Objecteering/UML

Objecteering/lUML Modeler User Guide
Objecteering/Model Dialog Boxes
User Guide

Version 5.2.2

() bjecteering

Www.objecteering.com Software

Taking object development one step further

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software
Objecteering/UML version 5.2.2 - CODOBJ 001/002
Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Objecteering/UML

Objecteering/lUML Modeler User Guide

Version 5.2.2

() bjecteering

Www.objecteering.com Software

Taking object development one step further

Contents

Chapter 1: Introduction

Introducing Objecteering/UML Modeler...........cooiiuiiiiiiiieeiniiie e 1-3
Objecteering/UML WINAOWScccuiiiiiiiee ittt sieee s sneee e 1-8
COoNSIStENCY MECNANISMSiiiiiieiiiiie et e e e saree e 1-12
(][0T TV SRR 1-20

Chapter 2: First Steps

(=] o T2 1= LT o PSSR
Creating @ UML MOdeling ProOJECTcuviiiiiiiie i esiiie e e
Creating elements in a UML modeling project
Creating @ diAgramcoovuveee e a e
Editing a diagramcccccevveieiniiie e,

Creating elements in a diagram
Creating a link in @ diagramccvveeiiiiee e
RESIZING @N ODJECE...eeiiiviii et e

Chapter 3: Functions of Objecteering/UML Modeler - Overview
Launching Objecteering/UML Modeler.........cccccveivvieeiiiiieeeiiinieeninns
Creating or opening a UML modeling project.......c.cccccccvevvvveeeenvnnnn.
Receiving and upgrading UML modeling projects
The MaIN WINAOWoiiiiiiiiieiit s
THE EXPIOTET ...t e e
The properties editor
THE CONSOIE ...
The on-line help search eNgINEcccoviiei i
DIagramsS.......coocveeiiiieeiiiiee e
Work products
IMIBICTOS ...ttt s
Editing UML Modeler configuration
Transferring elements between UML modeling projectsc.cccceevvvneeen. 3-28
SaviNg @ USEr WOIK SESSIONcciivieiiiiiiieeiiiieeasiiieeessieeessnieeeessineeeesnnseeeennes
Saving your MOdel CONEXLceiivieeiiiiie e esiiie e
The search fUNCHONoocuiiiiii e
Read-only mode.........ccccvveiviiiiieniiiee e
Removable consistency checks
Obligatory consistency checks

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

UML MOEIEr MENUS ...ttt
UML Modeler tools....................

Explorer functions

Browsing in the explorer
Structural element Creation ICONSccvireiiiiierii e
MOdiIfyING EIEMENTS ...c..vviie e
Properties editor fUNCLONSc.cuviiiiiiiie e
Terminal element creation iCoNS..........cceccvevieenneen.

Visualizing messages in the console.............cccceeenee

Using the on-line help search engine...............cc........

Working with Objecteering/UML macros...................

UML Modeler parameter SEtSucciivieiiiiiiie it e s siree e sneee e
Using the search fuNCiON ...
Read-only mode.........cccceveiviiviiiiiiiee e,
SROMCULS ...t

Chapter 5: Graphic Editors - General Principles

Overview of the Objecteering/UML graphic editorsccccocvvveeviiieeeinnnn, 5-3

Creating a graphic element

Creating iNKSveie e e e tre e e e s snbae e e snreee s

Redrawing INKS........cccocvveiiiiieiniiie e

Handling graphic elements

Modifying graphic lementsScooviiiiiiiiee e 5-21

Masking and showing elementsccccccvveiiiiee i 5-22

Context menus for a diagramccceoviieee i 5-25
Chapter 6: Graphic Editors - Detailed View

Working with graphic elementscccoocuviiiiiiiie e 6-3

The "Modify" command on a diagramccccceeviieereiiiiee s 6-8

Context menu on a diagram elementccccveviieieeriiiiee e 6-11

The "Graph" menu
The "HeIP" MENUoeiiiiiii e e

Chapter 7: Specific graphic editors

ClaSS IAGIAMeeeieiiieie et e s e e s b e e s srbe e e e sbaeeesnes
Class diagram - Behavior of graphic elementscccccoceeeiiiiieeniciien e,
Managing class attributes and operations.................

Deployment diagram..........ocuueeeiiieee e
Deployment diagram - Behavior of graphic elements

Deployment inStance diagramcuveeiiiieeeiiieee s siee e
Deployment instance diagram - Behavior of graphic elements 7-34
(@] o)1= Todae [F=To | =Ty o F SRR 7-38
Object diagram - Behavior of graphic elementscccccovcvvveiiiiieeeiiinenene 7-40
SEQUENCE AIAGIAIM . .uiiieiiiii e eitie et e e sttt e e s e e s srbe e e e sbeeeesnbeeeenes 7-42
Sequence diagram - Behavior of graphic elementsccccceveeviiieeeinnen, 7-45

Collaboration diagram
Collaboration diagram - Behavior of graphic elements
Use €CaSse diagramccocueeeiriiieeiiiieeeiieeessieeeeesieeeessnenee e

Use case diagram - Behavior of graphic elementsccccoccvveiiiieenennnns
State diagram
State diagram - Behavior of graphic elementsccccocccveiiiiieiiiiciieenine
Yo 1171 VA0 =T | = 1o o F PSR RR
Activity diagram - Behavior of graphic elementscccccoocvieiiiiieeeininnen.

Chapter 8: Methodological Hints
The Model/Instance approachccceeoviiieiiiiiee i 8-3
Flow Diagrams and DataFIOWS...........ccoviviiiiiiieee i 8-7
UsiNg oW diagramsoeiiiiiiieiiiie e 8-10
Examples of FIOW DiagramsScooiuieieiiieieiiiiieesiiiee s siieeessieeeessneee s sneeas 8-13

Index

Chapter 1: Introduction

Chapter 1: Introduction

Introducing Objecteering/UML Modeler

Introduction
Welcome to the Objecteering/UML Modeler user guide!

Objecteering/UML Modeler is the central tool of the Objecteering/UML CASE tool
and provides model and diagram creation and editing facilities, help with model
construction and consistency check functions.

This user guide describes Objecteering/UML Modeler editing facilities. It presents
an overview of Objecteering/UML Modeler services, provides "First steps" which
we recommend to every new user, and then describes in detail the editing
services provided.

Every model element represented in Objecteering/UML Modeler has a dedicated
dialog box, described in the Objecteering/Model Dialog Boxes user guide.

Objecteering/UML windows
Objecteering/UML includes the following windows:
+ a main window, which centralizes Objecteering/UML services

¢ graphic editors, which present diagrams and are used to graphically display
models and model elements, and to create, modify or destroy graphic elements

+ model explorers, which allow you to browse a model both hierarchically and in
detail. A model can be entirely created and edited using this tool.

¢ a properties editor, containing a number of tabs, each with a specific function.
For example, the "Diagrams" tab is used to display the icons you will need to
create diagrams in Objecteering/UML, as well as to present information on
those diagrams which already exist in the modeling element selected.

¢ aconsole, which displays execution messages, errors and warnings

When Objecteering/UML is launched, the main window appears. In this window,
the user can either create a new UML modeling project or open an existing one.

Once a modeling project has been created or opened, the main window displays
an explorer, a properties editor and a console. When a new modeling project is
created, a class diagram is automatically created and opened on the UML model
root. As many explorers and graphic editors as you like can be opened from the
main window.

Objecteering/UML Modeler User Guide 1-3

Chapter 1: Introduction

General ergonomics

Objecteering/UML exists in native source code, on both UNIX and Windows
platforms.

Objecteering/UML ergonomics on PC and UNIX are very similar. The main
explorer, the console and the properties editor are dockable windows, which can
be positioned and docked wherever you wish within the Objecteering/UML
workspace, or even outside this workspace. Other windows, such as
Objecteering/UML graphic editors, cannot be dragged over these dockable
windows.

For further information on dockable windows, please refer to the "The main
window" section in chapter 3 of this user guide.

1-4 Objecteering/UML Modeler User Guide

Chapter 1: Introduction

General view of Objecteering/UML on PC

[Cibgctee g M Uadebsi - Tisdmangf il o

f——fis i e gk e gindess]

g = AR RCT ST = =H=l) T . dee
> L |

BN I G 220 - PACYAGE Vasipisa
E m 25 Ty H |
. Ea
- _'n B
2 =)
iy)
= B
T s fmion =]
: _EEEM-J-WH-H#J =
T i P
- Ay Fi
Lo frars Dot A
" i/
—Fasd ’IJ"

Figure 1-1. General view of Objecteering/UML on PC

Key:

1- Menu bar

2 - Tool bar

3 - Main explorer

4 - Properties editor
5 - Console

6 - Status bar

7 - Graphic editor

Objecteering/UML Modeler User Guide 1-5

Chapter 1: Introduction

Objecteering/UML modules

Objecteering/UML Modeler is the principal module of the Objecteering/UML CASE
tool, and is essential for all services linked to the use of UML models. The
Objecteering/lUML CASE tool provides a large number of complementary
modules, which all exploit a UML model for a specialized need. For example, the
generation of C++ or Java code, documentation generation and automatic design
patterns are all in specific modules. A module is selected through the "Modules"
window (see Figure 1-2). When a module is selected within a UML modeling
project, it provides menus, icons and specialized annotations, specific to the
module in question.

™ odules

Eialnbie raoadudey Hindubes uned :

| DisaigrProflstodule 119 | EnaynPioie pdul= 1.1.0
+ElB 1 GerDhockiodule 48

| Errpheleaizber 1 1.9 ik =5 Jaabdoddle 22
el e ademe 1.2 Friscutibanagr 1.1.9

| JireaDigPatane 1 2k
+ Wacor 1.0d

|®

+ Hatricevodids 2 0s
+ e 12 8
+ ProscessPodileE i 1.1.0
1 Fifates
| Frepuaemnend 1.0 L
il v roateis | b0 e e
o | o s

el

e hisznln -

™ Essp pslechion e delsok
= | _oren | |

Figure 1-2. Module selection window

Objecteering/UML Modeler User Guide

Chapter 1: Introduction

The Wizard/Tools module is always present. This module cannot be deselected,
since it is an integral part of the Objecteering/UML tool.

The Objecteering/Macros module can be selected to provide you with a number of
standard Objecteering/UML macros, which can be run on your model elements.
This module can also be used to create your own macros.

When certain modules are selected, a tab specific to these modules automatically
appears in the properties editor (for example, for the Objecteering/Documentation,
Objecteering/Java, Objecteering/C++ and Objecteering/Visual Basic modules).
These tabs are designed to make it even easier to enter elements relevant to the
module in question, such as summary and description notes for documentation
generation.

Objecteering/UML Modeler User Guide 1-7

Chapter 1: Introduction

Objecteering/UML windows

Main window

Once the UML modeling project has been created or opened, the main window
appears. The main window centralizes the commands related to information
management, general purpose functionalites and UML modeling project
configuration. When the main window is opened, the main explorer, the console
and the properties editor are displayed. These windows are dockable.

Note: Please note that for new UML modeling projects, a class diagram is
automatically created and displayed.
The main window provides Objecteering/UML's general services:

. creating a new UML modeling project

C]

o = opening an existing UML modeling project

saving the user model

. showing and hiding the console

. &l showing and hiding the principal explorer
=1 showing and hiding the properties editor
. ﬁg: launching a new explorer

. 'ﬁﬁ modifying the configuration of the current UML modeling project

s

#
¢ W activating/deactivating Objecteering/UML process wizards

CHE
. < activating/deactivating removable consistency checks

importing modules into the current UML modeling project

1-8 Objecteering/UML Modeler User Guide

Chapter 1: Introduction

The graphic editors

M Graphic editors are used to display diagrams, which are created in the
"Diagrams" tab of the properties editor. Firstly, a diagram is created for a model
element such as a package, a class or a state machine. A graphic editor is then
automatically opened for the newly created diagram.

Graphic editors allow you to:

manage the editing of several diagrams

graphically represent model elements

create a model element at the same time as its graphic representation

modify a model element (name, properties, descriptions)

modify the graphic representation of a model element (size, positioning, color)
show the graphic representation of a model element (showing)

hide the graphic representation of a model element (masking)

destroy a model element and its graphic representation

* & & & & o o o o

print a diagram

The explorer

ﬁE: The explorer contains the UML modeling project and allows you to:

+ browse in order to visualize all modeling project components, that is to say, all
model elements

¢ construct a model
¢ create and edit graphic elements
The explorer is used to browse models and to work with model elements.

Objecteering/UML Modeler User Guide 1-9

Chapter 1: Introduction

The properties editor

51 The properties editor contains a number of tabs, used to facilitate access to
specific information:

¢

the "Items" tab displays icons used to create terminal elements, such as links,
notes and tagged values, as well as displaying the terminal elements which
already exist for the selected model element

the "Diagrams" tab provides the icons used to create the different
Objecteering/lUML diagrams, as well as presenting information on those
diagrams which already exist on the selected model element.

the "Java", "C++", "Visual Basic" and/or "Documentation” tabs are present
where the Objecteering/Java, Objecteering/C++, Objecteering/Visual Basic
and/or Objecteering/Documentation modules have been selected in the current
UML modeling project. These tabs facilitate the entry of information specific to
the generation in question.

The console

1E3 .) . . .

The console provides a trace of operations undertaken in Objecteering/UML,
for example the opening and printing of a document. It also provides error
messages or warnings when operations are incorrectly executed.

The user can:

L4

1-10

clear the console, by clicking on the £% "Clear console" icon or activating the
menu option
move around in the operations trace using the scroll bars

save the contents of the console in a file, using the "Save the console" menu
option (the file name is an Objecteering/UML configuration parameter)

Objecteering/UML Modeler User Guide

Chapter 1: Introduction

Diagrams

For each model element, one or several diagrams may be associated. For
example, (as shown in Figure 1-3), several different kinds of diagram can be
created in a package: class diagram, use case diagram, sequence diagram, and
so on. For further information on diagrams associated with specific model
elements, please refer to the "Diagrams" section of chapter 3 of this user guide.

E NEyeciesnngMIML Modeke - TramengSysbam
B G Took Linivn
DEe & el -« ETEEE

=l

&l o TesiingS st
& B Trairirg

o sener =

- Traning aragenent use case dagram

- Tianinglansgement sequencs disgian

- Traningaragement chiscl dagram

- TraningHanagenent deplopment dagram

- Traning aragenent deplopment mslancs dsgian

Diidagrams: mél abad 1o
thiz miode! slsmen

Figure 1-3. Different diagrams related to a model element

Objecteering/UML Modeler User Guide 1-11

Chapter 1: Introduction

Consistency mechanisms

Presentation

Objecteering/lUML Modeler provides the following powerful consistency
mechanisms:

¢

assisted data entry: help during modeling, by providing the list of model
elements that can be linked to an edited element

consistency management: a guarantee that a model is kept consistent with
regard to any changes made to any aspect: modifications made to a model
view (graphic editors, the properties editor or explorers) automatically update
other open views. For example, a modification of the name of a class will
update the name displayed in the properties editor, as well as every diagram
which includes the class and every element which refers to that class
(operation parameters, instances, and so on).

consistency checks: a guarantee that the model entered is consistent. For
every modification, it automatically checks the validity of the entry with regard
to the rest of the model.

Removable consistency checks

As demonstrated below, the Objecteering/UML CASE tool provides the user with
powerful consistency checks, which guarantee the quality and coherence of the
model produced.

However, the user may, in some modeling situations, prefer to have a certain
degree of flexibility with regard to those consistency checks applied to his model,
and for this reason, certain Objecteering/UML consistency checks are removable.
For further information on removable consistency checks, please refer to the
"Removable consistency checks" section in chapter 3 of this user guide.

1-12

Objecteering/UML Modeler User Guide

Chapter 1: Introduction

Assisted data entry

Objecteering/UML Modeler provides a mechanism which helps the user, by listing
those elements which may be selected, during model entry phases. This
mechanism carries out more than 200 consistency checks in real time on models,
which allows you to guarantee the high quality of your models.

The assisted data entry mechanism means that you can avoid the following
problems:

+ the entry of the same name several times

+ the manual updating of identical names during modifications

+ the entry of inconsistent names

Examples: An operation parameter's class is chosen from a list, which provides all
the classes accessible in the given context. The operation associated

with a state transition is chosen from a list, which provides all the
operations capable of realizing the transition.

Objecteering/UML Modeler User Guide 1-13

Chapter 1: Introduction

Example of assisted data entry

We are now going to create the non primitive classes C1 and C2 in a package,
and then add an attribute to C1, using the explorer (as shown in Figure 1-4).

m.ﬂ.lrlllﬂli: !l=| H
Fropestie: I Mote: | Tagged vakas |

H-um'.\hl;m

Vistlly Class

| Pk 2 O | MHone: =
[ke clat

[Abshact

™ Dspnamic deperdarncy
Sek sizn | 1

oF sy | Cuss Hel

Figure 1-4. The "Attribute" dialog box - List of the possible classes

Result: In the "Attribute” dialog box, shown in Figure 1-3, (for further details on
this dialog box, please refer to the "Attribute dialog box" section in
chapter 3 of the Objecteering/Model Dialog Boxes user guide), a list of
classes possible for the attribute is provided. Predefined primitive
classes (integer, string, etc.) figure in this list, but not the C1 or C2
classes.

This result is logical, since it is recommended that only primitive classes can be
attributes of other classes.

1-14 Objecteering/UML Modeler User Guide

Chapter 1: Introduction

We are now going to define the C2 class as being as "primitive", and carry out the
operation of creating an attribute in C1 once again (as shown in Figure 1-5). The
C2 class then appears in the list of classes which may be chosen as attribute.

H.-'lllrhulr:

Clan=

| Pubb: I R [P =
I5 olass Hones =
LE Tmeclca | T vy T reareeghd snageament- 2]
[T Abrhsct b
cha

[Domanic dependency | Fenee|icanger =
Hm|| I Hinl:::r':l-m ﬂ

Exprension of vakee |

A & oo

[-'H:r-e-. ﬂ

1113 Apck [ioee Help

Figure 1-5. The "Attribute" dialog box containing the "C2" class in the list of possible classes for
the attribute

Note: C2 is now available.

Objecteering/UML Modeler User Guide 1-15

Chapter 1: Introduction

Consistency management

All the model elements in all the editors are permanently consistent. For example,
the name of an operation can appear in a class, in a state diagram, in a sequence
diagram, in the properties editor and in the explorer. No matter how many times it
appears or how many times it may be modified, it is always consistent.

You will notice that the explorer shows all the operations created with the same
names and signatures. The principle of consistency is dealt with here.

1-16 Objecteering/UML Modeler User Guide

Chapter 1: Introduction

Consistency management: Example of a model update

We are now going to change the name of a class in a class diagram. It will be
automatically updated in the explorer.

Figure 1-6 below presents a class diagram created in a package. This package
contains the "Tea" class, whose name we are going to change to "OrangeJuice".

[[l See= [t [k smieces]

BEw sl nnon BOOEAB =agB
= E}

| Clern o PALEASE FariSiopn, visic| v B
= B rermien T
o | B remeramemna G [Trerprrre——
i) =™ (=~ . t'
= I = | |
& [- = PR
= =™ = irinim !_ S |
B e Y I |
".'|.- —JHim - 'E-'
= B Erambnd — = | 5
o L Pr—— | tim | Toggad «shase [
Tew 5| | —
i | T
T B —
ﬂ' . [Peirvm
Ko 3 ™ ket I e
{5
I M [~ s
] Bty g
|_o& | s | o= | e |

Figure 1-6. Automatically updating the name of the class

Steps:
1 - Observe the "Tea" class in the explorer.
2 - Observe the "Tea" class in the editor.

3 - Open the class dialog box in the explorer or in the class diagram, either by
right-clicking on the class and selecting the "Modify" option or by double-
clicking on the class, and change the name of the class from "Tea" to
"OrangeJuice".

Objecteering/UML Modeler User Guide 1-17

Chapter 1: Introduction

The modification of the name of the "Tea" class, which has been changed to
"OrangeJuice", has been taken into account in the class diagram and in the
explorer (as shown in Figure 1-7).

ﬁ Linjiecl i iU M L M ol

Pl [cit Mew [raph Took ‘Wndows 7
ety oo OO e =

E ?h FreiSteps £ Liass disgiam - PALEALE [|[Amalgsiz) - Firsfhle
o] B BS Element:Dispensed L Bl nlaliu pesand |

)| B =

- - Diks Py Fusd Swerts

Lt [= =

E :—E Caramels a -

— = Drinks Drangr Juice
e =

o B Wi =]

_ L Gingertraad o8 Hisewin Caramels |

==l
e e
. Mlinis Gingerbread |

2| =

Figure 1-7. Automatic updating in the explorer and in the class diagram

1-18 Objecteering/UML Modeler User Guide

Chapter 1: Introduction

Consistency checks: Example of a forbidden case scenario

Objecteering/UML carries out more than 200 consistency checks on a model in
real time. This allows the user to guarantee a high level of quality for models
entered in the CASE tool.

Figure 1-8 presents an example of a forbidden operation. The creation of the
association between C1 and "primitive" C2, or the change in C2's status (non
elementary), the association having already been defined, are actions which are
forbidden by Objecteering/UML.

H Class deagram - PACEAGE [Analymis) - FustSteps class diag

L
B I
By 1 = o2 |
= -
o
=k
=]
j W irena | Llass UL - Inconngalitelty | e piavelned gl s Se SEEocaslon

Figure 1-8. Warning message in the console

Objecteering/UML Modeler User Guide 1-19

Chapter 1: Introduction

Glossary

Objecteering/UML terms

Administration: Tool through which operations such as the configuration, creation
or repair of your model can be carried out.

Composition tree: The hierarchy which represents the entire UML modeling project
at all its levels, including information on, for example, packages, classes and
operations.

Configuration: A UML modeling project environment, in terms of selected modules
and parameter values given to these modules.

Consistency checks: Mechanisms which provide assisted data entry, consistency
management and consistency check functions, used to guarantee model
consistency.

Console: Window which provides a trace of operations undertaken in
Objecteering/UML, such as the opening and printing of a document, error and
warning messages and information on code generation and import administration.

Diagram: The graphic representation of a collection of model elements.

Dialog boxes: The window in which model element information is entered and
modified.

Dockable windows: Windows which can be positioned and docked wherever you
wish within the Objecteering/UML workspace, or even outside this workspace.
Other windows, such as Objecteering/UML graphic editors, cannot be dragged
over these dockable windows.

Enterprise Edition: This is the complete multi-user, multi-project version of
Objecteering/UML.

Explorer: One of the main Objecteering/UML windows, used to browse a UML
modeling project's elements.

Graphic editor: The window used to display and modify diagrams.

