class diagram" icon
in the "ltems" tab of the properties editor. The newly created diagram is then
automatically opened.

3 - Create the classes and associations shown in the diagram in Figure 2-13.

2-26 Objecteering/UML Profile Builder User Guide

Chapter 2: First Steps: Creating a module

Launching the command

The code is executed from a class belonging to the test project (Figure 2-14).

E Ubjecisenng /LML Mabeled - LML ModeksngH iope

Bla Bl Yew Graph Took Wndess 1
HEFe r a|da o~

=

E1E|Iwﬂ"‘|uerl
ofl 82 e

=
(2]
=1

BE e Huodiy
=
| Ecy Browse. E
3 Lot] Cacusaimn |
o

Figure 2-14. Executing J code

Steps:

1 - Click on the class in the test project explorer using the right mouse-button to
activate the context menu.

2 - Select the "Impact study/Calculate impact” menu entries.

Objecteering/UML Profile Builder User Guide 2-27

Chapter 2: First Steps: Creating a module

The code executes the following process, which is displayed in the console
(Figure 2-15):

the hea classes s - L2

Thes child clagees sie) 04

Hhig b clazsas s 0506,
Thie ethod pacamete casses e

L= L=

cady

Figure 2-15. The console displaying the results of code execution

2-28 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a
generator

Chapter 3: First Steps: Building a generator

Creating a generator

Overview

Objecteering/UML Profile Builder can be used to create new code generators.

This chapter presents the generators and the different services available for
defining new code generation.

The example which follows shows how to create a Java code generator.
This generator is used to:

¢ (generate Java code

¢ visualize the generated files

¢ externally edit the generated files and retrieve the code in the
Objecteering/UML repository after edition

Characteristics of Java code generation
To avoid complicating these first steps, the code generator will be very limited.
It will be used to generate:
+ from a package or a class
+ one file per class

+ methods without parameters. Certain methods can be defined as being
"synchronized", through the addition of a tagged value. Method code is
entered in a note.

+ attributes

Objecteering/UML Profile Builder User Guide 3-3

Chapter 3: First Steps: Building a generator

Creating a UML profiling project

Create the "JavaProfilingProject" UML profiling project. This UML profiling project
should contain the Java module, the Java UML profile, the tagged value types, the
note types and the generation work product which are necessary for the Java
generator.

3
L
Ol ek

Fmerrasie

n- S Cicaito & il gl e prasge
L -
W
j:-m_-.'.m.nm-mv_u ___I
[oz

].nl

Figure 3-1. Creating the "JavaProfilingProject’ UML profiling project

3-4 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

Steps:

1- Click on the i'}' Objecteering/UML Profile Builder icon in your desktop. The
window shown in Figure 3-1 will then appear.

2 - Click on the "File/New" menu. The "Create a UML profiling project" window
will then open.

3- In the "UML profiling project name" field, enter the "JavaProfilingProject"
name.

4 - In the "UML profiling project path" field, enter the path of the directory where

the new UML profiling project is to be created. You may also use the J
icon to open a file browser through which you can select your UML profiling
project path.

[¢)]
'

Confirm by clicking on the "OK" button.

Objecteering/UML Profile Builder User Guide 3-5

Chapter 3: First Steps: Building a generator

Creating a UML profile

Introduction

3-6

A UML profile for a generator must be defined in the "default#external#Code" UML
profile.

This UML profile contains services which:
+ manage the markers of the generated files
¢+ manage the edition

+ retrieve the code after external edition

Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

Creating a Java UML profile

Create the "Java" UML profile in the "default#external#Code" UML profile by
following the steps illustrated in Figure 3-2. The Java generator will be defined on
this UML profile.

EI'I||||:|:I|-:|-:||r|;.l'|.H. Feofde Euilder
Fie Edé Took Tegt '- 1
5 = —
\\D#H Fa R e e o [JHE
x=
2.5 Y| Dbimciemring_Sim =
._;I BBy el
A g neral
_...I. = sl
o =
3] 3 E
T —F =
o =LA
B Claas
[3] Dyt sl
& B s mcisionE rd
59 Faschage =l
EE
Cnih
el

Figure 3-2. Creating a "Java" UML Profile

Steps:
1 - Select the "Code" UML profile in the "external” UML profile.

2 - Click on the FEI "Create a child UML profile" button.
3 - Enter the "Java" name.

Confirm by clicking outside the note type zone. If you press return, another note
type will be created, using the continuous data entry mode.

Objecteering/UML Profile Builder User Guide 3-7

Chapter 3: First Steps: Building a generator

Creating parameters

Existing parameters

Since the "Java" UML profile inherits from the "Code" UML profile, the following
parameters are inherited:

The ... parameter is used to ...

IdGenerated generate markers in the generated files
ExtEditorCommandLine : command to launch an external editor to edit a generated file
invoke the external editor

Note: The parameters in this table are not visible from Objecteering/UML Profile
Builder. (They can be parameterized through the "Tools/Configure the
UML profiling project... " menu, in the "UML Profile Builder" section).

Creating new parameters

In the generation, we will use two parameters, which allow the user to identify the
generation path and the default suffix.

In the "default#external#Code#Java" UML profile, create the "Java generation
path", which allows you to define the default generation path for the generated
files. Enter the following values:

¢+ "Name" attribute: "Java generation path”
¢ "Type" attribute: "String"

¢ "Group" attribute: "Java product parameters"

In the "default#external#Code#Java" UML profile, create the "Java generation
suffix", which allows you to define the extension of the generated files. Enter the
following values:

+ "Name" attribute: "Java generation suffix"
¢ "Type" attribute: "String"
¢ "Group" attribute: "Java product parameters"

3-8 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator
Creating note types

Creating a note type

We are going to define a note type used to enter Java code on J methods. This
note type will only be accessible for the "Operation" metaclass.

In the "default#external#Code#Java" UML profile, create a reference to the
"Operation" metaclass.

For this reference, create the "JavaCode" note type.

Enluﬂl:lnprlnu.-'llhll Profle Butldes

Eiw Edt Took Tazt - 2

B EFW & SB g - o~

]| Obpecimeng S
W 5B defouk

h"
IR B miena

r ":‘-@ axlaina

. | El'ﬁ Cioate
- _lﬁ & H
P Y =] E _;ﬂ:d

=
e L Y

W Java ge ation path

Opsstion

()

Dhagrasn Mane: |

Figure 3-3. Creating the "JavaCode" text type

Objecteering/UML Profile Builder User Guide 3-9

Chapter 3: First Steps: Building a generator

Steps:

1 - Select the "Operation" metaclass reference.

2 - Click on the 3 "Create a type of note" button.
3 - Enter the "JavaCode" name for the note type.

Confirm by clicking outside the note type zone. If you press return, another note
type will be created, through the continuous data entry mode.

3-10 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

Creating tagged value types

Types of tagged values

Since the "Java" UML profile inherits from the "Code" UML profile, the following
tagged values are available for Java:

The ... tagged on the is used to ...
value ...metaclass
{nocode} Attribute generate nothing for attributes annotated with

this tagged value

{nocode} Class generate nothing for classes annotated with

this tagged value

{nocode} Operation generate nothing for operations annotated with

this tagged value

{nocode} AssociationEnd generate nothing for associations annotated

with this tagged value

{nocode} Package generate nothing for packages annotated with

this tagged value

Creating a type of tagged value

The Java code generator will suggest that you use the {synchronized} tagged
value on all the methods. This tagged value will allow you to automatically
generate the "synchronized" keyword, which will be the header of the methods
that will own it.

In the "Operation" metaclass reference, create the {synchronized} tagged value

type, by clicking on the 1l "Create a tagged value type" icon and entering the
following values:

¢

¢
¢
¢

"Name": "synchronized"
"Number of parameters": 0
"Qualified": "FALSE"

"Inclusion in the signature": "FALSE"

Objecteering/UML Profile Builder User Guide 3-11

Chapter 3: First Steps: Building a generator

Creating J attributes

Creating J attributes

So as to keep generation information accessible in any context, we are now going
to create three J attributes.

In the "default#external#Code#Java" UML profile, create an "Object" metaclass
reference.

For this reference, create the "Java_OriginPath", "JavaOriginSuffix" and
"OriginName" attributes, by clicking on the e "Create a J attribute" icon.

The ... J attribute allows you to retain ...
JavaOriginPath the generation path value
JavaOriginSuffix the extension value
OriginName the associated modeling element

T Aldlibule

Propsiies Tagged vahms Hiosss |

Hll'-ll-.l-:--a'.lr;l\-"-alr

Wity
[Pubiic [
[Clasz

|Hl|||.| :I
[~ Sai

Indl m' Bilsrd: dhm iritisl v Fid

QF. Lloss Help

Figure 3-4. J Attribute dialog box

3-12 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

The "JavaOriginPath" attribute

Create the "JavaOriginPath" attribute, by entering the following values:

¢ Inthe "Name" field, enter "JavaOriginPath".
¢ In the "Visibility" field, enter "Public".

¢ Inthe "Class" field, enter "String".

¢ In the "Set" field, enter "FALSE".

¢ In the "Initial value" field, enter nothing.

The "JavaOriginSuffix" attribute

Create the "JavaOriginSuffix" attribute, by entering the following values:

¢ Inthe "Name" field, enter "JavaOriginSuffix".
¢ In the "Visibility" field, enter "Public".

¢ Inthe "Class" field, enter "String".

¢ In the "Set" field, enter "FALSE".

¢ In the "Initial value" field, enter nothing.

The "OriginName" attribute
Create the "OriginName" attribute, by entering the following values:
¢ Inthe "Name" field, enter "OriginName".
¢ In the "Visibility" field, enter "Public".
¢ Inthe "Class" field, enter "String".
¢ In the "Set" field, enter "FALSE".
.

In the "Initial value" field, enter nothing.

Objecteering/UML Profile Builder User Guide

3-13

Chapter 3: First Steps: Building a generator

Creating a generation work product

Creating a work product

In the "default#external#Code#Java" UML profile, create the "JavaProduct"
generation work product, by clicking on the % "Create a product" icon.

E Wioak prodwct

Fiopetes | Tagged valuss

Hdﬂ|

Mame [| svaProduct

Lﬂl.la'.la gereration work product

Hsdp hﬂh[ﬂmﬂ.ﬂ &) &va gensshon motk peoduct

5IHuhu|ﬁ.-Iring ol aea geneaton work poduct ard admiristiation of S gererated fle:

Bimap r'lelTlIll =0_product

Modal slermer concared
- Bachor - + Package
Bggocshork nd il + Llasd [l
- Dbt
Collsboraton id
- Componsnt —_—
DataTypa
- E e ahion
- Hioade

B) _hemea | b
o | e | e |

Figure 3-5. Work product dialog box

3-14 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

Enter the following values:

+ In the "Name" field, enter "JavaProduct".

¢ Inthe "Label" field, enter "Java generation work product".

+ Inthe "Help bubble" field, enter "Create a Java generation work product”.
.

In the "Status bar" field, enter "Adding a Java generation work product and
administration of the files generated".

<>

In the "Bitmap name" field, enter "eo_product".
+ In the "Modeling element concerned" field, enter "Package", "Class".

Creating parameters

Parameters are created for UML profiles and used by attributes, which are, in turn,

created on generation work products. In the "default#external#Code#Java" UML

profile, create the "Java generation path" and "Java generation suffix" parameters,
+

both of String type, by clicking on the _'ﬁ% "Create a parameter" icon and defining
the data entry fields in the dialog box which then appears.

Objecteering/UML Profile Builder User Guide 3-15

Chapter 3: First Steps: Building a generator

Creating attributes

In the "JavaProduct" generation work product, create the "path" attribute, by

clicking on the |£I "Create a meta-attribute" icon, which will allow you to enter
the Java generation path (directory where the generated files will be stored). The
suffix generation default value, displayed when the work product's dialog box
opens, will be retrieved through the parameter defined for the module.

E"-’u"l.'-lk. product alinbula

Fiopates | Tagoed valuss | Holes

H-u'rrul palh

L-H:dl gereration path

Type

| Sl ll
Diefaidh wabis

|.u'.-'a|gmer5'.l:ln stk =l

|:m oo | bep |

Figure 3-6. Meta-attribute dialog box

Enter the following values:

¢

¢
¢
¢

3-16

In the "Name" field, enter "path".

In the "Label" field, enter "generation path".

In the "Type" field, enter "String".

In the "Default value" field, enter "Java generation path".

Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

In the "JavaProduct" generation work product, create the "suffix" attribute, which
will allow you to enter the generated Java files suffix. The default path value,
displayed when the work product's dialog box opens, will be retrieved through the
parameter defined for the module.

Enter the following values for the "suffix" attribute:

+ In the "Name" field, enter "suffix".

¢ Inthe "Label" field, enter "generation suffix".

¢ Inthe "Type" field, enter "String".

¢ In the "Default value" field, enter "Java generation suffix".

Objecteering/UML Profile Builder User Guide 3-17

Chapter 3: First Steps: Building a generator

Creating J methods

Creating J methods for the code generation
The following J methods allow you to generate Java code from the model.

In the "default#external#Code#Java" UML profile, first create the "Attribute",
"Class", "Package" and "JavaProduct" metaclass references.

The ... J method on the ... is used to ...
metaclass
generate () return String Attribute generate the attribute.
getType () return String Attribute get back the attribute type.
generate () Class generate the Java code for the class.
generate () Package recursively generate the Java code for its
classes and those of its sub-packages.
generate () JavaProduct launch Java code generation.
getCode () return String Operation generate the method body.
generate () return String Operation generate the method (only the methods

without parameters or without return
parameters are generated) .

3-18 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

Certain J methods contain return parameters. To create a return parameter,
select the method concerned and click on the 7% "Add a return parameter” icon.

E A etum parameler

Plnu*elHn:tu|Tamdw|Lm|

Clazz

V] Sl ;I
<Honer =
Mgehnnt e g
BuchionS tate

BctialyDiagiam

BootwhGraph

BeotivilyS e :I

— Llaze Help

Figure 3-7. Adding a return parameter to a J method

Steps:
1 - Select a class.
2 - Confirm.

Objecteering/UML Profile Builder User Guide 3-19

Chapter 3: First Steps: Building a generator

Creating J methods for managing work products

The ... J method on the ... is called on the updateGraph
metaclass method...

initProduct (Product : in JavaProduct when the current work product is

MpGenProduct) created from a parent product.

update (Product : in JavaProduct when the current work product or

MpGenProduct) associated modeling element has
been modified.

mustPropagate () return JavaProduct to allow the generation work products

boolean to spread to the sub-packages and
classes.

isPresent (Product : in JavaProduct to avoid creating several similar work

MpGenProduct) return boolean products on the same model element

while they spread. This method
allows you to define the criteria for
creating work products.

3-20 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

Warning!
Certain J methods contain parameters. To create a parameter, select the method
concerned and click on the “F "Add a Parameter" icon.

Propastizs Tagged sahae: | Mches |
1 —r'-lm|='-:-:i..:l
Faramebel pagang moce
2 ——|F " okl ok
Class
& | MplenFhoduc: R |
[Se=t
4 —— I Clos= Help I

Figure 3-8. Adding a parameter to a J method

Steps:

1 - Enter the parameter name.
2 - Select a passing mode.

3 - Choose the class.

4 - Confirm.

Objecteering/UML Profile Builder User Guide 3-21

Chapter 3: First Steps: Building a generator

Creating the visualization J methods

The ... J method | onthe ... is used to ...

metaclass
visualize () JavaProduct visualize the file generated by an internal editor.
edit () JavaProduct edit the file generated by an external editor.
getldLineComment () | JavaProduct return the characters placed in front of the
return String identifiers and kept in the generated file.

