
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

 Objecteering/UML Profile Builder
 User Guide
 Version 5.2.2

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/002

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents

Chapter 1: Introduction
Introducing Objecteering/UML Profile Builder ...1-3
UML profiling projects ..1-7
Glossary ...1-9

Chapter 2: First Steps: Creating a module
Creating a UML profiling project ..2-3
Creating a UML Profile ..2-6
Referencing a metaclass ...2-9
Procedure for entering a J method ..2-13
Creating a module..2-16
Configuring a module...2-22
Testing a UML profiling project ..2-24

Chapter 3: First Steps: Building a generator
Creating a generator ..3-3
Creating a UML profile ...3-6
Creating parameters ..3-8
Creating note types..3-9
Creating tagged value types ..3-11
Creating J attributes...3-12
Creating a generation work product ..3-14
Creating J methods..3-18
Implementing J methods..3-23
Creating a module..3-36
Creating commands...3-37
Configuring a module...3-39
Testing a module ...3-40

Chapter 4: Using Objecteering/UML Profile Builder
Launching Objecteering/UML Profile Builder ..4-3
Creating or opening a UML profiling project ..4-4
Receiving and upgrading UML profiling projects ..4-7
The main window ...4-11
The meta-explorer..4-13
The properties editor..4-18

Chapter 5: Elements customizing UML and Objecteering/UML
Modules..5-3
Using modules ...5-4
Commands...5-7
Tagged values ...5-10
Notes..5-13
Stereotypes ..5-16
Document and generation templates ..5-19
Work products ..5-22
Other customizable services ...5-25

Chapter 6: Defining UML profiles
Referencing a metaclass ...6-3
Creating a type of tagged value...6-6
Creating a type of note ..6-9
Creating a stereotype...6-12
Creating a constraint..6-16
Creating a J class attribute ..6-18
Creating a J method...6-21
Textually editing a J method ..6-25
Redefining a J method...6-28
Defining a module parameter ..6-31
Creating a generation or document template ..6-34
Defining a new kind of work product ...6-47

Chapter 7: Defining modules
Overview of module definition ...7-3
Referencing UML Profiles..7-6
Using UML Profiles ..7-8
Defining a UML installation profile ...7-10
Creating commands...7-13
Changing the default values of parameters ..7-17
Specializing a module ..7-18
Packaging a module ..7-20

Chapter 8: Test projects
Test project definition...8-3
Testing J methods..8-9

Index

Chapter 1: Introduction

Chapter 1: Introduction

Objecteering/UML Profile Builder User Guide 1-3

Introducing Objecteering/UML Profile Builder

Introduction
Welcome to the Objecteering/UML Profile Builder user guide!
Objecteering/UML Profile Builder is a unique and powerful tool, used to
parameterize Objecteering/UML, in order to adapt it to your specific needs. With
Objecteering/UML Profile Builder, you can define your own tagged values,
documents and document items, as well as checking, generation and validation
rules. The Objecteering/UML Profile Builder tool is a powerful aid to providing
completely project-oriented model-driven and process-driven development.
The Objecteering/UML Profile Builder tool is used to design and implement UML
profiles, which are predefined sets of stereotypes, tagged values, constraints and
notation icons, used to collectively specialize and tailor UML to a specific domain
or process. A UML profile does not extend UML by adding new basic concepts,
but instead provides conventions for applying standard UML to a particular
environment or domain.
UML profiles can, for example, provide UML rules specific to analysis, or
dedicated to technical design, as well as those relative to C++ generation or to the
generation of database schemas. They define UML usage contexts, in order to
adapt the UML to particular needs.

Chapter 1: Introduction

1-4 Objecteering/UML Profile Builder User Guide

Objecteering/UML Profile Builder uses different workspaces than those of
Objecteering/UML Modeler UML modeling projects. The information stored in
UML profiles is thus managed separately, and represents UML development
know-how. Each UML modeling project can select those UML profiles which are
of interest, and may thus use specific rules, assistance and automation.

Figure 1-1. The know-how contained in UML profiles is applied to UML modeling projects

For example, Objecteering/UML Profile Builder is used to define new code
generators, to adapt existing generators, to establish consistency checking rules,
to automate design patterns, to carry out inquiries into tool data, to define
document templates or generation templates, and so on. Objecteering/UML
Profile Builder provides a language dedicated to the use of UML by UML profiles,
called the J Language. J language syntax is close to that of Java.

Chapter 1: Introduction

Objecteering/UML Profile Builder User Guide 1-5

Functions of the Objecteering/UML Profile Builder tool
Objecteering/UML Profile Builder can also be used to create modules (for
example, a module to generate documentation or indeed to generate C++), and to
this end offers the following services:

♦ the creation of new J services (J methods)

♦ definition of parameters, which allow the user to supply module options

♦ definition of commands, which are translated into menus in the
Objecteering/UML Modeler

♦ definition of types of notes, types of tagged value and stereotypes

♦ definition of generation work products

♦ definition of document templates or code generation templates
Objecteering/UML allows the user to edit parameterization environments, which
are structured into UML profiling projects. A UML profiling project is used in the
same way as a UML modeling project in its modeling phase.

Note: For more information on the Objecteering/Metamodel and the
Objecteering/J Libraries, please refer to the related user guides. Similarly,
for further details on the J language, please see the Objecteering/The J
Language user guide (for details on all available modules, please see the
"General Contents" section of the Objecteering/Introduction user guide).

Chapter 1: Introduction

1-6 Objecteering/UML Profile Builder User Guide

Structure
Parameterization elements are structured into UML profiles and modules:

♦ a UML profile contains J methods, parameter definitions, types of notes and
types of tagged values, document templates and generation work products.

♦ the module, which is a high-level entity, references one or several UML
profiles. For example, the Objecteering/C++ module references a C++ code
generation UML profile and a C++ makefile generation UML profile. A module
contains commands and parameter values, and can be delivered to users in
the Objecteering/UML Modeler. Users then take advantage of specific menus,
parameters and clean generation processing.

The assumption is made that the user of Objecteering/UML Profile Builder has
some prior knowledge of object modeling.
This user guide makes reference to the following user guides:

♦ Objecteering/The J language user guide

♦ Objecteering/Metamodel user guide (based on the UML 1.4 standard).

Working with the Objecteering/UML Profile Builder tool
For the user of the Objecteering/UML Profile Builder module, the work consists
firstly of organizing parameterization into hierarchical UML profiles. In these UML
profiles, the user defines parameters, tagged value types and notes types. He
also creates attributes and J methods which can, amongst other things, exploit
parameters, notes according to their type and modeling objects according to their
tagged values.
The user must then group his UML profiles into modules. The module is the entity
used by the standard Objecteering/UML user (specifier, designer, etc.). Within
these modules, he creates commands, which activate those J methods which
belong to the module’s UML profiles.
A UML modeling project which uses this modules will now have new menus
available. Thus, for each module command, a menu item is added to the
contextual menu available for model elements (class, operation, etc), whose type
is, or specializes, the metaclass which the J method references.

Chapter 1: Introduction

Objecteering/UML Profile Builder User Guide 1-7

UML profiling projects

Definition
A UML profiling project is to Objecteering/UML Profile Builder what a UML
modeling project is to the Objecteering/UML Modeler. It is a development
environment that contains UML profiles organized into a certain hierarchy. These
UML profiles structure tool parameters, J methods and attributes, as well as note
and tagged value types, and stereotypes.
A UML profiling project also contains modules which group together UML profiles
and commands, as well as providing default values for parameters. For the end
user, modules correspond to functional and coherent "packages". (for example,
Gen C++, Gen Doc, etc.). Several users can work at the same time on different
UML profiling projects.

UML profiles
UML profiles group together a set of J methods and module parameters for a
given theme (for example, Java code generation, makefile generation or RDB
generation). They organize, in hierarchical order, J rules, which are added to the
model's metaclasses.
In a UML profile, it is possible to:

♦ create a child UML profile which can then redefine some of the parent UML
profile's methods (UML profile generalization)

♦ create a reference to a metaclass

♦ create a parameter

♦ create a type of work product

♦ create a generation document template

♦ create a document template

Chapter 1: Introduction

1-8 Objecteering/UML Profile Builder User Guide

Default UML profiles
A UML profiling project is initialized with a certain number of UML profiles. These
cannot be modified (Figure 1-2). A UML profile is always created from a parent
UML profile.

Figure 1-2. Default UML profiles supplied with a UML profiling project

Note: Default UML profiles can neither be destroyed nor modified.

The module
A module is a set of consistent features developed using J methods on the
metamodel’s classes.
From a module, it is possible to:

♦ reference UML profiles

♦ use UML profiles

♦ create a command

♦ specialize the UML profiling project's module

Chapter 1: Introduction

Objecteering/UML Profile Builder User Guide 1-9

Glossary

Command: module component and entry point for a J method. A command will
appear in Objecteering/UML Modeler as a context menu (pop-up menu) entry for
model elements. The J method referenced by the command is defined once the
metaclass which is concerned (model elements in Objecteering/UML Modeler)
contains the command in its context menu.
Document item: description of information that should be included in
documentation.
Document template project: hierarchy, composed of "document items", describing
the typical form of documentation.
Generation item: description of information which should be included in source
code.
Generation template project: Hierarchy composed of "generation classes" which
describe the typical source code form.
J attribute: "class" attribute added to a metaclass, used by the J language.
J method: method defined on a metaclass, in a UML profile, which contains
operations used to exploit the metamodel.
Metaclass: metamodel element. It is used to structure J methods, J attributes,
note types and tagged value types in a UML profile. "Class" or "Attribute", for
example, are metaclasses.
Metamodel: model used to describe another model. All the elements supported by
Objecteering/UML Modeler are described in the metamodel.
Module: a "functional and consistent" group of UML profiles and commands.
Module parameters: information entered by the user which has an impact on the
execution of J methods.
Module transformation: mechanism that applies transformation rules in order to
modify a model. The J language is used to describe these rules.
Note type: definition of a note for the objects of a given metaclass. For example,
the "description" note type is used to attach "description" notes to "Class" type
objects.

Chapter 1: Introduction

1-10 Objecteering/UML Profile Builder User Guide

Objecteering/UML Profile Builder: module used to customize the tool's through the
addition of new features.
Stereotype: (UML Notion) specific adaptation of ModelElement semantics.
Through stereotypes, the end user can create new icons and new adaptations of
model elements.
Tagged value: (UML term) A tagged value is an annotation of a model element.
This term covers note types and tagged value types defined below.
Tagged value type: definition of a tagged value for the objects of a given
metaclass. For example, the "persistent" tagged value type on the "Class"
metaclass allows you to annotate a "Client" class in a model with the "{persistent}"
tagged value.
Test project: project allowing you to simultaneously test the modules developed in
a UML profiling project.
UML Profile: a UML profile is a way of structuring J methods. A UML profile
represents a certain way of viewing a model, for a functional purpose. A
metaclass has different J methods according to the current UML profile.
UML profiling project: environment for developing UML profiles and modules .
Work product: reference to one or more work products or deliverables created for
a model element. A product appears in the properties editor, and can represent
documentation, generated source codes, etc. It manages the external elements of
the model and their consistency. It is possible to create new types of work
products with Objecteering/UML Profile Builder.

Chapter 2: First Steps: Creating a
module

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-3

Creating a UML profiling project

Introduction
The following example illustrates how to create a module, which will be used to
study the impact of the modification of a class in Objecteering/UML Modeler. You
must work in an existing UML modeling project, since this will allow you to
immediately test work carried out in the UML profiling project.
In the example, you are going to create the "NewUMLProfilingProject" UML
profiling project, the "CalculateImpact" module and the "default#external#Impact"
UML profile.

Chapter 2: First Steps: Creating a module

2-4 Objecteering/UML Profile Builder User Guide

Creating a UML profiling project

Figure 2-1. Creating a UML profiling project

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-5

Steps:

1 - Click on the Objecteering/UML Profile Builder icon in your desktop. The
window shown in Figure 2-1 will then appear.

2 - Click on the "File/New" menu. The "Create a UML profiling project" window
will then open.

3 - In the "UML profiling project name" field, enter the "NewUMLProfilingProject"
name.

4 - In the "UML profiling project path" field, enter the path of the directory where

the new UML profiling project is to be created. You may also use the
icon to open a file browser through which you can select your UML profiling
project path.

5 - Confirm by clicking on the "OK" button.

Note: Document templates are created by checking the "Document template
project" tickbox.

Chapter 2: First Steps: Creating a module

2-6 Objecteering/UML Profile Builder User Guide

Creating a UML Profile

Creating a child UML Profile
The first step in our example is to create an "Impact" UML profile in the UML
profiling project's default UML profile (Figure 2-2).

Figure 2-2. Creating the "Impact" UML Profile

Steps:
1 - Expand the UML profiling project and select the "default" UML profile.

2 - Click on the "Create a child UML profile" button.
3 - Enter the name directly in the explorer and confirm by left-clicking.

Note: If you press the "Return" key on your keyboard, a new UML profile will be
created (through the continuous entry creation mode).

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-7

Creating a module parameter
We are now going to create the "Scan the child classes" module parameter in the
"Impact" UML profile.

Figure 2-3. Creating the "Scan the child classes" module parameter

Chapter 2: First Steps: Creating a module

2-8 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select the "Impact" UML profile.

2 - Click on the "Create a parameter" button.
3 - Enter the name and select the parameter type from the scrolling list. Please

note that seven parameter types are now available: Boolean, String,
Enumeration, File open (String), File save (String), Directory (String) and
Password (String).

4 - In the "Group" field, type "Calculate impact". This field is used to group
parameters together in the different categories you specify. Several default
groups are available for selection, but you may also, as in our example, create
new groups.

5 - Confirm.

Create three other boolean parameters ("Scan the heir classes", "Scan the
method parameters" and "Scan the linked classes") in the same group ("Calculate
impact") and within the same UML profile.

Note: These parameters are visible during the "model configuration" phase (see
figure 2-11).

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-9

Referencing a metaclass

Procedure
When a metaclass is referenced, (shown in Figure 2-4) you can designate those
metaclasses that are of interest to different methods, according to the current UML
profile. In a metaclass, we can define a UML profile's J methods, J attributes, note
types and tagged value types.

Figure 2-4. Referencing the "Class" metaclass

Chapter 2: First Steps: Creating a module

2-10 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select the "Impact" UML profile.

2 - Click on the "Create a metaclass reference" button.
3 - Select the "Class" metaclass from the scrolling list.
4 - Confirm.

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-11

Creating a J method
We are now going to create the "PrintImpact" method(Figure 2-5) for the "Class"
metaclass.

Figure 2-5. Creating the "PrintImpact" J method

Chapter 2: First Steps: Creating a module

2-12 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select the "Class" metaclass.

2 - Click on the "Create a J method" button.
3 - Enter the "PrintImpact" name directly in the explorer and left-click to stop the

continuous entry creation mode.