Main window: The main window contains the editor's general services, such as
launching a new explorer, importing elements from other UML modeling projects
or modifying the configuration of the current UML modeling project.

Menu bar: Bar which displays the available menus.

Model element: A specific type of modeling unit, for example, a package or a
class, etc.

1-20 Objecteering/UML Modeler User Guide

Chapter 1: Introduction

Module: Group of services, independently packaged, that can be selected in the
Objecteering/UML Modeler. For example, Java, Documentation and Metrics are
examples of modules. A module is a group of UML profiles that can be defined
through the Objecteering/UML Profile Builder tool (see also the UML/Objecteering
Profile Builder user guide).

Personal Edition: This is the stand alone version of Objecteering/UML, dedicated
to UML modeling.

Professional Edition: This edition of Objecteering/UML provides all the modeling
and generation features of the Enterprise Edition, but does not support multi-user
teamwork.

Properties editor: Contains a number of tabs, each with a specific function. For
example, the "Diagrams" tab is used to display the icons you will need to create
diagrams in Objecteering/lUML, as well as to present information on those
diagrams which already exist in the modeling element selected.

Read-only mode: Mode in which model elements cannot be added, modified or
deleted.

Removable consistency checks: Consistency checks which may be activated or
deactivated by the user, according to his modeling context.

Status bar: Bar which provides complementary information on the element or
operation in question.

Structural elements: Elements found in the explorer.'

Sub-system: A sub-system is a grouping of model elements, which represents a
behavioral unit in a physical system. A sub-system provides interfaces and has
operations.

Terminal elements: Elements which cannot be decomposed, generally created
and located in the "ltems" tab of the properties editor.

UML model root: The original package to which all other elements will be added.
This corresponds to the UML notion of a model.

UML modeling project: Work space for building and using models.

UML profiling project: Work space for customizing Objecteering/UML through the
UML Profile Builder tool.

UML Profile: A UML profile represents a certain angle of vision on a model, for a
functional purpose. UML profiles can structure several UML usage domains, and
group tagged value definitions and stereotypes.

Work product: A product produced for a specific use, for example, documentation
generation or code generation.

Objecteering/UML Modeler User Guide 1-21

Chapter 1: Introduction

Objecteering/UML diagrams

Activity diagram: An activity diagram defines an extended view of a state machine
package.

Class diagram: The class diagram allows you to present the internal structure of
an element and its relationships with other elements.

Collaboration diagram: The collaboration diagram allows you to present
exchanges of messages between roles.

Deployment diagram: The deployment diagram is used to represent the physical
architecture of the system.

Deployment instance diagram: The deployment instance diagram is used to
present a particular instance of deployment.

Object diagram: The object diagram is used to present a set of class instances
with their links and the messages exchanged.

Sequence diagram: A sequence diagram is used to show how different objects
cooperate.

State diagram: A state diagram allows you to describe the manner in which
objects react to events.

Use case diagram: A use case diagram allows you to describe the most important
services rendered by the system.

1-22 Objecteering/UML Modeler User Guide

Chapter 2: First Steps

Chapter 2: First Steps

Preparation

Introduction

These rapid first steps will allow you to become familiar with the Objecteering/UML
CASE tool, most notably with the following operations:

¢
¢
¢
¢

creating a UML modeling project
creating elements in the explorer
creating a diagram

creating and manipulating objects in a diagram

The demonstration constantly refers you to the on-line help, which you can always
call up from the tool via the ever-present "Help" or "?" buttons.

Launching the tool

Before launching Objecteering/UML, it must have been installed (please refer to
chapter 2, "Installation”, of the Objecteering/Introduction user guide).

Environment ... Action required ...

Windows 95/98/2000/NT4 Select "Objecteering UML Modeler" from the
"Start/Programs/Objecteering", or double-click on the UML
Modeler icon in your desktop

UNIX Run the objing command.

Objecteering/UML Modeler User Guide 2-3

Chapter 2: First Steps

Creating a UML modeling project

Now that we have launched the tool, we are going to create a new UML modeling
project (as shown in Figure 2-1).

Hl"‘h‘u‘l‘l'l'hfu“u‘“”l Hodeler

| D-\Softman’Dbiectesringiwmork’
LML oozl bppas

[oins 3
[T Hodelsot nare [F difesent hom LEL modeing progct nems)

— w | e | e |

ey

Figure 2-1. Creating a UML modeling project

2-4 Objecteering/UML Modeler User Guide

Chapter 2: First Steps

Steps:

1- Launch the @ Objecteering/lUML Modeler tool by clicking on the UML
Modeler icon in your desktop. The window shown in Figure 2-1 will then
appear.

2 - Click on the "File/New" menu. The "Create a UML modeling project” window
will then open.

3 - In the "UML modeling project name" field, enter the "NewProject" name.
4 - In the "UML modeling project path" field, enter the path of the directory where

the new UML modeling project is to be created. You may also use the J
icon to open a file browser through which you can select your UML modeling
project path.

5 - In the "UML model type", select a type for the modeling project which is to be
created. For example, by selecting the "DefaultJava" type, your
Objecteering/lUML working environment will be automatically configured for
Java development with the Objecteering/Java and Objecteering/Design
Patterns for Java modules. Here, we are going to select the "Default" UML
model type.

6 - Confirm by clicking on the "OK" button.

Note: By default, the name of the UML model root which appears in the explorer
is the same as the name of the UML modeling project itself (in our
example, "NewProject"). If you should wish to give the UML model root
another name, you should simply check the "Model root name (if different
from UML modeling project)" tickbox, which will then allow you to enter a
different name directly in the field below.

Result

The main window appears, containing your new UML modeling project in the
explorer, in which we are going to be able to create elements and diagrams. The
console, the properties editor and an automatically created class diagram also
appear.

Objecteering/UML Modeler User Guide 2-5

Chapter 2: First Steps

Creating elements in a UML modeling project

Working in the explorer

From the explorer (shown in Figure 2-2), we are going to create several elements
in our UML modeling project (packages, classes, operations, attributes, etc.) and
then make certain modifications to them.

Note: When an element is modified in the explorer, modifications are

automatically taken into account in the graphic editors, thanks to the
Objecteering/UML consistency mechanisms.

2-6 Objecteering/UML Modeler User Guide

Chapter 2: First Steps

Creating a package

When a new UML modeling project is created and Objecteering/UML launched, a
package associated with the UML modeling project, and which has the same
name, appears (in our example, the "NewProject" package). This package is the
UML model root. To create a new package, simply carry out the steps shown in
Figure 2-2.

EI_II:q.-.:lrg-lvql'lllilL o okl e

]

m:u.-mm

Figure 2-2. Creating the "P1" package in the package representing the UML model root of the
"NewProject" UML modeling project

Steps:
1 - Select the "NewProject" package.

2 - Click on the "Create a package" icon, and enter the name of the "P1"
package over the highlighted text which says "Package". "Package" is the
default name assigned automatically by Objecteering/UML.

Objecteering/UML Modeler User Guide 2-7

Chapter 2: First Steps

Creating a sub-system

A sub-system is a kind of package, stereotyped <<sub-system>>, which
represents an independent part of the system being modeled. Sub-systems are
an important feature of the component-based approach. Sub-systems are groups
of model elements, which represent a behavioral unit in a physical system.

To create a sub-system in a package, following the steps shown below (Figure

2-3).
[e ctmcrim A WL e B rcig
[[wes [aph Lssh Wwwies 3
NREE e e
B
h B Pt
, el I E_E
1 —IE— [geatizr] |
i
B
i
p1
B
i
Duspas Perm |Comuresd
Figure 2-3. Creating a sub-system
Steps:

1- Select the "P1" package.

2 - Click on the "Create a subsystem" icon.

3 - Enter the name of the "S1" sub-system over the highlighted text which says
"subsystem”. "subsystem" is the default name assigned automatically by
Objecteering/UML.

2-8 Objecteering/UML Modeler User Guide

Chapter 2: First Steps

Creating classes
We are now going to create classes "C1" and "C2" in the newly created "S1" sub-
system (see Figure 2-4).

E'"I'I'I:ll:!:lllll S M sz - W s o

b= Edit YWew Greph Took 'aindows 3
BEE {famRaw

B e =
E F

2 g Eafll
B

s S

1

LI =)

0 [-~ Flen]

Disgiams llems | Diocumentaion

Figure 2-4. Creating the "C1" and "C2" classes in the "S1" sub-system

Objecteering/UML Modeler User Guide 2-9

Chapter 2: First Steps

Steps:
1 - Select the "S1" sub-system.

2 - Click on the g "Create a class" icon.

3 - Enter the "C1" name over the highlighted text which says "Class". "Class" is
the default name assigned automatically by Objecteering/UML. Continue by
creating the "C2" class.

Most model elements (packages, sub-systems, classes, operations, parameters,
associations, etc.) can be created in this way.

Note: If you press "Return" after you have created a class, you will see that
another class is automatically created. This is the continuous entry
creation mode, which is available on all model elements. To exit this
mode, simply click elsewhere in the explorer.

2-10 Objecteering/UML Modeler User Guide

Chapter 2: First Steps

Creating a diagram

Creating a class diagram
Various elements can have associated diagrams (packages, classes, etc.). These
diagrams can be created through the "Diagrams” tab in the properties editor.
Note: When a new UML modeling project is created and Objecteering/UML
launched, a class diagram is automatically created and opened.

We are now going to create a class diagram from sub-system "S1" (as shown in
Figure 2-5).

E Dbjecteenng ML Modeler - Hewfropy

Fie Edt Yew Graph Jook 'window: 3
HE | i 2a@a

=N
g | 5 Hewogect T
] B Bg P
1 _g_g E.
BN
g ==
=
81

Dixguarves [Ihves | Eocureniation |

Figure 2-5. Creating a class diagram in the "S1" sub-system

Objecteering/UML Modeler User Guide 2-11

Chapter 2: First Steps

Steps:
1 - Select the "S1" package in the explorer.

2 - Select the "Diagrams" tab in the properties editor and click on the % "Create
a class diagram" icon. The newly created class diagram then opens
automatically.

2-12 Objecteering/UML Modeler User Guide

Chapter 2: First Steps

Editing a diagram

Showing elements in a diagram

In the package's class diagram editor, the graphic elements contained in the class
diagram are "masked". The "Show" operation allows the user to display in a
graphic editor elements which exist in a model (as shown in Figure 2-6).

E NhjuctamingAIE] Modelar - HesPiogset

E Clase diagian - PACEARE [Analysiz] - 51
Ca b

E = [1

o B

2 =

- c 2

22 4

= £ &

[, | Elpratpss] 51 chass dagyan | EQ

Figure 2-6. Showing classes "C1" and "C2" in sub-system "S1"

Steps:

=

1- Click on the "= "Show contents" icon. All the elements contained in the
package then appear.

Objecteering/UML Modeler User Guide 2-13

Chapter 2: First Steps

Masking elements in a diagram
We are now going to mask the "C1" class (as shown in Figure 2-7).

e

DG I8t on HESRIS ST - r RS
;E— “,_,“_,'ld Lina g - FACFALE Phnsifpeis] - 51 clasa dipom - Dudai P0S] 7]
pol ofam I F i =
I s Hm. m % : i
u} g'l_' =) I /
- = ;
7 I‘-E_-‘I.I =
iz i :
I==t'l m | £
- E
. B
= T

|

Figure 2-7. Masking the "C1" class

Steps:
1 - Select the "C1" class in the diagram.

2 - Click on the o "Mask" icon in the menu shortcut bar.

3 - The "Cl"class is no longer visible. However, please note that it has not been
discarded and still exists in the explorer. Continue by masking the "C2" class

in the same way.

2-14 Objecteering/UML Modeler User Guide

Chapter 2: First Steps

Showing an element using the "drag and drop" function

We will now show the "C1" and "C2" classes, using the "drag and drop" function
(as shown in Figure 2-8).

mr]|‘|||:::||:|-:||r||_;."||H| M oarliahig - W Fy g

Bl Edt Yew Laph Jook Windows 3
MEE i o oo | [QERARK S &

= ES) MewProjsc: 123 Clazs diagiam - PACEAGE [Ar
o B ¥;
g7 51
= £a
1 EE E
2 -
- =
2 i
4
E =

Figure 2-8. Showing classes "C1" and "C2" using the "drag and drop" function

Steps:
1 - Select classes "C1" and "C2" in the explorer.

2 - Drag the elements into the graphic editor, holding down the left mouse button.
The "C1" and "C2" classes are now visible again in the graphic editor.

Objecteering/UML Modeler User Guide 2-15

Chapter 2: First Steps

Creating elements in a diagram

Creating an operation

An operation, like a class, can be created either in the explorer or in a graphic
editor.

We are now going to create an operation in the "C1" class (as shown in Figure
2-9).

Claes disgram - PACKEAGE [Analysiz] - 51 class drageam

Lk
)
3
=
Ll
Wt Prrermbion
(2]

1
1

-
-,

.

Figure 2-9. Creating an operation in the "C1" class

Steps:
ol

1- Click on the - "Create an operation" button.

2 - Click in the "C1" class. Enter the name of the operation ("Operationl") over
the highlighted text which shows the default name ("Operation()"). Press
"Return” to confirm.

2-16 Objecteering/UML Modeler User Guide

Chapter 2: First Steps

Modifying an element

We will now modify the name of the "Operation1()" operation in the diagram (as
shown in Figure 2-10).

Figure 2-10. Modifying the name of the "C1" class operation

Steps:

1- Select the operation by clicking on the right mouse button, and choose the
"Modify" option from the context menu. The operation dialog box then appears
(double-clicking on the operation is a short cut). For further information on this
dialog box, please refer to the Objecteering/Model Dialog Boxes user guide.

2 - Modify the name of the operation in the entry field or choose the operation
name from the list proposed in the combobox.

3 - Confirm by clicking on "OK". If you confirm by clicking on "Apply", the dialog
box will remain open.

Note 1: To modify the name of an element, you can also simply highlight its name
and directly enter the new name.

Note 2: When an element is modified in a graphic editor, modifications are
automatically taken into account in the explorer.

Objecteering/UML Modeler User Guide 2-17

Chapter 2: First Steps

Creating a link in a diagram

Creating an association between two classes

A link is created between an origin element and a destination element. We are
going to create an association between the "C1" class (the origin class) and the
"C2" class (the destination class), as shown in Figure 2-11.

Claxs dhsgpam - PACKAGE [Analux] - 51 class diagran

b
u -
= el 2
'y :.
g l.lp-mll:v::::- .'
& / /
! /
(3 / ,."I
b / _
& { /
p— I_-" !
] q__, .l'l J]

Figure 2-11. Creating an association between the "C1" and "C2" classes

Steps:

1 - Click on the 1! "Create an association" icon.
2 - Click on class "C1" and then on class "C2".

Note: It is possible to redraw the association. The redefinition of links is
explained in chapter 5 of this user guide.

2-18 Objecteering/UML Modeler User Guide

Chapter 2: First Steps

Resizing an object

Resizing a class

| "Fit to contents” icon is used to adjust the
size of the object to its contents.

First of all, we shall enlarge class "C2" (see Figure 5-9 in the "Handling graphic
elements" section in chapter 5 of this user guide), and then continue with the
steps shown in figure 2-12.

E 0 by lzeng U ML bModeie
Fle Edt Mew uph Jook Wiedess T
BE® @l o oo HODf & o & amBE

Class derfram - PACEAGE [Analks] - 51 class disgiam - Update

OF JFEA <O

Figure 2-12. Resizing class "C2"

Steps:
1 - Select class "C2", which you have just enlarged.

: "Fit to content” icon.

You will see that the element has adjusted itself to the size of its contents. This is
true for all objects represented by a box.

Objecteering/UML Modeler User Guide 2-19

Chapter 3: Functions of
Objecteering/UML Modeler
- Overview

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Launching Objecteering/UML Modeler

Launching Objecteering/UML

Environment ... Action required ...
Windows Select "UML Modeler" from the "Start/Programs/Objecteering"
95/98/2000/NT4 menu, or double-click on the UML Modeler icon in your desktop.
Windows NT 3.5 Click on the "Objecteering" icon from the "Objecteering"
window.
UNIX Run the "objing" command.

Note: Please note that when UML Modeler is launched, the user cannot work on
UML profiling projects, and when UML Profile Builder is launched, he
cannot work on UML modeling projects.

Parameters of the "objing" command

Objecteering/UML can also be launched using the following parameters:

¢ 'objing <UML modeling project> <UML model root>": directly launches the
Objecteering/UML modeling project specified.

+ "objing <UML modeling project path>": launches Objecteering/UML by opening
the UML modeling project located in the path indicated.

Objecteering/UML Modeler User Guide 3-3

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Creating or opening a UML modeling project

Creating a new UML modeling project

To create a new UML modeling project, follow the steps shown in Figure 3-1
below.

= HIIHF:‘I‘I'I'I:F:‘J:‘||MI Hodele

|I_II-II_I-I|;|..-hi1.;Fu;q-|1

UIHL rrodeleg peopect path

| D\ ol e bjecimerngarork
LIHIL oo bpe

[ouns 3
[~ Hodal oot name [difesant hom LHL modsing propct nams)

w | e | e |

Figure 3-1. Creating a new UML modeling project

3-4 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Steps:

1- Launch the @ Objecteering/lUML Modeler tool by clicking on the UML
Modeler icon in your desktop. The window shown in Figure 3-1 will then
appear.

2 - Click on the "File/New" menu. The "Create a UML modeling project” window
will then open.

3- In the "UML modeling project name" field, enter the name of the UML
modeling project which is to be created.

4 - In the "UML modeling project path" field, enter the path of the directory where

the new UML modeling project is to be created. You may also use the J
icon to open a file browser through which you can select your UML modeling

project path.

[¢)]
'

In the "UML model type", a type for the modeling project which is to be created
can be selected. For example, by selecting the "DefaultJava" type, your
Objecteering/lUML working environment will be automatically configured for
Java development with the Objecteering/Java and Objecteering/Design
Patterns for Java modules.

6 - Confirm by clicking on the "OK" button.

Note: By default, the name of the UML model root which appears in the explorer
is the same as the name of the UML modeling project itself. If you should
wish to give the UML model root another name, you should simply check
the "Model root name (if different from UML modeling project” tickbox,
which will then allow you to enter a different name directly in the field
below.

Objecteering/UML Modeler User Guide 3-5

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Opening an existing UML modeling project

The procedure for opening an existing UML modeling project is very similar to the
procedure for creating a new UML modeling project. Simply carry out the
following steps:

1- Click on the @ Objecteering/UML Modeler icon in your desktop. The
window shown in Figure 3-1 above will then appear.

2 - Click on the "File/Open" menu. The "Open an existing UML modeling project"
window will then open.

3 - Double-click on the UML modeling project you wish to open. It will then
automatically open.

It is also possible to open an existing UML modeling project simply by double-
clicking on it in the explorer. This launches Objecteering/UML and opens the UML
modeling project you have selected.

Note: Predefined types are not shown unless you check the "Show predefined
types" tickbox. For further information on predefined types, please refer to
the "Detailed view of the Configuration menu" section in chapter 3 of the
Objecteering/Administrating Objecteering Sites user guide.

Changing UML modeling project

If you already working on a UML modeling project and you wish to either create a
new one or open another existing one, you will be asked if you wish to save the
work carried out on the initial UML modeling project, before closing it. For further
information, please refer to the "Changing UML modeling project" section in
chapter 3 of the Objecteering/Introduction user guide.

3-6 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Receiving and/or upgrading UML modeling projects

As we have just seen, UML modeling projects can be opened simply by double-
clicking on the UML modeling project file either in the Windows explorer or in the
"Open an existing UML modeling project" window.

However, if you wish to work on a UML modeling project created on another user
site and/or using an earlier version of Objecteering/lUML, the UML modeling
project has to be received and/or upgraded. For further information, please refer
to the "Receiving and upgrading UML modeling projects" section in the current
chapter of this user guide.

Objecteering/UML Modeler User Guide 3-7

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Receiving and upgrading UML modeling projects

Introduction

Objecteering/UML features a simplified UML modeling project reception and
upgrade procedure, thus ensuring backward compatibility and making
Objecteering/UML even easier for you to use.

If you wish to work on a UML modeling project either created on a different user
site or using an earlier version of Objecteering/UML, you can launch the reception
and/or upgrade procedures simply by:

L4

¢

double-clicking on the UML modeling project in question in the Windows
explorer

double-clicking on the UML modeling project in question in the "Open an
existing UML modeling project" window

Receiving a UML modeling project

There are four possible case scenarios with regard to the reception of UML
modeling projects:

¢

the reception of a database which is not known to your site, but which exists in
the same version of Objecteering/UML. In this case, you can choose to simply
receive the database in question on your site.

the reception of a database which is not known to your site, and which exists in
an earlier version, for example, the 4.3.2 version of Objecteering/UML. In this
case, you can choose to receive the database in question on your site, and
upgrade it from the previous version to the current version of
Objecteering/UML.

the reception of a database which is not known to your site, but which has the
same name as an existing database and which exists in the same version of
Objecteering/UML. In this case, you can choose to receive the database in
question on your site and rename it.

the reception of a database which is not known to your site, but which has the
same name as an existing database and which exists in an earlier version, for
example, the 4.3.2 version of Objecteering/UML. In this case, you can choose
to receive the database in question on your site, rename it and upgrade it from
the previous version to the current version of Objecteering/UML.

Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

In the example shown below (Figure 3-2), a simple reception operation is
demonstrated.

Holtwarn

Figure 3-2. Receiving the "OutsideProject"” UML modeling project by double-clicking in the
Windows explorer

Steps:

1 - In the Windows explorer, position yourself in the directory containing the UML
modeling project you wish to use.

2 - Double-click on this UML modeling project file. Objecteering/UML then opens
and a confirmation dialog box appears, asking you if you wish to receive the
database of the UML modeling project on your site.

3 - Click on the "OK" button to confirm the reception of the UML modeling project.

The reception procedure is then launched, and you can follow its progress in the
console. This process can take a few minutes. Once completed, the UML
modeling project is opened and is ready for use.

Objecteering/UML Modeler User Guide 3-9

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Upgrading a UML modeling project

To upgrade a UML modeling project created on your site using, say, the 4.3.2
version of Objecteering/UML, simply carry out the steps below (shown in Figure
3-3).

I L Mg st
L | bl wceac]

I iy prisrs

ChisdaFupact

Thes D V5 pltpaira's [] beppbmet waghieh. U el pcdesira P upieotd 2201 ol pimeserd) i wagion

| g 433

o] yeas o i gne in Bl 30 ey

__ — —

Figure 3-3. Upgrading a UML modeling project via the "Open an existing UML modeling
project” window

Steps:
1- Click on "File/Open". The "Open an existing UML modeling project" window
will then appear.