Creating J methods for managing the module

The ... J method | onthe ... is called ...

metaclass
modulelnstall () Object when the module is installed.
moduleUninstall () Object when the module is uninstalled.

3-22 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

Implementing J methods

Run the "Edit the J code" command on the Java UML profile as shown in Figure
3-9.

Fe E® Took Tew z
BEF® 1B a o

=] Dbwcieang Siw
5 =y ceimi
"E Elh iana B irpiaci. it - Feedmpad
£ Cae Fie E& Geach Heo
= | - e — 5]
'F? _' b, £ prol il dedsultme=Liraal ICEEallana
) - String Dperation: :qeECode])
fromarn.. ¥
darvl {
[E%] A4 START OF MODIF IABLE SOMEE0ES [DENS0T6E0
Ll
T —
ragran; |'bl'll| 4 EMD OF HODIFIRBLE ZDMEROAEIMEAADIGENTE
il |

Figure 3-9. Editing the J code

Steps:

1 - Click on the "Java" UML profile using the right mouse-button.

2 - Select the "Edit J code" option from the context menu which appears.
3 - Enter the zone that can be modified.

Objecteering/UML Profile Builder User Guide 3-23

Chapter 3: First Steps: Building a generator

The "JavaProduct::generate ()* method

This method allows the generation of Java code from the generation work product.
It consists of generating the modeling element code referenced by the work
product (calling of the generate method). All open visualizers are updated after
generation.

Voi d JavaProduct::generate ()

{
/1 Java code generation
O i gi nMobdel El ement . <generate();

/1 updating of all the visualizers
updat eAl | Edi tors();
} /1 method generate

The "Package::generate ()" method

This method allows the generation of Java code from a package. It consists of
executing the "generate" method on packages and their packages.

Voi d Package:: generate ()
{

/1 displaying a nessage in the console
StdQut.wite ("Generation of the package ", Nane, NL);

/1 generation of the packages of the current package.
OmnedEl emrent Package. <generate();

/1 generation of the classes of the current package.
OmnedEl emrent Gl ass. <generate();

}

3-24 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

The "Class::generate ()" method

This method allows the generation of Java code from a class. It consists of
generating the class header, attributes and methods, saving the generated files
and allowing it be administrated by the work product referenced by the class.

Void C ass::generate ()

{
String content;
MpGenPr oduct genProduct ;
String fil eName;

/1 displaying a nessage in the console
StdQut.wite (Nane, " : ");

/1 generation of a comment at the beginning of the class
/1 this part of code cannot be nodified
content.strcat (idGen ());

content.strcat ("// -------------m--- ", NL);
content.strcat ("// Class ", Nane, NL);
content.strcat ("// -------------mmoo- ", NL);

content.strcat (idEnd ());

/1 generation of the class
/1 this part of code can be nodified
/1 thanks to a dial og box
content.strcat (idBox ());
content.strcat ("class ", Name, NL);
content.strcat (idEnd ());

/1 generation of the opening bracket

/1 this part of code cannot be nodified
content.strcat (idGen ());
content.strcat ("{", NL);

content.strcat (idEnd ());

/1 generation of the class attributes
PartAttribute

{
}

-- generation of the class nethods
Part Qperation

{
}

content.strcat(generate());

content.strcat(generate());

Objecteering/UML Profile Builder User Guide 3-25

Chapter 3: First Steps: Building a generator

/1 generation of the closing bracket

/1 this part of code cannot be nodified
content.strcat (idGen ());
content.strcat ("}", NL);
content.strcat (ideEnd ());

/1 displaying a nessage in the console
StdQut.wite ("generate", NL);

/'l recapturing a class generation work product
genProduct = get AnyProduct ();

if (notVoid (genProduct))
{/l creation of the generated file path
fileNane.strcat (genProduct.getAttributeVal ("path"),
RS
Narre,

géni:’roduct .getAttributeVal ("suffix"));

/1 letting the file be managed by
/1 the class work product
genProduct. mgFile (fileNane, content);
}
el se
{StdQut.write ("The class ~"", Name, "~" has no Java
wor k product”, NL);}
} /1 method generate

3-26 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

The "Operation::generate ()" method

This method is used to generate a method if the operation is not annotated
"nocode" and if it has no in/out parameters or return parameters. It consists of
adding the keyword "synchronized" if the method has the {synchronized} tagged
value, and retrieving the text to be entered in the method body.

String Operation::generate ()

if (isTaggedVval ue ("nocode") == false) {
/1 only nethods without parameters should be generated
if ((IOParaneter.card() == 0) & (! (notVoid
(ReturnParameter))))

/1 generation of the nethod

/1 this part of code can be nodified
/1 thanks to a dial og box
return.strcat (idBox ());

return.strcat (Tab);

/1 adding the word "synchroni zed" if the tagged

/1 value is positioned

if (isTaggedVal ue ("synchronized")) {
return.strcat ("synchronized ");

}

return.strcat ("void ", Nane, "()", NL);
return.strcat (idEnd ());

/1 addi ng of the opening bracket

/1 this part of code cannot be nodified
return.strcat (idGen ());

return.strcat ("{", NL);

return.strcat (idEnd ());

/1 generation of the method inplenmentation
return.strcat(getCode ());

/1 addi ng of the closing bracket

/1 this part of code cannot be nodified
return.strcat (idGen ());

return.strcat ("}", NL);

return.strcat (idend ());

}

} /1 method generate

Objecteering/UML Profile Builder User Guide 3-27

Chapter 3: First Steps: Building a generator

The "Operation::getCode ()" method

This method allows you to retrieve method body code. It returns the
concatenation of all the "JavaCode" text types defined on the current method.

String Operation::getCode ()
{

/1 recapturing the content of all
/1 the "JavaCode" notes
Descri pt or Not e. <sel ect (Model Not eType. Nane == "JavaCode")
{
/1 generation of the content
/1 this part of code can be nodified
/1 by the external editor
return.strcat (idTxt ());
return.strcat (Tab, Tab, Content, NL);
return.strcat (idend ());

}

/1 1f there is no "JavaCode" note
/1 on the Operation, then markers are inserted
/1 allowing the autormatic creation this type of
/1 text after external edition of the generated file
if (return =="")
return.strcat (marker ("Descriptor", "JavaCode"));

}
} /1 method get Code

The "Attribute::generate ()" method

This method is used to generate an attribute. It returns a string containing the
attribute's type and name.

String Attribute::generate ()
{
/1 generation of the current attribute
/1 this part of code can be nodified thanks to a dial og
box
return.strcat (idBox ());
return.strcat (Tab, getType (), " ", Name, ";", NL);
return.strcat (idEnd ());
} /1 method generate

3-28 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

The "Attribute::getType ()" method

This method allows you to retrieve an attribute's type. It returns a string according
to the type defined in the model.

String Attribute::getType ()

{
/1 returns the type of a Java attribute according to
/1 the nodel ed type
TypeGener al C ass

if (Nane == "integer")
return = "int";

else if (Nane == "real")
return = "float";

else if (Nane == "String")
return = "String";

el se

return = Nane;

}
} /1 nmethod get Type

Objecteering/UML Profile Builder User Guide 3-29

Chapter 3: First Steps: Building a generator

The "JavaProduct::initProduct ()" method

This method allows a new work product to be updated in relation to its parent. It
consists of defining the name, suffix and path of the current work product
according to the values of the "parent" work product. This method will be called
on the Java generation work product of a package, with the package that contains
it when generation is run.

Voi d JavaProduct: :initProduct (in MGenProduct Product)
{

String Product Nane;

String Suffix;

String Path;

/1 start of a session
sessi onBegi n ("Propagate", true);

if (notVoid (Product)) {
/1 getting back the values of the father work product.
Product Nane = Product. Nane;
Pat h Product. getAttri buteval ("path");
Suf fix Product.getAttributevVal ("suffix");

/1 initialization of the current work product
set Nane (Product Nane) ;

set Attributeval ("path", Path);

set Attributeval ("suffix", Suffix);

}

/1 end of the "Propagate" session
sessionEnd ();
} /1 method initProduct

3-30 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

The "JavaProduct::update ()" method

This method is used to update a work product in relation to its parent. It consists
of destroying all the files generated by the work product. This method will be
called on the work product associated to a package when the package that
contains it, or the work product itself, is modified.

Voi d JavaProduct::update (in MpGenProduct Product)
{

String Product Nane;

String Suffix;

String Path;

/Il start of a session
sessionBegi n ("Propagate", true);

if (notVoid (Product)) {
/1 getting the values of the parent work product.
Pr oduct Name = Product . Nane;
Pat h Product.getAttri buteval ("path");
Suf fi x Product.get Attri buteval ("suffix");

/1 initialization of the current work product
set Nane (Product Nane) ;

setAttributeVal ("path", Path);
setAttributeVal ("suffix", Suffix);

}

/1 deletion of all the files managed by the work product
deleteAllFiles ();

/1 end of the "Propagate" session

sessionEnd ();
} /1 method update

Objecteering/UML Profile Builder User Guide 3-31

Chapter 3: First Steps: Building a generator

The "JavaProduct::mustPropagate ()" method

This method is used to indicate how the work product must propagate the child
model elements. It returns the "true" value, whatever the modeling element linked
to the current work product. The work product therefore propagates to all the
packages and classes contained in the modeling element linked to the work
product.

Bool ean JavaPr oduct : : nust Propagate ()

/'l the propagation is carried out for any nodeling
el ement
/1 that is associated to the current work product
/1 A simlar work product will therefore be built for all
/1 the packages && cl asses
return = true;
} /1 method nust Propagate

The "JavaProduct::isPresent" method

This method is used to filter the work product's propagation to the child model
elements. It consists of preventing a "JavaProduct" work product from being
created on a model element that already has one.

bool ean JavaProduct::isPresent (in MGenProduct Product)
{
/1 prevents fromhaving a work product of the same type
/1 on a nodeling el ement that woul d be of
/'l package or class type
if (Product.d assOf == C assOr)
return = true;
el se
return = fal se;
} /1 method isPresent

3-32 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

The "JavaProduct::visualize " method

This method is used to display a file managed by the current work product through
a visualizer.
Voi d JavaProduct: :visualize ()

String fil eName;

/1 construction of the conplete path
fileName.strcat (getAttributeval ("path"),
ll\ll’
Oi gi nMbdel El ement . Nane,

gétAttri buteval ("suffix"));

/1 message display in the console
StdQut.wite ("Visualization of the file ", fileNang,

NL) ;

/1 internal visualization of the generated file
i ntVisuFileNane (fil eNane);
/'l method visualize

}
Note: Please note that for Linux and Unix, you should use "/" instead of "\" (for
this method and the following method).

Objecteering/UML Profile Builder User Guide 3-33

Chapter 3: First Steps: Building a generator

The "JavaProduct::edit" method

This method is used to edit a file managed by the current work product in an
external editor.

Voi d JavaProduct::edit ()

{
String fil eName;

/1 construction of the conplete path
fileName.strcat (getAttributeVval ("path"),
ll\ll’
Oi gi nMbdel El ement . Nane,

gétAttri buteval ("suffix"));

/1 message display in the console
StdQut.wite ("File edition", fileName, NL);

/1 external edit of the generated file
ext Edi t Fi | eName(fil eNane);
} /1 method edit

The "JavaProduct::getldLineComment " method
This method returns the characters generated before the markers.
String JavaProduct:: getldLi neConment ()

{
return = "// ",
} /1 method getl dLi neComment

The "Object::modulelnstall" method
void Ooject::nmodul el nstall ()

{

/'l message display in the console
StdQut.wite ("Installation of Java nodul e", NL);
} /1 methode nodul el nstall

3-34 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

The "Object::moduleUninstall" method
voi d oj ect:: nmodul eUni nstall ()

{

/1 message display in the console

StdQut.wite ("Uninstalling the Java nodule ", Name, NL);
} /1 method nodul eUni nstal |

Objecteering/UML Profile Builder User Guide 3-35

Chapter 3: First Steps: Building a generator

Creating a module

Creating the Java module

In the "JavaProfilingProject” UML profiling project, create the "Java" module. This
module must reference the "default#external#Code#Java" UML profile. (Parent
UML profiles are automatically referenced).

The ... field has the ... value
Name "ModuleJava"
Label "Java code generator"

Working directory

This field is left blank. (If the "Working directory" field is
left blank, then the working directory is
$OBJIING_PATH/modules/<ModuleName>/<Version>.
Otherwise, the user may specify the working directory
of his choice.)

Number of major version

"

Number of minor version

"o

Release information

This field is left blank.

Minimum binary version
compatibility

This field is left blank.

Mask parents

"FALSE"

3-36

Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

Creating commands

Overview

In the Java module, we are going to create the following three commands:

The ... command is used to ...

Generate run the generation of the Java code.
Visualize the class visualize the generated file.

Edit the class edit the generated file.

The "Generate" command

To create the "Generate" command, enter the following values:

¢
¢
¢
¢
¢
¢

In the "Name" field, enter "generate".

In the "Label" field, enter "Generate".

In the "Can be activated in edition mode" field, enter "TRUE".

In the "Can be activated in consulting mode" field, enter "TRUE".

In the "Running UML profile" field, enter "default#external#Code#Java".

In the "J method" field, enter
"JavaProduct:default#external#Code#Java#generate ".

Objecteering/UML Profile Builder User Guide 3-37

Chapter 3: First Steps: Building a generator

The "Visualize the class" command

To create the "Visualize the class" command, enter the following values:

* & 6 o o o

In the "Name" field, enter "visualize".
In the "Label" field, enter "Visualize the class".
In the "Can be activated in edition mode" field, enter "TRUE".

In the "Can be activated in consulting mode™" field, enter "TRUE".

In the "Running UML profile" field, enter "default#external#Code#Java".

In the "J method" field,
"JavaProduct:default#external#Code#Java#visualize".

The "Edit the class" command

To create the "Edit the class" command, enter the following values:

* & & o o o

In the "Name" field, enter "edit".
In the "Label" field, enter "Edit the class".
In the "Can be activated in edition mode" field, enter "TRUE".

In the "Can be activated in consulting mode" field, enter "TRUE".

In the "Running UML profile" field, enter "default#external#Code#Java".

enter

In the "J method" field, enter "JavaProduct:default#external#Code#Javat#edit".

3-38

Objecteering/UML Profile Builder User Guide

Configuring a module

Chapter 3: First Steps: Building a generator

Default values

We are now going to change the configuration of your UML profiling project. For
the "JavaModule" module, modify the default values of the module parameters.

The ... parameter

of the ... group

has the ... value

Generate the identifiers

External edition

"FALSE"

Command for invoking
external editor

External edition

"vi" for unix
"notepad" for windows

Java generation path

Java product
parameters

"$(GenRoot)/work" for Unix
"$(GenRoot)\work" for Windows

Java generation suffix

Java product
parameters

"java"

Objecteering/UML Profile Builder User Guide

3-39

Chapter 3: First Steps: Building a generator

Testing a module

Testing the UML profiling project

Objecteering/UML Profile Builder allows you to test the modifications made to the
UML profiling project in real time, without having to start Objecteering/UML again.

For this, tests are carried out from a test project explorer.

3-40 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

Creating a test project

To create a test project to test the module you have just developed, carry out the
steps illustrated in Figure 3-10 below.

Ellhp:-rleefing-'lJHL Prafile Duilder - JavalFiofi

Els Eclt ook | Tegt 2
Eslacl 5 besl project
Lingmbact & bacd picpct..
IED 1
== T Disleie &t pogeel.,
@ El S Mo
ﬂ BBy des: Eaaplonst B Create a teat project
| les! prog
ﬂ =] E TpG et propct Test profct rams
?' 'ﬁ- - 82 Coge . avaModdeT estProject
o &= [
5 SR Ok Capcel
x |_% Objact
.+. EE AT
Figure 3-10. Creating a test project for your newly created Java generator
Steps:

1 - Click on the "Test" menu and run the "Create a test project..." command. The
"Create a test project” window then appears.