Note: If you wish to modify this name, right-click on the method, and choose the
"Modify" option from the context menu which appears.

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-13

Procedure for entering a J method

Procedure
We are now going to launch an editor on the J method. The code which must be
entered during the third step is given on the following page.

Figure 2-6. Entering the J code

Steps:
1 - Select the J method.
2 - Double-click on the method's "JCode" Note.
3 - Enter the code.
4 - Confirm.

Chapter 2: First Steps: Creating a module

2-14 Objecteering/UML Profile Builder User Guide

Content of the J method
The following J code is entered. If you find entering the following code too long,
simply enter "StdOut.write ("hello world");" (Figure 2-6):
String result ;
String Message1 = "the heir classes are : ";
String Message2 = "the child classes are : ";
String Message3 = "the linked classes are : ";
String Message4 = "the method parameter classes are : ";

if (getCurrentModuleParameterValue("Scan the heir
classes","default#Impact", result))
{

if (result == "TRUE")
{ SpecializationGeneralization.<SubTypeClass

{ Message1.concat (Name, ", ");
}

StdOut.write (Message1, NL); }
}

if (getCurrentModuleParameterValue("Scan the child
classes","default#Impact", result))
{

if (result == "TRUE")
{ OriginUse.<UserClass

{ Message2.concat (Name, ", ");
}

StdOut.write (Message2, NL);
}

}

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-15

if (getCurrentModuleParameterValue("Scan the linked
classes","default#Impact", result))
{

if (result == "TRUE")
{
PartAssociationEnd.<getOpposedRelationLink.<OwnerClass

{
Message3.concat(Name, ", ");

}
StdOut.write (Message3, NL);

}
}

if (getCurrentModuleParameterValue("Scan the method
parameters","default#Impact", result))
{

if (result == "TRUE")
{ OccurenceParameter

{
Message4.concat (Name, ", ");

}
StdOut.write (Message4, NL);

}
}

Chapter 2: First Steps: Creating a module

2-16 Objecteering/UML Profile Builder User Guide

Creating a module

We are now going to create a module called "CalculateImpact" in the UML
profiling project (Figure 2-7).

Figure 2-7. Creating the "CalculateImpact" module

Steps:
1 - Select the UML profiling project.

2 - Click on the "Create a module" button.
3 - Fill in the necessary information (please see table below).
4 - Confirm.

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-17

The ... field is used to ...
Name give a name to the module which is being created (used

internally).

Label provide a label for the module. This will appear in the
pop-up menus and other interfaces.

Working directory enter the packaging target directory and the directory
containing the module's external resources. If the
"Working directory" field is left blank, then the working
directory is
$OBJING_PATH/modules/<ModuleName>/<Version>.
Otherwise, the user may specify the working directory
of his choice.

Number of major version indicate the first number in the version number (for
example, if the complete version number is "4.6", then
the major version number is 4.

Number of minor version indicate the second number in the version number (for
example, if the complete version number is "4.6", then
the minor version number is 6.

Release information indicate the release number for the module (for
example, "a").

Minimum binary version
compatibility

indicate Objecteering/UML binary requirements for the
module.

Mask parents mask the parameters and menus of the parent of the
module which has been selected. If this box is not
checked, the module's parameters and menus will
cohabit with those of its parents. This box has no effect
on modules which do not have parents.

Chapter 2: First Steps: Creating a module

2-18 Objecteering/UML Profile Builder User Guide

Referencing a UML profile for the module
The "CalculateImpact" module must reference a UML profile. This operation
allows you to proceed with the creation of commands (Figure 2-9).

Figure 2-8. Referencing the "CalculateImpact" module

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-19

Steps:
1 - Select the "CalculateImpact" module.

2 - Click on the "Reference a UML Profile" button.
3 - Click on the "Search" button.
4 - Select the "default#Impact" UML profile.
5 - Confirm.

Note: It is possible to use the drag and drop function to select the "Impact" UML
profile, by selecting it in the explorer and dragging it into the drop zone.
Click on "Apply" to confirm.

Chapter 2: First Steps: Creating a module

2-20 Objecteering/UML Profile Builder User Guide

Creating a command
We can now create a command that references a module UML profile method.

Figure 2-9. Creating a command

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-21

Steps:
1 - Select the "CalculateImpact" module.

2 - Click on the "Create a command" button.
3 - Enter the name.
4 - Enter the label.
5 - Select the "default#Impact" UML Profile.
6 - Select the "Class:default#Impact#PrintImpact" J method.
7 - Confirm.
This command is now available in a pop-up menu available in all the UML
modeling projects which use this module. We will have a look at this later in the
test project.

Chapter 2: First Steps: Creating a module

2-22 Objecteering/UML Profile Builder User Guide

Configuring a module

We are now going to define the default values of the module’s parameters. The
"CalculateImpact" module configuration window is opened from the main window
(Figure 2-10).

Figure 2-10. Configuring the "CalculateImpact" module

Select the "Tools" menu in the menu bar and then select the "Configure UML
profiling project..." option.

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-23

Module configuration window
This configuration window allocates a part of the displayed hierarchy to each UML
profiling project module which has at least one parameter. In this example, there
is, therefore, only one section, "Calculate impact", with the four parameters
previously created in the "Impact" UML profile. In figure 2-11, the default value
has been set to "TRUE".

Figure 2-11. The module configuration window

Note: The configuration window of a module is updated automatically when the
module has been modified (for example, when a new UML profile is
referenced, when a parameter is added or deleted in a referenced UML
profile).

Chapter 2: First Steps: Creating a module

2-24 Objecteering/UML Profile Builder User Guide

Testing a UML profiling project

Selecting a test project
To carry out a test on the UML profiling project, you must first select a test project
(Figure 2-12).

Figure 2-12. Selecting a test project.

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-25

Steps:
1 - Select the "Select a test project..." option from the "Test" menu.
2 - Select the test project concerned.
3 - Confirm. An explorer for this test project then opens automatically.

Note: To create a test project, simply select the "Create a test project" option and
enter a name. The new test project then automatically opens.

Chapter 2: First Steps: Creating a module

2-26 Objecteering/UML Profile Builder User Guide

Test project
We are now going to complete our example by entering classes in a test project.
This will allow us to execute J code on the user model. If the project already has a
model, this operation is optional.

Figure 2-13. Selecting test project classes

Steps:
1 - Select the "testProject" package in the test project explorer. Once selected,

the properties editor is activated for this element.

2 - Create a class diagram by clicking on the "Create a class diagram" icon
in the "Items" tab of the properties editor. The newly created diagram is then
automatically opened.

3 - Create the classes and associations shown in the diagram in Figure 2 -13.

Chapter 2: First Steps: Creating a module

Objecteering/UML Profile Builder User Guide 2-27

Launching the command
The code is executed from a class belonging to the test project (Figure 2-14).

Figure 2-14. Executing J code

Steps:
1 - Click on the class in the test project explorer using the right mouse-button to

activate the context menu.
2 - Select the "Impact study/Calculate impact" menu entries.

Chapter 2: First Steps: Creating a module

2-28 Objecteering/UML Profile Builder User Guide

The code executes the following process, which is displayed in the console
(Figure 2-15):

Figure 2-15. The console displaying the results of code execution

Chapter 3: First Steps: Building a
generator

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-3

Creating a generator

Overview
Objecteering/UML Profile Builder can be used to create new code generators.
This chapter presents the generators and the different services available for
defining new code generation.
The example which follows shows how to create a Java code generator.
This generator is used to:

♦ generate Java code

♦ visualize the generated files

♦ externally edit the generated files and retrieve the code in the
Objecteering/UML repository after edition

Characteristics of Java code generation
To avoid complicating these first steps, the code generator will be very limited.
It will be used to generate:

♦ from a package or a class

♦ one file per class

♦ methods without parameters. Certain methods can be defined as being
"synchronized", through the addition of a tagged value. Method code is
entered in a note.

♦ attributes

Chapter 3: First Steps: Building a generator

3-4 Objecteering/UML Profile Builder User Guide

Creating a UML profiling project
Create the "JavaProfilingProject" UML profiling project. This UML profiling project
should contain the Java module, the Java UML profile, the tagged value types, the
note types and the generation work product which are necessary for the Java
generator.

Figure 3-1. Creating the "JavaProfilingProject" UML profiling project

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-5

Steps:

1 - Click on the Objecteering/UML Profile Builder icon in your desktop. The
window shown in Figure 3-1 will then appear.

2 - Click on the "File/New" menu. The "Create a UML profiling project" window
will then open.

3 - In the "UML profiling project name" field, enter the "JavaProfilingProject"
name.

4 - In the "UML profiling project path" field, enter the path of the directory where

the new UML profiling project is to be created. You may also use the
icon to open a file browser through which you can select your UML profiling
project path.

5 - Confirm by clicking on the "OK" button.

Chapter 3: First Steps: Building a generator

3-6 Objecteering/UML Profile Builder User Guide

Creating a UML profile

Introduction
A UML profile for a generator must be defined in the "default#external#Code" UML
profile.
This UML profile contains services which:

♦ manage the markers of the generated files

♦ manage the edition

♦ retrieve the code after external edition

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-7

Creating a Java UML profile
Create the "Java" UML profile in the "default#external#Code" UML profile by
following the steps illustrated in Figure 3-2. The Java generator will be defined on
this UML profile.

Figure 3-2. Creating a "Java" UML Profile

Steps:
1 - Select the "Code" UML profile in the "external" UML profile.

2 - Click on the "Create a child UML profile" button.
3 - Enter the "Java" name.
Confirm by clicking outside the note type zone. If you press return, another note
type will be created, using the continuous data entry mode.

Chapter 3: First Steps: Building a generator

3-8 Objecteering/UML Profile Builder User Guide

Creating parameters

Existing parameters
Since the "Java" UML profile inherits from the "Code" UML profile, the following
parameters are inherited:

The ... parameter is used to ...
IdGenerated generate markers in the generated files

ExtEditorCommandLine : command to
invoke the external editor

launch an external editor to edit a generated file

Note: The parameters in this table are not visible from Objecteering/UML Profile
Builder. (They can be parameterized through the "Tools/Configure the
UML profiling project... " menu, in the "UML Profile Builder" section).

Creating new parameters
In the generation, we will use two parameters, which allow the user to identify the
generation path and the default suffix.
In the "default#external#Code#Java" UML profile, create the "Java generation
path", which allows you to define the default generation path for the generated
files. Enter the following values:

♦ "Name" attribute: "Java generation path"

♦ "Type" attribute: "String"

♦ "Group" attribute: "Java product parameters"

In the "default#external#Code#Java" UML profile, create the "Java generation
suffix", which allows you to define the extension of the generated files. Enter the
following values:

♦ "Name" attribute: "Java generation suffix"

♦ "Type" attribute: "String"

♦ "Group" attribute: "Java product parameters"

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-9

Creating note types

Creating a note type
We are going to define a note type used to enter Java code on J methods. This
note type will only be accessible for the "Operation" metaclass.
In the "default#external#Code#Java" UML profile, create a reference to the
"Operation" metaclass.
For this reference, create the "JavaCode" note type.

Figure 3-3. Creating the "JavaCode" text type

Chapter 3: First Steps: Building a generator

3-10 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select the "Operation" metaclass reference.

2 - Click on the "Create a type of note" button.
3 - Enter the "JavaCode" name for the note type.
Confirm by clicking outside the note type zone. If you press return, another note
type will be created, through the continuous data entry mode.

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-11

Creating tagged value types

Types of tagged values
Since the "Java" UML profile inherits from the "Code" UML profile, the following
tagged values are available for Java:

The ... tagged
value

on the
...metaclass

is used to ...

{nocode} Attribute generate nothing for attributes annotated with
this tagged value

{nocode} Class generate nothing for classes annotated with
this tagged value

{nocode} Operation generate nothing for operations annotated with
this tagged value

{nocode} AssociationEnd generate nothing for associations annotated
with this tagged value

{nocode} Package generate nothing for packages annotated with
this tagged value

Creating a type of tagged value
The Java code generator will suggest that you use the {synchronized} tagged
value on all the methods. This tagged value will allow you to automatically
generate the "synchronized" keyword, which will be the header of the methods
that will own it.
In the "Operation" metaclass reference, create the {synchronized} tagged value
type, by clicking on the "Create a tagged value type" icon and entering the
following values:

♦ "Name": "synchronized"

♦ "Number of parameters": 0

♦ "Qualified": "FALSE"

♦ "Inclusion in the signature": "FALSE"

Chapter 3: First Steps: Building a generator

3-12 Objecteering/UML Profile Builder User Guide

Creating J attributes

Creating J attributes
So as to keep generation information accessible in any context, we are now going
to create three J attributes.
In the "default#external#Code#Java" UML profile, create an "Object" metaclass
reference.
For this reference, create the "JavaOriginPath", "JavaOriginSuffix" and
"OriginName" attributes, by clicking on the "Create a J attribute" icon.

The ... J attribute allows you to retain ...
JavaOriginPath the generation path value

JavaOriginSuffix the extension value

OriginName the associated modeling element

Figure 3-4. J Attribute dialog box

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-13

The "JavaOriginPath" attribute
Create the "JavaOriginPath" attribute, by entering the following values:

♦ In the "Name" field, enter "JavaOriginPath".

♦ In the "Visibility" field, enter "Public".

♦ In the "Class" field, enter "String".

♦ In the "Set" field, enter "FALSE".

♦ In the "Initial value" field, enter nothing.

The "JavaOriginSuffix" attribute
Create the "JavaOriginSuffix" attribute, by entering the following values:

♦ In the "Name" field, enter "JavaOriginSuffix".

♦ In the "Visibility" field, enter "Public".

♦ In the "Class" field, enter "String".

♦ In the "Set" field, enter "FALSE".

♦ In the "Initial value" field, enter nothing.

The "OriginName" attribute
Create the "OriginName" attribute, by entering the following values:

♦ In the "Name" field, enter "OriginName".

♦ In the "Visibility" field, enter "Public".

♦ In the "Class" field, enter "String".

♦ In the "Set" field, enter "FALSE".

♦ In the "Initial value" field, enter nothing.

Chapter 3: First Steps: Building a generator

3-14 Objecteering/UML Profile Builder User Guide

Creating a generation work product

Creating a work product
In the "default#external#Code#Java" UML profile, create the "JavaProduct"
generation work product, by clicking on the "Create a product" icon.

Figure 3-5. Work product dialog box

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-15

Enter the following values:

♦ In the "Name" field, enter "JavaProduct".

♦ In the "Label" field, enter "Java generation work product".

♦ In the "Help bubble" field, enter "Create a Java generation work product".

♦ In the "Status bar" field, enter "Adding a Java generation work product and
administration of the files generated".

♦ In the "Bitmap name" field, enter "eo_product".