2 - Double-click on the UML modeling project you wish to upgrade. Please note
that UML modeling projects which have not yet been upgraded are listed in
this window with the message "to be migrated" shown after their name.

3 - Adialog box then appears, telling you which version the UML modeling project
is currently in, and asking you if you want to upgrade it. Click on the "OK"
button.

3-10 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

The upgrade procedure is then automatically launched, and you can follow its
progress in the console. This process can take a few minutes. Once completed,
the UML modeling project is opened and is ready for use.

Note: When a UML modeling project is upgraded from a previous version of
Objecteering/UML to the current version, the modules contained therein
are not upgraded. To upgrade modules, unselect the current version and
then select the new version of the module in question.

Objecteering/UML Modeler User Guide 3-11

Chapter 3: Functions of Objecteering/UML Modeler - Overview

The main window

Description

The main window of the Objecteering/UML tool is shown in Figure 3-4.

E Dbjecteeing /LML Modekes

"——<fle [Jook 2 |

2

P -~
|
f
= &
iz
: — |
= ©
E :
& /
4 _Ef T S
-k
E .
Disgrorsa e | -
o
T iy

Figure 3-4. The main window for PC

3-12 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Key:
1 - Menu bar: This contains the "File", "Tools" and "Administration" menus.
2 - Tool bar: This provides icons associated to certain elements in the menu bar.

3 - Explorer: The explorer is one of the main tools used to create and manipulate
model elements within a UML modeling project.

4 - Properties editor: The properties editor contains a number of tabs, each with a
specific function. For example, the "Diagrams" tab is used to display the icons
you will need to create diagrams in Objecteering/UML, whilst the "ltems" tab
displays icons used to create terminal elements.

5 - Graphic editors: Graphic editors present diagrams and are used to graphically
display models and model elements, and to create, modify or destroy graphic
elements.

6 - Console: This contains operation traces, error messages and warnings.

7 - Status bar: This provides information complementary to that displayed by the
bubbles which appear over the tool's icons.

For details on the menus which appear in the main window, please refer to the
"UML Modeler menus" section in chapter 4 of this user guide.

For details on the tools available through the main window, please refer to the
"UML Modeler tools" section in chapter 4 of this user guide.

Objecteering/UML Modeler User Guide 3-13

Chapter 3: Functions of Objecteering/UML Modeler - Overview
Dockable windows

Objecteering/UML features dockable windows, in other words, windows which you
can position and dock as you wish, either within the Objecteering/lUML workspace
or even outside it. The main explorer, the console and the properties editor are all
dockable windows. Other windows, such as Objecteering/UML graphic editors,
cannot be dragged on top of these dockable windows.

Figure 3-5 shows the original Objecteering/UML window layout, as well as a
possible alternative arrangement.

BTE A .

= e
o NEN @@ s o~ PR
B ﬂm o] Frastruect

L Py Ei.

® | B e [Altlrrm.lu-mrmrrt

- #ar ol dackable windowe

Figure 3-5. Different ways of arranging the dockable Objecteering/UML windows

To reposition dockable windows, simply click on them and drag them into the
position of choice. As you will see, a traced outline previews the new position.

3-14 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

The explorer

Graphic representation

The explorer (shown in Figure 3-6) is one of the main tools used to manipulate
model elements within a UML modeling project. It provides an automatic
representation of all components, starting from a UML model root.

rr
1 —E-'E T IS iR
[y B Bl Tiarwrg
E [E. h [IEV
P = E A pptrnil sl Traring
Q I=} E Traarargll arasga
E 'El.l-irL FRisaprablaf orT s
':::' —rm Sesmond TrarngSeason
3| o o
‘] —q.:. B Trmmingti mzion
o
|
o
B

Figure 3-6. The explorer in PC

Key:

1- UML model root

2 - Structure of the model
3 - Creation icons

Note: For further information on this window, please refer to the "Explorer
functions" section in chapter 4 of this user guide.

Objecteering/UML Modeler User Guide 3-15

Chapter 3: Functions of Objecteering/UML Modeler - Overview

The properties editor

Overview

The properties editor is one of the main Objecteering/UML windows and contains
a number of tabs, as shown in Figure 3-7.

o ==l
1 —fraining

B

[

£y

H

4

-k

[

=
. i g

Figure 3-7. The properties editor

3-16 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Key:

1 - The model element selected in the explorer.
2 - The "ltems" tab

3 - The "Diagrams" tab

4 - The "Java" tab

5 - The "Documentation” tab

These tabs contain creation icons for terminal elements and diagrams. Certain
modules, for example Objecteering/Java and Objecteering/Documentation, have
their own tab, designed to present information proper to the module concerned.
These tabs are only present when the module in question has been selected.

For further information on the properties editor, please refer to the "Properties
editor functions" section in chapter 4 of this user guide.

Objecteering/UML Modeler User Guide 3-17

Chapter 3: Functions of Objecteering/UML Modeler - Overview

The console

Description

The console (shown in Figure 3-8) provides a trace of operations undertaken in
Objecteering/UML, such as the opening and printing of a document, as well as
error and warning messages, and information on code generation and import
administration.

j Oipesrirag Hea P1_state] dagran .. done

Figure 3-8. Console containing a trace of the opening of a diagram

The user can:

+ clear the contents of the console by selecting the "Clear console" option in the
"File" menu

+ move around in the operation trace, using the scroll bars (where present)
¢ visualize an error message or a warning message.

¢ save the contents of the console in a file using the "Save the console" option.
The name of the file is an Objecteering/UML configuration parameter (please
refer to the "The Formalism set" theme of the "UML Modeler parameter sets"
section in chapter 4 of this user guide).

Note: The "Visualizing messages in the console" section in chapter 4 of this user
guide presents the different kinds of messages which may be visualized in
the console.

3-18 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

The on-line help search engine

Overview

Objecteering/UML Modeler provides you with a powerful integrated help search
engine, used to make it easy for you to find the information you need as quickly as
possible.

You can search for information either in:
+ a specific tome of the Objecteering/UML on-line help

+ the entire Objecteering/UML on-line help database

Objecteering/UML Modeler User Guide 3-19

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Once you have located the sections of the on-line help which contain the
information you are looking for, practical hypertext links allow you to jump to the
relevant sections.

/3 Aide Objecteering - Microsoft Internet Explorer

J File Edit Wiew Favoites Tools Help |

.9 @ [N AN A @ BB S mo.

J Back Fawand Stop Refresh Home Search Faworites History bd il Frint. Edit

Address I@ D:ASafteamtDbjecteeringl 1vhelpsearch. htm j 6) Go
Liens 7] darty. html

Type of notes on a class l
The ... type of is used to ...
note
. .
|JavaHeader |1.nsert a text before declanng the class
Objecteering/UML Profile Builder |]avaI\{EmbErs |1nsert a text in the class body
Objecteering/Intraduction |JavaBottom |inser1: a text after declaring the class
|JavaDoc |add a comment to be used by javadoc
insett a Java code used for the class
JavaCeode L
v ariant
Type of notes on an operation
The ... type of is used to ...
note
TawaDoc add a comment which will be used by
javadoc.
i — —]

l_l_ 5 r:dy Eomp‘utar ‘ v

Figure 3-9. The Objecteering/UML on-line help search engine

For further information on the search engine, please refer to the "Using the search
engine" section in chapter 4 of this user guide.

3-20 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Diagrams

Presentation

Diagrams are an essential feature of UML modeling, and can be created on a
certain number of model elements. Several diagrams of the same type can exist
for the same element, and consistency between diagrams and the explorer is
constantly maintained.

Several diagrams can be edited simultaneously in separate editors.

Model elements and associated diagrams

The ... element

can have

icon ...

is used to represent ...

package, sub-
system, class

a class diagram

the internal structure of an element
and its relationships with other
elements. Classes and packages are
the main concepts of this kind of
diagram.

package, sub- a use case Eﬁij the most important use cases involved

system diagram B with the current model. Use cases and
actors are the main concepts of this
kind of diagram.

package, sub- a sequence E\TT__‘T a cooperation set between different

system, class, diagram i objects. Instance and messages are

collaboration, use the main concepts of this kind of

case diagram.

package, sub- an object E a set of class instances with their

system, class diagram relationships and the messages

exchanged. Instances, links and
messages concepts are the main
concepts of this kind of diagram.

package, sub-
system

a deployment
diagram

the physical architecture of the system.
Components and nodes are the main
concepts of this kind of diagram.

Objecteering/UML Modeler User Guide

3-21

Chapter 3: Functions of Objecteering/UML Modeler - Overview

The ... element | can have icon is used to represent ...
package, sub- a deployment 1_F' a particular instance of deployment.
system instance L[] Instances of nodes and components
diagram are the main concepts of this kind of
diagram.
collaboration a collaboration 3 % the exchange of messages between
£ roles. Roles instances are the main

diagram

concepts of this kind of diagram.

state machine

a state diagram

the manner in which objects react to
events. Itis used to describe a state
chart at the level of a class.

activity graph

an activity
diagram

a special case of a state machine,
which is used to model processes
involving one or more classifiers. Its
primary focus is on the sequence and
conditions for the actions that are
taken, rather than on which elements
perform those actions.

3-22

Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Work products

Description

Documentation work product icon
Work products are created using specific icons linked to selected modules. For

example, the button represents documentation. This type of work product is
present when the Documentation module has been selected. Modules such as
C++ or Java provide their own work products such as makefile work products or
Java Source work products. For more information on these work products, please
refer to the associated user guides.

Objecteering/UML Modeler User Guide 3-23

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Example

E Uk lmanreg /1081 Hodalm - | mength pks

Fo Edi W Graph Dokt indoes 1
BEFE a8 e o o

E Ticararu) pHias
£1 B Tearng
B hLllll
B =] Fissponahial o | sreng
B T g
1y i Fotri prnliie T iy
‘e Tiemegf i zan
eEa
B = T o esvion

Figure 3-10. Producing a documentation work product from the "TrainingManagement"
package

Steps:

1 - Select the "TrainingManagement" package.

2 - Click on the Eiﬁg- "Create a document" icon in the "ltems" tab of the properties
editor.

3 - Fill in the dialog box which appears, and the document work product will then
appear in the "ltems" tab of the properties editor.

3-24 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Macros

Overview

A macro is a series of Objecteering/lUML commands which can be grouped
together within one command, in order to automate repetitive modeling operations.

Objecteering/UML macros are a series of instructions written in our Java-like J
language, which can be edited either in the Objecteering/UML tool itself or using
an external text editor, such as Word, Wordpad or Notepad.

With Objecteering/UML, you can:

¢ execute Objecteering/UML macros, provided as standard with the
Objecteering/UML tool

¢ create your own macros
+ modify macros
+ delete macros

For further information, please refer to the "Working with Objecteering/UML
macros" section in chapter 4 of this user guide.

Objecteering/UML Modeler User Guide 3-25

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Editing UML Modeler configuration

Overview

The "Edit configuration” dialog box is used to set parameters for modules selected
in the current UML modeling project. In this dialog box, a section of hierarchy
corresponds to every module selected (for example, Objecteering/Java). The
sections available depend on the configuration of your site and of your UML
modeling project. For example, Figure 3-11 presents a UML modeling project
where the UML Modeler module (always present) and the Documentation module
have been selected.

Typically, this window is used to specify generation directories, editing tools,
default selections, and so on.

For details on parameters specific to modules, please refer to the user guides
associated with the modules in question.

To launch the Objecteering/UML module configuration window, simply click on the

@& "Modify module parameter configuration" icon or select the "Tools/Modify
configuration..." menu.

LP =T T8 i
B 9 ok = Tis whih s L O L
e [g |
A W
e ot 0 el b i Bacoder Chosll mchann |
191 pnbee |
] = o Mgy 1l P Bl Bl Wl i |
nElEE |.-I
.-:“ Frafiwtd s il d?
e, B
s ool | a
E e M i Lo e 0 a
o |_-..l = |
[LT e |
=T —_
Fda
FETF g ﬂ
' | Lyl | oin |

Figure 3-11. The "Modifying configuration" dialog box

3-26 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Modules frequently present

The following list of modules which are frequently present is by no means
exhaustive, and new modules are constantly being created by Objecteering
Software and our partners. For new modules, please refer to the user guide
specific to the module you wish to configure.

The following modules are frequently present in the "Edit configuration" dialog box:

¢

¢
¢
¢
¢

UML

UML Modeler

UML Profile Builder
Documentation
Java

Macros

Modeler parameters

There exist five sub-sections in the "UML Modeler " configuration hierarchy:

1-
2.
3-
4-

5-

Formalism: general parameters on formalism options
Interface: general ergonomic options
Diagrams: general diagram options

Directories: directories used during file generation (documentation, C++, and
SO on)

UML profiles: profiles containing the J rules which parameterize the behavior
of the Objecteering/UML graphic interface

Note: These sub-sections are described in the "UML Modeler parameter sets"

section in chapter 4 of this user guide.

Objecteering/UML Modeler User Guide 3-27

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Transferring elements between UML modeling projects

Description of the transfer function

The model element transfer feature gives the user the possibility of importing
elements which come from another UML modeling project into his UML modeling
project. Imported elements can be packages or classes.

For further information on the transfer of elements between UML modeling
projects, please refer to the "Running principle” and "Importing elements between
projects" sections of chapter 4 of the Objecteering/UML Teamwork User Guide.

3-28 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Saving a user work session

Saving the session

This function allows you to save the whole UML modeling project on which you
are working.

To activate this function, click on the
from the "File" menu.

"Save" icon or select the "Save" option

The "Exit" dialog box

If you wish to exit the tool, simply click on the "File/Quit" menu. If you have not
saved your work, Objecteering/UML reminds you of this fact through the following
dialog box (shown in Figure 3-12).

D you w48 dmren changas: bsikes v gl Digiclaénng 7
= Sawe contest

e | e | Corerl |

Figure 3-12. The "Exit" dialog box

The ... button allows you to ...

Yes exit Objecteering/UML and save the current UML modeling project.
No exit Objecteering/UML without saving.

Cancel cancel the "Exit" action and close the dialog box.

Save context? save your modeling project context

Note: For further information on saving your modeling project context, please
refer to the "Saving your work context" section in the current chapter of this
user guide.

Objecteering/UML Modeler User Guide 3-29

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Changing UML modeling project
It is only possible to work on one UML modeling project at a time.

If you wish to work on another existing UML modeling project, or to create a new
one, simply carry out the following steps:

1- Click on the "File/New" or "File/Open" menu in the menu bar (according to
whether you want to create a new modeling project or open an existing one).
The "Create a UML modeling project" or "Open a UML modeling project"
dialog box then appears.

2 - Enter the relevant information in the dialog box, and click on "OK".

3 - A confirmation dialog box then appears, asking you whether you wish to save
the work you have done on your original project before closing it and opening
the new one. Click on the "Yes" button. Your original project is closed and
your new one opened.

Note: For further information on the creation or opening of UML modeling
projects, please refer to the "Creating or opening a UML modeling project"
section in the current chapter of this user guide.

3-30 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Saving your model context

Saving the model context

When the model context is saved, the size and position of editors open on the
model is restored when the model is next used. For explorers other than the main
explorer, the selected element is remembered, and diagrams which were open are
re-opened.

The model context is saved by:

¢ by selecting the "File/Save" menu options

¢ clicking on the "Save" icon in the tool bar

+ by quitting Objecteering/UML
In each case, a confirmation box (like the one shown in Figure 3-13) will appear.

E L vl Hm-

[ro you wizh bo Save changss befors you quil Digedeenng?

b v conbest

i | Hao | Cancal |

Figure 3-13. Saving your model context

Steps:
1 - Check the "Save context?" tickbox.

Note: Information on the model context is saved in the UML modeling project
itself.

Objecteering/UML Modeler User Guide 3-31

Chapter 3: Functions of Objecteering/UML Modeler - Overview

The search function

Overview

Objecteering/UML provides a powerful integrated search function, which can be
used to search for elements in:

¢ models

¢+ metamodels

+ textual elements, such as notes and constraints
.

diagrams

Find |HH'.:! sl

Semch ophion |Eu"i-:f-s :J T ~

Seusich boen | Moo =l Stepby tepsearch [

e it | | ;| Achearncnd 33
Semch Cloize Hedp

Figure 3-14. The "Search" function window

For further information on the search function, please refer to the "Using the
search function" section in chapter 4 of this user guide.

3-32 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Read-only mode

Overview of the Objecteering/UML read-only mode

The read-only mode function is used to protect model elements against potentially
incorrect or inappropriate modification. For example, this can be helpful to users
working in groups, using, for example, the Objecteering/Multi-user module.

It is possible to register a specific module as being the module in charge of the
read-only mode, so that at any given time, only this specified module is authorized
to change an element's state. For further information on modules which manage
the read-only mode, please refer to the Objecteering/lUML Teamwork User Guide.

Model elements and the read-only mode

Every element in a user model can have two states, read-only and read-write. For
read-only elements, no modifications whatsoever can be made by the user. For
example, on a class in read-only mode, the user may not change the class' name,
add attributes or delete operations.

When an element's state changes from read-write mode to read-only mode, all
sub-elements which compose the said element are also put in read-only mode.
However, this is not the case for multi-user atomic units. Multi-user atomic units
are state change entry points. Elements which are not multi-user atomic units
cannot directly receive an order to change state.

Elements in read-only mode are graphically represented differently from elements
in read-write mode, and certain context menu items and keyboard shortcuts are no
longer available.

Note: For further information on the read-only mode, please refer to the "Read-
only mode" section in chapter 4 of this user guide.

Locally annotating read-only elements

For certain generators, it can be useful to have the possibility of annotating model
elements, without changing the semantics of the annotated objects, even for
elements in read-only mode. To this end, local tagged values and local notes are
used. For further information on these elements, please refer to the "Read-only
mode" section in chapter 4 of this user guide.

Objecteering/UML Modeler User Guide 3-33

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Removable consistency checks

Introduction

The Objecteering/lUML CASE tool provides over 200 consistency checks in real
time, used to guarantee the quality and coherence of the model produced. The
advantages of these consistency checks are clear:

+ Model consistency is checked when elements are entered, thus ensuring that
inconsistent names or elements are not entered.

¢ Model consistency is maintained when elements are modified, thus allowing
the user to avoid having to manually update all instances of the modified
element.

Removable consistency checks

However, the user may, in some modeling situations, prefer to have a certain
degree of flexibility with regard to the consistency checks applied to his model.
This can be the case, for example, during the preliminary phases of a project
(Analysis, Specification, etc.), when users can prefer to have freer, less restrictive
use of the CASE tool. Similarly, when importing models from other CASE tools
which do not necessarily employ the same level of consistency checks as the
Objecteering/UML CASE tool, it can also be useful to be able to deactivate certain
checks. For this reason, certain Objecteering/UML consistency checks are
removable.

Two types of Objecteering/lUML model consistency checks are, therefore,
available:

+ Obligatory consistency checks , which are essential to accurate modeling
+ Optional consistency checks, used to assist the user in his modeling activities

Only optional Objecteering/UML model consistency checks may be deactivated by
the user. These optional consistency checks are activated or deactivated as a
set. In other words, the user can either choose to apply all the optional
consistency checks in real time or to apply none of them.

3-34 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Principle behind removable consistency checks

The principle behind Objecteering/UML removable consistency checks is that the
user should be able to:

¢ Activate or deactivate optional consistency checks, according to his modeling
needs

¢ Manually check the model or a part of the model

+ Display and correct errors after re-activating optional consistency checks

Note: For further information on removable consistency checks, please refer to
the "UML Modeler tools" section in chapter 4 of this user guide.

Objecteering/UML Modeler User Guide 3-35

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Obligatory consistency checks

Introduction

Objecteering/UML consistency checks verify the composition tree of a model's
elements and the validity of the model itself in Objecteering/lUML. These
consistency checks are applied to a part of the set of elements contained in
Objecteering/UML (Metamodel).

Obligatory consistency checks cannot be deactivated.

For example:A class can belong to a package or to a class, but cannot belong to a
data type.

Obligatory Objecteering/lUML consistency checks on different
elements

The following list presents the different obligatory consistency checks applied by
Objecteering/UML to the model element in question.

Element class:

+ An element must be attached to one single container, except in the case of a
UML modeling project, a UML profile, a text type and a tag type.

Package class:

+ A package must belong to a UML modeling project or to another package.
¢ A package can only specialize packages.

+ No cycles between use links or generalization links are allowed.

¢ A package can only use other packages.

+ A package cannot be destroyed if it is used or if it is the parent of another
package.

¢ A package cannot be destroyed if it represents the UML modeling project.

3-36 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Class class:

L4

¢
¢
¢

A class must belong to a package or a class.

A class can only contain classes, data types and enumerations.
No cycles between generalization links are allowed.

A class cannot be destroyed if it is the parent of another class.

DataType class:

* & & & & & > o o

A type must belong to a class, a package or a signal.
A type cannot contain NameSpaces.

A type can neither send nor receive DataFlows.

A type cannot implement interface classes.

A type cannot have communication links.

A type can only specialize a DataType.

A type can only use a DataType.

No cycles between generalization links are allowed.
The undefined type cannot be destroyed.

Enumeration class:

* & & & & &+ o+ o o o

An enumeration cannot contain NameSpaces.

An enumeration cannot have communication links.
An enumeration cannot have use links.

An enumeration has no generalization links.

An enumeration cannot contain DataFlows.

An enumeration cannot implement interfaces.

An enumeration cannot contain instances.

An enumeration cannot be instantiated.

An enumeration cannot have members.

An enumeration belongs to a package, a class or a signal.

Objecteering/UML Modeler User Guide 3-37

Chapter 3: Functions of Objecteering/UML Modeler - Overview

Attribute class:

+ An attribute must belong to a class, an actor, a use case, a component, a node
or an association link.

+ An attribute can be typed by a class (its state is of no importance during this
phase), a DataType or an enumeration.

Parameter class:

+ A parameter can have a class, a DataType or an enumeration as its type.

Association class:

¢ For an association created on a class, only classes, actors, DataTypes and
signals are accepted.

+ For an association created on an actor, only classes and actors are accepted.
+ For an association created on a signal, only classes and signals are accepted.

+ For an association created on a node, only nodes are accepted.

Generalization class:
¢ There is no generalization on enumeration and component.

¢+ The NameSpaces which link Generalization have to have the same metaclass,
except in the case of Signal, which can specialize a signal or a class.

Use class:
+ A use must occur between two units which are of the same type (ClassOf).
¢ An actor can use a package, a class, a component, an actor or a signal.

¢ Asignal can use a signal or a class.

Realization class:

¢ Only a class or a component can implement an interface class.

3-38 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Signal class:

¢ There are no DataFlows on Signal.

¢ There is no communication on Signal.

¢ A signal must belong to a package or a class.