2 - In the "Test project name" field, enter the name of your new test project.
3 - Click on "OK" to confirm.

The newly created test project then appears in an explorer. The "ModuleJava"
module you have just created is automatically selected for this test project.

Inside this test project, create a simple model (packages, classes, operations, and
S0 on).

For further information on test projects, please refer to chapter 8, "Test projects”,
of this user guide.

Objecteering/UML Profile Builder User Guide 3-41

Chapter 3: First Steps: Building a generator

Generating code

To generate Java code on your new test project using the "ModuleJava" module

you have just created, you must first create a generation work product, as shown
in Figure 3-11.

=2
Jarvabd cohube T estPiogect
-
o
@ E.‘-I'«l i fpEreErabinn sork poeduct
= Haame
-3 ,.’Jr |r-|5.-f':ir:nr:|.'|:nn'l.l-'n|l.P|m.r.l
r
i J-"' G slion: palh
| !
Stmpe bk
. EI .J'r | oy profechrod
Gereration suffis
Diagians: e | |'Mal
: o Cancel Help
Figure 3-11. Testing generation work product creation in your test project
Steps:

1 - In the test project explorer, select the element for which you wish to create a
generation work product, and then click on the generation work product icon in
the "ltems" tab of the properties editor.

2 - Enter the necessary information.
3 - Confirm by clicking on "OK".

After confirmation, your new generation work product appears in the "ltems" tab of
the properties editor.

3-42 Objecteering/UML Profile Builder User Guide

Chapter 3: First Steps: Building a generator

To launch Java code generation, simply carry out the steps shown in Figure 3-12.

Joarvald oduleT es1Project
i} [cxdify
. Conzuk
) [hadmta chaldien
Piopagehs
= sk
- Edit

Dusgiame: Ihems |

Figure 3-12. Testing Java code generation on your test project

Steps:

1- Select the newly created work product in the "ltems" tab of the properties
editor by right-clicking.

2 - Run the "Java code generator/Generate" command.
Java code generation is then run.

Visualizing and editing generated code

Complete these first steps by testing the "Visualize" and "Edit" commands on the
generated work product.

Objecteering/UML Profile Builder User Guide 3-43

Chapter 4: Using Objecteering/UML
Profile Builder

Chapter 4: Using Objecteering/UML Profile Builder
Launching Objecteering/UML Profile Builder

Launching the UML Profile Builder tool
The Objecteering/UML Profile Builder tool can be launched:
¢ by clicking on the UML Profile Builder icon in your desktop
+ by selecting "Start/Programs/Objecteering/Objecteering UML Profile Builder"
+ by typing the "objing -profiling" command or "objingprofile" in UNIX
Note: Please note that when UML Profile Builder is launched, the user cannot

work on UML modeling projects, and when the UML Modeler is launched,
the user cannot work on UML profiling projects.

Objecteering/UML Profile Builder User Guide 4-3

Chapter 4: Using Objecteering/UML Profile Builder

Creating or opening a UML profiling project

Creating a UML profiling project

Y rdverimpn 1 B i Bl

St ey ey e g e

ale & sl prabirg oo

Figure 4-1. Creating a UML profiling project

4-4 Objecteering/UML Profile Builder User Guide

Chapter 4: Using Objecteering/UML Profile Builder

Steps:

1- Click on the i'}' Objecteering/UML Profile Builder icon in your desktop. The
window shown in Figure 4-1 will then appear.

2 - Click on the "File/New" menu. The "Create a UML profiling project" window
will then open.

3 - In the "UML profiling project name" field, enter the name of the UML profiling
project which is to be created.

4 - In the "UML profiling project path" field, enter the path of the directory where

the new UML profiling project is to be created. You may also use the J
icon to open a file browser through which you can select your UML profiling
project path.

5 - Confirm by clicking on the "OK" button.

Note: Document templates are created by checking the "Document template
project” tickbox.

Objecteering/UML Profile Builder User Guide 4-5

Chapter 4: Using Objecteering/UML Profile Builder

Opening an existing UML profiling project

The procedure for opening an existing UML profiling project is very similar to the
procedure for creating a new UML profiling project. Simply carry out the following
steps:

1- Click on the Objecteering/lUML Profile Builder icon in your desktop. The
window shown in Figure 4-1 will then appear.

2 - Click on the "File/Open" menu. The "Open an existing UML profiling project"
window will then open.

3 - Double-click on the UML profiling project you wish to open. It will then
automatically open.

Note 1:1t is also possible to open an existing UML profiling project simply by
double-clicking on it in the explorer. This launches Objecteering/UML and
opens the UML profiling project you have selected.

Note: UML profiling projects may only be opened using the Objecteering/UML
Profile Builder tool, whilst UML modeling projects may only be opened
using the Objecteering/UML Modeler tool.

Receiving or upgrading UML profiling projects

As we have just seen, UML profiling projects can be opened simply by double-
clicking on the UML profiling project file either in the Windows explorer or in the
"Open an existing UML profiling project” window.

However, if you wish to work on a UML profiling project created on another user
site and/or using an earlier version of Objecteering/UML, the UML profiling project
has to be received and/or upgraded. For further information, please refer to the
"Receiving and upgrading UML profiling projects" section in the current chapter of
this user guide.

Saving your model context

It is possible to save your model context, which can be particularly useful when
opening an existing UML profiling project. For further details, please refer to the
"Saving your model context" section in chapter 3 of the Objecteering/UML Modeler
user guide.

4-6 Objecteering/UML Profile Builder User Guide

Chapter 4: Using Objecteering/UML Profile Builder

Receiving and upgrading UML profiling projects

Introduction

Objecteering/UML features a simplified UML profiling project reception and
upgrade procedure, thus ensuring backward compatibility and making
Objecteering/UML even easier for you to use.

If you wish to work on a UML profiling project either created on a different user site
or using an earlier version of Objecteering/UML, you can launch the reception
and/or upgrade procedures simply by:

¢ double-clicking on the UML profiling project in question in the Windows
explorer

¢ double-clicking on the UML profiling project in question in a file browser
available via the "Open an existing UML profiling project” window

Receiving a UML profiling project

There are four possible case scenarios with regard to the reception of UML
profiling projects:

+ the reception of a database which is not known to your site, but which exists in
the same version of Objecteering/lUML. In this case, you can choose to simply
receive the database in question on your site.

+ the reception of a database which is not known to your site, and which exists in
an earlier version, for example, the 4.3.2 version of Objecteering/UML. In this
case, you can choose to receive the database in question on your site, and
upgrade it from the previous version to the current version of
Objecteering/UML.

+ the reception of a database which is not known to your site, but which has the
same name as an existing database and which exists in the same version of
Objecteering/UML. In this case, you can choose to receive the database in
guestion on your site and rename it.

+ the reception of a database which is not known to your site, but which has the
same name as an existing database and which exists in an earlier version, for
example, the 4.3.2 version of Objecteering/UML. In this case, you can choose
to receive the database in question on your site, rename it and upgrade it from
the previous version to the current version of Objecteering/UML.

Objecteering/UML Profile Builder User Guide 4-7

Chapter 4: Using Objecteering/UML Profile Builder

In the example shown below (Figure 4-2), a simple reception operation is
demonstrated.

U hjecteerilhg

Solitwar

1

Figure 4-2. Receiving the "ProfilingProject" UML profiling project by double-clicking in the
Windows explorer

Steps:

1 - In the Windows explorer, position yourself in the directory containing the UML
profiling project you wish to use.

2 - Double-click on this UML profiling project file. A confirmation dialog box then
appears, asking you if you wish to receive the database of the UML profiling
project on your site.

3 - Click on the "OK" button to confirm the reception of the UML profiling project.

The reception procedure is then launched, and you can follow its progress in the
console. This process can take a few minutes. Once completed, the UML
profiling project is opened and is ready for use.

4-8 Objecteering/UML Profile Builder User Guide

Chapter 4: Using Objecteering/UML Profile Builder
Upgrading a UML profiling project
To upgrade a UML profiling project created on your site using, say, the 5.1.1

version of Objecteering/UML, simply carry out the steps below (shown in Figure
4-3).

W Dbjecteesing/UML Profile Bulde

LML profiirg proschs
LIKL Probirg®iopeci1 -
LIKL Frobleg el

LI Frof 13

[¥]

EI:'.'_.qlu m

[T Open a5 a document lemplale

The UMLP rofingd soibct projec i inveesion 5.1 1
Wiondd you Bk i upgrade § fo the 5 20 vetsion?

d
s

— Cancel

Figure 4-3. Upgrading a UML profiling project via the "Open an existing UML profiling project"
window

Objecteering/UML Profile Builder User Guide 4-9

Chapter 4: Using Objecteering/UML Profile Builder

Steps:

1 - Click on "File/Open". The "Open an existing UML profiling project" window will
then appear.

2 - Double-click on the UML profiling project you wish to upgrade. Please note
that UML profiling projects which have not yet been upgraded are listed in this
window with the message "to be migrated" shown after their name.

3 - A dialog box then appears, telling you which version the UML profiling project
is currently in, and asking you if you want to upgrade it. Click on the "OK"
button.

The upgrade procedure is then automatically launched, and you can follow its
progress in the console. This process can take a few minutes. Once completed,
the UML profiling project is opened and is ready for use.

Note: When a UML profiling project is upgraded from a previous version of
Objecteering/UML to the current version, the modules contained therein
are not upgraded. To upgrade modules, the module upgrade procedure
must be launched explicitly.

4-10 Objecteering/UML Profile Builder User Guide

Chapter 4: Using Objecteering/UML Profile Builder

The main window

Main window

After creating the new UML profiling project (as shown in Figure 4-1), the main
window (Figure 4-4) appears. The main window provides general services such
as saving a UML profiling project, importing models from other UML profiling
projects or managing other windows.

Elll'pl.'lrﬂ' e/ LI L Piofde Buildes

T——p® Edd Jook Tag iidio 2
@t AR o~
=]

3_..‘ a
B Cabculale] gt

- g detau
En|
Ml 1ML ProflrgPaciact
by
i
Diogeers. 1o
-
L

Figure 4-4. Main window for editing a UML profiling project

Objecteering/UML Profile Builder User Guide 4-11

Chapter 4: Using Objecteering/UML Profile Builder

Description:

1- Menu bar: this contains the "File", "Tools", "Test", "Views", "Edit" and
"Windows" menus.

2 - Tool bar: icons associated to certain elements in the menu bar appear here.

3 - Meta-explorer: the meta-explorer contains the UML profiling project, and is
used to browse the model and create and edit model elements.

4 - Properties editor: this box contains a number of tabs, each containing
information specific to a certain domain.

5 - Console: this contains operation traces, error messages and warnings.

6 - Status bar: this provides information complementary to that displayed by the
bubbles which appear over the tool's icons.

4-12 Objecteering/UML Profile Builder User Guide

Chapter 4: Using Objecteering/UML Profile Builder

The meta-explorer

Overview of the meta-explorer

The meta-explorer is a tool for editing:

* & & & o o o

¢

modules

UML profiles

J methods and J attributes

types of notes, types of tagged values and stereotypes
commands

module parameters

types of work products

generation or document templates

Several meta-explorers can be open at the same time, which can be useful for
browsing the different parts of a UML profiling project for example.

Objecteering/UML Profile Builder User Guide 4-13

Chapter 4: Using Objecteering/UML Profile Builder

Launching a meta-explorer

Meta-explorers are launched from the "Tools" menu in the main window. A meta-
explorer is automatically launched when the UML Profile Builder is started.

E Dhjecteening/ML Profile Builder

Ele Edit ook Tegt oo 2
[& :
— Eerfigu= ML piofiing peoject
Hulti LML profiling peojects
B Wl Calcuatbelmpact
BB defeut

E1- By intemal

-y eeemal

Bl (] Imgeact

o1 s =

MessLIMLFrofilrgFroject
5
i

Diagiane eme

Figure 4-5. Opening a meta-explorer

Steps:
1 - Select the "Meta-explorer..." option in the "Tools" menu.

4-14 Objecteering/UML Profile Builder User Guide

Chapter 4: Using Objecteering/UML Profile Builder
The meta-explorer

The icons which appear in the meta-explorer allow the creation of the different
structural elements of a UML profiling project, according to the selected element.
Here (Figure 4-6), only the creation of modules is possible. If you select a UML
profile, other elements can be created.

E Objectecning/UML Profile Bailkder

Fle Edi Jook Tegt ' ndsoc 7

Bl e » &a@m - o[
x| 5|

o DN

G- 8 Calculaelmpact
- B delaut

Figure 4-6. The meta-explorer

Objecteering/UML Profile Builder User Guide 4-15

Chapter 4: Using Objecteering/UML Profile Builder

Structural element creation icons in the meta-explorer

The icons shown in the table below are used to create structural elements in a

UML profiling project.

operation of a parent UML profile
and /or a parent metaclass

The ... button icon is used to ... in ..
Create a module % create a new module a UML profiling
project
Create a command ﬂ;: create a command a module
=
Create a child UML I—jlil create a child UML Profile a UML profile
Profile
Create a metaclass I? create a metaclass reference a UML profile
reference i
Create a parameter _+._J create a module parameter a UML profile
Create a work product g create a product a UML profile
xrxx
Create a document };3 create a document template a UML profile
template
Create a generation }, create a generation template a UML profile
template
Create a document ?;3 create a document item a document
item template
Create a generation ?, create a generation item a generation
item template
Create a J method ol create a J method a metaclass
reference

Redefine a J method il add to a referenced metaclass, a a metaclass

method which redefines an reference

4-16

Objecteering/UML Profile Builder User Guide

Chapter 4: Using Objecteering/UML Profile Builder

The ... button icon is used to ... in ..
Create a J attribute '&I create a class attribute a metaclass
reference, a
work product
Create a tagged value { } add a type of tagged value a metaclass
type reference, a
stereotype
Create a type of note k] create a note type a metaclass
reference, a
stereotype
Create a stereotype 2 create a stereotype a metaclass
reference
Add a parameter & F| add a parameter a J method
Add a return F'}} add a return parameter a J method
parameter
Add a constraint =k} add a constraint a stereotype

Objecteering/UML Profile Builder User Guide 4-17

Chapter 4: Using Objecteering/UML Profile Builder

The properties editor

Overview of the properties editor

The properties editor is a tool which contains a number of tabs, and which is used,
in Objecteering/UML Profile Builder, to:

annotate structural elements, through tagged values and notes
specialize modules

reference UML profiles

use UML profiles

select UML installation profiles

* & & o o o

create and redefine J methods

4-18 Objecteering/UML Profile Builder User Guide

Chapter 4: Using Objecteering/UML Profile Builder
The properties editor

The icons which appear in the "ltems" tab of the properties editor for a UML
profiling project allow the creation of the different terminal elements of a UML
profiling project, according to the selected element (as shown in Figure 4-7).

E‘I'Iht:r.lem'ing.-'lIHI Profile Builder

et [e FrclingPropct

-

Meta-explorer — G- B et

5 | i pompaca |
B B detar

Properties editor — A

Diesgain I |

Figure 4-7. The properties editor for a module

Objecteering/UML Profile Builder User Guide 4-19

Chapter 4: Using Objecteering/UML Profile Builder

Terminal element creation icons in the properties editor

The icons shown in the table below are used to create terminal elements in a UML
profiling project.

The ... button icon is used to ... in...