♦ In the "Modeling element concerned" field, enter "Package", "Class".

Creating parameters
Parameters are created for UML profiles and used by attributes, which are, in turn,
created on generation work products. In the "default#external#Code#Java" UML
profile, create the "Java generation path" and "Java generation suffix" parameters,

both of String type, by clicking on the "Create a parameter" icon and defining
the data entry fields in the dialog box which then appears.

Chapter 3: First Steps: Building a generator

3-16 Objecteering/UML Profile Builder User Guide

Creating attributes
In the "JavaProduct" generation work product, create the "path" attribute, by

clicking on the "Create a meta-attribute" icon, which will allow you to enter
the Java generation path (directory where the generated files will be stored). The
suffix generation default value, displayed when the work product's dialog box
opens, will be retrieved through the parameter defined for the module.

Figure 3-6. Meta-attribute dialog box

Enter the following values:

♦ In the "Name" field, enter "path".

♦ In the "Label" field, enter "generation path".

♦ In the "Type" field, enter "String".

♦ In the "Default value" field, enter "Java generation path".

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-17

In the "JavaProduct" generation work product, create the "suffix" attribute, which
will allow you to enter the generated Java files suffix. The default path value,
displayed when the work product's dialog box opens, will be retrieved through the
parameter defined for the module.
Enter the following values for the "suffix" attribute:

♦ In the "Name" field, enter "suffix".

♦ In the "Label" field, enter "generation suffix".

♦ In the "Type" field, enter "String".

♦ In the "Default value" field, enter "Java generation suffix".

Chapter 3: First Steps: Building a generator

3-18 Objecteering/UML Profile Builder User Guide

Creating J methods

Creating J methods for the code generation
The following J methods allow you to generate Java code from the model.
In the "default#external#Code#Java" UML profile, first create the "Attribute",
"Class", "Package" and "JavaProduct" metaclass references.

The ... J method on the ...
metaclass

is used to ...

generate () return String Attribute generate the attribute.

getType () return String Attribute get back the attribute type.

generate () Class generate the Java code for the class.

generate () Package recursively generate the Java code for its
classes and those of its sub-packages.

generate () JavaProduct launch Java code generation.

getCode () return String Operation generate the method body.

generate () return String Operation generate the method (only the methods
without parameters or without return
parameters are generated) .

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-19

Certain J methods contain return parameters. To create a return parameter,
select the method concerned and click on the "Add a return parameter" icon.

Figure 3-7. Adding a return parameter to a J method

Steps:
1 - Select a class.
2 - Confirm.

Chapter 3: First Steps: Building a generator

3-20 Objecteering/UML Profile Builder User Guide

Creating J methods for managing work products

The ... J method on the ...
metaclass

is called on the updateGraph
method...

initProduct (Product : in
MpGenProduct)

JavaProduct when the current work product is
created from a parent product.

update (Product : in
MpGenProduct)

JavaProduct when the current work product or
associated modeling element has
been modified.

mustPropagate () return
boolean

JavaProduct to allow the generation work products
to spread to the sub-packages and
classes.

isPresent (Product : in
MpGenProduct) return boolean

JavaProduct to avoid creating several similar work
products on the same model element
while they spread. This method
allows you to define the criteria for
creating work products.

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-21

Warning!
Certain J methods contain parameters. To create a parameter, select the method
concerned and click on the "Add a Parameter" icon.

Figure 3-8. Adding a parameter to a J method

Steps:
1 - Enter the parameter name.
2 - Select a passing mode.
3 - Choose the class.
4 - Confirm.

Chapter 3: First Steps: Building a generator

3-22 Objecteering/UML Profile Builder User Guide

Creating the visualization J methods

The ... J method on the ...
metaclass

is used to ...

visualize () JavaProduct visualize the file generated by an internal editor.

edit () JavaProduct edit the file generated by an external editor.

getIdLineComment ()
return String

JavaProduct return the characters placed in front of the
identifiers and kept in the generated file.

Creating J methods for managing the module

The ... J method on the ...
metaclass

is called ...

moduleInstall () Object when the module is installed.

moduleUninstall () Object when the module is uninstalled.

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-23

Implementing J methods

Run the "Edit the J code" command on the Java UML profile as shown in Figure
3-9.

Figure 3-9. Editing the J code

Steps:
1 - Click on the "Java" UML profile using the right mouse-button.
2 - Select the "Edit J code" option from the context menu which appears.
3 - Enter the zone that can be modified.

Chapter 3: First Steps: Building a generator

3-24 Objecteering/UML Profile Builder User Guide

The "JavaProduct::generate ()" method
This method allows the generation of Java code from the generation work product.
It consists of generating the modeling element code referenced by the work
product (calling of the generate method). All open visualizers are updated after
generation.
Void JavaProduct::generate ()
{

// Java code generation
OriginModelElement.<generate();

// updating of all the visualizers
updateAllEditors();

} // method generate

The "Package::generate ()" method
This method allows the generation of Java code from a package. It consists of
executing the "generate" method on packages and their packages.
Void Package::generate ()
{

// displaying a message in the console
StdOut.write ("Generation of the package ", Name, NL);

// generation of the packages of the current package.
OwnedElementPackage.<generate();

// generation of the classes of the current package.
OwnedElementClass.<generate();

}

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-25

The "Class::generate ()" method
This method allows the generation of Java code from a class. It consists of
generating the class header, attributes and methods, saving the generated files
and allowing it be administrated by the work product referenced by the class.
Void Class::generate ()
{

String content;
MpGenProduct genProduct;
String fileName;

// displaying a message in the console
StdOut.write (Name, " : ");

// generation of a comment at the beginning of the class
// this part of code cannot be modified
content.strcat (idGen ());
content.strcat ("// --------------------", NL);
content.strcat ("// Class ", Name, NL);
content.strcat ("// --------------------", NL);
content.strcat (idEnd ());

// generation of the class
// this part of code can be modified
// thanks to a dialog box
content.strcat (idBox ());
content.strcat ("class ", Name, NL);
content.strcat (idEnd ());

// generation of the opening bracket
// this part of code cannot be modified
content.strcat (idGen ());
content.strcat ("{", NL);
content.strcat (idEnd ());

// generation of the class attributes
PartAttribute
{

content.strcat(generate());
}

-- generation of the class methods
PartOperation
{

content.strcat(generate());
}

Chapter 3: First Steps: Building a generator

3-26 Objecteering/UML Profile Builder User Guide

// generation of the closing bracket
// this part of code cannot be modified
content.strcat (idGen ());
content.strcat ("}", NL);
content.strcat (idEnd ());

// displaying a message in the console
StdOut.write ("generate", NL);

// recapturing a class generation work product
genProduct = getAnyProduct();

if (notVoid (genProduct))
{// creation of the generated file path
fileName.strcat(genProduct.getAttributeVal("path"),

"/",
Name,
".",
genProduct.getAttributeVal("suffix"));

// letting the file be managed by
// the class work product
genProduct.mngFile (fileName, content);

}
else

{StdOut.write ("The class ~"", Name, "~" has no Java
work product", NL);}
} // method generate

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-27

The "Operation::generate ()" method
This method is used to generate a method if the operation is not annotated
"nocode" and if it has no in/out parameters or return parameters. It consists of
adding the keyword "synchronized" if the method has the {synchronized} tagged
value, and retrieving the text to be entered in the method body.
String Operation::generate ()
{

if (isTaggedValue ("nocode") == false) {
// only methods without parameters should be generated
if ((IOParameter.card() == 0) && (! (notVoid

(ReturnParameter))))
{

// generation of the method
// this part of code can be modified
// thanks to a dialog box
return.strcat (idBox ());

return.strcat (Tab);

// adding the word "synchronized" if the tagged
// value is positioned
if (isTaggedValue ("synchronized")) {

return.strcat ("synchronized ");
}

return.strcat ("void ", Name, "()", NL);
return.strcat (idEnd ());

// adding of the opening bracket
// this part of code cannot be modified
return.strcat (idGen ());
return.strcat ("{", NL);
return.strcat (idEnd ());

// generation of the method implementation
return.strcat(getCode ());

// adding of the closing bracket
// this part of code cannot be modified
return.strcat (idGen ());
return.strcat ("}", NL);
return.strcat (idEnd ());

}
}

} // method generate

Chapter 3: First Steps: Building a generator

3-28 Objecteering/UML Profile Builder User Guide

The "Operation::getCode ()" method
This method allows you to retrieve method body code. It returns the
concatenation of all the "JavaCode" text types defined on the current method.

String Operation::getCode ()
{

// recapturing the content of all
// the "JavaCode" notes
DescriptorNote.<select (ModelNoteType.Name == "JavaCode")
{

// generation of the content
// this part of code can be modified
// by the external editor
return.strcat (idTxt ());
return.strcat (Tab, Tab, Content, NL);
return.strcat (idEnd ());

}

// If there is no "JavaCode" note
// on the Operation, then markers are inserted
// allowing the automatic creation this type of
// text after external edition of the generated file
if (return == "") {

return.strcat (marker ("Descriptor", "JavaCode"));
}

} // method getCode

The "Attribute::generate ()" method
This method is used to generate an attribute. It returns a string containing the
attribute's type and name.
String Attribute::generate ()
{

// generation of the current attribute
// this part of code can be modified thanks to a dialog

box
return.strcat (idBox ());
return.strcat (Tab, getType (), " ", Name, ";", NL);
return.strcat (idEnd ());

} // method generate

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-29

The "Attribute::getType ()" method
This method allows you to retrieve an attribute's type. It returns a string according
to the type defined in the model.
String Attribute::getType ()
{

// returns the type of a Java attribute according to
// the modeled type
TypeGeneralClass
{

if (Name == "integer")
return = "int";

else if (Name == "real")
return = "float";

else if (Name == "String")
return = "String";

else
return = Name;

}
} // method getType

Chapter 3: First Steps: Building a generator

3-30 Objecteering/UML Profile Builder User Guide

The "JavaProduct::initProduct ()" method
This method allows a new work product to be updated in relation to its parent. It
consists of defining the name, suffix and path of the current work product
according to the values of the "parent" work product. This method will be called
on the Java generation work product of a package, with the package that contains
it when generation is run.
Void JavaProduct::initProduct (in MpGenProduct Product)
{

String ProductName;
String Suffix;
String Path;

// start of a session
sessionBegin ("Propagate", true);

if (notVoid (Product)) {
// getting back the values of the father work product.
ProductName = Product.Name;
Path = Product.getAttributeVal ("path");
Suffix = Product.getAttributeVal ("suffix");

// initialization of the current work product
setName (ProductName);
setAttributeVal ("path", Path);
setAttributeVal ("suffix", Suffix);

}

// end of the "Propagate" session
sessionEnd ();

} // method initProduct

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-31

The "JavaProduct::update ()" method
This method is used to update a work product in relation to its parent. It consists
of destroying all the files generated by the work product. This method will be
called on the work product associated to a package when the package that
contains it, or the work product itself, is modified.
Void JavaProduct::update (in MpGenProduct Product)
{

String ProductName;
String Suffix;
String Path;

// start of a session
sessionBegin ("Propagate", true);

if (notVoid (Product)) {
// getting the values of the parent work product.
ProductName = Product.Name;
Path = Product.getAttributeVal ("path");
Suffix = Product.getAttributeVal ("suffix");

// initialization of the current work product
setName (ProductName);
setAttributeVal ("path", Path);
setAttributeVal ("suffix", Suffix);

}

// deletion of all the files managed by the work product
deleteAllFiles ();

// end of the "Propagate" session
sessionEnd ();

} // method update

Chapter 3: First Steps: Building a generator

3-32 Objecteering/UML Profile Builder User Guide

The "JavaProduct::mustPropagate ()" method
This method is used to indicate how the work product must propagate the child
model elements. It returns the "true" value, whatever the modeling element linked
to the current work product. The work product therefore propagates to all the
packages and classes contained in the modeling element linked to the work
product.
Boolean JavaProduct::mustPropagate ()
{

// the propagation is carried out for any modeling
element

// that is associated to the current work product
// A similar work product will therefore be built for all
// the packages && classes
return = true;

} // method mustPropagate

The "JavaProduct::isPresent" method
This method is used to filter the work product's propagation to the child model
elements. It consists of preventing a "JavaProduct" work product from being
created on a model element that already has one.
boolean JavaProduct::isPresent (in MpGenProduct Product)
{

// prevents from having a work product of the same type
// on a modeling element that would be of
// package or class type
if (Product.ClassOf == ClassOf)

return = true;
else

return = false;
} // method isPresent

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-33

The "JavaProduct::visualize " method
This method is used to display a file managed by the current work product through
a visualizer.
Void JavaProduct::visualize ()
{

String fileName;

// construction of the complete path
fileName.strcat (getAttributeVal ("path"),

"\",
OriginModelElement.Name,
".",
getAttributeVal ("suffix"));

// message display in the console
StdOut.write ("Visualization of the file ", fileName,

NL);

// internal visualization of the generated file
intVisuFileName (fileName);

} // method visualize

Note: Please note that for Linux and Unix, you should use "/" instead of "\" (for
this method and the following method).

Chapter 3: First Steps: Building a generator

3-34 Objecteering/UML Profile Builder User Guide

The "JavaProduct::edit" method
This method is used to edit a file managed by the current work product in an
external editor.
Void JavaProduct::edit ()
{

String fileName;

// construction of the complete path
fileName.strcat (getAttributeVal("path"),

"\",
OriginModelElement.Name,
".",
getAttributeVal("suffix"));

// message display in the console
StdOut.write ("File edition", fileName, NL);

// external edit of the generated file
extEditFileName(fileName);

} // method edit

The "JavaProduct::getIdLineComment " method
This method returns the characters generated before the markers.
String JavaProduct::getIdLineComment ()
{

return = "// ";
} // method getIdLineComment

The "Object::moduleInstall" method
void Object::moduleInstall ()
{

// message display in the console
StdOut.write ("Installation of Java module", NL);

} // methode moduleInstall

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-35

The "Object::moduleUninstall" method
void Object::moduleUninstall ()
{

// message display in the console
StdOut.write ("Uninstalling the Java module ", Name, NL);

} // method moduleUninstall

Chapter 3: First Steps: Building a generator

3-36 Objecteering/UML Profile Builder User Guide

Creating a module

Creating the Java module
In the "JavaProfilingProject" UML profiling project, create the "Java" module. This
module must reference the "default#external#Code#Java" UML profile. (Parent
UML profiles are automatically referenced).

The ... field has the ... value
Name "ModuleJava"

Label "Java code generator"

Working directory This field is left blank. (If the "Working directory" field is
left blank, then the working directory is
$OBJING_PATH/modules/<ModuleName>/<Version>.
Otherwise, the user may specify the working directory
of his choice.)

Number of major version "1"

Number of minor version "0"

Release information This field is left blank.

Minimum binary version
compatibility

This field is left blank.