¢ No cycles between generalization links are allowed.

DataFlow class:
+ Atleast one or the "Receive" or "Send" links must be defined.

+ A DataFlow cannot exist on a data type, an enumeration, a use case or a
signal.

AttributeRole class:

¢ An attribute role must belong to a classifier role.

LinkEnd class:

¢ Alink end is only linked to one instance.

AssociationEndRole class:

¢ An association end role is only linked to a classifier role.

Actor class:

An actor must belong to a package.

An actor does not implement interface classes ("Realization").

An actor cannot be associated with predefined instances (" Instances").
An actor cannot contain other NameSpaces.

An actor can only specialize actors.

* & 6 & o o

No cycles between generalization links are allowed.

Objecteering/UML Modeler User Guide 3-39

Chapter 3: Functions of Objecteering/UML Modeler - Overview

UseCase class:

A use case can only belong to a package.

A use case cannot contain NameSpaces.

A use case cannot have any uses.

A use case cannot have any associations.

A use case neither sends nor receives DataFlows.

A use case cannot implement interface classes ("Realization").

A use case cannot be associated to predefined instances ("Instances").

* & & & & o o o

No cycles between generalization links are allowed.

Communication class:

¢ A communication link must link two actors or an actor and a use case.

StateMachine class:

+ A state machine must have a root state.

Transition class:
¢ A transition must belong to a StateVertex by the source relationship.

¢ Atransition must have a destination (Target relationship).

InternalTransition class:

¢ The Start and Reach relationships must be empty on an internal transition.

Node class:

+ A node must belong to a package.
¢ A node contains no NameSpaces.

¢ A node contains no uses (Used and empty User).
+ No instances can exist (Declared empty).

.

No implementations can exist (Realized empty).

3-40 Objecteering/UML Modeler User Guide

Chapter 3: Functions of Objecteering/lUML Modeler - Overview

Component class:
+ A component must belong to a package or to another component.

+ No generalization can exist (relationship to the Generalization class defined on
NameSpace).

¢ A component contains no instances.

Nodelnstance class:

¢ A node instance belongs to a package.

Componentinstance class:

¢+ A component instance can contain node instances, component instances or
instances.

Objecteering/UML Modeler User Guide 3-41

Chapter 4: Functions of
Objecteering/UML Modeler
- Detailed View

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

UML Modeler menus

The "File" menu

The icon ... is used to ...

command

New @ create a new UML modeling project. When a new
project is created, Objecteering/UML will ask you if
you wish to save your work on the original project
before closing it and opening the newly created
one.

Open = open an existing UML modeling project. When
another project is opened, Objecteering/UML will
ask you if you wish to save your work on the
original project before closing it and opening the
other one.

Save E carry out a general save of the current UML
modeling project.

Clear console none erase the information which appears in the console.

Save console none save the contents of the console in a file.

Quit none exit Objecteering/lUML Modeler.

Objecteering/UML Modeler User Guide

4-3

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Edit" menu

The ... | icon ... is used to ...

command

Undo o] cancel the last action.

Redo u redo last action.

Cut clﬁln destroy and store the selected element in the
clipboard.

Copy store the selected element in the clipboard.

Paste % create the element stored in the clipboard at the
selected position.

Move B move copied elements in the clipboard into the
selected element.

Empty clipboard none destroy the contents of the clipboard.

Modify " modify the element.

Consult none open the selected element's dialog box for
consultation purposes.

Delete > destroy the element.

4-4 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "View" menu

The ...command | icon ... is used to ...

Save as none open a file browser in which you can enter a name
and path, in order to save the current diagram as a
separate file.

Print... open the dialog box used to configure printing

parameters and then launch the printing of a
diagram.

Copy graph image

none

copy the contents of the active diagram, in order to
paste them elsewhere.

Show

none

show the contents of the element selected in the
active diagram, or show the links which exist
between selected elements.

Mask

none

mask the contents of the element selected in the
active diagram, or mask the links which exist
between selected elements.

Select all

none

select all elements in the active diagram.

Objecteering/UML Modeler User Guide

4-5

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Graph" menu

4-6

The ... command

icon ...

isusedto ...

Align

none

align the selected model elements according
to your choice (to the left, to the right, etc.).

Fit to contents

adjust the size of the selected graphic
elements to fit the contents.

Zoom forward

increase the display of a diagram's contents,
in order to make it easier to read.

Zoom back C{— reduce the display of a diagram's contents, in
order to visualize a larger part of the
presentation.

Home none reposition graphic elements to the home
position in the diagram.

Redraw none redraw the selected graphic element.

Resources @i display the resources window, which allows
you to change certain visual aspects of the
diagram (colors, styles, etc.).

Grid none activate the grid in a diagram.

Layout none move and lay out graphic elements.

Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Tools" Menu

The ... command

icon ...

is used to ...

Modify configuration qu modify the configuration of modules installed in
your UML modeling project.

Modules... % add modules to or remove modules from your UML
modeling project.

Import none transfer model parts between different UML
modeling projects

Process Wizard -] select model examples and model templates, and

w ensure the coherent selection of techniques used

on a UML modeling project in accordance with the
development process used (for further information,
please refer to the "Objecteering/Process Wizard"
user guide)

The "Windows" menu

The ...command | icon ... is used to ...

Close none close the current diagram.

Close all... none close all open diagrams.

Next none switch to the next diagram.

Previous none switch to the previous diagram.

Cascade none display all open diagrams in a cascade formation.

Objecteering/UML Modeler User Guide 4-7

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

UML Modeler tools

Modification of modules used

% Objecteering/lUML provides a set of modules, which allows you to change
the configuration of the CASE tool in order to use specific services (for example,
the Java Generation module).

The "Modules" window allows you to add or remove Objecteering/UML modules to
or from the current UML modeling project (as shown in Figure 4-1). The
procedure for selecting a module is explained in chapter 3 of the
Objecteering/Introduction user guide.

E Hrichdne HF‘

Vel madchibes Podibes used :
+ CodngPiohisboculs 1 11 :l + EarugbptisFrobied] oduls 1.1.1 =
{ CopDigriPalant: 1.2 s FenDvock oduls 44 =
2 e TN T i el 23 | : Pozapmbansgs 111
Tor-DsorFicliebodke 111
 Ensrpelaghaler 1.1
 swalleigrFateng 1.2

-

| dmabdoche 2 1 e, I
- A
{ Mo 1.0d = o Brsrre | i
+ Hiscsedhin 2 De II."
Hulilhes 328 al
1] | ;I_I /'ﬂ I

[Cochie e i

LT b et it J vl coiaks Qirved ion b B (0 bpecd iniirey vainched. |1 st Pidwpctient cormpal o, ol aredaid
Jovalnms documenlsdon gerersfion and dazr his wyvers lunctomn: Fotharmoe o conlan: plan
riuch e vy eshud i levs sopkc slon dessiopmant

Ll

8 — Canced kel

Figure 4-1. Window for selecting modules for a UML modeling project

4-8 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Key:

1 - List of modules.

2 - Buttons allowing the addition or withdrawal of modules in a UML modeling
project.

3 - List of modules used. When a module has been selected from the list of
modules on the left-hand side of the window, and after having clicked on
"Add", it appears in the list of modules used on the right-hand side of the
window.

4 - Description of the module selected from the list of modules installed.

5 - Default selection button. If this box is checked, the user may specify that this
module selection should be carried out automatically for every new UML
modeling project created.

6 - Click on "OK" to confirm your choices.

Process Wizards

The main domains covered by the "Process Wizard" are as follows:

¢

¢
¢
¢

follow-up and management of Profile Modules used in the development
process

assistance during UML modeling project creation
assistance to complete the model and to check it during modeling activities

improvement in productivity due to specific patterns and impact analysis tools

For further information on this tool, please refer to the Objecteering/Process
Wizard user guide.

Objecteering/UML Modeler User Guide 4-9

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Removable consistency checks

CHE K

4 WK Objecteering/UML provides a function enabling the user to deactivate
and then reactivate certain Objecteering/UML consistency checks, thus allowing
the user a certain degree of flexibility with regard to the consistency checks
applied to his model.

CHE
The pressed down < icon in the menu bar (see Figure 4-2) indicates that
removable consistency checks are activated. When deactivated, the "switched
K
off" Bﬂ’< icon is displayed. By default, removable consistency checks are active.

Only optional Objecteering/UML model consistency checks may be deactivated by
the user. These optional consistency checks are activated or deactivated as a
set. In other words, the user can either choose to apply all the optional
consistency checks in real time or to apply none of them.

The principle behind Objecteering/UML removable consistency checks is that the
user should be able to:

+ Deactivate optional consistency checks

¢ Manually check the model or a part of the model
+ Display and correct errors
.

Reactivate optional consistency checks, according to his modeling needs, and
fix the model

4-10 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Deactivating removable consistency checks

Since removable consistency checks are activated by default, we are now going to
deactivate them, as shown in Figure 4-2.

El:||||.".F.|:|:||||||.'||lll| Moidiekes - TisningSpelen

h E FOESEr— [Daze diagiam - PACEAEE [Anakpaix]
Fr | EE s | ke
= B B Usey =
a E Aol oo T i drwe] E
S Traininghtanages =
3 teck Aeponibief o T anng
'E:‘ 'm Sexwn TarargS e Q
B 2 B TrsringHarsganan B
(= - Teaninghesion [2]
=i -p
Tiziwg
i
i
-y
[y)
i .
= .

Figure 4-2. Deactivating removable consistency checks

Steps:
CHE
1- Click on the f'f icon, which "switches off" removable consistency checks on

K
the entire UML modeling project. The w’(icon is then displayed in the menu
bar.

Objecteering/UML Modeler User Guide 4-11

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Manually checking the model or a part of the model

When removable consistency checks have been deactivated and modifications

made, the user may manually check the consistency of his model through the
"Check model" context menu entry (as shown in Figure 4-3).

E|||||!:|.l|-.|:||rl|_l|."||H| M iwilelie

Fle Edl Took 7
REFd s a@a < o
=]
E EH.‘:.«F":.‘:M]
B B Package
g E Cass
B Oa
O
% B Hodiy =
- == VT =
. — Erovsase...] 13
E "A"u':ldu"l'ul:t L
Analysis Wizad »
[

D;nlmw

Figure 4-3. Manually checking the "Packagel" package

Steps:

1 - Select the element to be checked, in this case the "Packagel" package.

2 - Click on the right-mouse button to open the context menu, and run the "Check
model" command.

4-12 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

If any errors in consistency exist, these are displayed in, and may be corrected via,
the dialog box shown below in Figure 4-4.

Note: The user is not obliged to run this command on specific elements in his
UML modeling project, since when removable consistency checks are
reactivated, the consistency of the entire UML modeling project is
checked. It can, however, be simpler to have only the errors related to a
particular element displayed at any one time, rather than all the errors in
the entire UML modeling project.

Displaying and correcting errors

To display and subsequently correct errors in consistency, the user has two
options:

K
¢ Clicking on the Bﬂ’< icon to reactivate removable consistency checks on the
entire UML modeling project

¢ Running the "Check model" context menu command on his model elements (as
shown in Figure 4-3)

In both cases, if errors exist, a dialog box like the one shown in Figure 4-4 is
displayed.

j . L - Llgag " el e~ pradora” - Beposepibaily [hes plemesnt ol soceeg Hhes - et enpler waciped clsje
B Enw Dlaet ™ dwol oo peredies’” - Beoceuibalip, The elerwt canrol sooest the - S anphe deplay clest
B Fna Soaocishon and il e ciadghl noe - wackged ™ - Arreoatiie The slamend rannat sceear the - s mpks - saigsl dac

Figure 4-4. An example of the dialog box used to display consistency errors

Objecteering/UML Modeler User Guide 4-13

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

To correct the errors displayed in this dialog box, the user has two choices:

+ Double-clicking on the error in question, to automatically open the dialog box
corresponding to the erroneous element, through which the error can be
corrected.

¢ Accessing the erroneous element via the explorer and correcting the error.

The ... button is used to ...
OK close the dialog box.
Print print the errors which appear in the dialog box, as well as

associated help messages.

Help display the help message which corresponds to the
currently selected error. Certain errors can be rather
complicated to understand, and it can be useful for the user
to have the possibility of visualizing the associated help
message.

Check again update the error display dialog box. Once an error has
been corrected, its correction is not automatically reflected
in the dialog box. In order for error corrections to be taken
into account, the user must click on the "Check again”
button on the bottom right of the error display dialog box.

4-14 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Reactivating removable consistency checks

To reactivate removable consistency checks, carry out the steps illustrated in
Figure 4-5.

H 0 bpzctesimg/UML Hadede - Ti@snnmgiyiles

[B Trarwgiian Clarss diogian - PACEARE [Analysis]
| B [[Tresning b
= e &
D E FiampanubdaF = Trarmng h
2 5 T gl mrange g
s) b R esponahieF T 1)
- uin:m'l'\-:'r-.'im:r =
[z} = h T et anagarari Ed
o BB Tiarnghesion [£]
= Ed
E1E] e
Tiwa n
2 s
[P
ef o
ke =

Figure 4-5. Reactivating removable consistency checks

Steps:

K
1 - Click on the Bﬂ’< icon, which "switches on" removable consistency checks on
the entire UML modeling project.

K CHE
Note: The Bﬂ’< icon has been transformed to ff to indicate that removable
consistency checks are no longer engaged. The system will only carry out
obligatory consistency checks on the model.

Objecteering/UML Modeler User Guide 4-15

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Explorer functions

Principal functions

The explorer presents the model to a high level of detail, from the highest level
(packages) down to the lowest level, such as operations, parameters, states,
transitions.

The explorer allows you to:

visualize model elements

create and modify elements

reference elements

move elements using the drag and drop facility
destroy elements

duplicate elements using the copy/paste facility

* & & & o o o

filter visualized element types

Launching an explorer

An explorer can be launched in the following ways:

¢ from the main window, using the i E "Explorer" icon in the menu bar. The
explorer created by the main window presents the UML model root.

+ from an existing explorer. The new explorer will refer to the same UML
modeling project, but the root can be different (see figure 4-8). An element
must be selected from the composition tree, before selecting the "Explorer”

option from the "Display" menu or clicking on the i E button. The element
selected becomes the root in the newly created explorer.

Note: The explorer which is dockable and which appears when the project is
created is the main explorer.

4-16 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The user may open as many explorers as he wishes, in the following modes:

¢ update mode: this allows you to browse the model and to create and/or update
elements (Figure 4-6)

Hllhr-.ll'r"ll:,u".'llll Hudeler

Bie D@ ‘ew Dioph ook 'siediws T
EE® ralma o FO0/% & & o

= | af
B[B MewProes | Ciazs dagram - PACEAGE F)
=B Packagm 1
b
. =
B0 ek |]
B e =
.E_E.
— (= = [hack racciel Eiead arip
- =TT 'J’T:lﬁ!'l =
]
ChaEh
i
]
k=

Figure 4-6. The explorer - the "Update" mode on a class

Steps:

1- Select aclass.

2 - Run the "Browse.../Update" command.

3 - Edit the update explorer class, to create and/or update elements.

Objecteering/UML Modeler User Guide 4-17

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

+ read only mode: this allows you to browse the model without being able to
update elements (Figure 4-7).

Gl Edt e Qiagh Joor Sndows T
el 1 aBa -« [Fomf e

L=l

| B HewProgens

o EEEIFHhﬁ ks
"—En TS

E0 Hedy g

e i Bai ks Congk -
1 .E. =]

= =

. o Wesd/ Took

Clnx
1

i

(=

« S | EER OO

Figure 4-7. The explorer - the "Read-only" mode on the class

Steps:

1- Select aclass.

2 - Run the "Browse.../Read-only" commands.

3 - Edit the read-only explorer class in read-only mode.

4-18 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Browsing in the explorer

Description
The explorer is used to browse the model to a very high level of detail.

It is possible to browse elements using the mouse, by clicking on the element in
question:

¢ a click on the "+" or the "-" situated next to each element expands the said
element or reduces it.

+ double-clicking on the left mouse button over an element opens a dialog box,
which allows the modification of the element in question (with the exception of
the name of the UML model root).

+ clicking on the right mouse button over an element opens the context menu
which is used to trigger a specific action.

Objecteering/UML Modeler User Guide 4-19

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View
Context icons

In the explorer, the icons in the left-hand vertical palette change according to the
element selected in the explorer. The automated creation icons will adapt
themselves to the element in question (as shown in Figure 4-8).

E E MemPraect
HIE - Be) Package
/| o
- | E] Class
lcons evadotbe |52 | | =] Clase1

for & packags i = i
\\\\ ol - B Package?
(H

rr
EL E E HevwFiopgci I
e fr" o | BB Package
| E-Ba) Package!
L_E J ,-"m E-
/_.-'f B Clasxi
O Eaiakl e . E Chuid
for & class 1 B Packages
=
A
\ B
N

Figure 4-8. The explorer adapts to the element selected

The elements which can be created using the explorer icons are so-called
structural elements, such as classes, packages or attributes.

4-20 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Note 1: Terminal elements, such as diagrams, notes and tagged values are
created via the properties editor.

Note 2:1f you are using modules which manage the read-only mode, certain
elements in the explorer may be displayed with the & icon superimposed
over the icon representing the element itself. This icon indicates that
these items may not be modified. For further information on the read-only
mode, please refer to the Objecteering/UML Teamwork User Guide.

Objecteering/UML Modeler User Guide 4-21

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Structural element creation icons

Presentation

The explorer:

¢ presents icons which represent elements which can be created on the element

selected

¢ are updated according to the element selected in the explorer

Structural units

The ...icon

allows you to ...

from ...

create a package

a package, a sub-system.

create a sub-system

package, a sub-system.

create a class

a package, a sub-system, a class.

create an interface class

a package, a sub-system, a class.

create an actor

a package, a sub-system.

create a use case

a package, a sub-system.

create a signal

a package, a sub-system, a class.

associate a state machine

a package, a sub-system, a class, an
actor, a signal, a node, a component, a
state machine, a use case, an
operation.

R EREENEE

associate an activity graph

a package, a sub-system, a class, an
actor, a use case, a node, an operation,
a signal, a component.

4-22

Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The ...icon

allows you to ...

from ...

create a node

a package, a sub-system.

create a node instance

a package, a sub-system, a node
instance, a data type.

create a component

a package, a sub-system, a
component.

s

create a collaboration

a package, a sub-system, a class, a
use case, an operation.

create an instance

a package, a sub-system, a class, a
node instance, an instance, a data type.

create a data flow

a package, a sub-system, a class, an
actor, a node, a component.

Bl | g

declare a type

a package, a sub-system, a class, a
signal.

—_
2
=

define an enumeration

a package, a sub-system, a class, a
signal.

create an attribute

a class, an actor, a use case, a signal,
a node, a component, a data type.

create an operation

a class, an actor, a use case, a signal,
a node, a component, a data type.

redefine an operation

a class, an actor, a use case, a signal,
a node, a data type.

create a binary association

a class, an actor, a signal, a node, a
data type, an association.

create a template parameter

aclass.

create a state

a state machine.

create an event

a state machine, an activity graph.

N EDE 12| & = E

create a transition

a state, a sub activity state, an action
state, an object flow state.

Objecteering/UML Modeler User Guide

4-23

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The ...icon allows you to ... from ...

o, create an internal transition a state.

% create a component instance | a node instance.

% create an attribute link a node instance, an instance, an
object.

| — create a link a node instance, an instance, an
object.

i) create a classifier role a collaboration.

P}} add a return parameter an operation.

£ F| add a parameter an operation.

|:| create an action state an activity graph, a sub activity state.

create a sub activity state an activity graph, a sub activity state.

IEI create an object flow state an activity graph, a sub activity state.

EEI create a partition an activity graph.

4-24 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Modifying elements

Procedure

To modify an element in the explorer, simply carry out the steps shown in Figure
4-9.

Do L8 e Lt T i 7
W 2 @lka ==

!ﬂh-'wr“ﬁ-
huh:-ﬂ 'r:_ll._|1._i-.--:|
<=1 _'E'-'I-
S H S e e
; =]
1 * il Dw=a ¥ T Mty
= o' I Led
| SEg e WeeRTes e
P P LA
- I%' g
'E r
1]
@ = z
5]
T [| e | ome | ik
=)
L1

i
i
|

Figure 4-9. Modifying a model element in the explorer

Steps:
1 - Select the element.

2 - Double-click on the element itself, select the "Modify" option from the pop-up
menu, which is displayed by clicking on the right mouse button, or activate the
"Edit/Modify" menu.

3- Enter the modifications in the dialog box which appears (see the
Objecteering/Model Dialog Boxes user guide).

Objecteering/UML Modeler User Guide 4-25

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Properties editor functions

Overview

The properties editor is essentially a window designed to aid the user in his
modeling, by providing rapid access to various information and services he may
need to use.

The properties editor contains a number of tabs:

L4

the "ltems" tab, which displays terminal elements belonging to the selected
model element, as well as icons used to create these terminal elements

the "Diagrams" tab, which presents information on diagrams belonging to the
selected model element, as well as the icons used to create them

the "C++", "Java", "VB" and/or "Documentation" tabs are present where the
Objecteering/C++, Objecteering/Java, Objecteering/Visual Basic and/or
Objecteering/Documentation modules have been selected in the current UML
modeling project, and facilitate the entry of information specific to the said
domain.

Note: It should be noted that when a module which adds a tab to the properties

4-26

editor is selected, where earlier versions of the module in question did not
provide this service, you should quit and restart Objecteering/UML, in
order for the properties editor to be correctly displayed.

Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "ltems" tab

The "ltems" tab of the properties editor contains the icons used to create terminal
elements, such as tagged values, notes and generalization links, and displays
those terminal elements which already exist on the selected model element (as

shown in Figure 4-10).

E:I'.l|l:|.|l:|:||l|:.|l'|.Hl Modehsi - HesPiagec
Bz Ede Took 'indzes 2
L E I
=,
B | B revPropct
o B Package
=] 7) Puckagel
0T =
B Chaisl
EH Btz E.l'".l.l:'.li‘.'ll' erbeineEiil s
= Bo Fackagsz
X ol l
fJ— Aoceabls depenly
)
[I‘l [lae? [Fackage! - Clesd]
: J
. j |I II
o | !
1 !
= § {
m| |
) A O = = B
Diagrna

Figure 4-10. Creating a generalization for the "Class" class in the "ltems" tab

Objecteering/UML Modeler User Guide 4-27

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:

1 - Click on the "Class" class in the explorer.

2 - Click on the "ltems" tab of the properties editor. You will then see any terminal
elements belonging to the " Class" class.

3 - Click on the = "Specialize" icon. The "Accessible elements" window then
appears.