Add a note | a} add a note all elements

Associate a tagged { } associate a tagged value all elements

value

Specialize a module T specialize a module a module

Reference a UML = reference UML Profile of the a module

Profile current UML profiling project

Use a UML profile f==ly use a UML profile a module

Installing a UML profile 8 select the installation profile a module

Redefine a J method .N{EI add a parent method to a method | an operation
or replace the existing one.

4-20 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML
and Objecteering/UML

Chapter 5: Elements customizing UML and Objecteering/UML

Modules

Overview

% Modules are functional subsets, which are selected at UML modeling project
level. For example, a user can decide to use the C++ generation, Oracle
generation, and documentation generation modules. In this way, his UML
modeling project is configured to handle these specific targets:

¢
¢

¢

by providing the menus needed for each generator (notion of command)

by providing a tagged value system on the model, in order to specify the
characteristics of each part of the model (virtual method in C++, index for
Oracle, etc.)

by providing notes for each type of model element concerned by the target.
For example, a "description" note is provided for classes, to generate
documentation, and a C++ note is available for operations, to generate C++
code.

by making it possible to create work products in the properties editor.
Examples of work products are C++ code or documentation associated to a
class or a package.

by providing document templates, either for documentation or for code

UML encompasses the notion of extensibility mechanisms, which is supported
here.

Objecteering/UML Profile Builder User Guide 5-3

Chapter 5: Elements customizing UML and Objecteering/UML

Using modules

Overview

Modules are delivered as .prof files and are located in the
$OBJING_PATH/modules, which is created during installation.

During the installation procedure, the user can select which modules he wishes to
have installed on his site, simply by electing to carry out a "Custom" installation
(please see Figure 2-8 and 2-9 in the "Single station installation in Windows"
section in chapter 2 of the Objecteering/Introduction user guide) and by checking
the tickboxes of the relevant modules. Once Objecteering/UML installation is
complete, he simply has to select the module for the current UML modeling project
in the "Modules" window (shown in Figure 5-1).

Modules developed by users can also be externalized in a directory, using the
"Package" command, in order to be diffused to other sites. They must be installed
in a site, before being accessible to user UML modeling projects.

5-4 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Selecting modules in a UML modeling project

B Modules M=

.!w.:idi..- rracidiabes © Pl b s -
. :I:;'li-'l-:i-:-:';-'n" ! ﬂ G — Cepcaurnesrtabion V4, 3 -
ol VLI { A whrends / Tooks V1.0
[i VA J | Anakae Wizad V1.0
t IL#+ Lerershon =] | Impact shudy
tdava'viia
+ Design Palieans For Ce+ W12
L EEITI-:I'I'I:'
iDehge Palleens Foe Javayl 2 8 | o
il | ¥ 4 |®
ekl chponipion -
Impact study Desciphaon
[T Esap akbction s del sl
OF Carcel Helo

Figure 5-1. Window for selecting modules in Objecteering/UML

Modules are selected for a UML modeling project in the window shown above.
They may also be selected through the "Tools/Modules" menu in the menu bar.

Note: For payable modules which use floating licenses, licenses are necessary
at this stage.

Objecteering/UML Profile Builder User Guide 5-5

Chapter 5: Elements customizing UML and Objecteering/UML

Configuring modules

EI Hudil pivg Ciaslfagiii ol s

H e G dlin ucborn

B UL B odeks = Genarsa dbus scoary el hoss =
Irdadf e [(Genensts Sie00ie0n sosss mthody
[sguuara & dhexks prakoad by " "
[arsctonss
Formakzm [Garasts “cond™ for " sherents
UKL puildei Maree o e bysez s el dun pachags

B Covv aresabon Vi 5 [h.p,_-rw:_
[amsanat [T Compatisiéy hom saioaed 20
S ulfpat I Gersgts the psting recds lo pasanssies
LML profie:
Libwansy
Faachstaor apbon
Amacked ook
E whesmisl sl
MWFC

B Andbein Wisad v1.1
i

B [escursenlaten Vi 4 o
Dusciinessnson =]

oK. Capced Hedp

Figure 5-2. The "Modify configuration" window

In the Objecteering/UML Modeler tool, the "Modify configuration” menu allows the
user to modify the module's parameters, which will define important options for the
whole UML modeling project.

Objecteering/UML Profile Builder has been used to define these parameters, as
well as their default values.

Access from the J language

Module parameters have a value which can be accessed in J using the
getCurrentModuleParameterValue method.

5-6 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Commands

Overview

ﬂg Each module selected for a UML modeling project comes with a set of
commands, each represented by a pop-up menu item available for the elements
concerned (class, attribute, work product, etc). The selection of one of these
menu items activates a J method defined in Objecteering/UML Profile Builder.

Objecteering/UML Profile Builder User Guide 5-7

Chapter 5: Elements customizing UML and Objecteering/UML

Example

E‘II'-.'.'II mngfIML Profilen Budder
Ein Edil Miew Windows Took Teg 31

B8 LG8 -« @REEAS
= =

el [e
- G Cobuiainirmpact
e - TrpesEdior
BB delzit
<= - By rimnal
ty i By esieina

Vidakes i clids
Eil the class

Figure 5-3. Commands associated with the "Impact analysis module" on an impact relation

When the "Generate" context menu item is selected, the impact report generation
process is activated.

5-8 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Access from the J language

In Objecteering/lUML Profile Builder, each command is associated with a J
method. This J method has to be public, and cannot have parameters. The
metaclass it belongs to corresponds to the type of element on which the menu is
available (in Figure 5-3, the element concerned is "Class").

Objecteering/UML Profile Builder User Guide 5-9

Chapter 5: Elements customizing UML and Objecteering/UML

Tagged values

Overview

i Any model element can be annotated using tagged values. The purpose of
these tagged values is to bring a specific additional meaning to a model element.

For example, Objecteering/UML provides as standard the {primitive} tagged value,
used to designate primitive classes.

Objecteering/UML Profile Builder allows the definition of new tagged values, in
order to give model elements a meaning that is specific to a module. For
example, the {virtual} tagged value on an operation has a meaning for the C++

generator, whereas the {persistence} tagged value is used by the Oracle
generator.

5-10 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Example

Hl | g vabue
Fropertes
Difirition
| perasieice ﬂ
Paramster
d [+
Quabfien
|
| | oo her

Figure 5-4. Defining and visualizing tagged values (for example {persistence})

Tagged values are visible in the "ltem" tab of the properties editor and in editors
with the {tagged value} notation, and can be entered from graphic editors or the
properties editor.

Objecteering/UML Profile Builder User Guide 5-11

Chapter 5: Elements customizing UML and Objecteering/UML

Access from the J language

The Objecteering/UML metaclasses describe precisely how to access element
tagged values (see the Objecteering/Metamodel User Guide, more specifically the
"TaggedValue" and "TagType" metaclasses). In this way, for any element with a
tagged value ("ModelElement" metaclass), the following J example lists the names
of the associated tagged values:

TagTaggedVal ue

StdQut.wite(DefinitionTagType. Name, NL);
}

5-12 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Notes

Overview

(3 Models entered in Objecteering/UML can be completed by text descriptions,
which have a specific meaning for a specific module. These texts are, for
example, descriptive texts used for documentation ("description”) or C++ code
used to implement a method ("C++"). Objecteering/UML Profile Builder allows you
to define note types, aimed at providing new families of descriptions for new
modules (for example, Java code, review descriptions, etc.).

Objecteering/UML Profile Builder User Guide 5-13

Chapter 5: Elements customizing UML and Objecteering/UML

Example
B Otiecteoing/UML Madeler
B E& Lo Jeds 7
PEW &t aBae -~ EEOMEH
L
= [BE ot
"— N g-
m Claet]
E] Clam2
- Erh-n:
Class Propeaybeg | Tagped vaiuss |
d ey Tipe
. £ f cormeent =)
e Cordents
: o
i
’ T oz Hel
Figure 5-5. Example of entering a note for a class
Steps:

1 - Select the "Class" class.

2 - Create a note in this class in the "Items" tab of the properties editor.
3 - Choose the "comment” type from the scrolling list.

4 - Enter the text in the field.

5 - Confirm by clicking on the "OK" button.

5-14 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Access from the J language

The Objecteering/lUML metamodel describes precisely how to access the
descriptions of an element. In this way, for any element with a note
("ModelElement" metaclass), the following J example displays the content of the
note named "description":

Descri pt or Not e. <sel ect (Model Not eType. Nane = "descri ption")

{
StdQut.wite(Content, NL)
}

Objecteering/UML Profile Builder User Guide 5-15

Chapter 5: Elements customizing UML and Objecteering/UML

Stereotypes

Overview

¥ The UML defines stereotypes, which are used to extend the semantics of
UML model elements. Stereotypes can have associated icons and are annotated
<<Stereotype name>>. Objecteering/UML Profile Builder allows the creation of
new stereotypes in UML profiles, related to metaclasses, which have a name and
an associated icon.

5-16 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Example
In this example, the <<interface>> stereotype is associated to the "Class" class.

Eie Edil Mew [rsph “Windows Iook T

NS0 s adg «n EEOMAHESS
x| 4

(P

E E Mapd i a8 Llass dhagia
1 D
|‘ Frrm— |
Class Brcrsbbe slert
W g patter
E B implementshonTisss
{}
3 H B metaclans
£l poces
T
5 S Sy
-
Diagrarms Ilaru@
— ek Cose Ca Hielp

Figure 5-6. Creating a stereotype on a class

Objecteering/UML Profile Builder User Guide 5-17

Chapter 5: Elements customizing UML and Objecteering/UML

Steps:

1 - Select the "C1" class in the explorer.

2 - Click on the ®¥ "Associate a stereotype" icon in the "ltem" tab of the
properties editor.

3 - Select a stereotype from the list.

4 - click on the "Apply" button.

The stereotype then appears in the "Item" tab.

Access from the J language

The Objecteering/UML metamodel describes exactly how to access an element's
stereotypes. In this way, for any element with a stereotype ("ModelElement"
metaclass), the following J example displays the name of this stereotype.

Ext ensi onSt er eot ype

{
StdQut.wite (Nane, NL);
}

5-18 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Document and generation templates

Overview

ﬁ ("Create a document template") and h ("Create a generation template")
Document templates and generation templates are high level mechanisms used to
describe the structure of a "target" (documentation, source code). They are made
up of a hierarchy of document items or generation items. A specific editor is
provided for templates, and mechanisms are provided to allow code to be easily
generated.

Objecteering/UML Profile Builder User Guide 5-19

Chapter 5: Elements customizing UML and Objecteering/UML

Example

El.llu:'. leermp /LML Frolile Huikde
Fla Ect Took Teg ol 7

L L E IR ==

: =
N 4]
|| =t
| - S Packageare
|| T4 Impoa
[| - HesdeTes
[| Ty ClansHeade
| - g Clsssfody
: : ?f Iriiveal Ly s
| | - g DiataTypes
| -7 Erusmsliors
[| T BolionT e =
rF
JwsClaze
(5
{1
Disgrams hens |

Figure 5-7. Java generation template

Java sources have a predefined structure (class declaration, method declaration,
method implementation, etc), expressed in detail by this template. Java code
generation is customized simply by editing this template.

5-20 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Access from the J language

Document items and generation items provide connections to J methods, from
which J processing can begin. Document templates are supported by a "template
engine”, which follows the template structure and connects to the related J
methods.

+ Connect a generation template to a generation work product ("MyTemplate"):

String name="M/Tenpl ate";
initTenpl ate (nane);

¢ Launch generation of a generation work product driven by a template:

String result;
resul t =generateWthTenplate ();

This code is valid in the context of generation work products, in a J method which
includes a generation work product.

Objecteering/UML Profile Builder User Guide 5-21

Chapter 5: Elements customizing UML and Objecteering/UML

Work products

Overview

Ei E E Work products represent external elements, generated by
modules. Typically, these external elements are files, for example, C++ generated
sources, production processes, binaries, documentation, and so on. Work
products are represented by specific creation icons. Each work product has its
own dialog box.

Objecteering/UML Profile Builder can be used to define new types of work
products, and to associate icons, commands and attributes present in the work
product's dialog box.

5-22 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Example: "Java" work product

In this example, the user has created a Java work product in the "Java" tab of the
properties editor. This work product represents Java sources generated for a
class or a package.

Ei:lmm.tl:elmq."l]hll M pedeler

Fdo Ect wiivo Took 2

BEE |y aBa oo BOTE S @,
-]

Eﬂmﬁmm
- - S
E-E Clazz]
—E Oass2

| C:WPiojclsjereasic
Complation path
| C:WProclshjarsatdass

) ok Carcel Help

Figure 5-8. Creating a "Java" generation work product

Objecteering/UML Profile Builder User Guide 5-23

Chapter 5: Elements customizing UML and Objecteering/UML
Steps:

1 - Select the "Class" class in the explorer.

2 - Click on the Ei'Create a Java work product” button in the "ltems" tab of the
properties editor.
3 - Enter the name of the work product.

4 - Confirm.

Access from the J language

The Objecteering/The J Language user guide supplies a set of primitives which
allow you to use and manage work products ("MPGenProduct" metaclass).

5-24 Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

Other customizable services

Overview

The J language supplies a set of tools to create additional services linked to
modules. These consist, for example, of dialog boxes, external text editors added
to the model, model transformation services, undo/redo operations on persistent
transformation services, and so on.

Objecteering/UML Profile Builder User Guide 5-25

Chapter 5: Elements customizing UML and Objecteering/UML

External text entry: Example

The following example shows the editing of J method bodies from the "Impact”
UML profile in Objecteering/UML Profile Builder.

i s o i, P

DSW oM a»

L B S o A
i Ol et
oW Taefion
= B el

m‘h reweg

— = s

2
)
e
&
H rn‘!‘in-p--
—
mﬂﬂ:u bt

A proflle defaultelegpet
i

veld Dlamu: -Frinl lmpack {]
1

S wERRaTR L
£ SUAKET OF MDIF IBELE 20HER0E) DS ST HaEea T v12ERR 2
Jf EHD OBF MOBIFIABLE 2 DSEmB a0 Do s P sy SEae 2 ns

A Bescripties ;
AF SEART I WDIETEELE FHDSEA 11081 A TRREEA T G 1S EIR T
JF M0 BF MODIFIADLE 7 OSURNI0IE DO i B b0 | PR = 2

A Ciile 2
A START DF WADIF [edLE TOHESOE.JIDEaTHRaiaT PizEba
Ebeleg remalk
Strimg Hexzagel
Strisg vessages
Strimg Hessaged
Strimg Hesnagea

L | 1]

“thr Arir clawvaFys @@ z ™)
“the child classes are © “]
“the Lisged classes are 7§

“the sethnd paraseber clawses are
-

Figure 5-9. External text entry

Steps:

1 - Click on the "Impact" UML profile with the right mouse-button.
2 - Select the "Edit J code" option.
3 - Enter the text in the "Impact” window.

Note: The command for external edition can be customized. You can select

"emacs",

5-26

notepad", or another editor.

Objecteering/UML Profile Builder User Guide

Chapter 5: Elements customizing UML and Objecteering/UML

J dialog box: Example

J provides primitives to create simple dialog boxes, such as the one presented in
Figure 5-10. For further information on the creation of these dialog boxes, please
refer to chapter 6, "Dynamic dialog boxes", of the Objecteering/J Libraries User
Guide.

Hl.lul'-'.i gEnsialion wlk product

Gensaton path

Ampdpeopectshjavahsic
Compilation path
Ampdpeopectsjavatclass

13 Carvel

Figure 5-10. Java generation work product dialog box

Objecteering/UML Profile Builder User Guide 5-27

Chapter 6: Defining UML profiles

Chapter 6: Defining UML profiles

Referencing a metaclass

Metaclass definition

@ A metaclass is a metamodel element, such as "Operation”, "Attribute",
"State", etc. On a metaclass, J methods, J attributes, note types, tagged value
types and stereotypes are defined. The same metaclass can be referenced by
several UML profiles.