Mask parents "FALSE"

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-37

Creating commands

Overview
In the Java module, we are going to create the following three commands:

The ... command is used to ...
Generate run the generation of the Java code.

Visualize the class visualize the generated file.

Edit the class edit the generated file.

The "Generate" command
To create the "Generate" command, enter the following values:

♦ In the "Name" field, enter "generate".

♦ In the "Label" field, enter "Generate".

♦ In the "Can be activated in edition mode" field, enter "TRUE".

♦ In the "Can be activated in consulting mode" field, enter "TRUE".

♦ In the "Running UML profile" field, enter "default#external#Code#Java" .

♦ In the "J method" field, enter
"JavaProduct:default#external#Code#Java#generate ".

Chapter 3: First Steps: Building a generator

3-38 Objecteering/UML Profile Builder User Guide

The "Visualize the class" command
To create the "Visualize the class" command, enter the following values:

♦ In the "Name" field, enter "visualize".

♦ In the "Label" field, enter "Visualize the class".

♦ In the "Can be activated in edition mode" field, enter "TRUE".

♦ In the "Can be activated in consulting mode" field, enter "TRUE".

♦ In the "Running UML profile" field, enter "default#external#Code#Java" .

♦ In the "J method" field, enter
"JavaProduct:default#external#Code#Java#visualize ".

The "Edit the class" command
To create the "Edit the class" command, enter the following values:

♦ In the "Name" field, enter "edit".

♦ In the "Label" field, enter "Edit the class".

♦ In the "Can be activated in edition mode" field, enter "TRUE".

♦ In the "Can be activated in consulting mode" field, enter "TRUE".

♦ In the "Running UML profile" field, enter "default#external#Code#Java" .

♦ In the "J method" field, enter "JavaProduct:default#external#Code#Java#edit ".

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-39

Configuring a module

Default values
We are now going to change the configuration of your UML profiling project. For
the "JavaModule" module, modify the default values of the module parameters.

The ... parameter of the ... group has the ... value
Generate the identifiers External edition "FALSE"

Command for invoking
external editor

External edition "vi" for unix

"notepad" for windows

Java generation path Java product
parameters

"$(GenRoot)/work" for Unix

"$(GenRoot)\work" for Windows

Java generation suffix Java product
parameters

"java"

Chapter 3: First Steps: Building a generator

3-40 Objecteering/UML Profile Builder User Guide

Testing a module

Testing the UML profiling project
Objecteering/UML Profile Builder allows you to test the modifications made to the
UML profiling project in real time, without having to start Objecteering/UML again.
For this, tests are carried out from a test project explorer.

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-41

Creating a test project
To create a test project to test the module you have just developed, carry out the
steps illustrated in Figure 3-10 below.

Figure 3-10. Creating a test project for your newly created Java generator

Steps:
1 - Click on the "Test" menu and run the "Create a test project..." command. The

"Create a test project" window then appears.
2 - In the "Test project name" field, enter the name of your new test project.
3 - Click on "OK" to confirm.
The newly created test project then appears in an explorer. The "ModuleJava"
module you have just created is automatically selected for this test project.
Inside this test project, create a simple model (packages, classes, operations, and
so on).
For further information on test projects, please refer to chapter 8, "Test projects",
of this user guide.

Chapter 3: First Steps: Building a generator

3-42 Objecteering/UML Profile Builder User Guide

Generating code
To generate Java code on your new test project using the "ModuleJava" module
you have just created, you must first create a generation work product, as shown
in Figure 3-11.

Figure 3-11. Testing generation work product creation in your test project

Steps:
1 - In the test project explorer, select the element for which you wish to create a

generation work product, and then click on the generation work product icon in
the "Items" tab of the properties editor.

2 - Enter the necessary information.
3 - Confirm by clicking on "OK".

After confirmation, your new generation work product appears in the "Items" tab of
the properties editor.

Chapter 3: First Steps: Building a generator

Objecteering/UML Profile Builder User Guide 3-43

To launch Java code generation, simply carry out the steps shown in Figure 3-12.

Figure 3-12. Testing Java code generation on your test project

Steps:
1 - Select the newly created work product in the "Items" tab of the properties

editor by right-clicking.
2 - Run the "Java code generator/Generate" command.
Java code generation is then run.

Visualizing and editing generated code
Complete these first steps by testing the "Visualize" and "Edit" commands on the
generated work product.

Chapter 4: Using Objecteering/UML
Profile Builder

Chapter 4: Using Objecteering/UML Profile Builder

Objecteering/UML Profile Builder User Guide 4-3

Launching Objecteering/UML Profile Builder

Launching the UML Profile Builder tool
The Objecteering/UML Profile Builder tool can be launched:

♦ by clicking on the UML Profile Builder icon in your desktop

♦ by selecting "Start/Programs/Objecteering/Objecteering UML Profile Builder"

♦ by typing the "objing -profiling" command or "objingprofile" in UNIX

Note: Please note that when UML Profile Builder is launched, the user cannot
work on UML modeling projects, and when the UML Modeler is launched,
the user cannot work on UML profiling projects.

Chapter 4: Using Objecteering/UML Profile Builder

4-4 Objecteering/UML Profile Builder User Guide

Creating or opening a UML profiling project

Creating a UML profiling project

Figure 4-1. Creating a UML profiling project

Chapter 4: Using Objecteering/UML Profile Builder

Objecteering/UML Profile Builder User Guide 4-5

Steps:

1 - Click on the Objecteering/UML Profile Builder icon in your desktop. The
window shown in Figure 4-1 will then appear.

2 - Click on the "File/New" menu. The "Create a UML profiling project" window
will then open.

3 - In the "UML profiling project name" field, enter the name of the UML profiling
project which is to be created.

4 - In the "UML profiling project path" field, enter the path of the directory where

the new UML profiling project is to be created. You may also use the
icon to open a file browser through which you can select your UML profiling
project path.

5 - Confirm by clicking on the "OK" button.

Note: Document templates are created by checking the "Document template
project" tickbox.

Chapter 4: Using Objecteering/UML Profile Builder

4-6 Objecteering/UML Profile Builder User Guide

Opening an existing UML profiling project
The procedure for opening an existing UML profiling project is very similar to the
procedure for creating a new UML profiling project. Simply carry out the following
steps:
1 - Click on the Objecteering/UML Profile Builder icon in your desktop. The

window shown in Figure 4-1 will then appear.
2 - Click on the "File/Open" menu. The "Open an existing UML profiling project"

window will then open.
3 - Double-click on the UML profiling project you wish to open. It will then

automatically open.

Note 1: It is also possible to open an existing UML profiling project simply by
double-clicking on it in the explorer. This launches Objecteering/UML and
opens the UML profiling project you have selected.

Note: UML profiling projects may only be opened using the Objecteering/UML
Profile Builder tool, whilst UML modeling projects may only be opened
using the Objecteering/UML Modeler tool.

Receiving or upgrading UML profiling projects
As we have just seen, UML profiling projects can be opened simply by double-
clicking on the UML profiling project file either in the Windows explorer or in the
"Open an existing UML profiling project" window.
However, if you wish to work on a UML profiling project created on another user
site and/or using an earlier version of Objecteering/UML, the UML profiling project
has to be received and/or upgraded. For further information, please refer to the
"Receiving and upgrading UML profiling projects" section in the current chapter of
this user guide.

Saving your model context
It is possible to save your model context, which can be particularly useful when
opening an existing UML profiling project. For further details, please refer to the
"Saving your model context" section in chapter 3 of the Objecteering/UML Modeler
user guide.

Chapter 4: Using Objecteering/UML Profile Builder

Objecteering/UML Profile Builder User Guide 4-7

Receiving and upgrading UML profiling projects

Introduction
Objecteering/UML features a simplified UML profiling project reception and
upgrade procedure, thus ensuring backward compatibility and making
Objecteering/UML even easier for you to use.
If you wish to work on a UML profiling project either created on a different user site
or using an earlier version of Objecteering/UML, you can launch the reception
and/or upgrade procedures simply by:

♦ double-clicking on the UML profiling project in question in the Windows
explorer

♦ double-clicking on the UML profiling project in question in a file browser
available via the "Open an existing UML profiling project" window

Receiving a UML profiling project
There are four possible case scenarios with regard to the reception of UML
profiling projects:

♦ the reception of a database which is not known to your site, but which exists in
the same version of Objecteering/UML. In this case, you can choose to simply
receive the database in question on your site.

♦ the reception of a database which is not known to your site, and which exists in
an earlier version, for example, the 4.3.2 version of Objecteering/UML. In this
case, you can choose to receive the database in question on your site, and
upgrade it from the previous version to the current version of
Objecteering/UML.

♦ the reception of a database which is not known to your site, but which has the
same name as an existing database and which exists in the same version of
Objecteering/UML. In this case, you can choose to receive the database in
question on your site and rename it.

♦ the reception of a database which is not known to your site, but which has the
same name as an existing database and which exists in an earlier version, for
example, the 4.3.2 version of Objecteering/UML. In this case, you can choose
to receive the database in question on your site, rename it and upgrade it from
the previous version to the current version of Objecteering/UML.

Chapter 4: Using Objecteering/UML Profile Builder

4-8 Objecteering/UML Profile Builder User Guide

In the example shown below (Figure 4-2), a simple reception operation is
demonstrated.

Figure 4-2. Receiving the "ProfilingProject" UML profiling project by double-clicking in the
Windows explorer

Steps:
1 - In the Windows explorer, position yourself in the directory containing the UML

profiling project you wish to use.
2 - Double-click on this UML profiling project file. A confirmation dialog box then

appears, asking you if you wish to receive the database of the UML profiling
project on your site.

3 - Click on the "OK" button to confirm the reception of the UML profiling project.
The reception procedure is then launched, and you can follow its progress in the
console. This process can take a few minutes. Once completed, the UML
profiling project is opened and is ready for use.

Chapter 4: Using Objecteering/UML Profile Builder

Objecteering/UML Profile Builder User Guide 4-9

Upgrading a UML profiling project
To upgrade a UML profiling project created on your site using, say, the 5.1.1
version of Objecteering/UML, simply carry out the steps below (shown in Figure
4-3).

Figure 4-3. Upgrading a UML profiling project via the "Open an existing UML profiling project"
window

Chapter 4: Using Objecteering/UML Profile Builder

4-10 Objecteering/UML Profile Builder User Guide

Steps:
1 - Click on "File/Open". The "Open an existing UML profiling project" window will

then appear.
2 - Double-click on the UML profiling project you wish to upgrade. Please note

that UML profiling projects which have not yet been upgraded are listed in this
window with the message "to be migrated" shown after their name.

3 - A dialog box then appears, telling you which version the UML profiling project
is currently in, and asking you if you want to upgrade it. Click on the "OK"
button.

The upgrade procedure is then automatically launched, and you can follow its
progress in the console. This process can take a few minutes. Once completed,
the UML profiling project is opened and is ready for use.

Note: When a UML profiling project is upgraded from a previous version of
Objecteering/UML to the current version, the modules contained therein
are not upgraded. To upgrade modules, the module upgrade procedure
must be launched explicitly.

Chapter 4: Using Objecteering/UML Profile Builder

Objecteering/UML Profile Builder User Guide 4-11

The main window

Main window
After creating the new UML profiling project (as shown in Figure 4-1), the main
window (Figure 4-4) appears. The main window provides general services such
as saving a UML profiling project, importing models from other UML profiling
projects or managing other windows.

Figure 4-4. Main window for editing a UML profiling project

Chapter 4: Using Objecteering/UML Profile Builder

4-12 Objecteering/UML Profile Builder User Guide

Description:
1 - Menu bar: this contains the "File", "Tools", "Test", "Views", "Edit" and

"Windows" menus.
2 - Tool bar: icons associated to certain elements in the menu bar appear here.
3 - Meta-explorer: the meta-explorer contains the UML profiling project, and is

used to browse the model and create and edit model elements.
4 - Properties editor: this box contains a number of tabs, each containing

information specific to a certain domain.
5 - Console: this contains operation traces, error messages and warnings.
6 - Status bar: this provides information complementary to that displayed by the

bubbles which appear over the tool's icons.

Chapter 4: Using Objecteering/UML Profile Builder

Objecteering/UML Profile Builder User Guide 4-13

The meta-explorer

Overview of the meta-explorer
The meta-explorer is a tool for editing:

♦ modules

♦ UML profiles

♦ J methods and J attributes

♦ types of notes, types of tagged values and stereotypes

♦ commands

♦ module parameters

♦ types of work products

♦ generation or document templates
Several meta-explorers can be open at the same time, which can be useful for
browsing the different parts of a UML profiling project for example.

Chapter 4: Using Objecteering/UML Profile Builder

4-14 Objecteering/UML Profile Builder User Guide

Launching a meta-explorer
Meta-explorers are launched from the "Tools" menu in the main window. A meta-
explorer is automatically launched when the UML Profile Builder is started.

Figure 4-5. Opening a meta-explorer

Steps:
1 - Select the "Meta-explorer..." option in the "Tools" menu.

Chapter 4: Using Objecteering/UML Profile Builder

Objecteering/UML Profile Builder User Guide 4-15

The meta-explorer
The icons which appear in the meta-explorer allow the creation of the different
structural elements of a UML profiling project, according to the selected element.
Here (Figure 4-6), only the creation of modules is possible. If you select a UML
profile, other elements can be created.

Figure 4-6. The meta-explorer

Chapter 4: Using Objecteering/UML Profile Builder

4-16 Objecteering/UML Profile Builder User Guide

Structural element creation icons in the meta-explorer
The icons shown in the table below are used to create structural elements in a
UML profiling project.

The ... button icon is used to ... in ...
Create a module create a new module a UML profiling

project

Create a command create a command a module

Create a child UML
Profile

create a child UML Profile a UML profile

Create a metaclass
reference

create a metaclass reference a UML profile

Create a parameter create a module parameter a UML profile

Create a work product create a product a UML profile

Create a document
template

create a document template a UML profile

Create a generation
template

create a generation template a UML profile

Create a document
item

create a document item a document
template

Create a generation
item

create a generation item a generation
template

Create a J method create a J method a metaclass
reference

Redefine a J method add to a referenced metaclass, a
method which redefines an
operation of a parent UML profile
and /or a parent metaclass

a metaclass
reference

Chapter 4: Using Objecteering/UML Profile Builder

Objecteering/UML Profile Builder User Guide 4-17

The ... button icon is used to ... in ...
Create a J attribute create a class attribute a metaclass

reference, a
work product

Create a tagged value
type

add a type of tagged value a metaclass
reference, a
stereotype

Create a type of note create a note type a metaclass
reference, a
stereotype

Create a stereotype create a stereotype a metaclass
reference

Add a parameter add a parameter a J method

Add a return
parameter

add a return parameter a J method

Add a constraint add a constraint a stereotype

Chapter 4: Using Objecteering/UML Profile Builder

4-18 Objecteering/UML Profile Builder User Guide

The properties editor

Overview of the properties editor
The properties editor is a tool which contains a number of tabs, and which is used,
in Objecteering/UML Profile Builder, to:

♦ annotate structural elements, through tagged values and notes

♦ specialize modules

♦ reference UML profiles

♦ use UML profiles

♦ select UML installation profiles

♦ create and redefine J methods

Chapter 4: Using Objecteering/UML Profile Builder

Objecteering/UML Profile Builder User Guide 4-19

The properties editor
The icons which appear in the "Items" tab of the properties editor for a UML
profiling project allow the creation of the different terminal elements of a UML
profiling project, according to the selected element (as shown in Figure 4-7).