4 - Click on the "Search" button and select the relevant element. Confirm by
clicking on "Apply". The newly created generalization appears in the
properties editor.

4-28 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Diagrams" tab

The "Diagrams" tab in the properties editor presents the diagrams which already
exist for the selected model element, and provides the icons used to create
diagrams (as shown in Figure 4-11).

Elll||||:|.r.|:l:||||l.|.'|.|Hl Modeled MewHiopeci

Eie Edd View Graph Toos ‘windows 3
RAEE | aRa -~ |J0MH & @ o™

2 =
|| B2 HewPrcject Class diagram - CLASS [Anal
Ll 55 Puctace by
BB Packaget =
| E Class
I._@_ | _g- ¥
E] Class2 =2
1| LBE Package2 [2]
2 &8 3
t. -
-5
— =l o, ,
) B /
- [
s /
e]
_ .
=
1 =

4 ()

Figure 4-11. Creating a class diagram from the "Diagrams" tab in the properties editor

Objecteering/UML Modeler User Guide 4-29

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:
1 - Select the element for which you wish to create a diagram in the explorer.
2 - Click on the "Diagrams" tab in the properties editor.

3 - Click on the % "Create a class diagram" icon.
4 - The newly created diagram will then automatically open.

4-30 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Documentation" tab

The "Documentation” tab of the properties editor is used to enter summary and
description notes for elements selected in the explorer directly in the properties
editor itself, without having to activate the "Note" dialog box. You can also
indicate whether or not you wish to annotate the selected element using the
{noanalysis} and {nodesign} tagged values.

s G [ek 2 e M= =
D28 1 @88 o @ e | s |
— d‘ﬂ
= g b Trie
B & B2 rwsone [=
Et 2 [Daas L=t]
L —E-— E- Ihkiw e for snberiag mosecy robss
= Cland
EI By Paigal
;1 i Pk Ol
7 =iE /
AT | o !
ol I
I™ Ha ges weor b isidnati I T

™ N s b desgn
Tamrmay

= T i b gy o emp il
D sipdes
!—I'll-l 1P) ENLEC T T

Baypsliey besmswjaslf

¥

Figure 4-12. The "Documentation” tab

Objecteering/UML Modeler User Guide 4-31

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:

1-

2 -

Select an element in the explorer, and click on the "Documentation” tab in the
properties editor.

Enter the following text in the "Summary" field: "This is for entering summary
notes". Indeed, this field is used to enter summary notes for the element
selected in the explorer directly in the properties editor, without having to

activate the "Note" dialog box (either by clicking on the (3 "Add a note" icon or
by selecting the "Notes" tab in the element's dialog box).

Enter the following text in the "Description" field: "This is for entering
description notes". Indeed, this field is used to enter description notes for the
element selected in the explorer directly in the properties editor, without having

to activate the "Note" dialog box (either by clicking on the (3 "Add a note" icon
or by selecting the "Notes" tab in the element's dialog box).

You can check that these notes have been entered, by clicking on the "ltems"
tab of the properties editor. You will see that two notes have been created.

Double-click on one of the notes in order to open the "Note" dialog box. You
will see the text you entered in the "Documentation” tab of the properties
editor.

Note: The "No generation for analysis" and "No generation for design" tickboxes

4-32

are used to indicate whether or not these tagged values should be applied
to the element selected in the explorer.

Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View
The "Java" tab

The "Java" tab of the properties editor contains fields specific to the generation of
Java code, as well as buttons to launch code generation, visualization or
compilation.

For further information on this tab, please refer to the "The properties editor and
the Java module" section in chapter 2 of the Objecteering/Java Developer user
guide.

The "C++" tab

The "C++" tab of the properties editor contains fields specific to the generation of
C++ code.

For further information on this tab, please refer to the "The properties editor and
the Objecteering/C++ module" section in chapter 2 of the Objecteering/C++
Developer user guide.

The "VB" tab

The "VB" tab of the properties editor contains fields specific to the generation of
VB code, as well as buttons to launch code generation and visualization.

For further information on this tab, please refer to the "The properties editor and
the Objecteering/Visual Basic module" section in chapter 2 of the Objecteering/VB
Developer user guide.

Objecteering/UML Modeler User Guide 4-33

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Terminal element creation icons

Presentation

Terminal elements are elements which cannot be decomposed. They are
generally notes, graphics and tagged values, and are created in the "ltems" and
"Diagrams" tabs of the properties editor.

For a class, the terminal elements which can be created are as follows:
constraints

notes

detailed graphic views

tagged values

work products (documentation, generated source C++, etc)

* & & o o o

stereotypes

Terminal elements

The ... icon is used to for ...

[y add a note all structural elements.

{ } associate a tagged value all structural elements.
e associate a stereotype all structural elements.
create a constraint all structural elements.

@ reference a unit a package.

O create a generalization link a package, a class, an actor, a use
between: case, a node, a data type.
* two classes
¢ two packages
¢ two use cases or two actors
¢ two nodes
* two signals
¢ two datatypes

The ... icon is used to for ...

4-34 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

create a use link

a package, a class, a operation

create an implementation link

a class, a component

create a communication link

an actor, a use case

redefine a operation a operation
deploy a component a node
reference a signal a data flow

create a class diagram

a package, a class

create a use case diagram

a package, a class

create a sequence diagram

a package, a class, a use case

create an object diagram

a package, a class

create a deployment diagram

a package

create a deployment instance
diagram

a package

create a state diagram

a state machine

create a collaboration diagram

a collaboration

HE EEEEEEEEEERNEE

create an activity diagram

an activity graph

Objecteering/UML Modeler User Guide

4-35

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Visualizing messages in the console

Visualizing an error message or a warning

When Objecteering/lUML picks up an error during an operation, this error is
displayed in the console, with any warnings which are pertinent (as shown in
Figure 4-13).

Wilarming Impossble bo dhangs bnk end
Wi I peoegble bo caala okl
Copy dass Classl in progress .. done
Copy class Chagsl in progress: | inoomed

Ll |-§1

Figure 4-13. Console containing error messages and warnings

Visualizing traces of operations in the console

For all operations carried out on an element, a work product, etc, the console
displays the progress of the operation.

During generation on a work product , the console displays its progress and then
displays the final result of the generation (as shown in Figure 4-14).

LI areration i C-ProjeciiocDOCUMENT Hsl om B document temgiale Spece.
H [Crispobers 15 206 185 406 505 585 [Formading| [Eral]

1] I*;

Figure 4-14. Visualizing the result of documentation generation

4-36 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Messages and import traces in the console

During an import (UML modeling project, module, etc.), the console displays the
progress of the import (as shown in Figure 4-15), as well as the final result. If the
import of a component has not been correctly carried out, the console displays the
errors which have occurred.

j impoit of Package TeepnoeeCalalog of MetallasPopct Esample owand: MetallasiFiop a)
mport Packags Telephonelatalsg in progress ...
Updiale isiserces in pogress
-
4| G

Figure 4-15. Display of import progress traces

Objecteering/UML Modeler User Guide 4-37

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Using the on-line help search engine

Launching the search engine
To launch the Objecteering/UML on-line help search engine, the user has two
options:

¢ either launch the search engine, by clicking on the "Search Engine" menu entry
in the "Start/Programs/Objecteering" menu

¢ or click on the "?" menu within Objecteering/UML itself (as shown in Figure 4-
16 below)

e el R - T I S - T

1l o F e T —————

an L] Lo, _||i.l.-u.l

- 11y

Egm e[= W hat's
5217
Olsjestewri
n TillF edaug
Smp TR A
n Erpariiad das

Figure 4-16. Launching the on-line help search engine

Steps:

1 - Click on the "?" menu.

2 - Click on "Search engine".

3 - The Objecteering/UML on-line help search engine is then started up.

4-38 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View
The left-hand part of the search engine window is used to:
+ enter the information you wish to search for

+ specify the on-line help tomes in which you wish to carry out your search

The right-hand part of the search engine window is used to display the relevant
pages of the on-line help, through the hypertext links which appear after a
successful search.

Objecteering/UML Modeler User Guide 4-39

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Searching for information

The following example (Figure 4-17) will show you just how easy it is to search for
information within the Objecteering/UML on-line help, using the on-line help
search engine.

Let's imagine we want to look for information on the {JavaStatic} tagged value.

What's new in ve

Objecteering/ LML ML

& Take wivaxiags of Brsher tmproven
ihagrwme=
& Peprecent rlarces, montzoyres sl
EETTTp TR

Figure 4-17. Searching for information using the on-line help search engine

Steps:
1 - In the first entry field, enter "JavaStatic".

2 - Select the on-line help tome in which you wish to run the search. In this case,
we have selected the Objecteering/Java on-line help. You can also run a
search in the entire on-line help database, by selecting "All volumes...".

3 - Click on the "Search" button.

4-40 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The result of this search is shown below in Figure 4-18.

AL Frorlbe: Buiohes
Iriroducion

Figure 4-18. The result of the search carried out

To access the on-line help sections which contain the information you are looking
for, simply click on the hypertext links. The relevant section then appears in the
right-hand side of the search engine window.

Objecteering/UML Modeler User Guide 4-41

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Working with Objecteering/UML macros

Selecting the Objecteering/Macros module

In Objecteering/lUML, macros are developed and implemented using the
Objecteering/Macros module, which is automatically installed during installation of
the Objecteering/UML tool itself.

To use the Objecteering/Macros module, carry out the steps shown below (Figure

4-19).

4-42

EI:|.l!.'l.|l.'l:||||||-'|.|H. Ml

h Clazz dagiam - PACESAEE LMl
Ca
= A adidie wracubirs | Ml it i !
snsiod il | 1w
o A ¥z GinD pchbsdus 4 5
-'i}_ Mt iocle 710 P ahandgs 171 g
- | Mdidler 32
ProcidsProfledio 1.1 5 :
Aweisa rgreeng 14 =
LIRAL Ml g g s 1| I

o r

- Ehaytngg edsgt
s rracsc

Thas wanchubs i3 upesd b Dacilesten carten basa wiodebng opesiion:., such o swing o &
wearbut by pamouly onkesa

a| | *

™ Keep selechon u delol

—— x| e | e |

Alesde

Figure 4-19. Selecting the Macros module

Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:

1 - Click on the ﬁ; "UML modeling project modules" icon.
2 - Select the Macros module.

3 - Click on "Add". The Macros module is then transferred from the left-hand
"Available modules" list to the right-hand "Modules used" list.

4 - Confirm by clicking on "OK".
The Objecteering/Macros module can now be used!

Objecteering/UML Modeler User Guide 4-43

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Parameterizing the Objecteering/Macros module

The Objecteering/Macros module has one sub-section containing two parameters
(as shown in Figure 4-20).

H Hadibpng cosfspaatinn

M — Irteface

[=:RLE I R o0 i

E-Wizsnd Took V1.2 |'I-II'I'-II'II'._-"'.-.'IIII'n-r|'\-' = |
Bl Angins wWimd'W 2

B Ciorumentation ¥4 5 Loranard bod verdong Sadsmal eddbor

B Hassazv1.1 |m-.-.n.1

o= | e | e |

Figure 4-20. Parameters of the Macros module

Key:

L4

"Macros directory": This field is used to indicate where standard
Objecteering/UML macros, as well as macros created by the user, are stored.
By default, it is set to $OBJING_PATH/macros. To change this directory, click

on the _I icon to open a file browser, and select the directory of your choice.

"Command for invoking external editor: Macros can be edited in
Objecteering/UML itself. The user can, however, choose to edit his macros
using a tool other than Objecteering/lUML, such as Word, Wordpad or

Notepad. To select this tool, click on the J icon to open a file browser, and
make your selection. Where this parameter has been defined, the tool
specified is automatically used to open macro file, and takes precedence over
the optional Windows jmf file association.

Note: Objecteering/lUML macro files take the .jmf suffix, meaning J macro file.

4-44

Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Macro commands

Once the Objecteering/Macros module has been selected, four macro operations
can be carried out:

¢
¢
¢
¢

executing a macro
creating a macro
modifying a macro

deleting a macro

To access macro commands, the user can either activate the "Macros" context

menu, available by right-clicking on an element, or click on the @H "Macro
commands" icon situated in the toolbar, to open the "Macro commands" window.

Objecteering/UML Modeler User Guide 4-45

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Macro commands" window

The "Macro commands" window interface changes according to your
Objecteering/UML installation mode.

The macros contained in "Local" are those which can be accessed from the
current workstation, whilst those contained in "Server" are the macros which can
be run from the server.

In "Local", macros can be executed, created, modified or deleted. In "Server",
macros can only be executed.

Figure 4-21 shows the "Macro commands" window for a heavyweight/lightweight
client installation.

m“.n:lll d:mmanile
Checeoess & command:
I Crassbe: ﬂ
Chozeom & maco
=
E - Macia
B Serem
! comierldensphon
I sortbrismes
il bR sl

Impoek & From Server I

v | e |

Figure 4-21. The "Macro commands" window in heavyweight or lightweight client mode

The "Import all from server" button is used to import all macros from the server
onto the current workstation.

4-46 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Figure 4-22 shows the "Macro commands" window for a standalone installation.

Choose & commard

| Creale :J

Chooss & mecis
0= [
LY Mascro!

QK Cancel

Figure 4-22. The "Macro commands" window in standalone mode

Objecteering/UML Modeler User Guide 4-47

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Figure 4-23 shows the "Macro commands" window for a server installation.

4-48

Checces & command
I Croshe: :J
Chacxcebs & macte
l comment 2Zdesciphion
I SOl e
L soil byraisbidy
OF, Cancl

Figure 4-23. The "Macro commands" window for a server installation

Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View
Executing macros

Objecteering/UML comes with a number of standard macros, allowing you to:
¢ sort model elements by name
¢ sort model elements by visibility

+ transform comment notes into description notes

To run an existing macro, you can either run it from the context menu or by

clicking on the "Macro commands" icon. Figure 4-24 below shows an existing
macro being run from the context menu.

SRR D e
BOoR L84 oo

Y-l==I %
i

Ei iy wodectod inochim
Sasbecied Wi 1iwied

- | e]

Figure 4-24. Running the "sortbyname" macro on the "UMLModelingProject4" package

Objecteering/UML Modeler User Guide 4-49

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:
1 - Select the "UMLModelingProject4" package in the explorer by right-clicking.

2 - Select the "Macros/Execute..." commands from the context menu which then
appears. The "Macros" window then appears.

3 - Select the "sortbyname" macro. The macro is then run on the selected
element and its contents.

Note: To run this command through the A "Macro commands" icon, simply
click on the "UMLModelingProject4" package in the explorer, click on the

@ icon, select the "sortbyname" macro and click on "OK".

The result (the package's classes are now displayed in alphabetical order) is
shown below (Figure 4-25).

E Iigactasnnip Ui ML Modele

B Eddl “ew Graph Took ‘aindows 2
DEE fsBa o AEOMERE

22! | p—r———r

B
= ;
? - E Grapsins h
-] Peach =
% B Tomat o
Hal =
UMLModsbogProiectd
] |)

Figure 4-25. The result of running the "sortbyname" macro on the "UMLModelingProject4"
package - its classes are now displayed in alphabetical order

4-50 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Creating macros

To create your own macros, you can either create them from the context menu or
by clicking on the @. "Macro commands" icon. Figure 4-26 below shows a new
macro being created through the @. icon.

E:Il:u:.-l:r:un:.l'.ll-ll Hodedin - Uk ModelrgPrajeced

Ebs Elt Wess finph ook Windoss 1
B o~ ADT S, R =

- = =]

e b ,
a E B anara i

g E Tomsia B

=R IS . comnond: 63|

o E i

i [Chocse & coirreand

- ’],Ii-m ﬂ

i il i
F—M' =)
. corarane e rop on

E sDrtemsve

1 cortapriey

o [|

- Bz nare
s ey L] [pmetouss |

Bl e oo’
5) E e o cods s u
i] =
x| o]

Figure 4-26. Creating the "Macrol" macro

Objecteering/UML Modeler User Guide 4-51

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:
1 - Select the "UMLModelingProject4" package in the explorer.

2 - Click on the @H "Macro commands" icon in the toolbar.

3 - Click on "Local" and select the "Create" command in the combobox. The
"Macros" window then appears.

4 - Enter a name for your macro. Macro file names must be in lower case and
must not contain blanks.

5 - Enter the necessary J code, and confirm by clicking on "OK".

Note 1:If you prefer to enter your J code using an external text editor (which has
been previously specified at module parameter configuration level), simply
click on the "Run external editor" button. This opens the text editor
specified at module parameter configuration level (see Figure 4-20 above).

Note 2:To run this command through the context menu, simply right-click on

"UMLModelingProject4" in the explorer, select the "Macros/Create..."
commands from the context menu and then continue as described above.

4-52 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The following guidelines should be respected when creating your own macros:

¢ Macro files should have a header in the following form:
/ *
* <file name>

* ok

Ver si on: <Macro version>

Dat e: <Last nodified>

Aut hor: Copyright (c) Softeam 1996-2001. Al rights
reserved.

*

*

Valid for: <Metaclass on which the macro can be run>.

<Description of the nacro>

* %k X X X Ok

/
¢ Macro file J code should be clearly annotated, in order to facilitate
comprehension of the macro.

¢ Code lines should not be longer than 80 characters. Where this is the case,
lines are split according to Java coding conventions.

+ The "return" and "exit" instructions must not be used.

¢ The macro must check those metaclasses on which it can be executed, so as
not to produce J errors. Where a metaclass is not valid, the following error
message occurs: "Error: this macro is not available on <metaclass>
metaclass".

Objecteering/UML Modeler User Guide 4-53

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Modifying macros
To modify existing macros, you can either modify them through the

"Macros/Modify..." context menu command, or through the a "Macro
commands" icon. Figure 4-27 shows a macro being modified through the context
menu.

Hln—..-.-n-.-unq.-llm i ndeker

Ele Edi View Geph Took ‘windes 7
B : @ «~A000ES

- Hacrrrm
!.m'"- |1qr|rr.-.-|ghu-.- | Rigri mdearel mclice
==grpeee
" Sharireg 18l [T T LT TN T T I T R TE T TR T —
seohsdm || -

“Wikdhe Aeioa, Clics, DialaT ppen. Commgoran? Mo [Pk e Sagnal, Uzelaia

1} = Thit Wi o o sitad B il B wpiabaliis praibole: . ol isted] pirebe]
Feawdy 'I-Ih-.' pitrHameipace: of 5 Hamedpace | -
@ "

ax | Cares

Figure 4-27. Editing the "sortbyvisibility" macro

4-54 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:
1 - Select the "UMLModelingProject4" package in the explorer by right-clicking.

2 - Select the "Macros/Modify..." commands from the context menu which then
appears. The "Macros" window then appears.

3 - Select the "sortbyvisibility” macro. If you wish to open this macro file using an
external editor, check the "External Edition..." tickbox. The file will then be
opened using the text editor specified at module parameter configuration level.

4 - Make the desired modifications to the J code and confirm by clicking on the
"OK" button.

Note: To modify the macro through the 1= "Macro commands" icon, simply
select the "UMLModelingProject4" package in the explorer, click on the

@H icon, select the "sortbyvisibility" macro, select "Modify" in the
combobox and click on "OK". Then continue with the steps described
above.

Objecteering/UML Modeler User Guide 4-55

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Deleting macros
To modify existing macros, you can either modify them through the
"Macros/Delete..." context menu command, or through the ﬁ. "Macro commands"

icon. Figure 4-28 shows a macro being modified through the ﬁ. icon.

EI::Ih|l.--:tl'-:r|r|l|."|.|H|. Modelsr - IMLH odelrgMojecid

Eie Edt Yiew Goph Iock lindows 1
T Boav - MOOOR SRS

- =
— e NN

2 = W= L | /
=] = Tomain |
B Apeie Bsoce commans 3}
i EY Pasch Cironse & oomimand
E E Gatapeiin D b ;l
e O & i
£ | B& Locd
. LML MordekrgFrogstd ‘,r’ pormmeri 2desription
E st brgriai:
ik sorthyvisbiily

— E Maoros

Dot M acin reacin ™

[

oK Carncel

Figure 4-28. Deleting a macro

4-56 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:
1 - Select the "UMLModelingProject4" package in the explorer.

2 - Click on the (= "Macro commands" icon.

3 - Click on "Macrol" and select "Delete" in the combobox.

4 - Confirm by clicking on the "OK" button.

5- A confirmation box will then appear, asking you to confirm deletion of the
macro. Click on the "OK" button to confirm. The macro will then be deleted.

Note: To run this command through the context menu, simply right-click on
"UMLModelingProject4" in the explorer, select the "Macros/Delete..."
commands from the context menu and then continue as described above.

Objecteering/UML Modeler User Guide 4-57

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

UML Modeler parameter sets

The "Formalism" set

The parameters displayed in the "Edit configuration" dialog box allow you to define
general formalism options edited in diagrams (as shown in Figure 4-29).

Hadibpng cosfspaatinn
Hisdudei Formalyin

B L ket ' Comgplsts nama on signak
Irdeqtace: [Ciospag agged wakses
Luagrares

[iweciomes
AL peclbes
B “wimande T oid W10

B drissans wWiomd W' 1
- Diocumentsbor W 5

. D .

Figure 4-29. Editing "Formalism" configuration

The "Formalism" set: Description

The ... field or button | allows you to ...

Complete name on signals | use long names (flow name and associated class hame)
instead of short names (only the flow name) of the object
flows or events on the graphic views.

Display tagged values display tagged values when a new diagram is created.

4-58 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Interface" set

This dialog box (shown in Figure 4-30) presents general interface presentation
options.

HH.—.mlunn rrandsgun alen
H it .
riestace] Iotinglog -
Crngranss | _l
[weciomes Wi of e ke chsbkog) bood in ohsesoleds]
Faarakin ||a|.|
LBAL acslles -
B wizande ook V1.1 Height of the roles dislag brefr i)
Bl v Wiz 1 |£'-'l

B Cizrurantsior 4 5

B Fagqumarranes '] 0 €]

|3

v reode of e ool dhabag bos

s]
B Azk whathan contesd should b sarsed

[T By deizilt, soee Conied T

Gk Canoel Help

Figure 4-30. Editing "Interface" configuration

Objecteering/UML Modeler User Guide 4-59

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Interface" set: Description

The ... field or button allows you to ...
File which receives console modify the name or path of the file which contains the
saves history of all information saved from the console.

Width of the notes dialog box (in | specify the width in number of characters of the dialog
characters) box which allows the entry of notes.

Note: the actual number can vary slightly according to
the platform

Height of the notes dialog box (in | specify the height in lines of the dialog box which

lines) allows the entry of notes.

Enumeration/list limit fix the limit from which a choice passes from radio
button enumeration form to list form in the entry dialog
boxes.