Metaclasses are predefined in the Objecteering/lUML metamodel (see the
Objecteering/Metamodel user guide).

The "Help" service provided on metaclasses displays the Objecteering/UML
metamodel (and the corresponding metaclass), which is an invaluable aid to J
programmers.

Objecteering/UML Profile Builder User Guide 6-3

Chapter 6: Defining UML profiles

Referencing a metaclass

By referencing a metamodel metaclass, only the metaclasses we wish to work on
will be displayed in a UML profile. We are then able to define the J methods, the J
attributes, the note types, the tagged value types and the stereotypes (see Figure
6-1).

E'Illlu:l Ui gL L Pisdile B adda

Fie E Yiew Tock Tegt ‘windows 7

\El@nl.; a8yl oo JFE

Xl =]
E Ml IMLPiofingPaomec! j

& E;E:-nfm .
= B inteimal
T+
te
It
=

Dagrams _II-1':|I

.3 e Help

Figure 6-1. Referencing a metaclass

6-4 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Steps:
1 - Select a UML profile.

2 - Click on the @ "Reference a metaclass" button.
3 - Select the name in the combobox.
4 - Confirm.

Objecteering/UML Profile Builder User Guide 6-5

Chapter 6: Defining UML profiles

Creating a type of tagged value

Entering a type of tagged value

{} The Objecteering/UML Profile Builder tool can be used to define tagged
value types on metaclasses. This defines possible tagged values for the
representatives of this metaclass in a given model.

For example, due to the operations executed in Figure 6-2, all the UML modeling
projects which use the "Impact" UML profile will be able to use the {persistent}
tagged value on their model's classes.

5 hmcinmnrsge Ml Frebin Buwlies
Be Ede Took Tag oo 3
NEW el a o RFL
1 3 ol =]
"] | Rl ot L Profiingfropmct .
B A Caboidalebipac]
=] h rhl i
G- B el
+—t q\k‘h gatayLal

=& | @rrm:r
i B
EHWI
———— |}

| T P] sz .ﬂ
L

m ¥

Disparsa e |

Figure 6-2. Entering a type of tagged value in the "Class" metaclass

6-6 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Steps:
1 - Select the metaclass.

2 - Click on the 11 "Create a tagged value" button.
3 - Enter the name directly in the explorer and confirm by left-clicking.

Warning:

Please note that we strongly recommend against using the names of Objecteering
Software modules as prefixes for your new tagged values, as this could cause
name repetition problems. For example, the {JavaName}, {Javalmport} and
{JavaStatic} tagged values are tagged values specific to the Objecteering/Java
module.

Note: If you press the "Return" key on your keyboard, a new UML profile will be
created (through the continuous entry creation mode).

Objecteering/UML Profile Builder User Guide 6-7

Chapter 6: Defining UML profiles

The "Tagged value type" dialog box

When you select the "Modify" menu (using the right mouse button) on the "Tagged
value type" , the "Tagged value type" dialog box (shown in Figure 6-3) is opened.

H Tagosd wakss types

Paopmiieg |T-uma-d'|lﬂ.rn-r|hl-:lu|

B | persterd
Husribser of panamiens | |
[Dl

I Irsciurion s the sgnatus

13

Aprke Cl=zn Help

Figure 6-3. The "Tagged value type" dialog box

The ... field

represents ...

Name

the name of the corresponding tagged values.

Number of parameters

the number of parameters that the corresponding tagged
values will have. This will be checked during a tagged value
entry. In Objecteering/UML, tagged values can have
parameters and a qualifier, which is a privileged parameter.

Qualified

whether or not the tagged value has a qualifier.

Inclusion in the signature

the taking into account of the tagged value by the Operation
signature comparison algorithm. For code generation
purposes, typically for C++, the presence of certain tagged
values must be taken into account by the Operation signature
comparison algorithm.

6-8

Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Creating a type of note

Entering a type of note
B With Objecteering/UML Profile Builder, you can also add note types to
metaclasses. This allows you to create notes with these types on models.

For example, through the operations shown in figure 6-4, any UML modeling
project which uses the "Impact" UML profile can use a text zone called "definition"

for each class.

[Ditecieerisg MIHL Podibe Buifides

Ele B Vew Iooh Tafl swdees I

BEe i alda -~ FEER
e

0 [¥ et W Lt brghromect s
ﬂ = i Cooulsisinnac
\ﬂ & B delo
i B el

(l thh"m,
] EVel impact
) EL‘E

=p§

Doagram bews |

Figure 6-4. Entering a note type in the "Class" metaclass.

Objecteering/UML Profile Builder User Guide 6-9

Chapter 6: Defining UML profiles
Steps:
1 - Select the metaclass.

2 - Click on the ¥ Create a type of note" button.
3 - Enter the "definition" name directly in the explorer and confirm by left-clicking.

If you press the "Return” key on your keyboard, a new UML profile will be created
(through the continuous entry mode).

Note: A note type can only be entered in a metaclass reference.

6-10 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

The "Note type" dialog box

When you select the "Modify" menu (using the right mouse button) on the note
type, the "Note type" dialog box is displayed (as shown in Figure 6-5).

EHI:II#.- Iype =B
Fiopeites | Tagged wakaes | H:lml
H-_clu_'t-lrnuu

o | | owe | e |

Figure 6-5. The "Note type" dialog box

The ... field represents ...

Name the name of the corresponding note.

Objecteering/UML Profile Builder User Guide 6-11

Chapter 6: Defining UML profiles

Creating a stereotype

Entering a stereotype

e

With the Objecteering/UML Profile Builder tool, you can also add stereotypes
to metaclasses. This allows you to create stereotypes on models (see Figure 6-6).

Eﬁ DbgecleenngMIML Frodile Buildes

Fio Edh Viow Took Tes Windows 2
LE® & el e -~ BOT
|

L

v | Rl N=vel ML PeciingProiect
|$—-.l Caculst=dmpact

\g & B cein
) NG
s o

B0 modubsiriL: bookssn
—] Atribute : Shing

1

' [1] persistert
| IR defdion
: - - — i
i ' '.?_,. Sican the child classes ﬂ
=
Class
[
I

Figure 6-6. Entering a stereotype in the "Class" metaclass.

6-12 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Steps:
1 - Select the embedding object.

2- Clickonthe = "Create a stereotype" button.
3 - Enter the name directly in the explorer and confirm by left-clicking.

Note: If you press the "Return” key on your keyboard, a new UML Profile will be
created (through the continuous entry creation mode).

Objecteering/UML Profile Builder User Guide 6-13

Chapter 6: Defining UML profiles

The "Stereotype” dialog box

By selecting the "Modify" menu (using the right mouse button) on the stereotype,
the "Stereotype" dialog box (shown in Figure 6-7) is opened.

E!ilurmll}lun

Poopetie::

T agged walue: | Koles |

Hm| Sherentype

||:nn|

Explorer -;m|

ar “ipply Daze Help

Figure 6-7 The "Stereotype" dialog box

6-14 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

The ... field represents ...

Name the name of the corresponding stereotype.

Icon the name of the file containing the bitmap of the stereotype. It must be the
full path name or a "relative" path name. In this case, the path will be
calculated from the $OBJING_PATH installation path. The format can be
.gif or .omp. When the icon is defined, it is this bitmap which appears in
the graphic editors, to represent the stereotyped model element.

Small icon the name of the file containing the small icon bitmap of the stereotype.

When the small icon is defined, it is this bitmap which appears in the
corner of the box representing the stereotyped model element.

Explorer icon

the name of the file containing the explorer icon bitmap of the stereotype.
When the explorer icon is defined, it is this bitmap which appears in the
explorer hierarchy, to represent the stereotyped model element.

Note: Please note that the icon, small icon and explorer icon features have been
designed to help make stereotype visibility clearer.

Objecteering/UML Profile Builder User Guide 6-15

Chapter 6: Defining UML profiles

Creating a constraint

Entering a constraint

= With the Objecteering/UML Profile Builder tool, you can also add constraints to
metaclasses. This allows you to create constraints on models (see Figure 6-8).

HI:I.1|:|:I|:|:||||||-'|.|H. Frofds: Baslide
Bls [t \iews Took Tag ‘indos: 3

1 NEe L ala = @FEOMEG A
% =]
{1 [Emmmww -
B Wl Cabcubsesingsct
B By delad
- By interal
H‘x -y sdmmal
*E! 23 Impack
", B Class
“\ Fak LT T |
ﬂn._._‘u,.r_\-l. i

LA Atakate S

[
._“'m Propsrtes: | Tagged wahams | HMober |
B einition

Hi

k|
Tt o o i chld ¢

Shiriiol e

= 1 Y

4 ak Dicsie Heip

Figure 6-8. Entering a constraint in the "Stereotype" stereotype.

6-16 Objecteering/UML Profile Builder User Guide

Steps:

Chapter 6: Defining UML profiles

1 - Select the embedding element.

2 - Click on the 2 "Create a constraint" button.

3 - Enter the name and the body text.

4 - Confirm by clicking on "OK".

The "Type of constraint" dialog box

The ... field represents ...
Name the name of the corresponding constraint.
Body the body text associated with the constraint.

Objecteering/UML Profile Builder User Guide

6-17

Chapter 6: Defining UML profiles
Creating a J class attribute

Definition

|£I In this version, only "class" meta-attributes can be created. Instance meta-
attributes are predefined by the Objecteering/UML metamodel. Class meta-
attributes are used by the J methods that are defined on the same metaclass.
They are not persistent (their values that can be modified in J are not stored in a

model).

6-18 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Procedure

T
Be £t Viaw Toce Tog lirekoer 2

¥ A ([IF it Help

Figure 6-9. Creating a meta-attribute

Steps:
1 - Select the metaclass.

2 - Click on the |£I "Create a J attribute" button.

3 - Enter the name.

4 - Select the metaclass that gives the attribute type.
5 - Confirm.

Objecteering/UML Profile Builder User Guide 6-19

Chapter 6: Defining UML profiles
The "Attribute” dialog box

The ... field represents ...

Name the attribute name.

Visibility the attribute visibility.

Class the attribute type.

Set whether or not the attribute is a set.
Initial value This field is left blank.

6-20 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Creating a J method

Definition

im—ﬁl The J methods defined in Objecteering/UML Profile Builder are defined:
¢ ina UML profile

¢ o0n a metaclass

J methods are written using the J language (for further information, please refer to
the Objecteering/The J Language user guide).

Objecteering/UML Profile Builder User Guide 6-21

Chapter 6: Defining UML profiles

Procedure

E'“I":I.l'.l:l e/ LIML Picdile Huddzi

Yo, Pl Ede Wiew Jook Tes Windows 3
B8 &8 g o
%

|
CH|

Figure 6-10. Creating a J method

Steps:
1 - Select a metaclass reference.

2 - Click on the @ "Create a J method" button.
3 - Enter the name directly in the meta-explorer and confirm by left-clicking.

Note: If you press the "Return" key on your keyboard, a new UML profile will be
created (through the continuous entry creation mode).

6-22 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

The "J Method" dialog box

By selecting the "Modify" menu (using the right mouse button) on the J method,
the "J Method" dialog box is displayed (Figure 6-11).

r'_.-' 1 e Pedd

Figure 6-11. The "J Method" dialog box

Objecteering/UML Profile Builder User Guide 6-23

Chapter 6: Defining UML profiles

The ... field or is used to ...

button

Name enter the command name.

Visibility select the visibility of the method (public, protected, private, none).

A public method without parameters can be referenced by a
command.

A private method cannot be redefined in a sub UML Profile.

Parameters create the method's parameters.

Return parameter create the method's return parameter.

6-24 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Textually editing a J method

Overview

J code is entered in "J code" type notes which are associated to J methods. It is
possible to edit the code, either by double-clicking on the text zone, or using the
external editors, by selecting the "Edit the J code" menu on a UML profile.

Objecteering/UML Profile Builder User Guide 6-25

Chapter 6: Defining UML profiles
Editing a J method

bl £ iem Jeab Fogt Sicoss 1

O r1amq0 S
LT Fragaris)]'r-mu- I Wk |
A i1} Eﬂlﬁll-
B b""f‘"‘"‘ Mpee ol rew
=8 =] 5] I_I:“ =
& Om Lotz _
T ——r— 1 ¥ 1 -
,ﬂ- E';:.In::: ﬂ.-ni:l;ul = “the bsir clessss
11 paraseni iy |
| datrwan Enritd Messess? = "the child clasess
arm H

'35'"1"!'\11'”?"1' Siring Nesmsgel = “the |izéed clsopss
W B b cltes are @ "

E Dot PR T [l T I

ﬂ Eomn hinbosd arms

Esrirg in:n:-i = “"ihes st
parasstaT clEzmaa ars ¥

i

Ig=tierrenilodulalaranstearTalus] " Soan
Ths ESir clessss”. "delsul (XIRpeot”
Tumult

it (resyly == “TRUET]
|

islizationGansrelizekion

SuhTrrsl laes
] Eessags] comcat | Heme
B =
Stdut write [Hessegel. WLl } |
i
>3 Mgl = = Lk

[zl U

Figure 6-12. Editing the "modulelnit()boolean” J method

Steps:

1- Select the J method.

2 - Double-click on the note.

3 - Enter the text in the dialog box which appears.
4 - Confirm.

6-26 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

External edition

e L ‘gime ool Feil lledoss 7
BEw sama o]

vold ClassioPriatispact ()
H Sear b chid siassl §

Wy S b chatasi £ Summary
H"-’ﬂr-ﬂ-'h“."i'l'hf.' STRRT OF MOBIFIABLE 20KE308J [35T PEoasd
P Scar bt chaes | EMB OF HODIFISBLE SESEROBILDETATYBESATY1

Ff Bewcripkinn :
[FF STERT OF WORIFENALE ZORES0E.) 13 3T BRI
Jf EFl IF WIDTFIAALE FR-EBNERJSIDEH &7 0 BERLTI1

” fif 4 codde

Ff STEET OF MODIFEANLT STHEFESDE T a8 TERFL]

= Ering resull 3
Boring MeEssanel = “the melr classes are o
Etring Meccaged = “the ¢nlld clasces are =
Liring Messaged = “Che Linkedl classies bre !
Ebring Hessageh = “"the swihod paramseber cls

iF [qetturrentHesnl cParane terfalue | “Soes T

Figure 6-13. Editing the "Printimpact()Boolean" J method

Steps:

1 - Select the UML profile containing the J method using the right mouse-button.
2 - Select "Edit J code".

3 - Enter the code in the zone that can be modified.

Note: When the editor is closed, only the text located between a start marker and
its corresponding end marker will be taken into account.

Objecteering/UML Profile Builder User Guide 6-27

Chapter 6: Defining UML profiles

Redefining a J method

Definition

The ﬂﬂ "Redefine a J method" icon allows the redefinition of a J method coming
from the metaclass or from a parent metaclass in a parent UML profile. A help list
then appears, allowing you to select the method to be redefined. Only public or
protected methods are displayed.

6-28 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Procedure

B L e A Tagt i
S - R

L
o orm |

i =il N

T
= [T]
. _ﬂ = ._;r\-u-u
e WG ramasl
':jl' =3 =1
I -]
A] P e
- 11
by |
S i
.p''i Ly b A e |
Brr | Dl ol ki maracs !
B R e L] .'
i r_?l:h-h sk Brucdulell rratd

A (Bt dalek B el wrd

e] =

b

H

-
=

Figure 6-14. Redefining a parent J method

Steps:
1 - Select a metaclass reference created in a child UML profile.

2 - Click on the JEEI "Redefine a J method" button.