Figure 4-7. The properties editor for a module

Chapter 4: Using Objecteering/UML Profile Builder

4-20 Objecteering/UML Profile Builder User Guide

Terminal element creation icons in the properties editor
The icons shown in the table below are used to create terminal elements in a UML
profiling project.

The ... button icon is used to ... in...
Add a note add a note all elements

Associate a tagged
value

associate a tagged value all elements

Specialize a module specialize a module a module

Reference a UML
Profile

reference UML Profile of the
current UML profiling project

a module

Use a UML profile use a UML profile a module

Installing a UML profile select the installation profile a module

Redefine a J method add a parent method to a method
or replace the existing one.

an operation

Chapter 5: Elements customizing UML
and Objecteering/UML

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-3

Modules

Overview

 Modules are functional subsets, which are selected at UML modeling project
level. For example, a user can decide to use the C++ generation, Oracle
generation, and documentation generation modules. In this way, his UML
modeling project is configured to handle these specific targets:

♦ by providing the menus needed for each generator (notion of command)

♦ by providing a tagged value system on the model, in order to specify the
characteristics of each part of the model (virtual method in C++, index for
Oracle, etc.)

♦ by providing notes for each type of model element concerned by the target.
For example, a "description" note is provided for classes, to generate
documentation, and a C++ note is available for operations, to generate C++
code.

♦ by making it possible to create work products in the properties editor.
Examples of work products are C++ code or documentation associated to a
class or a package.

♦ by providing document templates, either for documentation or for code
UML encompasses the notion of extensibility mechanisms, which is supported
here.

Chapter 5: Elements customizing UML and Objecteering/UML

5-4 Objecteering/UML Profile Builder User Guide

Using modules

Overview
Modules are delivered as .prof files and are located in the
$OBJING_PATH/modules, which is created during installation.
During the installation procedure, the user can select which modules he wishes to
have installed on his site, simply by electing to carry out a "Custom" installation
(please see Figure 2-8 and 2-9 in the "Single station installation in Windows"
section in chapter 2 of the Objecteering/Introduction user guide) and by checking
the tickboxes of the relevant modules. Once Objecteering/UML installation is
complete, he simply has to select the module for the current UML modeling project
in the "Modules" window (shown in Figure 5-1).
Modules developed by users can also be externalized in a directory, using the
"Package" command, in order to be diffused to other sites. They must be installed
in a site, before being accessible to user UML modeling projects.

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-5

Selecting modules in a UML modeling project

Figure 5-1. Window for selecting modules in Objecteering/UML

Modules are selected for a UML modeling project in the window shown above.
They may also be selected through the "Tools/Modules" menu in the menu bar.

Note: For payable modules which use floating licenses, licenses are necessary
at this stage.

Chapter 5: Elements customizing UML and Objecteering/UML

5-6 Objecteering/UML Profile Builder User Guide

Configuring modules

Figure 5-2. The "Modify configuration" window

In the Objecteering/UML Modeler tool, the "Modify configuration" menu allows the
user to modify the module's parameters, which will define important options for the
whole UML modeling project.
Objecteering/UML Profile Builder has been used to define these parameters, as
well as their default values.

Access from the J language
Module parameters have a value which can be accessed in J using the
getCurrentModuleParameterValue method.

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-7

Commands

Overview

 Each module selected for a UML modeling project comes with a set of
commands, each represented by a pop-up menu item available for the elements
concerned (class, attribute, work product, etc). The selection of one of these
menu items activates a J method defined in Objecteering/UML Profile Builder.

Chapter 5: Elements customizing UML and Objecteering/UML

5-8 Objecteering/UML Profile Builder User Guide

Example

Figure 5-3. Commands associated with the "Impact analysis module" on an impact relation

When the "Generate" context menu item is selected, the impact report generation
process is activated.

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-9

Access from the J language
In Objecteering/UML Profile Builder, each command is associated with a J
method. This J method has to be public, and cannot have parameters. The
metaclass it belongs to corresponds to the type of element on which the menu is
available (in Figure 5-3, the element concerned is "Class").

Chapter 5: Elements customizing UML and Objecteering/UML

5-10 Objecteering/UML Profile Builder User Guide

Tagged values

Overview

 Any model element can be annotated using tagged values. The purpose of
these tagged values is to bring a specific additional meaning to a model element.
For example, Objecteering/UML provides as standard the {primitive} tagged value,
used to designate primitive classes.
Objecteering/UML Profile Builder allows the definition of new tagged values, in
order to give model elements a meaning that is specific to a module. For
example, the {virtual} tagged value on an operation has a meaning for the C++
generator, whereas the {persistence} tagged value is used by the Oracle
generator.

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-11

Example

Figure 5-4. Defining and visualizing tagged values (for example {persistence})

Tagged values are visible in the "Item" tab of the properties editor and in editors
with the {tagged value} notation, and can be entered from graphic editors or the
properties editor.

Chapter 5: Elements customizing UML and Objecteering/UML

5-12 Objecteering/UML Profile Builder User Guide

Access from the J language
The Objecteering/UML metaclasses describe precisely how to access element
tagged values (see the Objecteering/Metamodel User Guide, more specifically the
"TaggedValue" and "TagType" metaclasses). In this way, for any element with a
tagged value ("ModelElement" metaclass), the following J example lists the names
of the associated tagged values:
TagTaggedValue

{
StdOut.write(DefinitionTagType.Name, NL);
}

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-13

Notes

Overview
 Models entered in Objecteering/UML can be completed by text descriptions,

which have a specific meaning for a specific module. These texts are, for
example, descriptive texts used for documentation ("description") or C++ code
used to implement a method ("C++"). Objecteering/UML Profile Builder allows you
to define note types, aimed at providing new families of descriptions for new
modules (for example, Java code, review descriptions, etc.).

Chapter 5: Elements customizing UML and Objecteering/UML

5-14 Objecteering/UML Profile Builder User Guide

Example

Figure 5-5. Example of entering a note for a class

Steps:
1 - Select the "Class" class.
2 - Create a note in this class in the "Items" tab of the properties editor.
3 - Choose the "comment" type from the scrolling list.
4 - Enter the text in the field.
5 - Confirm by clicking on the "OK" button.

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-15

Access from the J language
The Objecteering/UML metamodel describes precisely how to access the
descriptions of an element. In this way, for any element with a note
("ModelElement" metaclass), the following J example displays the content of the
note named "description":
DescriptorNote.<select(ModelNoteType.Name = "description")

{
StdOut.write(Content, NL) ;
}

Chapter 5: Elements customizing UML and Objecteering/UML

5-16 Objecteering/UML Profile Builder User Guide

Stereotypes

Overview

 The UML defines stereotypes, which are used to extend the semantics of
UML model elements. Stereotypes can have associated icons and are annotated
<<Stereotype name>>. Objecteering/UML Profile Builder allows the creation of
new stereotypes in UML profiles, related to metaclasses, which have a name and
an associated icon.

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-17

Example
In this example, the <<interface>> stereotype is associated to the "Class" class.

Figure 5-6. Creating a stereotype on a class

Chapter 5: Elements customizing UML and Objecteering/UML

5-18 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select the "C1" class in the explorer.

2 - Click on the "Associate a stereotype" icon in the "Item" tab of the
properties editor.

3 - Select a stereotype from the list.
4 - click on the "Apply" button.
The stereotype then appears in the "Item" tab.

Access from the J language
The Objecteering/UML metamodel describes exactly how to access an element's
stereotypes. In this way, for any element with a stereotype ("ModelElement"
metaclass), the following J example displays the name of this stereotype.

ExtensionStereotype
{
StdOut.write (Name,NL);
}

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-19

Document and generation templates

Overview

 ("Create a document template") and ("Create a generation template")
Document templates and generation templates are high level mechanisms used to
describe the structure of a "target" (documentation, source code). They are made
up of a hierarchy of document items or generation items. A specific editor is
provided for templates, and mechanisms are provided to allow code to be easily
generated.

Chapter 5: Elements customizing UML and Objecteering/UML

5-20 Objecteering/UML Profile Builder User Guide

Example

Figure 5-7. Java generation template

Java sources have a predefined structure (class declaration, method declaration,
method implementation, etc), expressed in detail by this template. Java code
generation is customized simply by editing this template.

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-21

Access from the J language
Document items and generation items provide connections to J methods, from
which J processing can begin. Document templates are supported by a "template
engine", which follows the template structure and connects to the related J
methods.

♦ Connect a generation template to a generation work product ("MyTemplate"):
String name="MyTemplate";
initTemplate (name);

♦ Launch generation of a generation work product driven by a template:
String result;
result=generateWithTemplate ();

This code is valid in the context of generation work products, in a J method which
includes a generation work product.

Chapter 5: Elements customizing UML and Objecteering/UML

5-22 Objecteering/UML Profile Builder User Guide

Work products

Overview

 Work products represent external elements, generated by
modules. Typically, these external elements are files, for example, C++ generated
sources, production processes, binaries, documentation, and so on. Work
products are represented by specific creation icons. Each work product has its
own dialog box.
Objecteering/UML Profile Builder can be used to define new types of work
products, and to associate icons, commands and attributes present in the work
product's dialog box.

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-23

Example: "Java" work product
In this example, the user has created a Java work product in the "Java" tab of the
properties editor. This work product represents Java sources generated for a
class or a package.

Figure 5-8. Creating a "Java" generation work product

Chapter 5: Elements customizing UML and Objecteering/UML

5-24 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select the "Class" class in the explorer.

2 - Click on the "Create a Java work product" button in the "Items" tab of the
properties editor.

3 - Enter the name of the work product.
4 - Confirm.

Access from the J language
The Objecteering/The J Language user guide supplies a set of primitives which
allow you to use and manage work products ("MPGenProduct" metaclass).

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-25

Other customizable services

Overview
The J language supplies a set of tools to create additional services linked to
modules. These consist, for example, of dialog boxes, external text editors added
to the model, model transformation services, undo/redo operations on persistent
transformation services, and so on.

Chapter 5: Elements customizing UML and Objecteering/UML

5-26 Objecteering/UML Profile Builder User Guide

External text entry: Example
The following example shows the editing of J method bodies from the "Impact"
UML profile in Objecteering/UML Profile Builder.

Figure 5-9. External text entry

Steps:
1 - Click on the "Impact" UML profile with the right mouse-button.
2 - Select the "Edit J code" option.
3 - Enter the text in the "Impact" window.

Note: The command for external edition can be customized. You can select
"emacs", "notepad", or another editor.

Chapter 5: Elements customizing UML and Objecteering/UML

Objecteering/UML Profile Builder User Guide 5-27

J dialog box: Example
J provides primitives to create simple dialog boxes, such as the one presented in
Figure 5-10. For further information on the creation of these dialog boxes, please
refer to chapter 6, "Dynamic dialog boxes", of the Objecteering/J Libraries User
Guide.

Figure 5-10. Java generation work product dialog box

Chapter 6: Defining UML profiles

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-3

Referencing a metaclass

Metaclass definition

 A metaclass is a metamodel element, such as "Operation", "Attribute",
"State", etc. On a metaclass, J methods, J attributes, note types, tagged value
types and stereotypes are defined. The same metaclass can be referenced by
several UML profiles.
Metaclasses are predefined in the Objecteering/UML metamodel (see the
Objecteering/Metamodel user guide).
The "Help" service provided on metaclasses displays the Objecteering/UML
metamodel (and the corresponding metaclass), which is an invaluable aid to J
programmers.

Chapter 6: Defining UML profiles

6-4 Objecteering/UML Profile Builder User Guide

Referencing a metaclass
By referencing a metamodel metaclass, only the metaclasses we wish to work on
will be displayed in a UML profile. We are then able to define the J methods, the J
attributes, the note types, the tagged value types and the stereotypes (see Figure
6-1).

Figure 6-1. Referencing a metaclass

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-5

Steps:
1 - Select a UML profile.

2 - Click on the "Reference a metaclass" button.
3 - Select the name in the combobox.
4 - Confirm.

Chapter 6: Defining UML profiles

6-6 Objecteering/UML Profile Builder User Guide

Creating a type of tagged value

Entering a type of tagged value

 The Objecteering/UML Profile Builder tool can be used to define tagged
value types on metaclasses. This defines possible tagged values for the
representatives of this metaclass in a given model.
For example, due to the operations executed in Figure 6-2, all the UML modeling
projects which use the "Impact" UML profile will be able to use the {persistent}
tagged value on their model's classes.

Figure 6-2. Entering a type of tagged value in the "Class" metaclass

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-7

Steps:
1 - Select the metaclass.

2 - Click on the "Create a tagged value" button.
3 - Enter the name directly in the explorer and confirm by left-clicking.

Warning:

Please note that we strongly recommend against using the names of Objecteering
Software modules as prefixes for your new tagged values, as this could cause
name repetition problems. For example, the {JavaName}, {JavaImport} and
{JavaStatic} tagged values are tagged values specific to the Objecteering/Java
module.

Note: If you press the "Return" key on your keyboard, a new UML profile will be
created (through the continuous entry creation mode).

Chapter 6: Defining UML profiles

6-8 Objecteering/UML Profile Builder User Guide

The "Tagged value type" dialog box
When you select the "Modify" menu (using the right mouse button) on the "Tagged
value type" , the "Tagged value type" dialog box (shown in Figure 6-3) is opened.

Figure 6-3. The "Tagged value type" dialog box

The ... field represents ...

Name the name of the corresponding tagged values.

Number of parameters the number of parameters that the corresponding tagged
values will have. This will be checked during a tagged value
entry. In Objecteering/UML, tagged values can have
parameters and a qualifier, which is a privileged parameter.

Qualified whether or not the tagged value has a qualifier.

Inclusion in the signature the taking into account of the tagged value by the Operation
signature comparison algorithm. For code generation
purposes, typically for C++, the presence of certain tagged
values must be taken into account by the Operation signature
comparison algorithm.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-9

Creating a type of note

Entering a type of note
 With Objecteering/UML Profile Builder, you can also add note types to

metaclasses. This allows you to create notes with these types on models.
For example, through the operations shown in figure 6-4, any UML modeling
project which uses the "Impact" UML profile can use a text zone called "definition"
for each class.