Wrapping mode of the notes define the wrapping mode : none, on the character or

dialog box on the word.

Ask whether context should be specify whether or not you wish Objecteering/UML to

saved? propose a context save when you save or quit.

By default, save context? indicate whether you want to save the context by

default or not save the context by default.

Note: The J"Browse" icon is used to open a file browser, making it easier for
you to specify directory and/or file names and path.

4-60 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View
The "Diagrams" set

This dialog box (shown in Figure 4-31) allows you to parameterize the main
graphic options of the element.

LIML profiar
‘winard /T oale V1.3
Bt itnad W12
Drsisraratabion Vi 5
Coe Gemeiaken VD

Figure 4-31. Editing "Diagrams" configuration

Objecteering/UML Modeler User Guide 4-61

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Diagrams" set: Description

Diagrams allow the activation of a magnetic grid which is used to help position
objects (for further details, please refer to the "Options menu" section in this user
guide).

The ... field or button allows you to ...

X Spacing choose the spacing of the vertical background grid lines.

Y Spacing choose the spacing of the horizontal background grid
lines.

Active grid activate the grid.

Visible grid make the grid visible.

View names prefix give a prefix to the naming of diagrams.

View names suffix give a suffix to the naming of diagrams.

Dissociate the creation and dissociate the creation from the opening of the diagram.

edition of a diagram

Automatic unmasking of specify whether or not constraints should be automatically

constraints on a showlink unmasked on a showlink operation.

Automatic unmasking of notes | specify whether or not notes should be automatically

on a showlink unmasked on a showlink operation.

4-62 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View
The "Directories" set

This dialog box (shown in Figure 4-32) allows the user to specify the default
directory to be used for all generation. Objecteering/UML generation modules
such as RDB, C++ or Java will, by default, use this root directory.

H Hadilping credmqualinn

H ihlst:

Damcioniaz
B LML Mtk Froat ceeciidy Iod Qe [GenRoo]
Inieitace CProssch: _l
[Cungranes
Foarakm
LA el

B e ook 411
Bl Arusgsis wWizmd W1 1
B Documentabion ¥4 5

o _ oo | e

Figure 4-32. Editing "Directories" configuration

Objecteering/UML Modeler User Guide 4-63

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "Directories" set: Description

The ... field or button allows you to ...

Root directory for generation | give the path of the root directory in which the generation
(GenRoot) of modules will happen. This path is memorized in the
GenRoot variable, which is used to construct different sub-
directories for the different types of generation, for example
$(GenRoot) for the generation of C++ files.

Note: The J "Browse" icon is used to open a file browser, making it easier for
you to specify directory and/or file names and path.

4-64 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The "UML Profiles" set

This dialog box (shown in Figure 4-33) allows you to define the UML profile used
by the UML Modeler interface and the UML profile used to start and stop
Objecteering/UML.

EH-:-l]l:.lnu canliguatan

LKL, pacilax
B L Hiakds Priodie usesd brs thes L L Modieded mieilsce
Infmince |wyﬂimnulr'w-'.lH"\Hul-’l'\-rll.l-ll'.m-l'i'“l.'\blﬂ.‘l.nl
[l
Diascizsar D el il wsagd by ehad el o Obpacisssng
Foavin |dru=m-n.-

B wiomde Took W10
B Ay Wizard VI
B Dvaiarenatnn vl 5

e | e | e

Figure 4-33. Editing "UML profiles" configuration

The "UML Profiles" set: Description

The ... field or button isusedto ...

Profile used by the UML contain the rule for calculating diagram names by default.
Modeler interface

Define profile used to start and | Indicate the profile used to start and stop
stop Objecteering. Objecteering/UML.

Objecteering/UML Modeler User Guide 4-65

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Using the search function

Launching the search function

To open the "Search" window and launch a search, the user has three
possibilities:

¢ using the "Edit/Search” menu (as shown in Figure 4-34)
¢ clicking on the M "Search" icon in the Objecteering/UML toolbar

¢ pressing CTRL F, either from a specific element or from anywhere within
Objecteering/UML (for further information on keyboard shortcuts, please refer
to the "Shortcuts" section in the current chapter of this user guide)

Figure 4-34 illustrates the first of these methods.

|- T R
D fl e [k Qe wees T
. 1% o fOm R » w
o D
B 1 ta ke, &
(5) Lo Ehiel B
5 [- . Py
|_.| Ll M =
2 Lo e b v | rareng o
| c— |
B3
= M g [S 1] EJ
" Upap gesn el
= Mty A4 5
= Casrpeat :
-
g =
| :

Figure 4-34. Launching the "Search" window through the "Edit/Search" menu

Steps:

1 - Click on the "Edit" menu and select the "Search..." command.

4-66 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Simple search mode

The Objecteering/UML search function operates in two different modes, simple
and advanced.

The simple search mode allows you to search for expressions, with or without
distinguishing between uppercase and lowercase characters. You can specify
whether you want to search for elements which begin or end with the expression,
which contain the expression or which exactly match the expression.

Searches are launched from either a particular element or from the predominant
Objecteering/UML structure according to which Objecteering/UML tool you are
using (a model when using Objecteering/UML Modeler or a metamodel when
using Objecteering/UML Profile Builder).

The simple search mode uses the "Search" window shown in Figure 4-35.

1

4 famch op ||'m.u-.- El T il =

3 Sk [N |wm| ;'l Stwp by xiep pamch IS

L Sawch i |" i ;I defomricad =5 —
Saarch Cloas Heip

Figure 4-35. The "Search" window in simple mode

Objecteering/UML Modeler User Guide 4-67

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Key:

1-

2 -

3-

The "Find" field is where you should enter the expression you wish to search
for.

The "Search options" field is used to select a search option, from "Contains",
"Begins with...", "Ends with..." and "Matches exactly".

The "Search from" field is used to indicate where you wish to search from
(either the current element, the model or the metamodel). If you want to
search from a particular element, you can drag it directly into the "Search from"
zone.

The "Search in" field is used to indicate where you wish to search. In simple
mode, this field is not accessible and is automatically set to "Model".

The "Case sensitive" tickbox is used to indicate whether or not your search
should distinguish between uppercase and lowercase characters.

The "Step by step search" tickbox, when checked, lets you jump from the first
instance of the element searched for to the second to the third, and so on.

The "Advanced>>" key is used to switch to the advanced search mode,
thereby extending the "Search box" and making additional fields available.

The "Search from" field

The "Search from" field in the "Search" window is used to indicate where you wish
to run your search from (a particular element, the model or the metamodel).

To
¢

L4

4-68

run your search from a particular element, you have two options:

If the "Search" window is not open, select the element and press CTRL F. The
"Search" window then appears, with the selected element appearing
automatically in the "Search from" field.

If the "Search" window is already open, select the element, drag it to the
"Search" window and drop it in the "Search from" field.

Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Example of a simple search
Figure 4-36 provides an example of a simple search for the expression "Training"

in the model.

Ihmsismura LML Uadeen - ey pnhem ple wch

h B Trarrgpctem
fs| = =

o B F

: Nl = R { 1urang

—% i Samch Er = Cane prmllies

q L -...i. e [uces =] Fing b shey) pesmch
= | =]
":L | Smwchm 1' . j Agegrred i
o

) A i 3 =
—liﬂ —. Fabely | Chars | Hlps I

Figure 4-36. Carrying out a simple search

Steps:
1- Click on the M "Search" icon to open the "Search" box.
2 - Enter the expression you want to search for, in our example "Training".

3 - Choose your search option mode ("Contains”, "Begins with...", "Ends with..."

"Matches exactly"), in our example "Contains".
4 - Choose where you want your search to be carried out.
5 - Click on "Search" to launch the search operation.

Objecteering/UML Modeler User Guide

4-69

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

For our model, the following results are obtained (Figure 4-37).

E]:'i-l-:llrl b i il E

Expesssion ssanched fochaming

[EF Rendts mmodel

Trairwgtd aragenment: TrarmngSeson: hardgE valalion
Tiaiwsgd sragenienl: TrarngSenn
Tiareg srsgenenl

Tiarwng rarnglalarda

Traring. . T isrroM arsges

Trarirng : ResponsbleF o T rsinng
Tramirg

Readis i disgams

Rlesults i Mobes - Constraints

ok |:=_r-=d|

Figure 4-37. Search results

@O mE

Results are shown with their associated icon, indicating the type of element
concerned (package, class, operation, and so on).

Note: If we had checked the "Case sensitive" tickbox when searching for

"Training", the "trainingEvaluation" operation and the "trainingCalendar"
class would not have figured in the "Search results" window.

4-70 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

If you double-click on a search result, you automatically jump to the element
concerned (as shown in Figure 4-38).

m.rul:.u-:h T B
E spaecsior seamhesd b rasing
1=l Faguly m mods
P - Trminngi anagasmant: Tosinioghasson: kamingE valision
E Tisrergh snagaiend . Tisrrgaazoen
Sl - TisningM snagemen
g .:.:::: ;:t‘tlz m'llllr:-.ll:l:'l'l:|-'||lll| Hodaker - TiammgS el
o © OCCEENEEIEEE e ES Y Gash Lok Wiedwe 3
e DEe s @@da o
Feaulls o Kisbis - Conslidind
& Tramings pstem
-] Trainirng
: i o
= — 1) a Tranarsgd snage
E haiwrglslends

Lu]bth FeaparadibbeF o T i
ﬁ:ﬁn:unr.'l T rairingsS exyior:
E-EY Twsrirghtansgeren
B =] TiarrngSesion

o o B EEEC D

Figure 4-38. Jumping to elements from the "Search results" window

Steps:
1 - In the "Search results" window, select the element you wish to jump to.
2 - The focus then shifts to the requested element.

Objecteering/UML Modeler User Guide 4-71

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Advanced search mode

As previously explained, the Objecteering/UML search function operates in two
different modes, simple and advanced.

The advanced search mode uses the same "Search" window as the simple mode,
but with a certain number of additional fields (as shown in Figure 4-39). To pass
to advanced mode from simple mode, you should simply click on the
"Advanced>>" button.

In the advanced mode, you have access to the same fields as with the simple
mode, and you can also specify whether you want to run your search in the model,
in notes and constraints, in diagrams or in all of the above. It is also possible to
indicate the type of element you want to search for and define a filter condition
using the J language.

Firet |
Saarrh oplion { Cordan =] Caaw semiitten r
Zaarch hiom |M:-de| _ﬂ Stepby sepemach
Seachirc | Hockd = Jirbesnced £
2 Elemant pa: | Clszr j
3. | J W eondilion: |
Semrch | Chses | Help |

Figure 4-39. The "Search" window in advanced mode

4-72 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Key:

1- The "Search in" field (which is visible but not accessible in simple mode) is
used to indicate whether you wish to search in the model, in notes and
constraints, in diagrams or all of the above. If you select a search in diagrams
or in notes and constraints, certain additional fields appear (please see below
for more details).

2 - The "Element type" field is used to indicate the type of element you wish to
search for. The available types depend on the type of search to be carried
out.

3 - The "J filter condition” field is used to enter a J expression (which will return a
boolean) which will be used to filter all those elements found. If this
expression returns true, the element is retained. Otherwise, it is deleted from
the results list.

Objecteering/UML Modeler User Guide 4-73

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Different types of search in advanced mode

In advanced mode, the following types of search are available with the
Objecteering/UML search facility:

¢ search in the model (select "Model" in the "Search in" field of the "Search"
window)

+ search in notes and constraints (select "Notes and constraints” in the "Search
in" field of the "Search" window)

¢ search in diagrams (select "Diagrams" in the "Search in" field of the "Search"
window)

+ search in all of the above (select "All" in the "Search in" field of the "Search"
window)

4-74 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Searching in the model

Running a search in the model allows you to browse the elements which figure in
the model, in view of selecting them in an explorer. The elements found
correspond to model or metamodel elements.

To run a search for an expression in the model, you should simply carry out the
steps shown in Figure 4-40.

Firid |r|.lr\.|1-:
5 emch opbon [Contans =] o B r
Spach fen | Mods =] Stepbwstepseach [
Smmchin | Hodel =] [—
2L Flemerd yps ||'|.-|-- =
J Rt il |
| —Ii Smmch | Chss | Hedp |

Figure 4-40. Searching in the model

Steps:

1 - After defining the expression you wish to find, as well as your search option
and where you wish to search from, select "Model" in the "Search in" field.

2 - In the "Element type" field, select the element type you want to search for (in
our example, we have indicated that we want to search for classes only).

3 - Click on "Search" to run the search.

Objecteering/UML Modeler User Guide 4-75

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Searching in notes and constraints

Running a search in notes and constraints allows you to browse textual elements
and search inside notes and constraints.

To run a search for an expression in the model, you should simply carry out the
steps shown in Figure 4-41.

Fud Illl-n;
REET S rl:-i-. = I eereiren w
bt . bt -] Sepympmms T |
] | Moy e oty = Sl ;
e i by II'.l-gl- _"I
= TR U [rrr—
i : : T — it
El i T
i srTed —_
Saah [hrs i ki
|] o= | R

Figure 4-41. Searching in notes and constraints

4-76 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:

1 - After defining the expression you wish to find, as well as your search option
and where you wish to search from, select "Notes and constraints" in the
"Search in" field. This action opens the "Parent type" and "Type" fields (see
step 3).

2 - In the "Parent type" field, select the type of the parent element inside which
you want to search notes and constraints (in our example, we have indicated
that we want to search notes and constraints belonging to packages).

3 - Click on the _I "Browse" icon to the right of the "Type" field. This opens the
"Available types" window.

4 - In the "Available types" window, select the types of note or constraint you wish
to search. The two icons on the right of this window are used to select or
unselect all the proposed types.

5 - Click on "OK" to confirm (the selected note and constraint types then appear in
the "Type" field) and then click on "Search" to run your search.

Objecteering/UML Modeler User Guide 4-77

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Searching in diagrams

Running a search in diagrams allows you to only search for the required
expression within the diagrams which exist within your UML modeling or profiling

project.

To run a search for an expression in diagrams, you should simply carry out the

steps shown in Figure 4-42.

TaE S ™

e v 1 |

ol | T

i [o i =l

rarh e Mk)
e 1] | il i'n =
= =i { Chemr H
b e Fl g I"'l'-':i.]:-ﬂd’-

E :

. LT T

rracilbmscsran]s

el g

E el iiram
Ty
el B

LS ST

Figure 4-42. Searching in diagrams

4-78

Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Steps:

1 - After defining the expression you wish to find, as well as your search option
and where you wish to search from, select "Diagrams" in the "Search in" field.
This action opens the "Diagram type" field (see step 3).

2 - In the "Element type" field, select the element type you want to search for (in
our example, we have indicated that we want to search for classes only).

3 - Click on the J "Browse" icon to the right of the "Diagram type" field. This
opens the "Available types" window.

4 - In the "Available types" window, select the types of diagram inside which you
want to search for your expression. The two icons on the right of this window
are used to select or unselect all the proposed diagram types.

5- Click on "OK" to confirm (the selected diagram types then appear in the
"Diagram type" field) and then click on "Search" to run your search.

Objecteering/UML Modeler User Guide 4-79

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Searching in the model, notes, constraints and diagrams

To run a search in the model, notes, constraints and diagrams, simply carry out
the steps shown in Figure 4-43.

Finat |'l-'lh.'

Smanch ophiorc |I.'l:r~'-:-r-: j b paride r

ek o | okl =1 Siep by dep semch [
N Gechin a1 =l Bdvanced 2

J e conedbion: [

-'—|7 Saach | Charn | Haip |

Figure 4-43. The "All" option in the "Search in" field

Steps:

1 - After defining the expression you wish to find, as well as your search option
and where you wish to search from, select "All" in the "Search in" field.

2 - Click on "Search" to run the search.

Note: This type of search can be time-consuming, as it combines the three
previously discussed types of search.

4-80 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Example of an advanced search

Figure 4-44 provides an example of an advanced search for representations of the
"ResponsibleForTraining" class in diagrams.

e Find |Hl:wﬁﬂl|"wf|-n;
. Sasrh opiion | Contara -] Cabe s r
j Shep by Hep teassh I
s Geschin | Disgrars = Bdvanced o2
4 Elemert iy EX =]
5 D ingeam tpper 42 |
J W coavdlion |

o "| u=-| H-lpl

Figure 4-44. Carrying out a search in advanced mode

Steps:

1- Enter the name of the element you wish to search for, in this case, the
"ResponsibleForTraining" class.

2 - Click on the "Advanced>>" button to access the advanced search mode.
3 - Select "Diagrams" in the "Search in" field.

4 - Choose the type of element you wish to search for in the "Element type" field.
In this case, we have specified that we are searching for a class.

5 - If necessary, define the different types of diagram you wish to search. In our
example, we have chosen to search all types of diagram.

6 - Click on the "Search" button to run the search.

Objecteering/UML Modeler User Guide 4-81

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The result of this search is shown in Figure 4-45 below.

Emmeassion seanched forF espormsbleF o Tranng

i~ Flesuks in model
B Ry in diagrans

i s Tianirghl anagenent Traimingsanagement class diagram [1] [Trmning A espormibleFo T
- s Tianiry: Teaning deplouneest dagram 311 T raiing; AesporableF orTiening)

Toasniray: Teanning clas: dagiam 1] |- Traiving ResponsbletorTramiag)

Fesuls in Moles - Conshaints

4 | B

x| G|

Figure 4-45. The results of the search

4-82 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Read-only mode

Graphic representation of read-only elements

Read-only elements are displayed differently from read-write elements in the
explorer, the properties editor and graphic editors. Where a module, for example
the Objecteering/Multi-user module, has been registered as the module which
manages the read-only mode, elements in read-only mode, i.e. those elements
which may not be modified, are shown with the & icon superimposed over the
icon representing the element in question.

However, where no module has been designated as the module which manages
the read-only mode, modifiable elements are shown with the * icon superimposed
over the icon representing the element in question. This is only the case at UML
profiling project level.

Note 1: The read-only mode on links in graphic editors is not graphically
represented. The same is true for attributes, operations, attribute links and
attribute roles, since the information is already graphically represented on
the class or the instance.

Note 2: There is no graphic representation of the read-only mode in state
diagrams, since they are associated with state machines. If state
machines are in read-only mode, all elements which compose them are
also in read-only mode.

Objecteering/UML Modeler User Guide 4-83

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Handling elements and the read-only mode

Elements in read-only mode cannot trigger operations, for example, delete, cut or
move, which are likely to modify either themselves and/or their components, and
when model elements are put in read only mode, certain operations are no longer
possible on the element(s) in question. For example, new sub-elements may only
be created on an element in read-write mode. By default, all new elements are
created in read-write mode.

To destroy a model element, both the element and its components must be in
read-write mode.

As regards paste operations, all pasted elements are created in read-write mode,
regardless of their state when cut or copied. The same is true for drag and drop
operations.

Imported items are all created in read-write mode.

In Objecteering/UML's explorer, properties editor and graphic editors, several
operations which are likely to modify the model are normally available via the
menu, icons in the tool bar, context menus and creation palettes.

When the read-only mode has been activated, the following changes take place,
with regard to the above possibilities:

¢ menu items which are no longer available are grayed out

¢ icons in the tool bar are deactivated

¢ context menu items are filtered, and only available menu items appear

¢ icons in the creation palette which are no longer available are grayed out

4-84 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Links and the read-only mode

The addition or deletion of links on elements in read-only mode depends on the
nature of the link in question. If the link is oriented (as shown in Figure 4-46), it
can only be added or deleted if the origin element is in read-write mode, whilst the
mode of the destination element is of no importance.

Figure 4-46. Adding an oriented link

The "Classl" class is in read-write mode, and it is, therefore, possible to add a
dependency oriented from the "Class1" class towards the "Class2" class. The fact
that "Class2" is in read-only mode has no impact on the addition of the
dependency.

However, in order to add or delete a non-oriented link (as shown in Figure 4-47),
all elements which feature in the link must be in read-write mode.

—
r] —
~ .

¢ 5
% LzElagel
) ()

ey -

Actard e =7

Figure 4-47. Adding a non-oriented link

Neither the actor nor the use case are in read-only mode, therefore a non-oriented
communication link can be added.

Objecteering/UML Modeler User Guide 4-85

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Locally annotating read-only elements

Elements in read-only mode can be annotated using local tagged values and local
notes. These local tagged values and local notes can be seen in the "ltems" tab

of the properties editor. They are represented by the I_—b| icon for local notes and

the icon for local tagged values. This graphic representation is very similar to
that of classic tagged values and notes, the only difference being that their
illustrations are shown in yellow.

Handling local tagged values and local notes

Local tagged values and local notes are subject to certain constraints in terms of
their handling. Furthermore, they behave in a particular way when the elements
they annotate are handled.

Local tagged values and local notes cannot be copied, pasted, moved or
destroyed by the user. However, if the element they annotate is destroyed, they
are automatically destroyed.

If an element is copied or imported, any local tagged values or local notes
annotating the element in question are not carried over to the newly created
element.

If an element is moved, any local tagged values or local notes annotating the
element in question are also moved.

4-86 Objecteering/UML Modeler User Guide

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

Shortcuts

The following keyboard shortcuts are available in Objecteering/UML:

The ... shortcut available in... isusedto ...

Ctrl A graphic editors select all elements in the graphic
editor.

Ctrl C explorer copy the selected element.

Ctrl D explorer move the selected element
down one level.

Ctrl E graphic editors show the contents of the
selected element.

Ctrl F graphic editors and explorers launch the search function.

Ctrl G graphic editors copy the graph image.

Ctrl | graphic editors reset the zoom function.

Ctrl K main window clear the contents of the
console.

Ctrl L graphic editors show links on the selected
element.

Ctrl M graphic editors mask the selected element.

Ctrl N main window create a new UML modeling
project.

Ctrl O main window open an existing UML modeling
project.

Ctrl P graphic editors print the current diagram.

Ctrl R graphic editors mask the contents of the

selected element.

Ctrl S graphic editors and explorers carry out a save operation.

Objecteering/UML Modeler User Guide 4-87

Chapter 4: Functions of Objecteering/UML Modeler - Detailed View

The ... shortcut available in... is used to ...

CtrlU explorer move the selected element up
one level.

Ctrl vV explorer paste the selected element.

Ctrl X explorer cut the selected element.

Ctrl Y graphic editors and explorers redo the last cancelled
operation.

Ctrl Z graphic editors and explorers undo the last operation carried
out.

+ graphic editors zoom in on a diagram.

graphic editors

zoom out of a diagram.

4-88

Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General
Principles

Chapter 5: Graphic Editors - General Principles

Overview of the Objecteering/UML graphic editors

Introduction

Graphic editors are used to view and work with diagrams. They are also used to
create and modify elements represented in the diagram.