3 - Select a method.

4 - Click on "Apply".

5 - Change the visibility of the operation in the dialog box which appears.
6 - Confirm.

Objecteering/UML Profile Builder User Guide 6-29

Chapter 6: Defining UML profiles

Result

E DbjectesingUML Profile Builder

Eile Eck View Took Test Windows 7
NEew & e e -~ FEOE

L E|

[=8 detai]
2 £ B el
IEI Qﬁ-@ulgm.ﬂ

=g
. ae?
Al | el rmessen
ww || B0 modusirit booksan

| i = 1{] pesisent

[defirition

Figure 6-15. Result of the redefinition of the "modulelnit()Boolean” parent J method

6-30 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Defining a module parameter

Procedure

+

ﬁ The end user of a UML modeling project can access module parameters that
have already been defined in the "Module Configuration" window, and select
options for the module. Their values can be accessed through J rules with the
"getCurrentModuleParameterValue" operation.

!Ilrﬂ:rl'rd'unn-'.llull Finlile Huslda

Fia Edi Ve Took Tel 'widows 7

"\ S IR LI ==k)

==
Plesd 4L ProfiingPropsct &
51 Gl Calouisinimpact

o Bl detait
P
% ==
599 s
| C.pm
3 el Oas ; i
te @_ﬂrl-ﬁ-wmlll Fraresdms | Tagged vakis | Foies | Erl-'lllillr_
5 || pepgian
- mmmmEn e
P Soanbe ot claives | T
* —r_"mﬁms—rﬂﬁr
Creup
& lmgack i
| Cln|
i
B H— O Dess Beie

Figure 6-16. Creating a parameter

Objecteering/UML Profile Builder User Guide 6-31

Chapter 6: Defining UML profiles

Steps:

1 - Select the UML profile.

'

2 - Click on the ! "Create a parameter" button.
3 - Enter the name.

4 - Choose the type.

5 - Choose the group.

6 - Confirm.

Note: You can either select an existing group or type a new group name.

The "Parameter” dialog box - "Properties" tab

The ... field

isusedto ...

Name

enter the parameter name.

Type

select the parameter type. Available parameter types are:

- Boolean, to create a tickbox parameter

- String, to create a text field parameter.

- Enumeration, to create a dropdown .enumerate selection box parameter

- File open, to create a text field .parameter, accompanied by the J
icon, used to display the "Open" window

- File save, to create a. text field parameter, accompanied by the J
icon, used to display the "Save" window

- Directory, to create a text field .parameter, accompanied by the J
icon, used to open a file browser

- Password, to create a text field parameter, in which .characters entered
are represented by asterisks, thereby remaining hidden

Group

select the group in which the parameter appears in the "Edit the
Configuration" window. This window can be accessed from the
"Configure the UML profiling project” item in the "Tools" menu.

6-32

Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

The "Parameter” dialog box - "Enumeration Values" tab

When the type is "Enumeration”, this tab is used to enter the field’s literal values.

H]I".u.-n:ll:l dlslifilsnm
Tagged values Nobe: Eruamration vk al»
Enumaralion vales
1 I
0Ok Close Help

Figure 6-17. "Enumeration Values" tab

Objecteering/UML Profile Builder User Guide 6-33

Chapter 6: Defining UML profiles

Creating a generation or document template

Overview

i1}
H ("Create a generation template") and }f ("Create a document template")
Document templates are used to describe target generation, by defining their text
structure in a hierarchy. This kind of generator definition reduces the volume of J
programming necessary. Any target which has a text format (C++, SQL, Java,
makefiles, XMI etc.) can thus be described.

The parameterization of the makefiles generation, described in the
Objecteering/C++ user guide, provides a significant example of the use of
generation document templates.

Documentation is a special case of generation. It is similar to the other generation
operations, but its formatting constraints (RTF, HTML, etc.) and graphical formats
make it different. A specific document template exists for documentation
generation. This document template is described in the Objecteering/Document
Template Editor user guide.

6-34 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Creating a generation template

= |||'l|l|'| leeaing/ LML Profle Buildes

EHMMTEMI

DE® & @B a - o |[BFQE
x| 2]
P é&mu |
@ B3 rvemal
I_g éhmrlﬂ
—E_EI =
E mﬁﬂa:e
T'? 5 fSwﬂchﬂmsm
—T—g fﬁwkﬁmsm
| -2 Sean methed paramelers

W Generation templabe M=] & I

Fiopaties

T apad vahass | Hmnt|

; [\[3 Choon Help

Figure 6-18. Creating a generation document template

Objecteering/UML Profile Builder User Guide 6-35

Chapter 6: Defining UML profiles

Steps:
1 - Select a UML profile.

2 - Click on the H "Create a generation template" button.
3 - Enter the name of the document template.

4 - Enter the metaclass (the field corresponds to the type of root objects of a
generation that uses this document template).

5 - Confirm.

6-36 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Creating a generation item

?’ Generation items are elements of the document template tree. Each
represents a file zone to be produced. An item can have sub-items, that
correspond to the organization of its zone into sub-zones.

Ohjzcteering/UML Profile Buildes

! Eie Edt Yew Jods Tegt Mindows 7

R ala| - a [FOE

NS 4

BBy edtemal

a3 ﬁlrrpa:l

-5 Clacs

:r-ﬂ Scan e chid clasges
'--';ﬂ Soan hen clazses

Figure 6-19. Creating a generation item

Steps:
1 - Select the generation document template.

2 - Click on the ?’ "Create a generation item" button.

Objecteering/UML Profile Builder User Guide 6-37

Chapter 6: Defining UML profiles

The "Generation item" dialog box

Figure 6-20. Generation item dialog box

6-38 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

The ... field corresponds to ...

Name the name of the item.

Described a journey through a model, for example going to the methods from
association a class.

Documented meta-
class

the metaclass which the element concerns. A default value is
calculated. You may modify it and choose a parent metaclass to
generalize your item.

Header

the text inserted before the generation of all the modeling elements
the element browses.

J evaluation of the
header

the header. The header can be a J expression to be evaluated
dynamically, instead of immediate text.

Title

the text inserted before the generation of all the modeling elements
the element browses.

J evaluation of the
title

the fact that the title can be a J expression, to be dynamically
evaluated, instead of immediate text.

Included by default

By default, all the elements will be included. If not checked, only
those that have the tagged values selected in the "Inclusion” tab
will be included.

Generation of a file

If checked, a separate file will be generated for every included
element..

Objecteering/UML Profile Builder User Guide

6-39

Chapter 6: Defining UML profiles

Creating a document template

1]
H ("Create a document template™) This button is used to edit the document
template dialog box, through which document templates are created.

El'lllrr::ll:l:l e LML Piofds B eslda

Eie Bt WViss ool Teg Wil I
NEa s adawn EOMAR

s
iy [el Prosiir g -
I? B i Cakculsislmpaci
: e & B detsuk
) iz} ﬁ rlEns
h‘;?- .E'_ E::llliulll‘.‘l'l l=mplale
=8|
. E|?-U'ﬂﬂ- Progestiss |Tqu-.ruu | Hobes |
: 'IJ'._. Sada Ibe
A “l
e Diescrbed metaclass
E Packags H
I [
Fages o
| =
¥ Conlents
4 = = = = A—— K [lerm Hels

Figure 6-21. Creating a document template

6-40 Objecteering/UML Profile Builder User Guide

Steps:

Chapter 6: Defining UML profiles

1 - Select a child UML profile.

iy
2 - Click on the H "Create a document template " button.
3 - Enter the fields (see table below).

4 - Confirm.
The ... field corresponds to ...
Name the name of the element

Described metaclass

a journey through a model, for example going to the methods
from a class

Page header

the text at the top of the page

Page footer

the text at the bottom of the page

Objecteering/UML Profile Builder User Guide 6-41

Chapter 6: Defining UML profiles

Creating a document item

0

?’ Document items are the components of the document template. They
describe information that must be found in the generation target. Document items
can be:

¢ asummed-up description of operations on a class
+ the detailed description of the operation

", e E Y Dok T ko]

i,
5,

e i aila~~BOAF
E AnCiimenl kem
EMHMMHMWI .

= Wl Cokoudsiel vipact Pyt |Tw-¢'ﬂ.ﬂ- | Hiolaz | Mota rowdon | I
.lkl"hnhu
"q !ﬂ rdemal Harm
ey ssmmad [
B i e Dpzmbend wmmasion
L] Clant [.-u.:..-.e._
... jrmhlrhl’lrh.'n o Jaiasl
W g hea claiesy |=ﬂ
" h g
I ﬂ".rmnl—a:lnrm
ﬁ‘h.;"h_ﬂ'rd chzrm Haasdar F Irchucked by defud
L Ye GememstionT eanpisiz I Ganmation = a s
TR = [Fremmd dnn
1 [T 4 arwhasben, af e e & Bullwied B2 bem{” Group
Tida
= [Dersestion of & chapisr
i ™ Forsoasbsd bor pesiisl pere sbon

™ d wwwhasbon of e s

oK ke Eedp

Figure 6-22. Creating a document item

6-42 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Steps:
1 - Select the document template.

1R

2 - Click on the "Create a document item" button.
3 - Enter the fields.

4 - Confirm.

Objecteering/UML Profile Builder User Guide 6-43

Chapter 6: Defining UML profiles

Possible actions on a module

% From a module, it is possible to:
reference a UML profile

use a UML profile

select the installation UML profile
create a command

inherit from a module

* & & & o+ o

package the module

The default configuration of a module can be entered through the "Configure the
UML profiling project" item in the "Tools" menu.

6-44 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Figure 6-23. "Module" dialog box

Objecteering/UML Profile Builder User Guide 6-45

Chapter 6: Defining UML profiles

The ... field or | isusedto ...

button

Name enter the module name, used internally (in the meta-explorer)
Label enter the module name, in the interfaces

Working directory

enter the packaging target directory and the directory containing the
module's external resources. If the "Working directory" field is left
blank, then the working directory is
$OBJING_PATH/modules/<ModuleName>/<Version>. Otherwise,
the user may specify the working directory of his choice.

Major version
number

indicate the first number in the version number (for example, if the
complete version number is "4.6", then the major version number is
4.

Minor version

indicate the second number in the version number (for example, if the

number complete version number is "4.6", then the minor version number is 6.
Release indicate the release number for the module (for example, "a").
information

Minimum binary
version
compatibility

indicate Objecteering/UML binary requirements for the module.

Mask parents

mask the parameters and menus of the parent of the module which
has been selected by the UML modeling project. If this box is not
checked, the module's parameters and menus will cohabit with those
of its parents. This box has no effect on modules which do not have
parents.

6-46

Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Defining a new kind of work product

Definition

% Objecteering/UML Profile Builder allows you to define new kinds of work
product. A meta-product corresponds to a new metaclass created dynamically
(contrary to other metaclasses, predefined by the Objecteering/Metamodel), with
the following characteristics:

+ attribute types are constraints (string and boolean)
+ the meta-product specializes "MpGenProduct"

¢ anicon can be associated to it
.

one or more metaclasses can be associated to it, on which the work products
can be created.

Work products represent the external result of generation in the Objecteering/UML
Modeler workshop. For example, they can represent generated C++ sources,
makefiles or documentation. Work products are visible in the explorer, and are
associated to a model element. A creation icon for this element will appear, and
its attribute dialog box will be automatically defined.

When a product is defined in a UML profile, it is possible to create a meta-class
reference on the product in the UML profile and its child. We can then create J
methods and then commands on the modules which reference the UML profile,
where the work product or one of its children is defined.

Objecteering/UML Profile Builder User Guide 6-47

Chapter 6: Defining UML profiles

Creation procedure

Elllq- bemnng AU EL Frolile Buddei

B e Toce 1 []
RE @ 5% pope

T-mdl'-.ﬂlﬂahl|

N BT
& By ireenal |
ﬂ“HMEIhH#M Lﬂl

. It

H EpR Clas: State b |

e F
- Eaealy 0 |
_?;':‘ Mol rrers e -
% om S T -
'H‘E:lﬂ

I P e T =

0. Lheoe el

Figure 6-24. Creation procedure

Steps:
1 - Select a UML profile and create a child UML profile within it.

2 - Click on the % "Create a work product" button.
3 - Enter the fields (see table below).
4 - Confirm.

6-48 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Text fields

The ... field represents ...

Name the name of the work product.

Label the title of the work product dialog box

Help bubble the description displayed in the work product's help bubble

Status bar the description displayed in the work product's status bar

Bitmap name the bitmap name displayed on the work product's button. The bitmap
with the BMP format must be 19 pixels high and 21 pixels wide,
stored in the $OBJING_PATH/res/bmp directory and taken into
account by the tool. The name entered must not contain the .bmp
extension.

Model element model element on which the product button must appear

concerned

Objecteering/UML Profile Builder User Guide 6-49

Chapter 6: Defining UML profiles

Associating a metaclass reference

At present, the "meta-product” can be accessed like any other Objecteering/UML
metaclass. To associate J methods (necessary for creating commands on the

work product) or J class attributes, a "metaclass reference" must be associated to
it.

E DbjecteemgUIML Prodile Builder

q e E Yew Tooks Tegt Wndows 3
\Elu#nl; BB el o o BEOOF 4
x| £

4 ax Lo Help

Figure 6-25. Referencing a metaclass for a meta-product

6-50 Objecteering/UML Profile Builder User Guide

Chapter 6: Defining UML profiles

Steps:
1 - Select a child UML profile.

2 - Click on the E "Create a metaclass reference" button.
3 - Select or enter the meta-work product name.
4 - Confirm.

Objecteering/UML Profile Builder User Guide 6-51

Chapter 7: Defining modules

Chapter 7: Defining modules

Overview of module definition

Module utility

% A module is the functional packaging of a set of UML profiles. It is the unit
which will be transferred between models, made available in Objecteering/UML
Modeler UML modeling projects and utilized by the end user.

Module properties

In a module, the following must be defined:

¢
¢
¢
¢
¢

L4

specialized modules

the UML profiles used

the UML profiles referenced

the UML installation profile

module commands

the default values of module parameters

It is then possible for a module to be packaged, in order to allow it to be delivered
and used on other sites.

Objecteering/UML Profile Builder User Guide 7-3

Chapter 7: Defining modules

Creating a module

E|||I|I-:I:tl'l:lllll_|.|'||H| Finlabe Himbilsi

Ei= Edid Wew Toos Tegt Windows 2

"~ REe s aRa o @AOER
B= s

o [Y :

B & Caoulsislmpact

EHndulc

=] &

Fropesties Tagged waluss | Hotes |

3 'Q-—‘—Hm[tdnju!:imnu:t

H"‘Ldulllm:.-ﬂg:-qj
wmmm|
\Hmhufrrﬁnw B =

Humies of min verson

Aelaase dulndiml

Hr-.-hrwwmmm|
[Matk paants

d——T— I Qose Hedp

Figure 7-1. Creating a module in a UML profiling project

7-4 Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

Steps:
1 - Select the UML profiling project.

2 - Click on the % "Create a module” button.

3 - Enter the necessary information in the data entry fields.

4 - Confirm.

Note: If the "Working directory" field is left blank, then the working directory is

$OBJING_PATH/modules/<ModuleName>/<Version>. Otherwise, the
user may specify the working directory of his choice.

Objecteering/UML Profile Builder User Guide 7-5

Chapter 7: Defining modules

Referencing UML Profiles

Procedure

7-6

By referencing UML profiles, all their components may be accessed. Through
these UML profiles, the module can access:

¢ module parameters defined in the UML profiles
+ tagged values, note types and stereotypes

¢ public J methods defined in UML profile metaclasses, in order to link them to
commands

+ document templates and generation templates, defined in UML profiles
¢ generation work products, defined inUML profiles

The referencing of UML profiles allows you to use a profile as a UML installation
profile.

Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

EIII‘.#.‘IM‘H’-‘]HIHI Prodie Buildes

Elo Edt Yew Took Teg Windoms I

BEe X amda oo [[AODR &
=]

El‘.l:l:ll: riHr ®slrmenkc

£33 | etaannismaizgs

e Ereutin senent
= | ;.:Er B delmifasiaa =
2— e ;TR PE——
= f delmmbiesearallilod=tH
n B delmitiemamatilovs
A i B deloultelemsl |
g o[N -
. —
: Ao pom [T Hets

Figure 7-2. Referencing the "Impact" UML profile

Steps:

1 - Select the module in the meta-explorer.

2 - Click on the L8| "Reference a UML profile" icon in the "ltems" tab of the
properties editor.

3 - Select the UML profile(s) to be referenced by clicking on the "Search" button
to display the list of accessible elements, and then by selecting the element in
question. The element chosen will then appear in the "Drop zone" field.

4 - Confirm by clicking on the "Apply" button.

Objecteering/UML Profile Builder User Guide 7-7

Chapter 7: Defining modules

Using UML Profiles

Procedure

UML profiles should be used when the J code and stereotypes, tagged value
types and note types contained therein are necessary to the module, but where
work products, generation templates and parameters must be hidden. If you
forget the essential "use" dependencies, then a J error (such as "method not
found") will occur. If you use referencing instead of "use", then inappropriate work
products or parameters will appear. UML profiles which are being used cannot be
used as installation profiles.

m:lll wz: leemnyfUML Froli: Eofde
Eie Edt View Tock Tegt windes 3

R 4 @B g/ [BAECS#/K &
x| =]

| T

At slemnenis
i Bl delmlEEademsl -

s ST P
B deluiSidan ot

— T
) & Al el Fabemsll] wes
T g deluksnra
wie e -
a | ®

T —
* w o T [|

Figure 7-3. Using the "Impact" UML profile

7-8 Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

Steps:

1 - Select the module in the meta-explorer.

2 - Click on the =% "Use a UML profile" button in the "ltems" tab of the properties
editor.

3 - Select the UML profile(s) to be referenced by clicking on the "Search" button
to display a list of accessible elements, and then by selecting the element in
question, which will then appear in the "Drop zone" field.

4 - Confirm by clicking on the "Apply" button.

Objecteering/UML Profile Builder User Guide 7-9

Chapter 7: Defining modules

Defining a UML installation profile

Procedure

Installation profiles are used to call additional actions associated with a specific
operation. They are created automatically in the "Object" metaclass when the
UML profile is selected as the installation profile, and the user may then further
define them. The J methods which can be defined on installation profiles are as
follows:

+ the reception of a module
+ the installation of a module

¢ the uninstallation of a module
+ the selection of a module

+ the unselection of a module

The actions called are as follows:
¢ For the reception of a module, nodul el ni t

+ For the installation of a module, nodul el nst al |

¢ For the uninstallation of a module, nodul eUni nst al |
¢ For the selection of a module, nodul eSel ect

¢ For the unselection of a module, nodul eUnsel ect

(For further information, please refer to the "Module management services"
section in chapter 5 of the Objecteering/J Libraries user guide).

7-10 Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

Figure 7-4 illustrates the definition of a UML installation profile.

Elilllp.-l'lrl‘.rlnq-'l.lﬂl Priadile Bulde

Bl Edt View Tock Tegl ‘Windows 7

BRI - R = 1 =]=h
A

iz [el PrcibngPropect

Figure 7-4. Defining a UML installation profile

Objecteering/UML Profile Builder User Guide 7-11

Chapter 7: Defining modules

Steps:

1 - Select a module in the meta-explorer.

2 - Clickona B "Installation UML profile” icon in the "ltems™ tab of the properties
editor.

3 - Click on the "Search" button to display a list of accessible elements, and then
selecting the element in question, which will then appear in the "Drop zone"
field.

4 - Confirm by clicking on the "Apply" button.

7-12 Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

Creating commands

Procedure

J rule entry points, which may be accessed by users in Objecteering/UML
Modeler, are defined by commands. A command is included in the pop-up menu
on the model elements concerned, and is associated to one of the metaclass J
methods. The associated J method must be public and must have no parameters.

For example, in figure 7-5, the creation of the command introduces a pop-up menu
item on a model's classes. This element will be called generation and trigger the
"Printimpact" J method of the "Impact" UML profile.

I_E'l'll. witesi g MBI Frolia Eobdo

1. Fis Edt Yiew Tock Tosd Windows 7

FE FRB g - ERA
e

Figure 7-5. Creating a command

Objecteering/UML Profile Builder User Guide 7-13

Chapter 7: Defining modules

Steps:
1 - Select the module.

2 - Click on the 'Eﬂg "Create a command" button.
3 - Enter the name.

4 - Enter the identifier name.

5 - Select a UML profile.

6 - Select a J method.

7 - Confirm.

7-14 Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

The "Command" dialog box

_x | _om | e |

Figure 7-6. "Command" dialog box

Objecteering/UML Profile Builder User Guide 7-15

Chapter 7: Defining modules

The ... field or button

is used to ...

Name

enter the command name.

Label

enter the name of the menu item associated to this
command

Can be activated in editing
mode

specify whether or not the menu item associated to the
command can be activated on an editor object in editing
mode

mode

Can be activated in consulting

specify whether or not the menu item associated to the
command can be activated on an object in consulting
mode

Can be activated on a read
only object

specify whether or not the menu item associated with the
command can be activated on an object in read only mode

Running UML Profile

select the context for activating the method

J method

select the J method to be invoked. It must be public and
without parameters.

Note: When the "Can be activated in consulting mode" state is checked, the
"Can be activated on a read only object" state is grayed out (since it

Serves no purpose).
7-16 Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

Changing the default values of parameters

UML profiling project configuration

The user can modify the default values of module parameters. This is done in the
"Modifying configuration" window launched from Objecteering/UML's main window

(Figure 7-7) via the "Tools/Configure UML profiling project" menu.

EHudll:ﬂnu configuration

Whoduies — Calculste imgact
B LKL Maodeds: f* Scan the child dasses

[[ibetacs ¥ Scan bei dasses

I Disgrams g thod ;

[- Diechones ~ .

| | Fomass F* Scon bnked classey

| = UML peolles

B UML meofile buldsr
= mipact Hudy V1 0

I N T

Figure 7-7. Editing the configuration

Objecteering/UML Profile Builder User Guide 7-17

Chapter 7: Defining modules

Specializing a module

Procedure

A module can specialize one or more UML profiling project modules. Cycles are

forbidden.
parameters
value of the

Specializing a module allows access to the parent module's
and UML profiles. Inherited parameter values are initialized with the
parent module and can then be modified.

EI'I||||:|.r.|:|:||'|||.I'|.|H| Piolike B uthlii

File

8

Edd Yiew Jooks Teg \indws: 3

W L @aBe o~ EECMAH

=l

W

B e ML FrtingPropec
o
Wl GenDochkodus

b G Cobioduls
- Gl JavaMode
H h defmadt E Aiceioilile elenards

7-18

Figure 7-8. Specializing a module

Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

Steps:
1 - Select the module.

2 - Click on the = "Specialize" button in the "ltems" tab of the properties editor.

3 - Select the module by clicking on the "Search" button to display a list of
accessible elements, and then by selecting the element in question, which will
then appear in the "Drop zone" field.

4 - Confirm by clicking on the "Apply" button.

Note: If a module, M1, inherits from another module, M2, which owns a
parameter, P, and M1 already references the UML profile where P is
defined, or already inherits from a module which references this UML
profile, M1 keeps the value P already has. This value can be different
from M2's value.

Objecteering/UML Profile Builder User Guide 7-19

Chapter 7: Defining modules

Packaging a module

Procedure

Packaging a module allows you to obtain a module in the form of a file, in order to
internalize it in another site. (For further information on installation, please refer to
the "Overview of the Configuration menu" section of chapter 2 of the
Objecteering/Administrating Objecteering Sites user guide.) The packaging
mechanism is the correct way of packaging and delivering modules to other sites,
and is the method used for standard Objecteering modules (Objecteering/C++,
Objecteering/Java, Objecteering/Documentation, etc).

The packaged module (a .prof file) will be stored in the directory you indicate in the
window shown in Figure 7-10. If no directory is specified, the module will be
stored by default in the "$OBJING_PATH/modules/<ModuleName>/<Version>"
directory. Module packaging may include resources, files, binaries, scripts, etc,
found in the module work directory.

Note: $OBJING_PATH is a variable which represents the Objecteering/UML
installation directory path.

7-20 Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

m Dbgecisenng/UML Profile Buildes

Eie Edié Yew Took Tegt Windows 3

M@ &@a®a o |[HER
rr

g2 | K] v ML ProfingProject
e
S GerDloc ™ podly
b~ g CoMoc Congult

El'hl:l:lad Cpeabe module iesmmoes

Caculalelmpact
& || T Genbockodus
B defa

Dingeams e |

Figure 7-9. Packaging a module
Steps:

1 - Select the module using the right mouse-button.
2 - Choose the "Package" option from the context menu which appears.

Objecteering/UML Profile Builder User Guide 7-21

Chapter 7: Defining modules

The following window (figure 7-10) then appears.

=
e

bl nilidliz ok aggenng

Figure 7-10. The "Module packaging" window

7-22 Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules
Key:

¢ "Packaging file path™: this field is used to indicate where the module's
packaged file is stored.

+ "Number of major version": this field is used to indicate the first number in the
version number (for example, if the complete version number is "4.2", then the
major version number is 4.

+ "Number of minor version"; this field is used to indicate the second number in
the version number (for example, if the complete version number is "4.2", then
the minor version number is 2.

+ "Release information": this field is used to indicate the release number for the
module (for example, "a").

+ "Activate read only mode": this field is used to indicate whether or not code
should be in read only mode. It should be noted that even where this option is
activated, the module itself is in read/write mode.

+ "Mask code": this field is used to indicate whether or not methods will be visible
to users.

+ "Module's resources project container": this field is used to indicate in which
UML modeling projects the module's resources are located (for example, the
First Steps package, the types package, etc.).

Objecteering/UML Profile Builder User Guide 7-23

Chapter 7: Defining modules

Creating module resources

The "Create module resources" command is used to create a test project (if one
does not already exist) and to internalize a types package template.

The types package template is used to parameterize a module without going via
UML Profile Builder. This means that during generation phases, it is possible to
parameterize generated J code with regard to a predefined type which is used in
the modeled application.

Hl":":l:li e LML Piofde Budile

fie Edd Yiew Took Tegt Wndoms 7

HES® : @8 a » ~ [HEDEHE

2
“ Ml M ProflingPeomsct
"% » B
il T ool Conglkt
[l Jassod, Packegs
2 B_‘hal &
0
T il it

Diiagaares fterve |

Figure 7-11. Running the "Create module resources" command

Steps:
1 - Select the module using the right-mouse button.

2 - Choose the "Create module resources" option from the context menu which
appears.

7-24 Objecteering/UML Profile Builder User Guide

Chapter 7: Defining modules

Figure 7-12 shows the result of the "Create module resources" command in a test
project and a meta-explorer.

E Dbjicicenreg /LML Frodile Hesldisi
& Ect Tooh Tag odoc 2
DEe @8 e o EOSE AT
=] =

i [et ML PP roge

Bt 8 Cabculsisimpact

- “’ Ganl pckodds
8 CoModue

— ol Leysbdod de

e

T =i dine
o[

e

Caila

E Tpre e ek sgalonlams
= B FusiS iepeCeri e
B Mo ks

o [P Y

m
L)

Disgrams lers |

Figure 7-12. The result of running the "Create module resources" command on a module

Key:
1- A "TypesEditor" module has been added in the meta-explorer. This module is
needed if the user wishes to work with the types package.

2 - Three packages ("TypesPackageContainer", "FirstStepsContainer" and
"ModelsContainer") have been added in the test project explorer. The
"TypesPackageContainer" package is created with
"TypesPackage_Template", whilst the other two packages are created empty.

These packages are optional, if your module does not need them.

Objecteering/UML Profile Builder User Guide 7-25

Chapter 7: Defining modules

The "TypesPackageContainer" package should be used if your module uses types
during generation processing.

The "FirstStepsContainer" package should be used if you wish to deliver a UML
modeling project, which will be used as the module's First Steps project.

The "ModelsContainer" package should be used if you choose to deliver certain
module parts which are needed to show your module's functionalities.

Note: For each first steps package or model part you wish to create, a container
package is created ("FirstStepsContainer" package for module first steps
and the "ModelsContainer" package for model parts). In this container
package, you should then create a package for the first steps or the model
parts concerned (for example "FS1").

7-26 Objecteering/UML Profile Builder User Guide

Chapter 8: Test projects

Chapter 8: Test projects

Test project definition

The test project

The test project is a UML modeling project specifically associated to a UML
profiling project. Any modification of the UML profiling project automatically affects
the test project. This means that any modification made to J code, tagged values
definition or the document template can be immediately tested on the test project.
There is no module installation procedure to implement.

A test project is firstly created like a UML modeling project, and is exclusively
dedicated to one UML profiling project.

Objecteering/UML Profile Builder User Guide 8-3

Chapter 8: Test projects
Selecting a test project

Before being able to test your developments, a test project must be selected by
the user (see Figure 8-1).

EI IhjecEeeneng LML Fialile Huldes

Diefete & test project...

Esplore
gy [xe Impoil lest proget

z
'I—I*IE
o | e | |

Figure 8-1. Selecting a test project

8-4 Objecteering/UML Profile Builder User Guide

Chapter 8: Test projects

Steps:
1 - Choose the "Select a test project..." menu from the "Test" menu.

2 - Choose the test project you wish to use. Test projects are UML modeling
projects in their own right.

3 - Confirm.
An explorer on the test project is then automatically started.

If no test projects are available for selection, you can create a test project by
selecting the "Create a test project..." command from the "Test" menu. A window
like the one shown in Figure 8-2 then appears.

E Cizabe & best progect

Tasl progc] name

oK Cancel

Figure 8-2. Creating a test project

Simply give a name to the test project you wish to create and then confirm by
clicking on the "OK" button. An explorer is then automatically launched on the
newly created test project.

Objecteering/UML Profile Builder User Guide 8-5

Chapter 8: Test projects

Unselecting a test project

A test project can be unselected simply by running the "Unselect a test project..."
command from the "Test" menu.

Note: A test project can only be changed once in the course of a modeling
session. To change test project more than once, simply save your work
and then use the "File/New" or "File/Open" commands to reload the UML
profiling project in question.

Deleting a test project

A test project can be unselected simply by running the "Delete a test project..."
command from the "Test" menu.

8-6 Objecteering/UML Profile Builder User Guide

Chapter 8: Test projects
Importing a test project

It is possible with Objecteering/UML to import the contents of an existing UML
modeling project into a UML Profile Builder test project. To do this simply carry
out the steps shown in Figure 8-3.

(B et P e
DI.II-I.I- Tagl ‘shelosd 1

adn el Dt i B oo
L~ i Bl i g

Lirwsiwyd 0

L
Y e
[—
B fanfwciags
g St
[T Py 1 H#E-I T I'..-cl.l... PR
= e
B f e 1 ey e curee L] secaieding masar = b el iy e commeers, o
l P g R e e
x Leo] e
= | j

T W bt e

f- L I I:hl‘ﬂ L] |

3

Figure 8-3. Importing the contents of the "MyModelingProjectl" UML modeling project into the
"MyTestProject" test project

Objecteering/UML Profile Builder User Guide 8-7

Chapter 8: Test projects

Steps:

1-

2 -

3-
4-

Click on the "Test/Import a test project..." menu. The "Import" window then
appears.