Figure 6-4. Entering a note type in the "Class" metaclass.

Chapter 6: Defining UML profiles

6-10 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select the metaclass.

2 - Click on the "Create a type of note" button.
3 - Enter the "definition" name directly in the explorer and confirm by left-clicking.
If you press the "Return" key on your keyboard, a new UML profile will be created
(through the continuous entry mode).

Note: A note type can only be entered in a metaclass reference.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-11

The "Note type" dialog box
When you select the "Modify" menu (using the right mouse button) on the note
type, the "Note type" dialog box is displayed (as shown in Figure 6-5).

Figure 6-5. The "Note type" dialog box

The ... field represents ...

Name the name of the corresponding note.

Chapter 6: Defining UML profiles

6-12 Objecteering/UML Profile Builder User Guide

Creating a stereotype

Entering a stereotype

 With the Objecteering/UML Profile Builder tool, you can also add stereotypes
to metaclasses. This allows you to create stereotypes on models (see Figure 6-6).

Figure 6-6. Entering a stereotype in the "Class" metaclass.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-13

Steps:
1 - Select the embedding object.

2 - Click on the "Create a stereotype" button.
3 - Enter the name directly in the explorer and confirm by left-clicking.

Note: If you press the "Return" key on your keyboard, a new UML Profile will be
created (through the continuous entry creation mode).

Chapter 6: Defining UML profiles

6-14 Objecteering/UML Profile Builder User Guide

The "Stereotype" dialog box
By selecting the "Modify" menu (using the right mouse button) on the stereotype,
the "Stereotype" dialog box (shown in Figure 6-7) is opened.

Figure 6-7 The "Stereotype" dialog box

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-15

The ... field represents ...

Name the name of the corresponding stereotype.

Icon the name of the file containing the bitmap of the stereotype. It must be the
full path name or a "relative" path name. In this case, the path will be
calculated from the $OBJING_PATH installation path. The format can be
.gif or .bmp. When the icon is defined, it is this bitmap which appears in
the graphic editors, to represent the stereotyped model element.

Small icon the name of the file containing the small icon bitmap of the stereotype.
When the small icon is defined, it is this bitmap which appears in the
corner of the box representing the stereotyped model element.

Explorer icon the name of the file containing the explorer icon bitmap of the stereotype.
When the explorer icon is defined, it is this bitmap which appears in the
explorer hierarchy, to represent the stereotyped model element.

Note: Please note that the icon, small icon and explorer icon features have been
designed to help make stereotype visibility clearer.

Chapter 6: Defining UML profiles

6-16 Objecteering/UML Profile Builder User Guide

Creating a constraint

Entering a constraint
 With the Objecteering/UML Profile Builder tool, you can also add constraints to

metaclasses. This allows you to create constraints on models (see Figure 6-8).

Figure 6-8. Entering a constraint in the "Stereotype" stereotype.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-17

Steps:
1 - Select the embedding element.

2 - Click on the "Create a constraint" button.
3 - Enter the name and the body text.
4 - Confirm by clicking on "OK".

The "Type of constraint" dialog box

The ... field represents ...

Name the name of the corresponding constraint.

Body the body text associated with the constraint.

Chapter 6: Defining UML profiles

6-18 Objecteering/UML Profile Builder User Guide

Creating a J class attribute

Definition

 In this version, only "class" meta-attributes can be created. Instance meta-
attributes are predefined by the Objecteering/UML metamodel. Class meta-
attributes are used by the J methods that are defined on the same metaclass.
They are not persistent (their values that can be modified in J are not stored in a
model).

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-19

Procedure

Figure 6-9. Creating a meta-attribute

Steps:
1 - Select the metaclass.

2 - Click on the "Create a J attribute" button.
3 - Enter the name.
4 - Select the metaclass that gives the attribute type.
5 - Confirm.

Chapter 6: Defining UML profiles

6-20 Objecteering/UML Profile Builder User Guide

The "Attribute" dialog box

The ... field represents ...
Name the attribute name.

Visibility the attribute visibility.

Class the attribute type.

Set whether or not the attribute is a set.

Initial value This field is left blank.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-21

Creating a J method

Definition

 The J methods defined in Objecteering/UML Profile Builder are defined:

♦ in a UML profile

♦ on a metaclass
J methods are written using the J language (for further information, please refer to
the Objecteering/The J Language user guide).

Chapter 6: Defining UML profiles

6-22 Objecteering/UML Profile Builder User Guide

Procedure

Figure 6-10. Creating a J method

Steps:
1 - Select a metaclass reference.

2 - Click on the "Create a J method" button.
3 - Enter the name directly in the meta-explorer and confirm by left-clicking.

Note: If you press the "Return" key on your keyboard, a new UML profile will be
created (through the continuous entry creation mode).

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-23

The "J Method" dialog box
By selecting the "Modify" menu (using the right mouse button) on the J method,
the "J Method" dialog box is displayed (Figure 6-11).

Figure 6-11. The "J Method" dialog box

Chapter 6: Defining UML profiles

6-24 Objecteering/UML Profile Builder User Guide

The ... field or
button

is used to ...

Name enter the command name.

Visibility select the visibility of the method (public, protected, private, none).

A public method without parameters can be referenced by a
command.

A private method cannot be redefined in a sub UML Profile.

Parameters create the method's parameters.

Return parameter create the method's return parameter.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-25

Textually editing a J method

Overview
J code is entered in "J code" type notes which are associated to J methods. It is
possible to edit the code, either by double-clicking on the text zone, or using the
external editors, by selecting the "Edit the J code" menu on a UML profile.

Chapter 6: Defining UML profiles

6-26 Objecteering/UML Profile Builder User Guide

Editing a J method

Figure 6-12. Editing the "moduleInit()boolean" J method

Steps:
1 - Select the J method.
2 - Double-click on the note.
3 - Enter the text in the dialog box which appears.
4 - Confirm.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-27

External edition

Figure 6-13. Editing the "PrintImpact()Boolean" J method

Steps:
1 - Select the UML profile containing the J method using the right mouse-button.
2 - Select "Edit J code".
3 - Enter the code in the zone that can be modified.

Note: When the editor is closed, only the text located between a start marker and
its corresponding end marker will be taken into account.

Chapter 6: Defining UML profiles

6-28 Objecteering/UML Profile Builder User Guide

Redefining a J method

Definition

The "Redefine a J method" icon allows the redefinition of a J method coming
from the metaclass or from a parent metaclass in a parent UML profile. A help list
then appears, allowing you to select the method to be redefined. Only public or
protected methods are displayed.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-29

Procedure

Figure 6-14. Redefining a parent J method

Steps:
1 - Select a metaclass reference created in a child UML profile.

2 - Click on the "Redefine a J method" button.
3 - Select a method.
4 - Click on "Apply".
5 - Change the visibility of the operation in the dialog box which appears.
6 - Confirm.

Chapter 6: Defining UML profiles

6-30 Objecteering/UML Profile Builder User Guide

Result

Figure 6-15. Result of the redefinition of the "moduleInit()Boolean" parent J method

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-31

Defining a module parameter

Procedure

 The end user of a UML modeling project can access module parameters that
have already been defined in the "Module Configuration" window, and select
options for the module. Their values can be accessed through J rules with the
"getCurrentModuleParameterValue" operation.

Figure 6-16. Creating a parameter

Chapter 6: Defining UML profiles

6-32 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select the UML profile.

2 - Click on the "Create a parameter" button.
3 - Enter the name.
4 - Choose the type.
5 - Choose the group.
6 - Confirm.

Note: You can either select an existing group or type a new group name.

The "Parameter" dialog box - "Properties" tab

The ... field is used to ...
Name enter the parameter name.

Type select the parameter type. Available parameter types are:

- Boolean, to create a tickbox parameter

- String, to create a text field parameter.

- Enumeration, to create a dropdown .enumerate selection box parameter

- File open, to create a text field .parameter, accompanied by the
icon, used to display the "Open" window

- File save, to create a. text field parameter, accompanied by the
icon, used to display the "Save" window

- Directory, to create a text field .parameter, accompanied by the
icon, used to open a file browser

- Password, to create a text field parameter, in which .characters entered
are represented by asterisks, thereby remaining hidden

Group select the group in which the parameter appears in the "Edit the
Configuration" window. This window can be accessed from the
"Configure the UML profiling project" item in the "Tools" menu.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-33

The "Parameter" dialog box - "Enumeration Values" tab
When the type is "Enumeration", this tab is used to enter the field’s literal values.

Figure 6-17. "Enumeration Values" tab

Chapter 6: Defining UML profiles

6-34 Objecteering/UML Profile Builder User Guide

Creating a generation or document template

Overview

 ("Create a generation template") and ("Create a document template")
Document templates are used to describe target generation, by defining their text
structure in a hierarchy. This kind of generator definition reduces the volume of J
programming necessary. Any target which has a text format (C++, SQL, Java,
makefiles, XMI etc.) can thus be described.
The parameterization of the makefiles generation, described in the
Objecteering/C++ user guide, provides a significant example of the use of
generation document templates.
Documentation is a special case of generation. It is similar to the other generation
operations, but its formatting constraints (RTF, HTML, etc.) and graphical formats
make it different. A specific document template exists for documentation
generation. This document template is described in the Objecteering/Document
Template Editor user guide.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-35

Creating a generation template

Figure 6-18. Creating a generation document template

Chapter 6: Defining UML profiles

6-36 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select a UML profile.

2 - Click on the "Create a generation template" button.
3 - Enter the name of the document template.
4 - Enter the metaclass (the field corresponds to the type of root objects of a

generation that uses this document template).
5 - Confirm.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-37

Creating a generation item

 Generation items are elements of the document template tree. Each
represents a file zone to be produced. An item can have sub-items, that
correspond to the organization of its zone into sub-zones.

Figure 6-19. Creating a generation item

Steps:
1 - Select the generation document template.

2 - Click on the "Create a generation item" button.

Chapter 6: Defining UML profiles

6-38 Objecteering/UML Profile Builder User Guide

The "Generation item" dialog box

Figure 6-20. Generation item dialog box

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-39

The ... field corresponds to ...
Name the name of the item.

Described
association

a journey through a model, for example going to the methods from
a class.

Documented meta-
class

the metaclass which the element concerns. A default value is
calculated. You may modify it and choose a parent metaclass to
generalize your item.

Header the text inserted before the generation of all the modeling elements
the element browses.

J evaluation of the
header

the header. The header can be a J expression to be evaluated
dynamically, instead of immediate text.

Title the text inserted before the generation of all the modeling elements
the element browses.

J evaluation of the
title

the fact that the title can be a J expression, to be dynamically
evaluated, instead of immediate text.

Included by default By default, all the elements will be included. If not checked, only
those that have the tagged values selected in the "Inclusion" tab
will be included.

Generation of a file If checked, a separate file will be generated for every included
element..

Chapter 6: Defining UML profiles

6-40 Objecteering/UML Profile Builder User Guide

Creating a document template

 ("Create a document template") This button is used to edit the document
template dialog box, through which document templates are created.

Figure 6-21. Creating a document template

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-41

Steps:
1 - Select a child UML profile.

2 - Click on the "Create a document template " button.
3 - Enter the fields (see table below).
4 - Confirm.

The ... field corresponds to ...
Name the name of the element

Described metaclass a journey through a model, for example going to the methods
from a class

Page header the text at the top of the page

Page footer the text at the bottom of the page

Chapter 6: Defining UML profiles

6-42 Objecteering/UML Profile Builder User Guide

Creating a document item

 Document items are the components of the document template. They
describe information that must be found in the generation target. Document items
can be:

♦ a summed-up description of operations on a class

♦ the detailed description of the operation

Figure 6-22. Creating a document item

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-43

Steps:
1 - Select the document template.

2 - Click on the "Create a document item" button.
3 - Enter the fields.
4 - Confirm.

Chapter 6: Defining UML profiles

6-44 Objecteering/UML Profile Builder User Guide

Possible actions on a module

 From a module, it is possible to:

♦ reference a UML profile

♦ use a UML profile

♦ select the installation UML profile

♦ create a command

♦ inherit from a module

♦ package the module

The default configuration of a module can be entered through the "Configure the
UML profiling project" item in the "Tools" menu.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-45

Figure 6-23. "Module" dialog box

Chapter 6: Defining UML profiles

6-46 Objecteering/UML Profile Builder User Guide

The ... field or
button

is used to ...

Name enter the module name, used internally (in the meta-explorer)

Label enter the module name, in the interfaces

Working directory enter the packaging target directory and the directory containing the
module's external resources. If the "Working directory" field is left
blank, then the working directory is
$OBJING_PATH/modules/<ModuleName>/<Version>. Otherwise,
the user may specify the working directory of his choice.

Major version
number

indicate the first number in the version number (for example, if the
complete version number is "4.6", then the major version number is
4.

Minor version
number

indicate the second number in the version number (for example, if the
complete version number is "4.6", then the minor version number is 6.

Release
information

indicate the release number for the module (for example, "a").

Minimum binary
version
compatibility

indicate Objecteering/UML binary requirements for the module.

Mask parents mask the parameters and menus of the parent of the module which
has been selected by the UML modeling project. If this box is not
checked, the module's parameters and menus will cohabit with those
of its parents. This box has no effect on modules which do not have
parents.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-47

Defining a new kind of work product

Definition

 Objecteering/UML Profile Builder allows you to define new kinds of work
product. A meta-product corresponds to a new metaclass created dynamically
(contrary to other metaclasses, predefined by the Objecteering/Metamodel), with
the following characteristics:

♦ attribute types are constraints (string and boolean)

♦ the meta-product specializes "MpGenProduct"

♦ an icon can be associated to it

♦ one or more metaclasses can be associated to it, on which the work products
can be created.

Work products represent the external result of generation in the Objecteering/UML
Modeler workshop. For example, they can represent generated C++ sources,
makefiles or documentation. Work products are visible in the explorer, and are
associated to a model element. A creation icon for this element will appear, and
its attribute dialog box will be automatically defined.
When a product is defined in a UML profile, it is possible to create a meta-class
reference on the product in the UML profile and its child. We can then create J
methods and then commands on the modules which reference the UML profile,
where the work product or one of its children is defined.

Chapter 6: Defining UML profiles

6-48 Objecteering/UML Profile Builder User Guide

Creation procedure

Figure 6-24. Creation procedure

Steps:
1 - Select a UML profile and create a child UML profile within it.

2 - Click on the "Create a work product" button.
3 - Enter the fields (see table below).
4 - Confirm.

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-49

Text fields

The ... field represents ...
Name the name of the work product.

Label the title of the work product dialog box

Help bubble the description displayed in the work product's help bubble

Status bar the description displayed in the work product's status bar

Bitmap name the bitmap name displayed on the work product's button. The bitmap
with the BMP format must be 19 pixels high and 21 pixels wide,
stored in the $OBJING_PATH/res/bmp directory and taken into
account by the tool. The name entered must not contain the .bmp
extension.