Several types of diagram exist. In the 5.2.2 version of Objecteering/UML, the
following types of diagram are supported:

¢ Activity diagrams: The activity diagram graphically illustrates activity graphs,
which show a procedure or a workflow.

¢ Class diagrams: The class diagram allows you to present the internal structure
of an element and its relationships with other elements.

¢ Collaboration diagrams: The collaboration diagram allows you to present
exchanges of messages between roles.

¢+ Deployment diagrams: The deployment diagram is used to represent the
physical architecture of the system.

+ Deployment instance diagrams: The deployment instance diagram is used to
present a particular instance of deployment.

¢ Object diagrams: The object diagram is used to present a set of class
instances with their links and the messages exchanged.

¢ Sequence diagrams: The sequence diagram is used to show how different
objects cooperate.

¢ State diagrams: The state diagram allows you to describe the manner in which
objects react to events.

¢ Use case diagrams: The use case diagram allows you to describe the most
important services rendered by the system.

Objecteering/UML allows the creation of several diagrams of the same type on the
same element. For example, several class diagrams can exist on the same
package. We then talk of different views on the same model.

The graphic editors, the properties editor and the explorer allow the same model
elements to be manipulated, created, modified and activated. Consistency is
always maintained.

Every element is presented in the explorer, whereas in a diagram, only elements
which a designer decides to present appear.

Objecteering/UML Modeler User Guide 5-3

Chapter 5: Graphic Editors - General Principles

Editing window

Figure 5-1 below shows a class diagram.

Class deageam - CLASS Class_sialc] - Update

L =
i =
0 Moty
@z Conguk
] A gt Tase »
e S B D
b Iy Lapandt
3 i 4
5
T =
= A [+
Figure 5-1. A class diagram
Key:

1 - Creation icon palette, where model elements to be created are selected.
2 - Diagram, which is the drawing area.

3 - Pop-up menu, which gives the functions possible on the diagram.
Menus and tool bar icons can also be used in graphic editors.

Note: If you are using modules which manage the read-only mode, certain
elements in the explorer may be displayed with the & icon superimposed
over the icon representing the element itself. This icon indicates that
these items may not be modified. For further information on the read-only
mode, please refer to the Objecteering/UML Teamwork User Guide.

5-4 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Principal functions

Graphic editors allow you to:
create or destroy elements
modify or visualize elements
move and lay out elements
mask or unmask elements
activate generation on elements
navigate between diagrams

change the presentation of elements (size, color, icons, etc)

* & & & & o o o

print or copy paste the diagram to the environment (external tools such as
Word, etc.)

Launching a graphic editor

When a new UML modeling project is created, a class diagram is automatically
created and opened.

A diagram is opened in a graphic editor by:

+ double-clicking on the name of an existing diagram in the "Diagrams" tab of the
properties editor

¢ creating a diagram for an element, by clicking on the creation button in the
"Diagrams" tab of the properties editor

Objecteering/UML Modeler User Guide 5-5

Chapter 5: Graphic Editors - General Principles

Creating a graphic element

Graphic object categories
The graphic objects which correspond to the editor icons are as follows:
¢ boxes (packages, classes, instances, states, use cases, actors)

+ links (associations, generalizations, uses, data flows, sequence messages,
control transitions, trigger transitions, events, signals, co-operations,
dependencies)

Creating several elements of the same kind

Very often, there is a need to create several different occurrences of the same
kind of element.

For example, you may want to create several or several associations. The
"CTRL" key, pressed during the selection of the creation icon, will activate the
repeated entry system (as shown in Figure 5-2). Double-clicking on the icon has
the same effect.

Class disgram - CLASS Class_staticl - Updsie

fz 2
=
& T Classl |
i !
(2]
Py Class3 .
“P E
-3
T
L B
- 1l Lo

Figure 5-2. Creating several classes using the repeated entry system

5-6 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Creating a box
To create a box:
1 - Click on the icon which corresponds to the type of element desired.
2 - Click in the graphic zone at the point where you wish to create the element.
3 - Enter the name directly in the highlighted zone.
A new element is then created at the selected location.

Example: Creating a class in a class diagram

To create a class in an editor, proceed as shown in Figure 5-3:

Dlags daagrsem - LLASS Llass stabel - Uy
L
-
-l Ciasd
(5
]
=B
Gt]

Figure 5-3. Creating a class

Steps:

1 - Click on the g "Create a class" button.

2 - Click in the diagram at the point where you wish to position the class, and

enter the name directly in the highlighted text zone (which proposes the
element name by default).

Objecteering/UML Modeler User Guide 5-7

Chapter 5: Graphic Editors - General Principles

Creating a link

5-8

To create a link, carry out the following steps:
1 - Click on the icon which corresponds to the type of link desired.

2 - Click on the two elements between which you wish to create the link, in "origin
- destination” order.

3 - Anew link is created at the selected location.
Note: You can modify the values of this link directly in the diagram, or by double-

clicking, an operation which will open the link modification entry box
(Figure 5-4).

Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Example: Creating an association between two classes

We will now create an association between the "Class" class and the "Class1"
class (as shown in Figure 5-4).

Clazs diasgram - CLASS Class_stabic] - Update

Figure 5-4. Creating an association between two classes

Steps :

1 - Click on the [1! "Create an association" button.
2 - Click on the start class.
3 - Click on the destination class.

Note: By default, the association will contain 0..* quantity values.

Objecteering/UML Modeler User Guide 5-9

Chapter 5: Graphic Editors - General Principles

Modifying a link's values in a graphic editor

A link's values can be changed by editing the "Link" dialog box, or by directly
entering over its values (as shown in Figure 5-5).

Llags dhagiam - LLAGS Llags stabic] - Updale

E =8
|] 1
o | Class ved Class]
—]
FH Fald 2.t
1. and 3
en |y
Figure 5-5. Direct modification of an association's values
Steps:

1 - Select the link.

2 - Click once again on the link to make all the labels appear (including those
which are empty).

3 - Highlight the association's value.
4 - Enter the new value directly over the highlighted zone.

5-10 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Creating links

Different tracing of links
A link may be drawn in several different ways:
+ orthogonal, which is a link containing one or more right angles
+ free, which is a link presented in the manner of the user's choice

+ shared target, which is a rake bar link, principally used in generalization

The choice of link affects the clarity of the diagram.

Color presentation of links

With Objecteering/UML, it is possible to present aspects of your diagram in

different colors, through the "Graph/Resources" menu or the @ "Resources"
icon. For more information on this feature, please refer to the "The "Graph" menu"
section in chapter 6 of this user guide.

Objecteering/UML Modeler User Guide 5-11

Chapter 5: Graphic Editors - General Principles

Drawing an orthogonal link

By default, the drawing of links is always free. To modify this tracing, use the
"Shift" button as shown in the following steps (as shown in Figure 5-6).

Class diagram - CLASS Class static] - Lpdsbe

| ¥

HpY om=

-
v

s
=
E -

1 1

Figure 5-6. Drawing an association between two classes in orthogonal mode

Steps:
1 - Click on the 1 "Create an association" button.
2 - Select the start class.

3 - Holding down the "Shift" button, draw your link, with desired control points, and
click on the destination class.

5-12 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Redrawing links

Moving a link

To move a link, simply click on the link in question, whilst at the same time holding
down the left mouse button. Move the link to the desired point, and then release
the mouse button. The link has been moved to its new position.

If you wish to alter the form of a link, be it an orthogonal or a free link, simply click
on the desired point of the link whilst holding down the "Ctrl" key, and drag the
point to the new desired position. If the link is free, acute angles will be produced.
Conversely, if the link is orthogonal and this operation is carried out, the link will be
shown in its new form, but only using right angles.

Moving a link end

To move a link end, simply click on the left mouse button over the link end which
you wish to move, and drag it to the new link end point. When you release the left
mouse button, the link end is repositioned. This procedure can be carried out for
either the starting point of the link or its end point.

Objecteering/UML Modeler User Guide 5-13

Chapter 5: Graphic Editors - General Principles

Redefining a free link in orthogonal mode

The context menu on a link which is obtained by clicking on the right mouse button

allows you to modify a link's drawn line. The starting point is automatically
selected.

Select the link by clicking on the right mouse button and choose the "Redraw Link"

option in the context menu. Continue with the operations represented in Figure
5-7.

Clazs diagrasms - CLASS Class_stabic] - Update

Figure 5-7. Redefining a free link in orthogonal mode

Steps:

1 - Holding down the "Shift" key, click on the left mouse button, to fix the different
control points between the two elements.

2 - Click on the destination element using the left mouse button, to finish the
redefinition link.

5-14 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Redefining a free link in free mode

By default, the creation of a link between two elements is in free mode. However,
this link can be modified by adding several control points between these two
elements (Figure 5-8).

Select the link by clicking on the right mouse button, then select the "Redraw Link"
option, and finally continue with the operations represented in Figure 5-8 below.

Clazs diagram - CLASS Class_slatic] - Updakte

Figure 5-8. Redefining a free link in free mode between two classes

Steps:

1- Using the left mouse button, click on the different locations to position the
control points.

2 - Click on the destination element to finish the link.
Note: Control points can be moved. To do this, simply select the link by clicking
on the right mouse button, and then select a point, holding down the left

mouse button, and move it. When you release the left mouse button, the
control point is frozen.

Objecteering/UML Modeler User Guide 5-15

Chapter 5: Graphic Editors - General Principles

If you wish to undo control points:

1 - Select the link using the right mouse button by choosing the link redefinition
option.

2 - Using the left mouse button, click directly over the destination class.
The control points no longer exist.

It is also possible to modify a straight link, by holding down the "Ctrl" button and
then clicking on the link, and dragging it into an acute angle as desired. Control
points are thus added.

5-16 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Handling graphic elements

Mouse - lllustration

1] Left mouse button
Mickile rmouse button

Right mouae Bulton

Figure 5-9. A mouse with three buttons

The ... button | is usedto ...

left designate, modify, move and resize elements, directly select, and
redefine the tracing of a link.

middle activate the redefinition of a link.

right activate the context menus on the selected element.

left double click activate the entry window of the element.

Note: For mice with only two buttons, clicking on both mouse buttons
simultaneously corresponds to clicking on the middle button.

Objecteering/UML Modeler User Guide 5-17

Chapter 5: Graphic Editors - General Principles

Selecting an element

An element, designated by the pointer, is selected by clicking on the left mouse
button.

Selecting several elements
To select several elements, there are two possibilities:
1 - Hold down the "Shift" button and select the different elements.

2 - Select elements by clicking in the graphic zone, and then move the mouse,
whilst holding down the left mouse button and drawing a rectangle round the
elements. A dotted rectangle surrounds the selected elements. The selection
is made when the left mouse button is released. Each selected element then
appears with control points.

Moving an element

An element can be moved, by selecting the said element by holding down the left
mouse button, and by moving the selected object to the desired position.

Result: The position of the object is visualized while it is being moved.

Dependencies (associations, generalizations, etc.) graphically "follow" the object
moved.

5-18 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Using the "Grab" function

The "Grab" function is used in Objecteering/UML to move the entire contents of a
diagram within a graphic editor, without having to select each element.

To use the "Grab" function, simply carry out the following steps:
1 - Select one of the elements in the graphic editor.

1]
2 - Right-click, holding down the right mouse button until you see the small o
hand icon appear.

Note: Don't forget that if you right-click and do not hold down the mouse button,
a context menu will appear.

H
3 - Still holding down the right mouse button, drag the it hand within the graphic

editor. The entire contents of the diagram are then moved to wherever you
move them.

Objecteering/UML Modeler User Guide 5-19

Chapter 5: Graphic Editors - General Principles

Re-sizing an element

Control points are used to re-size an object (Figure 5-10).

I

CLASS CLASS :
: CLASS

' I

L0 0 0

1. Select the cantral paint 2 Move the malse 2 Rekase the button
after salecting the elermert keaping the el
hutton pressed

Figure 5-10. The re-sizing of a class

5-20 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Modifying graphic elements

Procedure

If you wish to modify only the name of an element, you need simply highlight the
name of the element and directly enter the new name.

To modify the contents of an element, carry out the following steps:
1 - Select the element.

2 - Double-click on the element, select the "Modify" function in the pop-up menu,
by clicking on the right mouse button, or activate the "Edit/Modify" menu.

3 - Enter the modifications in the displayed dialog box.
4 - Confirm by clicking on "OK" or "Apply".

Note: If you click on "Apply", the element is updated, but the modification dialog
box remains active. It can be used to modify another selected element.

Objecteering/UML Modeler User Guide 5-21

Chapter 5: Graphic Editors - General Principles

Masking and showing elements

Presentation

It is possible to hide or reveal components or referenced elements in each
diagram.

Elements can be shown using the drag and drop function from the explorer to a
diagram (Figure 5-11). This function is used to show the desired elements (a
single class, for example).

The principle behind showing elements

By default, all elements of a diagram (i.e. all model elements that are part of the

diagram) are shown by clicking on the "= "Show contents” icon. To show only
certain selected elements, the drag and drop function from the explorer towards
the diagram is preferable.

5-22 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Showing using drag and drop from the explorer

We will now show the contents of a package using the drag and drop function (as
shown in Figure 5-11).

fe Ed fm Gaph Jock yindows
BB taBa -~ ELAfR,f@ded™ 5@

Fr
= P =
. 3 B Tarra Cloax diagp oo Traming asage_ ol
B] Liew
@ & 3
) A= -
H rhck Ferpmuichar| g L Reqansthle FarTraining
1 —y EeEen T e @
3 ﬁ! 3] h T imarargd srusgarnand [5]
=3 BB Traangisimon
= Eiuuﬂl :I E Texlnk
= Y ruirdaghlanager
L e
5
-

Figure 5-11. Showing classes using the drag and drop function

Steps:
1 - Select the elements to be shown and hold down the left mouse button.

2 - Holding down the left mouse button, drag the elements towards the diagram
editor.

Objecteering/UML Modeler User Guide 5-23

Chapter 5: Graphic Editors - General Principles

Showing links
To show links or parts of a model element, carry out the following steps:

1- Click on the origin element (that is to say, the element from which the link
stems), and click on the right mouse button. A context menu then appears.

2 - Select the "Show links" option from the context menu. The link then
reappears.

Masking an element
This function is used to mask elements of a diagram. To mask an element:
1 - Select the element(s) to be masked.

2 - Click on the o

"Mask" icon.

Note: Elements may also be masked by selecting the element in question,
clicking on the right mouse button to display the context menu and
selecting the "Mask" option.

5-24 Objecteering/UML Modeler User Guide

Chapter 5: Graphic Editors - General Principles

Context menus for a diagram

Activating a context menu
A context menu can be activated by:

¢ selecting an object with the right mouse button, in order to display the
corresponding menu, if it exists.

+ selecting an option in the displayed menu.

Deactivating a context menu

A menu on a selected element may be deactivated by clicking outside the menu.

Objecteering/UML Modeler User Guide 5-25

Chapter 5: Graphic Editors - General Principles

Context menu for a diagram

Clicking on the right mouse button in the background of a diagram displays the
following context menu (Figure 5-12).

Llags diagram - LLASS Analps] - Llazs] class diog
L
Moy
=T Conguk
&l &% Pint., ColP
Liswoet
--[
-3
Figure 5-12. Menu of a diagram
The ... command is used to
Modify edit the modification dialog box for a diagram.
Consult launch the modification dialog box for the diagram in read-
only mode.
Print... launch the diagram's print dialog box.
Layout modify the diagram layout.

5-26 Objecteering/UML Modeler User Guide

Chapter 6: Graphic Editors - Detailed
View

Chapter 6: Graphic Editors - Detailed View

Working with graphic elements

Modifying the size of elements

Diagram elements have a predefined size. The user may adjust this size, by using
graphic element selection. It is then possible to adjust their size to their contents
and to recover the pre-defined size. One or several elements can be adjusted at

the same time.
To adjust the size of a diagram, you need simply select one or several elements,

and then click on the == button (Figure 6-1).

Llass disgiam - PACEALE |ainingSpsbem_siahc] - pdabe
|
L /
_| B3 P —
| TraimingManager || TrisingSession
= [
. oy | AT |'I b T
! cotdleny
(= f Al
[e
b
-

Figure 6-1. Adjusting a class in the diagram

Steps:
1 - Select the classes.

2 - Click on the EB‘-'J "Resize" icon.

Objecteering/UML Modeler User Guide 6-3

Chapter 6: Graphic Editors - Detailed View
Using the zoom function in a diagram

+
Q The "Zoom forward" menu (shown in Figure 6-2) allows you to increase the
display of a diagram's contents, in order to make it easier to read.

Gk_ The "Zoom back" menu allows you to reduce the display of a diagram's
contents, in order to visualize a larger part of the presentation.

Aee M P EOCA e FeRRESYXR

Clary thagraes - FALFALE TriamagSyriom_slstec] Dipalat

]

En

i [] Traiainghlanages Trumingbrmias

= | T —

2 = calini

a2 st}

o o

B

&

—%

5.

Figure 6-2. The "Zoom forward" menu on a diagram

6-4 Objecteering/UML Modeler User Guide

Chapter 6: Graphic Editors - Detailed View
Printing a diagram

The '% "Print..." button edits the window used to print a diagram (as shown in
Figure 6-3). This includes a field which concerns "Printer parameterization”.

= Frirat =] E

Panlen parameters
— wagnx [02
|2:|:h11."| pags j Magn 'y 0=

Mumberof copies [1)
Frirt I Clase |

Figure 6-3. The "Print" dialog box

The ... field allows you to ...

Printer parameters choose the print format, margins and the number of copies

Note: By default, the OBJING_PRINTER environment variable is not set, and Ip
is used (the installation env.sh can be used to automatically set this
variable to this value). However, this variable can be set to Ip -c.

Objecteering/UML Modeler User Guide 6-5

Chapter 6: Graphic Editors - Detailed View

Saving a diagram in afile

To save a diagram in a file, follow the steps shown in Figure 6-5 below.

EI P —]] -

RE o R
Lo pmimagn Dbl -
== -
SRt
S R
L F |
o T Tees) Eowm | b
E rrd e A =TT
- o] bopsard
ﬂi =] ﬁ T il i |
=3 =R =R ekl
- @"'"
Trei gty
g ramn ||.l-iql = nars . I_ T
} _E: = T e |Gl: Lo Somren [pi ﬂ Carwel |
EE I Opews o pd-wiy
i e
Figure 6-5. Saving a diagram in a file
Steps:

1 - Click on the "View" menu and select the "Save as" option.

2 - Choose the physical location where your file will be recorded.
3 - Enter the name of your diagram.

4 - Click on the "Save" button.

6-6 Objecteering/UML Modeler User Guide

Chapter 6: Graphic Editors - Detailed View

Switching from an element in a diagram to the same element in the
explorer

It can be useful when working in a graphic editor to be able to switch back to a
specific element in the explorer, without having to manually select the explorer and
then the element concerned.

To do this, simply activate the context menu on the element in question in the
graphic editor and select the "Select in explorer" option. This action automatically
activates the explorer, displaying it in the foreground of the tool, and automatically
selects the element which was selected in the graphic editor.

Note 1:This function is only available on box elements (in other words, it is not
available on links).

Note 2: The highlight function only functions for the main explorer.

Objecteering/UML Modeler User Guide 6-7

Chapter 6: Graphic Editors - Detailed View

The "Modify" command on a diagram

The "Modify" command on a diagram

This command edits the modification dialog box, used to modify the selected
diagram (Figure 6-5). This dialog box is identical for a class diagram, a
deployment diagram, a deployment instance diagram, a collaboration diagram, an
activity diagram, a state diagram and an object diagram.

H Clazz Ijl-j!,.jrn

Properis:

Hﬂmleﬂu&ml

Hang |_ Trairinghd anagemmentS latic ClasaDiagram

[v Detaled vy
[~ Tapged wabus visbily

Stereolype display
|r‘ Hone!™ kenE Label

Honzonlal spacig | " 3..
Watlical spacing |_1 ..l

S & senaniyns
|-:rlur'-z'- =
o | e | om | e |

Figure 6-5. The "Class diagram" dialog box - Properties tab

6-8 Objecteering/UML Modeler User Guide

Chapter 6: Graphic Editors - Detailed View

The ... field or button

isusedto ...

Name

change the diagram's name.

Detailed visibility

display the visibility symbols (+,-,#) and the complete path
names (package:className) of the elements.

Tagged value visibility

make tagged values visible.

None not display stereotypes.
Icon display diagram elements by icon, if they are not expanded.
Label display diagram elements by label.

Horizontal spacing

configure the automatic positioning of the diagram.

Vertical spacing

configure the automatic positioning of the diagram.

OK confirm changes.

Close close the modification dialog box.

Help launch the on-line help concerning this dialog box.

Note: The addition of an element (for example, an operation or an attribute for a

class) to an icon redisplays it in the format of an element. The masking of
the contents of the element allows you to represent it using an icon.

The "Notes" tab of this dialog box allows you to add a note to a diagram. By
clicking on the "Add" button, the "Notes" entry dialog box is edited. Further details
on this dialog box are provided in the Objecteering/Model Dialog Boxes user
guide.

The "Tagged values" tab allows you to add a tagged value to a diagram. By
clicking on the "Add" button, the "Tagged values" entry dialog box is edited.
Further details on this dialog box are provided in the Objecteering/Model Dialog
Boxes user guide.

Objecteering/UML Modeler User Guide 6-9

Chapter 6: Graphic Editors - Detailed View

The "Modify" command on a sequence diagram

For sequence diagrams, this dialog box contains two extra elements with regard to
the class diagram modification dialog box:

+ the "Show focus of control" command, which deletes the focus representation
on the diagram

+ the "Show return messages" command, which deletes the representation of
return messages between two sequence objects on the diagram

The "Modify" command on a use case diagram

This "Modify" command on a use case diagram contains a field additional to the
class diagram's modification dialog box, namely the "Representation of the
"system boundary" " field. Use cases are surrounded by a frame which is deleted
when this command is deactivated.

6-10 Objecteering/UML Modeler User Guide

Context menu on a diagram element

Chapter 6: Graphic Editors - Detailed View

Context menu on a diagram element

The context menu on a diagram element changes according to the element in

question.

The ... command

isusedto ...

and can be activated on ...

consistency from the selected
element

Modify edit the modification dialog all existing elements, as well as
box their contents.
Consult edit the read-only dialog box | all existing elements, as well as
their contents.
Browse create an explorer from the a package, a class.
element or edit an explorer
from the element for reading
only
Check model manually check model a package, a class.

Wizards/Tools

runs the Process Wizard tool.
The Wizards / Tools ... menu
is different according to the
element on which the
command is run

all existing elements.

Resources edit the graphic resources of | all existing elements.
the element
Mask mask the selected element all existing elements.

Mask contents

mask an element's contents

all elements which can contain
other elements.