In the "Import" window, select the UML modeling project whose contents you
wish to import. As you can see, you have access to all the UML modeling
projects you have developed in the UML Modeler tool, and you can choose
either to import the entire contents of one of these UML modeling projects or
simply to import some of its components. In our example, we are going to
import the entire contents of the "MyModelingProjectl" UML modeling project.

Click on the "Import" button.

A confirmation dialog box then appears, informing you that the current
contents of your test project will be overwritten with the contents of the UML
modeling project you are importing. Confirm by clicking "OK".

Objecteering/UML Profile Builder User Guide

Chapter 8: Test projects

Testing J methods

Procedure

When a command is created in a module, the elements of the test project whose
metaclass is, or inherits from, the one to which the J method referenced by the
command belongs to, have an item in their context menu which is used to launch
this command. Therefore, if you wish to test the "Generate" method on the
"Class" metaclass, create a command which refers to "Generate", and run it on
any class of the test project.

Creating work products

When a module references a UML profile in which a work product is created, it is
possible to create instances of this work product in the test project. A button
appears in the explorer for all the elements which fulfill the following condition: the
metaclass which these elements belong to is part of the list of metaclasses for
which the work product has been defined, or which the work product specializes.

Objecteering/UML Profile Builder User Guide 8-9

Index

.prof file 7-20

{nocode} tagged value 3-11

{persistence} tagged value 5-10

{persistent} tagged value 1-10, 6-6

{primitive} tagged value 5-10

{synchronized} tagged value 3-11, 3-
27

{virtual} tagged value 5-10

Analysis phase 1-3

Associating a metaclass reference
6-50

Attributes 1-6, 5-7, 5-22

Backward compatibility 4-7

Boolean 6-32

C++ 5-13

C++ code generation 1-7

C++ generation 5-3

C++ generator 5-10

Changing the default value of
parameters 7-17

Characteristics of Java code
generation 3-3

Checking rules 1-3

Class 1-6

Classes 3-3, 5-7, 5-10, 5-23
Code generation templates 1-5
Code generators 1-4
Command 1-8

Creation 2-20

Commands 1-5, 1-6, 1-7, 1-9, 2-18,
2-20, 3-37, 4-13, 5-3, 5-7, 5-22, 6-
47,7-3, 7-6, 7-13, 8-9

Access from the J language 5-9
Overview 5-7

Configuring a module 2-22
Default values 3-39

Configuring modules 5-6

Configuring the UML profiling project
7-17

Consistency checks 1-4

Console 4-10, 4-12

Constraint
Creation 6-16

Constraints 1-3, 6-16

Continuous entry creation mode 2-6,
2-12, 3-7, 3-10, 6-7, 6-10, 6-13, 6-
22

Creating a child UML profile 1-7
Creating a command 1-8, 2-20
Creating a constraint 6-16
Creating a document item 6-42

Creating a document template 1-7,
6-34, 6-40

Creating a generation document
template 1-7

Creating a generation item 6-37

Creating a generation template 6-34

Creating a generator 3-3

Creating a J class attribute 6-18

Creating a J method 2-11, 6-21

Creating a module 2-16, 3-36, 7-4

Creating a parameter 1-7

Creating a reference to a metaclass
1-7

Creating a stereotype 6-12

Creating a tagged value type 3-11

Creating a test project 3-41, 8-5

Creating a type of work product 1-7

Creating a UML profiling project 2-4,
34

Creating attributes 3-16

Creating commands 3-37, 7-13

Creating J attributes 3-12

Creating module resources 7-24
Creating new parameters 3-8
Creating note types 3-9

Creating parameters 3-15
Creating work products 3-14, 8-9
Creation buttons 4-16

Default UML profiles 1-8

Defining a module parameter 6-31

Defining a UML installation profile 7-
10

Defining a work product 6-47

Defining and visualizing tagged values
5-11

Deleting a test project 8-6

Design Patterns 1-4

Design phase 1-3

Directory 6-32

Document and generation templates
Access from the J language 5-21
Overview 5-19

Document items 1-9, 5-19, 5-21

Document template 1-7, 7-6

Document template project 1-9

Document templates 1-4, 1-5, 1-6, 4-
5, 4-13, 5-3, 5-19, 6-34, 8-3

Documentation generation 5-3
Drag and drop function 2-19
Entering a J method 2-13
Entering a type of note 6-9
Entering a type of tagged value 6-6
Enumeration 6-32

Explorer 2-19, 6-47
Extensibility mechanisms 5-3
External text editors 5-25
Externalizing modules 5-4
File open 6-32

File save 6-32

Functions 1-5

Functions of the UML Profile Builder
tool 1-3

Generation document template 1-7

Generation items 1-9, 5-19, 5-21, 6-
37

Generation rules 1-3
Generation template project 1-9

Generation templates 1-4, 4-13, 5-
19, 6-34, 7-6, 7-8

Generation work product 5-21

Generation work products 1-5, 1-6,
3-4, 3-14, 3-16, 3-17, 3-24

getCurrentModuleParameterValue
5-6

Implementing J methods 3-23

Installation 5-4

J attributes 1-9, 4-13, 6-3

Jlanguage 1-4, 1-9, 5-6, 5-9, 5-12,
5-15, 5-25

J method

Creation 2-11
Entry procedure 2-13
modulelnstall 3-22

J methods 1-5, 1-6, 1-7, 1-8, 1-9, 1-
10, 2-9, 2-11, 2-13, 3-9, 3-18, 4-13,
5-7, 5-9, 5-21, 5-26, 6-3, 6-18, 6-21,
6-25, 6-28, 6-47, 7-6, 7-10, 7-13, 8-
9

Creating J methods 3-18

Creating J methods for managing
the module 3-22

Creating the visualization J methods
3-22

edit 3-22

generate 3-18

getCode 3-18
getldLineComment 3-22
getType 3-18

initProduct 3-20
isPresent 3-20

J methods for managing work
products 3-20

modulelnit 7-10
modulelnstall 7-10
moduleSelect 7-10
moduleUninstall 3-22, 7-10
moduleUnselect 7-10
mustPropagate 3-20
Protected 6-28

Public 6-28
Testing J methods 8-9
update 3-20

visualize 3-22

Jrules 1-7

Jservices 1-5
getCurrentModuleParameterValue
5-6, 6-31

Java 14

Java generation template 5-20

Java work product 5-23

Java-like syntax 1-4

Licenses 5-5

Loading modules

Access from the J language 5-6
Configuring modules 5-6

Major version 7-23

Makefile generation 1-7

Markers 6-27

Mask code 7-23

Menu bar 4-12

Metaclass 1-10

Metaclass definition 6-3

Metaclasses 1-6, 1-7, 1-9, 2-9, 2-11,
5-9, 5-12, 5-16, 6-3, 6-6, 6-12, 6-16,
6-21, 6-28, 6-36, 6-47

Referencing procedure 2-9
Meta-explorer 4-12, 4-13, 4-16, 7-25
Description 4-15
Metamodel 1-6, 1-9
Metamodel classes 1-8
Minor version 7-23
Model transformation 5-25
Model transformation services 5-25
Model-driven development 1-3
ModelElement metaclass 5-12, 5-15,
5-18
Module 1-6, 1-8, 7-8
Commands 7-3
Configuration 2-22
Creation 2-16
Definition 7-3
Parameters 7-3
Module configuration
Module configuration window 2-23
Module configuration window 2-22
Module parameters 1-9
Creation 2-7
Module resources 7-23
Module transformation 1-9
modulelnit 7-10
modulelnstall 7-10
Modules 1-5, 1-6, 1-7, 1-9, 2-3, 2-16,
2-22, 2-23, 3-16, 4-13, 4-15, 5-3, 5-
4,5-7, 5-10, 5-13, 5-22, 5-25, 6-44,
8-9
Creating a module 3-36
Overview 5-3
moduleSelect 7-10
moduleUninstall 7-10
moduleUnselect 7-10
MpGenProduct metaclass 5-24
Note type 1-9

Note types 2-9, 3-4, 4-13, 5-13, 6-3,
7-6,7-8
Creating a note type 3-9

Notes 1-5, 1-6, 1-7, 2-9, 3-3, 4-13, 5-
3,5-13,7-6, 7-8

Access from the J language 5-15
Overview 5-13

Objecteering/Administrating
Objecteering Sites 7-20

Objecteering/C++ 1-5, 1-6, 5-3, 6-
34, 7-20

Objecteering/Document Template
Editor 6-34

Objecteering/Documentation 1-5, 5-
3,7-20

Objecteering/Introduction 1-5
Objecteering/J Libraries 1-5, 7-10
Objecteering/Java 7-20

Objecteering/Metamodel 1-5, 1-6, 5-
15, 6-3, 6-47

Objecteering/Metamodel User Guide
5-12

Objecteering/Model Dialog Boxes 5-
22

Objecteering/The J Language 1-5,
1-6, 1-9, 5-24, 6-21

Objecteering/UML installation
procedure 5-4

Objecteering/UML metamodel 5-15,
5-18, 6-18

Objecteering/UML Modeler 1-4, 1-
1-6, 1-7, 1-9, 2-3, 2-5, 3-5, 4-5, 4-
6-47, 7-3, 7-13

Objecteering/UML Profile Builder 1-
10, 4-6

Opening a meta-explorer 4-14

Opening an existing UML profiling
project 4-6

Operation 1-6

5,
6

Operations on a module
Creating a command 6-44
Inheriting from a module 6-44
Packaging the module 6-44
Referencing a UML profile 6-44

Selecting the installation UML
profile 6-44

Using a UML profile 6-44
Oracle generation 5-3
Oracle generator 5-10
Other customizable services
Overview 5-25
Package 5-23
Packages 3-3
Packaging a module 7-20
Packaging file path 7-23
Parameter types
Boolean 6-32
Directory 6-32
Enumeration 6-32
File open 6-32
File save 6-32
Password 6-32
String 6-32
Parameters 1-5, 1-6, 1-7, 2-7, 2-22,
2-23, 3-3, 3-8, 3-16, 3
39, 4-13, 5-6, 5-9, 6-3
8, 7-13,7-17, 7-18

Creating new parameters 3-8
Password 6-32
Process-driven development 1-3

Properties editor 4-12, 4-13, 5-11, 5-
23,7-7

Annotating structural elements 4-
18

Creating J methods 4-18
ltems tab 2-26, 4-19

1,7-

Redefining J methods 4-18

Referencing UML profiles 4-18

Selecting UML installation profiles
4-18

Specializing modules 4-18

Terminal element creation icons 4-
20

Using UML profiles 4-18

RDB generation 1-7

Read only mode 7-23

Read/write mode 7-23

Receiving a UML profiling project 4-
7

Receiving and renaming a UML
profiling project 4-7

Receiving and upgrading a UML
profiling project 4-7

Receiving UML profiling projects 4-6

Receiving, renaming and upgrading a
UML profiling project 4-7

Redefining a J method 6-28

Referencing a metaclass 2-9, 6-3, 6-
4

Referencing a UML profile for the
module 2-18

Referencing UML profiles 1-8, 7-6,
8-9

Release information 7-23

Saving your model context 4-6

Selecting a test project 2-24, 8-4

Selecting modules 5-5

Specialized modules 7-3

Specializing a module 7-18

Specializing the UML profiling project's
module 1-8

Status bar 4-12
Stereotype
Creation 6-12

Stereotype visibility 6-15

Stereotypes 1-3, 1-5, 1-7, 1-10, 4-
13, 5-16, 6-3, 6-12, 7-6, 7-8
Access from the J language 5-18
Overview 5-16

String 6-32

Structural element creation icons in
the meta-explorer 4-16

Structure
Modules 1-6
UML profiles 1-6

Tagged value types 1-10, 2-9, 3-4,
3-11, 4-13, 6-3, 6-6, 7-6, 7-8
Creation 3-11

Tagged values 1-3, 1-5, 1-6, 1-7, 1-
10, 2-9, 3-3, 3-27, 4-13, 5-3, 5-10,
6-6, 7-6, 7-8, 8-3
Access from the J language 5-12
Overview 5-10

TaggedValue metaclass 5-12

TagType metaclass 5-12

Terminal element creation icons 4-
20

Test project 1-10, 2-26, 7-25
Test projects 3-40, 8-3, 8-9
Creating a test project 8-5
Deleting a test project 8-6
Importing a test project 8-7
Selecting a test project 8-4
Unselecting a test project 8-6
Testing a UML profiling project 2-24
Testing code edition 3-43
Testing code generation 3-42
Testing code visualization 3-43
Testing J methods 8-9
Creating work products 8-9

Testing the UML profiling project 3-
40

Textually editing a J method 6-25

The "Attribute" dialog box 6-20

The "Attribute::generate ()" method
3-28

The "Attribute::getType ()" method 3-
29

The "Class::generate ()" method 3-
25

The "Command" dialog box 7-15

The "Document template" dialog box
6-40

The "Generation item" dialog box 6-
38

The "J Method" dialog box 6-23

The "JavaProduct::edit" method 3-34

The "JavaProduct::generate ()"
method 3-24

The "JavaProduct::getldLineComment
"method 3-34

The "JavaProduct::initProduct ()"
method 3-30

The "JavaProduct::isPresent" method
3-32

The "JavaProduct::mustPropagate ()"
method 3-32

The "JavaProduct::update ()" method
3-31

The "JavaProduct::visualize " method
3-33

The "Module" dialog box 6-44

The "Note type" dialog box 6-11

The "Object::modulelnstall" method
3-34

The "Object::moduleUninstall" method
3-35

The "Operation::generate ()" method
3-27

The "Operation::getCode ()" method
3-28

The "Package::generate ()" method
3-24

The "Parameter” dialog box 6-32

The "Stereotype" dialog box 6-14

The "Tagged value type" dialog box

The "Type of constraint" dialog box
6-17

Tool bar 4-12

Transformation rules 1-9

Types package template 7-24

UML 1.3 1-6

UML installation profile 7-3, 7-6, 7-
10

UML installation profiles 7-8

UML modeling project 1-7, 2-3, 5-3,
5-7, 6-31, 8-3

UML modeling projects 1-4, 4-3, 4-6,
5-4

UML profile 1-10

UML Profile Builder workspaces 1-4

UML profile generalization 1-7

UML profiles 1-3, 1-6, 1-7, 1-8, 2-3,
2-6, 2-9, 2-19, 2-23, 3-4, 3-6, 3-8, 3-
9, 3-11, 3-12, 3-14, 3-18, 3-23, 3-36,
4-13, 4-15, 5-16, 6-3, 6-6, 6-21, 6-
25, 6-28, 6-32, 6-36, 6-47, 7-3, 7-6,
7-8, 7-18
Creating a child UML profile 1-7,

2-6
Creating a UML profile 3-6
Definition 1-7
Referencing a UML profile for the
module 2-18

UML profiling project 3-4, 4-11, 4-13,
4-16

UML profiling project 1-7, 2-3, 2-16,
2-24, 4-15, 4-19, 4-20, 8-3
Creation 2-3

Test 2-24
UML profiling projects 1-8, 1-10, 2-6,
4-3
Definition 1-7
UML rules 1-3
Undo/redo operations 5-25
Unselecting a test project 8-6
Upgrading a UML profiling project 4-
9

Upgrading UML profiling projects 4-6
Using modules 5-4

Selecting modules in a UML
modeling project 5-5

Using UML profiles 1-8, 7-8

Validation rules 1-3

Work context 4-6

Work product 1-7, 1-10

Work products 3-14, 3-30, 4-13, 5-3,
5-7,7-8
Access from the J language 5-24
Overview 5-22

Workspaces 1-4