Model element
concerned

model element on which the product button must appear

Chapter 6: Defining UML profiles

6-50 Objecteering/UML Profile Builder User Guide

Associating a metaclass reference
At present, the "meta-product" can be accessed like any other Objecteering/UML
metaclass. To associate J methods (necessary for creating commands on the
work product) or J class attributes, a "metaclass reference" must be associated to
it.

Figure 6-25. Referencing a metaclass for a meta-product

Chapter 6: Defining UML profiles

Objecteering/UML Profile Builder User Guide 6-51

Steps:
1 - Select a child UML profile.

2 - Click on the "Create a metaclass reference" button.
3 - Select or enter the meta-work product name.
4 - Confirm.

Chapter 7: Defining modules

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-3

Overview of module definition

Module utility

 A module is the functional packaging of a set of UML profiles. It is the unit
which will be transferred between models, made available in Objecteering/UML
Modeler UML modeling projects and utilized by the end user.

Module properties
In a module, the following must be defined:

♦ specialized modules

♦ the UML profiles used

♦ the UML profiles referenced

♦ the UML installation profile

♦ module commands

♦ the default values of module parameters
It is then possible for a module to be packaged, in order to allow it to be delivered
and used on other sites.

Chapter 7: Defining modules

7-4 Objecteering/UML Profile Builder User Guide

Creating a module

Figure 7-1. Creating a module in a UML profiling project

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-5

Steps:
1 - Select the UML profiling project.

2 - Click on the "Create a module" button.
3 - Enter the necessary information in the data entry fields.
4 - Confirm.

Note: If the "Working directory" field is left blank, then the working directory is
$OBJING_PATH/modules/<ModuleName>/<Version>. Otherwise, the
user may specify the working directory of his choice.

Chapter 7: Defining modules

7-6 Objecteering/UML Profile Builder User Guide

Referencing UML Profiles

Procedure
By referencing UML profiles, all their components may be accessed. Through
these UML profiles, the module can access:

♦ module parameters defined in the UML profiles

♦ tagged values, note types and stereotypes

♦ public J methods defined in UML profile metaclasses, in order to link them to
commands

♦ document templates and generation templates, defined in UML profiles

♦ generation work products, defined inUML profiles
The referencing of UML profiles allows you to use a profile as a UML installation
profile.

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-7

Figure 7-2. Referencing the "Impact" UML profile

Steps:
1 - Select the module in the meta-explorer.

2 - Click on the "Reference a UML profile" icon in the "Items" tab of the
properties editor.

3 - Select the UML profile(s) to be referenced by clicking on the "Search" button
to display the list of accessible elements, and then by selecting the element in
question. The element chosen will then appear in the "Drop zone" field.

4 - Confirm by clicking on the "Apply" button.

Chapter 7: Defining modules

7-8 Objecteering/UML Profile Builder User Guide

Using UML Profiles

Procedure
UML profiles should be used when the J code and stereotypes, tagged value
types and note types contained therein are necessary to the module, but where
work products, generation templates and parameters must be hidden. If you
forget the essential "use" dependencies, then a J error (such as "method not
found") will occur. If you use referencing instead of "use", then inappropriate work
products or parameters will appear. UML profiles which are being used cannot be
used as installation profiles.

Figure 7-3. Using the "Impact" UML profile

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-9

Steps:
1 - Select the module in the meta-explorer.

2 - Click on the "Use a UML profile" button in the "Items" tab of the properties
editor.

3 - Select the UML profile(s) to be referenced by clicking on the "Search" button
to display a list of accessible elements, and then by selecting the element in
question, which will then appear in the "Drop zone" field.

4 - Confirm by clicking on the "Apply" button.

Chapter 7: Defining modules

7-10 Objecteering/UML Profile Builder User Guide

Defining a UML installation profile

Procedure
Installation profiles are used to call additional actions associated with a specific
operation. They are created automatically in the "Object" metaclass when the
UML profile is selected as the installation profile, and the user may then further
define them. The J methods which can be defined on installation profiles are as
follows:

♦ the reception of a module

♦ the installation of a module

♦ the uninstallation of a module

♦ the selection of a module

♦ the unselection of a module

The actions called are as follows:

♦ For the reception of a module, moduleInit

♦ For the installation of a module, moduleInstall

♦ For the uninstallation of a module, moduleUninstall

♦ For the selection of a module, moduleSelect

♦ For the unselection of a module, moduleUnselect
(For further information, please refer to the "Module management services"
section in chapter 5 of the Objecteering/J Libraries user guide).

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-11

Figure 7-4 illustrates the definition of a UML installation profile.

Figure 7-4. Defining a UML installation profile

Chapter 7: Defining modules

7-12 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select a module in the meta-explorer.

2 - Click on a "Installation UML profile" icon in the "Items" tab of the properties
editor.

3 - Click on the "Search" button to display a list of accessible elements, and then
selecting the element in question, which will then appear in the "Drop zone"
field.

4 - Confirm by clicking on the "Apply" button.

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-13

Creating commands

Procedure
J rule entry points, which may be accessed by users in Objecteering/UML
Modeler, are defined by commands. A command is included in the pop-up menu
on the model elements concerned, and is associated to one of the metaclass J
methods. The associated J method must be public and must have no parameters.
For example, in figure 7-5, the creation of the command introduces a pop-up menu
item on a model's classes. This element will be called generation and trigger the
"PrintImpact" J method of the "Impact" UML profile.

Figure 7-5. Creating a command

Chapter 7: Defining modules

7-14 Objecteering/UML Profile Builder User Guide

Steps:
1 - Select the module.

2 - Click on the "Create a command" button.
3 - Enter the name.
4 - Enter the identifier name.
5 - Select a UML profile.
6 - Select a J method.
7 - Confirm.

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-15

The "Command" dialog box

Figure 7-6. "Command" dialog box

Chapter 7: Defining modules

7-16 Objecteering/UML Profile Builder User Guide

The ... field or button is used to ...
Name enter the command name.

Label enter the name of the menu item associated to this
command

Can be activated in editing
mode

specify whether or not the menu item associated to the
command can be activated on an editor object in editing
mode

Can be activated in consulting
mode

specify whether or not the menu item associated to the
command can be activated on an object in consulting
mode

Can be activated on a read
only object

specify whether or not the menu item associated with the
command can be activated on an object in read only mode

Running UML Profile select the context for activating the method

J method select the J method to be invoked. It must be public and
without parameters.

Note: When the "Can be activated in consulting mode" state is checked, the
"Can be activated on a read only object" state is grayed out (since it
serves no purpose).

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-17

Changing the default values of parameters

UML profiling project configuration
The user can modify the default values of module parameters. This is done in the
"Modifying configuration" window launched from Objecteering/UML's main window
(Figure 7-7) via the "Tools/Configure UML profiling project" menu.

Figure 7-7. Editing the configuration

Chapter 7: Defining modules

7-18 Objecteering/UML Profile Builder User Guide

Specializing a module

Procedure
A module can specialize one or more UML profiling project modules. Cycles are
forbidden. Specializing a module allows access to the parent module's
parameters and UML profiles. Inherited parameter values are initialized with the
value of the parent module and can then be modified.

Figure 7-8. Specializing a module

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-19

Steps:
1 - Select the module.

2 - Click on the "Specialize" button in the "Items" tab of the properties editor.
3 - Select the module by clicking on the "Search" button to display a list of

accessible elements, and then by selecting the element in question, which will
then appear in the "Drop zone" field.

4 - Confirm by clicking on the "Apply" button.

Note: If a module, M1, inherits from another module, M2, which owns a
parameter, P, and M1 already references the UML profile where P is
defined, or already inherits from a module which references this UML
profile, M1 keeps the value P already has. This value can be different
from M2's value.

Chapter 7: Defining modules

7-20 Objecteering/UML Profile Builder User Guide

Packaging a module

Procedure
Packaging a module allows you to obtain a module in the form of a file, in order to
internalize it in another site. (For further information on installation, please refer to
the "Overview of the Configuration menu" section of chapter 2 of the
Objecteering/Administrating Objecteering Sites user guide.) The packaging
mechanism is the correct way of packaging and delivering modules to other sites,
and is the method used for standard Objecteering modules (Objecteering/C++,
Objecteering/Java, Objecteering/Documentation, etc).
The packaged module (a .prof file) will be stored in the directory you indicate in the
window shown in Figure 7-10. If no directory is specified, the module will be
stored by default in the "$OBJING_PATH/modules/<ModuleName>/<Version>"
directory. Module packaging may include resources, files, binaries, scripts, etc,
found in the module work directory.

Note: $OBJING_PATH is a variable which represents the Objecteering/UML
installation directory path.

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-21

Figure 7-9. Packaging a module

Steps:
1 - Select the module using the right mouse-button.
2 - Choose the "Package" option from the context menu which appears.

Chapter 7: Defining modules

7-22 Objecteering/UML Profile Builder User Guide

The following window (figure 7-10) then appears.

Figure 7-10. The "Module packaging" window

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-23

Key:

♦ "Packaging file path": this field is used to indicate where the module's
packaged file is stored.

♦ "Number of major version": this field is used to indicate the first number in the
version number (for example, if the complete version number is "4.2", then the
major version number is 4.

♦ "Number of minor version": this field is used to indicate the second number in
the version number (for example, if the complete version number is "4.2", then
the minor version number is 2.

♦ "Release information": this field is used to indicate the release number for the
module (for example, "a").

♦ "Activate read only mode": this field is used to indicate whether or not code
should be in read only mode. It should be noted that even where this option is
activated, the module itself is in read/write mode.

♦ "Mask code": this field is used to indicate whether or not methods will be visible
to users.

♦ "Module's resources project container": this field is used to indicate in which
UML modeling projects the module's resources are located (for example, the
First Steps package, the types package, etc.).

Chapter 7: Defining modules

7-24 Objecteering/UML Profile Builder User Guide

Creating module resources
The "Create module resources" command is used to create a test project (if one
does not already exist) and to internalize a types package template.
The types package template is used to parameterize a module without going via
UML Profile Builder. This means that during generation phases, it is possible to
parameterize generated J code with regard to a predefined type which is used in
the modeled application.

Figure 7-11. Running the "Create module resources" command

Steps:
1 - Select the module using the right-mouse button.
2 - Choose the "Create module resources" option from the context menu which

appears.

Chapter 7: Defining modules

Objecteering/UML Profile Builder User Guide 7-25

Figure 7-12 shows the result of the "Create module resources" command in a test
project and a meta-explorer.

Figure 7-12. The result of running the "Create module resources" command on a module

Key:
1 - A "TypesEditor" module has been added in the meta-explorer. This module is

needed if the user wishes to work with the types package.
2 - Three packages ("TypesPackageContainer", "FirstStepsContainer" and

"ModelsContainer") have been added in the test project explorer. The
"TypesPackageContainer" package is created with
"TypesPackage_Template", whilst the other two packages are created empty.

These packages are optional, if your module does not need them.

Chapter 7: Defining modules

7-26 Objecteering/UML Profile Builder User Guide

The "TypesPackageContainer" package should be used if your module uses types
during generation processing.
The "FirstStepsContainer" package should be used if you wish to deliver a UML
modeling project, which will be used as the module's First Steps project.
The "ModelsContainer" package should be used if you choose to deliver certain
module parts which are needed to show your module's functionalities.

Note: For each first steps package or model part you wish to create, a container
package is created ("FirstStepsContainer" package for module first steps
and the "ModelsContainer" package for model parts). In this container
package, you should then create a package for the first steps or the model
parts concerned (for example "FS1").

Chapter 8: Test projects

Chapter 8: Test projects

Objecteering/UML Profile Builder User Guide 8-3

Test project definition

The test project
The test project is a UML modeling project specifically associated to a UML
profiling project. Any modification of the UML profiling project automatically affects
the test project. This means that any modification made to J code, tagged values
definition or the document template can be immediately tested on the test project.
There is no module installation procedure to implement.
A test project is firstly created like a UML modeling project, and is exclusively
dedicated to one UML profiling project.

Chapter 8: Test projects

8-4 Objecteering/UML Profile Builder User Guide

Selecting a test project
Before being able to test your developments, a test project must be selected by
the user (see Figure 8-1).

Figure 8-1. Selecting a test project

Chapter 8: Test projects

Objecteering/UML Profile Builder User Guide 8-5

Steps:
1 - Choose the "Select a test project..." menu from the "Test" menu.
2 - Choose the test project you wish to use. Test projects are UML modeling

projects in their own right.
3 - Confirm.
An explorer on the test project is then automatically started.
If no test projects are available for selection, you can create a test project by
selecting the "Create a test project..." command from the "Test" menu. A window
like the one shown in Figure 8-2 then appears.

Figure 8-2. Creating a test project

Simply give a name to the test project you wish to create and then confirm by
clicking on the "OK" button. An explorer is then automatically launched on the
newly created test project.

Chapter 8: Test projects

8-6 Objecteering/UML Profile Builder User Guide

Unselecting a test project
A test project can be unselected simply by running the "Unselect a test project..."
command from the "Test" menu.

Note: A test project can only be changed once in the course of a modeling
session. To change test project more than once, simply save your work
and then use the "File/New" or "File/Open" commands to reload the UML
profiling project in question.

Deleting a test project
A test project can be unselected simply by running the "Delete a test project..."
command from the "Test" menu.

Chapter 8: Test projects

Objecteering/UML Profile Builder User Guide 8-7

Importing a test project
It is possible with Objecteering/UML to import the contents of an existing UML
modeling project into a UML Profile Builder test project. To do this simply carry
out the steps shown in Figure 8-3.

Figure 8-3. Importing the contents of the "MyModelingProject1" UML modeling project into the
"MyTestProject" test project

Chapter 8: Test projects

8-8 Objecteering/UML Profile Builder User Guide

Steps:
1 - Click on the "Test/Import a test project..." menu. The "Import" window then

appears.
2 - In the "Import" window, select the UML modeling project whose contents you

wish to import. As you can see, you have access to all the UML modeling
projects you have developed in the UML Modeler tool, and you can choose
either to import the entire contents of one of these UML modeling projects or
simply to import some of its components. In our example, we are going to
import the entire contents of the "MyModelingProject1" UML modeling project.

3 - Click on the "Import" button.
4 - A confirmation dialog box then appears, informing you that the current

contents of your test project will be overwritten with the contents of the UML
modeling project you are importing. Confirm by clicking "OK".

Chapter 8: Test projects

Objecteering/UML Profile Builder User Guide 8-9

Testing J methods

Procedure
When a command is created in a module, the elements of the test project whose
metaclass is, or inherits from, the one to which the J method referenced by the
command belongs to, have an item in their context menu which is used to launch
this command. Therefore, if you wish to test the "Generate" method on the
"Class" metaclass, create a command which refers to "Generate", and run it on
any class of the test project.

Creating work products
When a module references a UML profile in which a work product is created, it is
possible to create instances of this work product in the test project. A button
appears in the explorer for all the elements which fulfill the following condition: the
metaclass which these elements belong to is part of the list of metaclasses for
which the work product has been defined, or which the work product specializes.

Index

.prof file 7-20
{nocode} tagged value 3-11
{persistence} tagged value 5-10
{persistent} tagged value 1-10, 6-6
{primitive} tagged value 5-10
{synchronized} tagged value 3-11, 3-

27
{virtual} tagged value 5-10
Analysis phase 1-3
Associating a metaclass reference

6-50
Attributes 1-6, 5-7, 5-22
Backward compatibility 4-7
Boolean 6-32
C++ 5-13
C++ code generation 1-7
C++ generation 5-3
C++ generator 5-10
Changing the default value of

parameters 7-17
Characteristics of Java code

generation 3-3
Checking rules 1-3
Class 1-6
Classes 3-3, 5-7, 5-10, 5-23
Code generation templates 1-5
Code generators 1-4
Command 1-8

Creation 2-20
Commands 1-5, 1-6, 1-7, 1-9, 2-18,

2-20, 3-37, 4-13, 5-3, 5-7, 5-22, 6-
47, 7-3, 7-6, 7-13, 8-9
Access from the J language 5-9
Overview 5-7

Configuring a module 2-22
Default values 3-39

Configuring modules 5-6
Configuring the UML profiling project

7-17
Consistency checks 1-4
Console 4-10, 4-12
Constraint

Creation 6-16
Constraints 1-3, 6-16
Continuous entry creation mode 2-6,

2-12, 3-7, 3-10, 6-7, 6-10, 6-13, 6-
22

Creating a child UML profile 1-7
Creating a command 1-8, 2-20
Creating a constraint 6-16
Creating a document item 6-42
Creating a document template 1-7,

6-34, 6-40
Creating a generation document

template 1-7
Creating a generation item 6-37
Creating a generation template 6-34
Creating a generator 3-3
Creating a J class attribute 6-18
Creating a J method 2-11, 6-21
Creating a module 2-16, 3-36, 7-4
Creating a parameter 1-7
Creating a reference to a metaclass

1-7
Creating a stereotype 6-12
Creating a tagged value type 3-11
Creating a test project 3-41, 8-5
Creating a type of work product 1-7
Creating a UML profiling project 2-4,

3-4
Creating attributes 3-16
Creating commands 3-37, 7-13
Creating J attributes 3-12

Creating module resources 7-24
Creating new parameters 3-8
Creating note types 3-9
Creating parameters 3-15
Creating work products 3-14, 8-9
Creation buttons 4-16
Default UML profiles 1-8
Defining a module parameter 6-31
Defining a UML installation profile 7-

10
Defining a work product 6-47
Defining and visualizing tagged values

5-11
Deleting a test project 8-6
Design Patterns 1-4
Design phase 1-3
Directory 6-32
Document and generation templates

Access from the J language 5-21
Overview 5-19

Document items 1-9, 5-19, 5-21
Document template 1-7, 7-6
Document template project 1-9
Document templates 1-4, 1-5, 1-6, 4-

5, 4-13, 5-3, 5-19, 6-34, 8-3
Documentation generation 5-3
Drag and drop function 2-19
Entering a J method 2-13
Entering a type of note 6-9
Entering a type of tagged value 6-6
Enumeration 6-32
Explorer 2-19, 6-47
Extensibility mechanisms 5-3
External text editors 5-25
Externalizing modules 5-4
File open 6-32
File save 6-32

Functions 1-5
Functions of the UML Profile Builder

tool 1-3
Generation document template 1-7
Generation items 1-9, 5-19, 5-21, 6-

37
Generation rules 1-3
Generation template project 1-9
Generation templates 1-4, 4-13, 5-

19, 6-34, 7-6, 7-8
Generation work product 5-21
Generation work products 1-5, 1-6,

3-4, 3-14, 3-16, 3-17, 3-24
getCurrentModuleParameterValue

5-6
Implementing J methods 3-23
Installation 5-4
J attributes 1-9, 4-13, 6-3
J language 1-4, 1-9, 5-6, 5-9, 5-12,

5-15, 5-25
J method

Creation 2-11
Entry procedure 2-13
moduleInstall 3-22

J methods 1-5, 1-6, 1-7, 1-8, 1-9, 1-
10, 2-9, 2-11, 2-13, 3-9, 3-18, 4-13,
5-7, 5-9, 5-21, 5-26, 6-3, 6-18, 6-21,
6-25, 6-28, 6-47, 7-6, 7-10, 7-13, 8-
9
Creating J methods 3-18
Creating J methods for managing

the module 3-22
Creating the visualization J methods

3-22
edit 3-22
generate 3-18
getCode 3-18
getIdLineComment 3-22
getType 3-18

initProduct 3-20
isPresent 3-20
J methods for managing work

products 3-20
moduleInit 7-10
moduleInstall 7-10
moduleSelect 7-10
moduleUninstall 3-22, 7-10
moduleUnselect 7-10
mustPropagate 3-20
Protected 6-28
Public 6-28
Testing J methods 8-9
update 3-20
visualize 3-22

J rules 1-7
J services 1-5

getCurrentModuleParameterValue
5-6, 6-31

Java 1-4
Java generation template 5-20
Java work product 5-23
Java-like syntax 1-4
Licenses 5-5
Loading modules

Access from the J language 5-6
Configuring modules 5-6

Major version 7-23
Makefile generation 1-7
Markers 6-27
Mask code 7-23
Menu bar 4-12
Metaclass 1-10
Metaclass definition 6-3
Metaclasses 1-6, 1-7, 1-9, 2-9, 2-11,

5-9, 5-12, 5-16, 6-3, 6-6, 6-12, 6-16,
6-21, 6-28, 6-36, 6-47

Referencing procedure 2-9
Meta-explorer 4-12, 4-13, 4-16, 7-25

Description 4-15
Metamodel 1-6, 1-9
Metamodel classes 1-8
Minor version 7-23
Model transformation 5-25
Model transformation services 5-25
Model-driven development 1-3
ModelElement metaclass 5-12, 5-15,

5-18
Module 1-6, 1-8, 7-8

Commands 7-3
Configuration 2-22
Creation 2-16
Definition 7-3
Parameters 7-3

Module configuration
Module configuration window 2-23

Module configuration window 2-22
Module parameters 1-9

Creation 2-7
Module resources 7-23
Module transformation 1-9
moduleInit 7-10
moduleInstall 7-10
Modules 1-5, 1-6, 1-7, 1-9, 2-3, 2-16,

2-22, 2-23, 3-16, 4-13, 4-15, 5-3, 5-
4, 5-7, 5-10, 5-13, 5-22, 5-25, 6-44,
8-9
Creating a module 3-36
Overview 5-3

moduleSelect 7-10
moduleUninstall 7-10
moduleUnselect 7-10
MpGenProduct metaclass 5-24
Note type 1-9

Note types 2-9, 3-4, 4-13, 5-13, 6-3,
7-6, 7-8
Creating a note type 3-9

Notes 1-5, 1-6, 1-7, 2-9, 3-3, 4-13, 5-
3, 5-13, 7-6, 7-8
Access from the J language 5-15
Overview 5-13

Objecteering/Administrating
Objecteering Sites 7-20

Objecteering/C++ 1-5, 1-6, 5-3, 6-
34, 7-20

Objecteering/Document Template
Editor 6-34

Objecteering/Documentation 1-5, 5-
3, 7-20

Objecteering/Introduction 1-5
Objecteering/J Libraries 1-5, 7-10
Objecteering/Java 7-20
Objecteering/Metamodel 1-5, 1-6, 5-

15, 6-3, 6-47
Objecteering/Metamodel User Guide

5-12
Objecteering/Model Dialog Boxes 5-

22
Objecteering/The J Language 1-5,

1-6, 1-9, 5-24, 6-21
Objecteering/UML installation

procedure 5-4
Objecteering/UML metamodel 5-15,

5-18, 6-18
Objecteering/UML Modeler 1-4, 1-5,

1-6, 1-7, 1-9, 2-3, 2-5, 3-5, 4-5, 4-6,
6-47, 7-3, 7-13

Objecteering/UML Profile Builder 1-
10, 4-6

Opening a meta-explorer 4-14
Opening an existing UML profiling

project 4-6
Operation 1-6

Operations on a module
Creating a command 6-44
Inheriting from a module 6-44
Packaging the module 6-44
Referencing a UML profile 6-44
Selecting the installation UML

profile 6-44
Using a UML profile 6-44

Oracle generation 5-3
Oracle generator 5-10
Other customizable services

Overview 5-25
Package 5-23
Packages 3-3
Packaging a module 7-20
Packaging file path 7-23
Parameter types

Boolean 6-32
Directory 6-32
Enumeration 6-32
File open 6-32
File save 6-32
Password 6-32
String 6-32

Parameters 1-5, 1-6, 1-7, 2-7, 2-22,
2-23, 3-3, 3-8, 3-16, 3-21, 3-27, 3-
39, 4-13, 5-6, 5-9, 6-31, 7-3, 7-6, 7-
8, 7-13, 7-17, 7-18
Creating new parameters 3-8

Password 6-32
Process-driven development 1-3
Properties editor 4-12, 4-13, 5-11, 5-

23, 7-7
Annotating structural elements 4-

18
Creating J methods 4-18
Items tab 2-26, 4-19

Redefining J methods 4-18
Referencing UML profiles 4-18
Selecting UML installation profiles

4-18
Specializing modules 4-18
Terminal element creation icons 4-

20
Using UML profiles 4-18

RDB generation 1-7
Read only mode 7-23
Read/write mode 7-23
Receiving a UML profiling project 4-

7
Receiving and renaming a UML

profiling project 4-7
Receiving and upgrading a UML

profiling project 4-7
Receiving UML profiling projects 4-6
Receiving, renaming and upgrading a

UML profiling project 4-7
Redefining a J method 6-28
Referencing a metaclass 2-9, 6-3, 6-

4
Referencing a UML profile for the

module 2-18
Referencing UML profiles 1-8, 7-6,

8-9
Release information 7-23
Saving your model context 4-6
Selecting a test project 2-24, 8-4
Selecting modules 5-5
Specialized modules 7-3
Specializing a module 7-18
Specializing the UML profiling project's

module 1-8
Status bar 4-12
Stereotype

Creation 6-12

Stereotype visibility 6-15
Stereotypes 1-3, 1-5, 1-7, 1-10, 4-

13, 5-16, 6-3, 6-12, 7-6, 7-8
Access from the J language 5-18
Overview 5-16

String 6-32
Structural element creation icons in

the meta-explorer 4-16
Structure

Modules 1-6
UML profiles 1-6

Tagged value types 1-10, 2-9, 3-4,
3-11, 4-13, 6-3, 6-6, 7-6, 7-8
Creation 3-11

Tagged values 1-3, 1-5, 1-6, 1-7, 1-
10, 2-9, 3-3, 3-27, 4-13, 5-3, 5-10,
6-6, 7-6, 7-8, 8-3
Access from the J language 5-12
Overview 5-10

TaggedValue metaclass 5-12
TagType metaclass 5-12
Terminal element creation icons 4-

20
Test project 1-10, 2-26, 7-25
Test projects 3-40, 8-3, 8-9

Creating a test project 8-5
Deleting a test project 8-6
Importing a test project 8-7
Selecting a test project 8-4
Unselecting a test project 8-6

Testing a UML profiling project 2-24
Testing code edition 3-43
Testing code generation 3-42
Testing code visualization 3-43
Testing J methods 8-9

Creating work products 8-9
Testing the UML profiling project 3-

40

Textually editing a J method 6-25
The "Attribute" dialog box 6-20
The "Attribute::generate ()" method

3-28
The "Attribute::getType ()" method 3-

29
The "Class::generate ()" method 3-

25
The "Command" dialog box 7-15
The "Document template" dialog box

6-40
The "Generation item" dialog box 6-

38
The "J Method" dialog box 6-23
The "JavaProduct::edit" method 3-34
The "JavaProduct::generate ()"

method 3-24
The "JavaProduct::getIdLineComment

" method 3-34
The "JavaProduct::initProduct ()"

method 3-30
The "JavaProduct::isPresent" method

3-32
The "JavaProduct::mustPropagate ()"

method 3-32
The "JavaProduct::update ()" method

3-31
The "JavaProduct::visualize " method

3-33
The "Module" dialog box 6-44
The "Note type" dialog box 6-11
The "Object::moduleInstall" method

3-34
The "Object::moduleUninstall" method

3-35
The "Operation::generate ()" method

3-27
The "Operation::getCode ()" method

3-28

The "Package::generate ()" method
3-24

The "Parameter" dialog box 6-32
The "Stereotype" dialog box 6-14
The "Tagged value type" dialog box

6-8
The "Type of constraint" dialog box

6-17
Tool bar 4-12
Transformation rules 1-9
Types package template 7-24
UML 1.3 1-6
UML installation profile 7-3, 7-6, 7-

10
UML installation profiles 7-8
UML modeling project 1-7, 2-3, 5-3,

5-7, 6-31, 8-3
UML modeling projects 1-4, 4-3, 4-6,

5-4
UML profile 1-10
UML Profile Builder workspaces 1-4
UML profile generalization 1-7
UML profiles 1-3, 1-6, 1-7, 1-8, 2-3,

2-6, 2-9, 2-19, 2-23, 3-4, 3-6, 3-8, 3-
9, 3-11, 3-12, 3-14, 3-18, 3-23, 3-36,
4-13, 4-15, 5-16, 6-3, 6-6, 6-21, 6-
25, 6-28, 6-32, 6-36, 6-47, 7-3, 7-6,
7-8, 7-18
Creating a child UML profile 1-7,

2-6
Creating a UML profile 3-6
Definition 1-7
Referencing a UML profile for the

module 2-18
UML profiling project 3-4, 4-11, 4-13,

4-16
UML profiling project 1-7, 2-3, 2-16,

2-24, 4-15, 4-19, 4-20, 8-3
Creation 2-3

Test 2-24
UML profiling projects 1-8, 1-10, 2-6,

4-3
Definition 1-7

UML rules 1-3
Undo/redo operations 5-25
Unselecting a test project 8-6
Upgrading a UML profiling project 4-

9
Upgrading UML profiling projects 4-6
Using modules 5-4

Selecting modules in a UML
modeling project 5-5

Using UML profiles 1-8, 7-8
Validation rules 1-3
Work context 4-6
Work product 1-7, 1-10
Work products 3-14, 3-30, 4-13, 5-3,

5-7, 7-8
Access from the J language 5-24
Overview 5-22

Workspaces 1-4