Show contents

show the contents of an
element

all elements which can contain
other elements.

Show links

show an element's existing
links

all elements which contain a link.

Objecteering/UML Modeler User Guide

6-11

Chapter 6: Graphic Editors - Detailed View

Note:

6-12

The ... command

isusedto ...

and can be activated on

Select in explorer

activate the explorer on the
model and select the element
corresponding to the selected
graphic element in the graphic
editor.

all existing box elements, but
not link elements.

Options

activate one of three possible
modes: detailed display mode,
visible tags mode and
stereotype display mode

all existing elements.

Automatic

display the attributes and
operations of a class or not,
according to the user's choice

classes.

the element in question.

Objecteering/UML Modeler User Guide

You can open an element's modification dialog box by double-clicking on

Chapter 6: Graphic Editors - Detailed View

Graphic representation of a context menu on a class

Figure 6-6 below illustrates the visualization of a context menu on a class.
Clicking on the right mouse button over the class in question activates this menu.

Llazs disgram - PALKALE | oaimengh pehem_ el
Lt
==
3 | 1 |
= [oy |
0 Congidk
Erowms..]
Whizaick: ! Took
¥
ZE
b Rasouwices
. Mack
- Mgk conterls Dl
Show conlenls ChisE
L Show jriks bl
Skl i splniet
Dgnons v
T
Audnimslic:

Figure 6-6. Context menu on a class in a diagram

Objecteering/UML Modeler User Guide 6-13

Chapter 6: Graphic Editors - Detailed View

The "Graph" menu

The "Resources" dialog box

The "Resources" option in the "Graph" menu opens the "Resources" dialog box
(shown in Figure 6-8). This option is used to change various visual aspects of the

diagram, notably:
+ the element font
+ the background and foreground colors

¢ the style and width of lines

H Hdhis cnd

foegond [s |

Backgpiound |

Fon | % Times New Roman = | Selact |
SN [=]

Lir: Siphe

oy | P

Figure 6-8. The "Resources" dialog box

6-14

Objecteering/UML Modeler User Guide

Chapter 6: Graphic Editors - Detailed View

The ... field displays ... which allows you to...
Name the window containing the list of | select a palette from the proposed
available palettes list.

Foreground the "Foreground" window choose a color for one or several
elements.

Background the "Background" window choose a background color for the
diagram.

Font the "Font Chooser" window choose the character style, the font
size and so on.

Pattern a context menu choose an element's pattern.

Line Style a context menu choose the style of line or elements'
surround desired.

Line width a context menu choose the width of line or elements’
surround for the selected elements.

Objecteering/UML Modeler User Guide

6-15

Chapter 6: Graphic Editors - Detailed View
The "Grid" dialog box

The "Graph" menu can be used to open the "Grid" dialog box (as shown in Figure
6-9). This dialog box is used to display a background grid in your diagram, which

will allow you to have marker points used to position elements in the
aforementioned diagram.

e M=l

Figure 6-9. The "Grid" dialog box

Key:

1- The "Spacing" field allows you to choose the horizontal and vertical spacing of
the lines in your grid.

2 - If the "Active" box is checked, elements are positioned on the grid lines.
3 - If the "Visible" box is checked, the grid is displayed in your diagram.

6-16 Objecteering/UML Modeler User Guide

The "Align" menu

Chapter 6: Graphic Editors - Detailed View

The ... command

is used to ...

Left

align the selected objects to the object furthest left.

Center vertically

vertically align the selected objects.

Right

align the selected objects to the object furthest right.

Up

align the selected objects to the object furthest up.

Center horizontally

horizontally align the selected objects.

Down

align the selected objects to the object furthest down.

Objecteering/UML Modeler User Guide 6-17

Chapter 6: Graphic Editors - Detailed View

The "Help" menu

The "2" (help) menu

The is used to ...
command
Help launch the on-line help.

General contents

open the "General contents" page of our on-line help. From this
page, you can select the module you require assistance with.

Search engine

launch the Objecteering/UML search engine, used to search for
information in the Objecteering/UML on-line documentation.

Volumes

select an on-line help volume. The volumes which figure in this list
are those which are most frequently present in an Objecteering/UML
configuration.

Objecteering
Software on the Web

access either the "Frequently Asked Questions" page, the
"Objecteering Software home page" or the "UML Open Edition home
page" on the Web.

What's new open a page, with information on the latest developments made to
your version of Objecteering/UML.
About provide general information on your version of Objecteering/UML.

6-18

Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Chapter 7: Specific graphic editors

Class diagram

Definition

% The class diagram (an example of which is shown in Figure 7-1) allows you
to present the internal structure of an element and its relationships with other
elements (referenced by it). Class diagrams can present the greatest variety of
elements.

The main elements presented in a class diagram are classes, packages,
associations, generalizations and dependencies.

A class diagram is created in a package, a sub-system or a class. For information
on the creation of a diagram, please refer to chapter 2 of this user guide.

Objecteering/UML Modeler User Guide 7-3

Chapter 7: Specific graphic editors

Example of a class diagram - packages and dependencies

Llass dbagiam - FALEALE | rarenghpzbem_glalic] - Dpdale
K| Emar |
am| —]
Ea
. Comirolle
=] !
-
= i —
5 -
II:t-ﬁgramEIm-:mg .
. : ; :
| & i
-3
0 CrofnesrFlernents o
ik GraphicsCore
4 > r
i s
i o
< | &
E WlotfCare
L WindowsCare
G
(=)

Figure 7-1. Class diagram of a package which contains several generalized packages and
associations

7-4 Objecteering/UML Modeler User Guide

Elements which

Chapter 7: Specific graphic editors

can be created or referenced

The ...icon

is used to create ...

a package

a sub-system

aclass

an interface class

a signal

(]| 1) <) () L) e

an attribute

=
|
-

an operation

an implementation link

1 I
1 1
1 1

i s =

a dependency

[P
i s

a throw or catch exception link

a generalization link

an association

an aggregation

an n-ary association

a class association

a dataflow

a constraint

BB]| H ¢ | 1] %

a note

Objecteering/UML Modeler User Guide

7-5

Chapter 7: Specific graphic editors

Cl

ass diagram - Behavior of graphic elements

Expanding elements in a class diagram

7-6

Certain graphic elements can be represented in two ways, summarized and
developed. This is the case for classes, whose members can either be presented
or not, and for packages, which can either present the elements they contain or
not. The expansion of an element transforms a non-developed (summarized)
representation into a developed representation.

Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Example: expanding a package

The example below (Figure 7-2) presents packages which contain a set of
elements (classes, links, etc.). We are going to expand a package which contains
several classes. The unmasking function will be accessed through the context
menu applied to the element.

Dhans thagiam - PACEAGE [Asabeis) - MewPiosol ¢
[
Ea .
1
Ij Furk
Ptk

| |
0 oy

Camguit
&= — Brene 3
L ek, radel
E ‘i Tk "
s Bl Wizad
~h @' Asaciscar
i, |
j & Wk

Mk cordenis CakA
o S . Okl
i Spmzi npplan

["

Figure 7-2. Expanding a package in a class diagram

Steps:

1 - Select a package containing several classes, by clicking on the right mouse
button.

2 - Select the "Show contents" option in the element's context menu.

Conversely, an element can be downsized by using the "Mask contents" option in
the context menu applied to the element in question.

Objecteering/UML Modeler User Guide 7-7

Chapter 7: Specific graphic editors

Creating a sub-system in a class diagram

A sub-system is a kind of package, stereotyped <<sub-system>>, which
represents an independent part of the system being modeled. Sub-systems
represent an important aspect of the component-based approach.

To create a sub-system in a class diagram, following the steps shown below
(Figure 7-3):

Class diagram - PACKAGE [Analpsiz] - Ne

i
B2
11—
=
2
B4 |
= << gnbsysteme=
ol b subaystem]
-k
-
N

Figure 7-3. Creating a sub-system in a class diagram

Steps:

1- Click on the "Create a subsystem" icon.

2 - Click in the diagram at the point where you wish to position your sub-system.

Note: As you can see, a sub-system is simply a package stereotyped
<<subsystem>>.

7-8 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Creating a class association

A class association is a class which relates other classes, and is both a class and
an association (see also the ClassAssociation metaclass). A class association is
a component of an association. For further information on this class, please refer
to the Objecteering/Model Dialog Boxes user guide.

The example below (Figure 7-4) presents the creation of a class association
between two classes.

N S
-
r mpbager Job employee | Pomam
0.1 *
|l;_'|:|rrg:||:|.w_|,- employer Job employe® | Peggon
0.1 '
. B9 Jody

Company |mploye Job employes | Persn
0.1 -

=

Figure 7-4. Creating a class association

Objecteering/UML Modeler User Guide 7-9

Chapter 7: Specific graphic editors

Steps:
1 - Create an association between the "Company" class and the "Person" class,

by clicking on the ~ 1 "Create an association" button, and then clicking on the
origin class and the destination class. The link then appears.

2 - Create the class which will serve as class association, by clicking on the g
"Create a class" button.

L)
3 - Create the class association, by clicking on the 'F"Create a class
association" button, clicking on the class and then on the original association
between the two original classes.

7-10 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Throwing and catching exceptions

[]
In Objecteering/UML, exceptions are represented by signals. The e ("Throw or
catch an exception") icon is used, as its name suggests, to create use links
stereotyped <<throw>> or <<catch>> between operations and signals.

Three uses of this feature are available:

¢ The creation of a use stereotyped <<catch>> (from an operation to an
exception)

¢ The creation of a use stereotyped <<throw>> (from an exception to an
operation).

¢ The creation of a dependency between an operation and a class or a signal.
Note: Please note that for dependencies between an operation and a class or a

signal, the Objecteering/UML C++ and Java generators do not yet take
these dependencies into account.

Objecteering/UML Modeler User Guide 7-11

Chapter 7: Specific graphic editors

Figure 7-5 shows an example of a class diagram which contains a use link
stereotyped <<catch>> (from the "serialize" operation belonging to the
"Document” class towards the "FileSystemFull" signal) and another stereotyped
<<throw>> (from the "write" operation belonging to the "fileServices" class towards
the "FileSystemFull" signal).

Clag: dhaman - PACTAGE [Analyeie] - MewPingel clazz damam - Lipdals

F]
3
Q e)
L eadl)
= i

el 1
[2] "
-

7 ey
..* '
i, Dt icmarai ,
— - |

= T L " I-r_ll'l"l'r e =gl
| —_ | i FileZyilemFl
2
E=

Figure 7-5. Example of a class diagram including both <<catch>> and <<throw>> use links

[]
To catch an exception, simply click on the e ("Throw or catch an exception™)
icon, and then click on the operation in question and then on the signal (as shown
in example 1 in Figure 7-5).

[]
To throw an exception, click on the - ("Throw or catch an exception") icon, and
then firstly click on the signal and then on the operation in question (as shown in
example 2 in Figure 7-5). Please note that even though you first click on the
signal and then on the operation, the link is created from the operation to the
signal.

7-12 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors
Creating a qualifier on an association
The creation of a qualifier on an association link can only be carried out in the

explorer, by selecting the association concerned and clicking on the ("Create
a qualifier") icon. The qualifier created is, however, automatically presented in the
class diagram after its creation in the explorer.

Objecteering/UML Modeler User Guide 7-13

Chapter 7: Specific graphic editors

Generalization - creating rake bar links

Generalization links are the only links which can be presented in rake bar form (as
shown in Figure 7-6). At the outset, a generalization is already created between
two elements.

Clies dhagiam - PACEAGE TrainmgSezlen stalic] - Upidate

Lz
Ea
Ca
(=
]
E=
o
b

q
0
i

1 g e -
- -~
2 -
==
3 ;-
e
Figure 7-6. Tracing rake bar links between classes

Steps:
1- Click on the = "Create a generalization" icon.

2 - Select the "Class3" origin class, by clicking on the left mouse button.

3 - Select an existing generalization link going to the same destination class. The
generalization is then transformed into rake bar form.

7-14 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors
Redefining rake bar links

To redefine a generalization rake bar link, proceed as follows (as shown in Figure
7-7):

Claas diagram - PACEAGE TrainingSpstem_datic] - Update

Classl | | Llassl

Figure 7-7. Modifying the drawing of generalization rake bar links by a free drawn line

Steps:
1 - Select the link using the left mouse button.

2 - Select the link end (the arrival point of the link), and hold down the left mouse
button.

3 - Release the left mouse button over the link's destination class.

Modifying the drawing of a generalization link

To alter the drawing of the generalization rake bar vertical and/or horizontal bars,
select and then move the bars in question, by holding down the left mouse button.

Objecteering/UML Modeler User Guide 7-15

Chapter 7: Specific graphic editors

"Automatic" and "Non-automatic" modes

Classes can have attributes and operations, and the user can decide whether or
not to show everything (all attributes and operations) by either activating or
deactivating the "Automatic" mode option from the context menu available on the
element in question. If everything is displayed, the user may find that visibility is
impaired.

When the "Automatic" mode has been activated, everything which is created or
modified in the explorer appears automatically within the class in the diagram. If
the "Automatic" mode has been deactivated, this is not the case.

If the user selects the "Show contents" option from the context menu on the
element in question, the "Automatic” is automatically activated. Conversely, if the
"Mask contents" option is selected from the context menu, the "Automatic" mode
is automatically deactivated.

7-16 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Example
Llazs diagiaem - FALEALE | raringseslem_stalic] - L

L

EI Clas= [‘

| I

= s Attribate © undet Modiy

. +CIperatbon) Congult

* = Browss.. L

Ed Check model

[a] Wizards / Tools .
EI Fiesoumces

[

[CE -
s Mask corterts Cwi+R
i Show conlenls CHkE
K Shaw ks ChikeL
| Select in exploier
—1 Diplions K
| | dwomaic |
i
Figure 7-8. The "Automatic" option in the context menu on a class
Steps:

1 - Select the class.

2 - Click on the right mouse button and proceed with either the activation or
deactivation of the "Automatic" mode option.

Objecteering/UML Modeler User Guide 7-17

Chapter 7: Specific graphic editors

Managing class attributes and operations

Introduction

Objecteering/UML gives the user the possibility of creating and graphically editing
class attributes and operations in graphic editors. These can be directly selected
in diagrams.

7-18 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors
Creating an operation
of)

The "Create an operation" icon is used to create an operation, by designating
the owner class (as shown in Figure 7-9).

Clazs disgram - PACKAGE [Analpsiz)

Clasil

E B o [LPE =

el

Figure 7-9. Creating an operation

Steps:
ol

1- Click on the - "Create an operation" button.

2 - Click on the class. Enter the name of this method over the text highlighted by
default (operation()).

Objecteering/UML Modeler User Guide 7-19

Chapter 7: Specific graphic editors

The operation dialog box

By double-clicking on the operation created, you may edit the "Operation" entry
dialog box (Figure 7-10), which is used to carry out modifications or to add values
to an operation.

Figure 7-10. Operation modification dialog box

For further information on this dialog box, please refer to the Objecteering/Model
dialog boxes user guide.

7-20 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Creating an attribute in a graphic editor

To create an attribute in a graphic editor, click on the "Create an attribute"
icon, and then designate the owner class (as illustrated in Figure 7-11):

Class diagram - PACKAGE [Analysis] -

Class]l

[=]

.,IEI;E] < [0 P F =

e Upsrabon)

Figure 7-11. Creating an attribute

Steps:

1 - Click on the "Create an attribute" button

2 - Click on the owner class. Enter the name of the attribute over the text
highlighted by default.

Objecteering/UML Modeler User Guide 7-21

Chapter 7: Specific graphic editors

Modifying an attribute

Double-clicking on an attribute allows you to immediately modify it, by direct
designation (Figure 7-12).

:?'- Bhlmibaiti

Figure 7-12. Modifying an attribute from the graphic editor

For further information on this dialog box, please refer to the Objecteering/Model
Dialog Boxes user guide.

7-22 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Modifying a class

If you wish to change the name of a class, you may either launch the modification
dialog box for the class in question by clicking on the "Modify" button or edit the
context menu, by clicking on the right mouse button, and select the "Modify" option
(as shown in Figure 7-13). You can also directly enter the new class name by
highlighting the displayed name.

Chaypy hampas PACKAGE Angdmin] Howllippl

h
Ea
ie. |
=
S
I
=

_j?-"\- == Clhasll |

p T
— Cigami Lo
il dnsip e s L]
i froenn. P
. racabed

iE. Warmk T xaks v
-l
: % Ham

s ety ey
= Shompgoiss [bkf

S b Dl

Lol B e jED B

D *

ey T2

Figure 7-13. Editing the "Class" dialog box from a class diagram

Steps:
1 - Select the class by clicking on the right mouse button.

2 - Choose the "Modify" option in the context menu. The class dialog box is then
edited.

Objecteering/UML Modeler User Guide 7-23

Chapter 7: Specific graphic editors

Deleting an attribute or an operation
To delete an attribute or a operation:
1 - Select the attribute (or the operation) concerned.

2 - Activate the * "Edit/Delete" button, click on the "backspace" key or click on
the "Delete" key.

Template class

Class diagram - PACFAGE [Analysis]

EE @ o [MEFE =

¥
'
-

.
-
*

J s

e |

Figure 7-14. Class with template parameters (P1,P2)

Obijecteering/UML supports template classes. Template parameters may be
I

created only through the explorer, using the "Create a template parameter"
icon. A class may be bound to a template class by using the {bind} tagged value
on the class itself.

7-24 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Deployment diagram

Definition

Q The deployment diagram (an example of which is shown in Figure 7-15) is
used to represent the physical architecture of the system. It presents the
distribution of the software components on the set of execution units (Nodes).

Nodes and components are the main concepts in a deployment diagram.

Example

Deployment diagram - PACKAGE Package deplopment] - Updat

B

)
2] Hode

= ﬁ& edit CardCharges ﬁhh:ug&lu.'.er face
-1 1 . 1 -
j- I i
e — "
<afe [IE Tickessler ﬁ TacksB
—

55

[

Figure 7-15. Diagram which represents a node containing several components

Objecteering/UML Modeler User Guide 7-25

Chapter 7: Specific graphic editors

Elements which can be created or referenced

The ...icon

allows you to create ...

a node

a component

an interface class

an association

T a generalization
— a dependency
% an implementation link
'} a note
a constraint
7-26 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Deployment diagram - Behavior of graphic elements

Creation mode

A deployment diagram can only be created at the level of a package or a sub-
system (as shown in Figure 7-16).

Hm..-. inemna/LIEL Madeler

Fde Edt Jook T

e f @ lalo o
]

B & HisaFiopect
e
= 2] g Clarz
=] Class
;:l B Claiaz
£

A=l

Figure 7-16. Creating a deployment diagram

Steps:
1 - Select a package.

2 - Click on the @ "Create a deployment diagram" icon in the "Diagrams" tab of
the properties editor. The newly created diagram then opens automatically.

Objecteering/UML Modeler User Guide 7-27

Chapter 7: Specific graphic editors

Creating a component inside a node
A node is a run-time physical object which represents a computational resource.

The example below (shown in Figure 7-17) presents the creation of a component
in a node. The embedding function is used.

Deploymant diagram - PACKAGE Packsge deplopnent]

Figure 7-17. Creating a component inside a node

Steps:

1- Click on the E "Create a component" icon.
2 - Click in the "Node" box.
The component is now contained within the node.

For most objects such as packages, classes, nodes, etc, embedded creation is
carried out, and the consistency of the UML model is respected.

7-28 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors
Referencing elements within a component

With Objecteering/UML, elements such as classes, instances and datatypes can
be referenced by a component.

This operation is carried out by dragging and dropping a model element (classes,
instances, datatypes) from the explorer into the component in the deployment
diagram (as shown in Figure 7-18).

LI E
! =] =
W Hode g
E Comporani = Hexda
JETIE |
i -
| | — I:I :'urr.FullrI
2 K — =
=

Figure 7-18. Referencing a class in a component through the drag and drop feature
Steps:

1 - Select the element to be referenced in the explorer.
2 - Drag it into the component in the deployment diagram.

Objecteering/UML Modeler User Guide 7-29

Chapter 7: Specific graphic editors

It is also possible to create one or several references to the component using the

@ "Reference an element" icon, and to carry out a "Show contents" operation
on the component in the diagram (as shown in Figure 7-19).

ke

=
Al

[i e

=

s

Figure 7-19. Referencing a class in a component through the "Reference an element” icon

Steps:
1 - Select the component which must reference the elements.

2 - Click on the @ "Reference a component" icon.
3 - Drag and drop the element you wish to reference into the drop zone.
4 - Click on "Apply" to confirm the reference.

The element is now referenced. To make it appear in the diagram, you can either
drag and drop this reference into the diagram, or run the "Show contents"
operation on the component within the diagram.

7-30 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Deployment instance diagram

Definition

Nl
i@ The deployment instance diagram (an example of which is shown in Figure
7-20) presents a particular instance of deployment.

It represents instances of nodes and instances of components that can
correspond to an example illustration component and deployment diagrams.

Restriction: "Dependencies" between components cannot be represented in these
diagrams (for further details on strategies for connecting instances to
their models, please refer to the "The Model/lnstance approach”
section of chapter 8 of this user guide).

Objecteering/UML Modeler User Guide 7-31

Chapter 7: Specific graphic editors

Example of a deployment instance diagram

aplowmand inelance Magiam - FALEALE Fackage mnmzlance
&
T s
% Hiodelnstanc s
= Inslance
-
G Ed]:] Componentinstens e
E T
i
-
Hodelrelancel

$ Clarmpomed |ns s e

Figure 7-20. Instances of nodes and components

7-32 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Elements which can be created or referenced

The ... icon allows you to create ...

a node instance

a component instance

a class instance

a binary link between two objects

a note

e ER ik

a constraint

Objecteering/UML Modeler User Guide 7-33

Chapter 7: Specific graphic editors

Deployment instance diagram - Behavior of graphic
elements

Creation mode

The deployment instance diagram can only be created at the level of a package or
a sub-system (as shown in Figure 7-21).

s Eci Sew [iagh Jook windowr I

Fled & @la <o
FE|

Ei Ha1zec]

= B

B D
E Oar
| [R LIS
W Hoae

1wﬁamamﬂw

Fr

i

éﬁﬁﬁﬁﬁ

Db v

Figure 7-21. Creating a deployment instance diagram

7-34 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors
Steps:

1 - Select a package.

1]
2 - Click on the i@ "Create a deployment instance diagram" in the "Diagrams"
tab of the properties editor. The newly created diagram then opens
automatically.

Objecteering/UML Modeler User Guide 7-35

Chapter 7: Specific graphic editors

Creating a node instance

A node instance is an instance of a node. The example below (shown in Figure
7-22) presents the creation of a component instance and two instances, as well as
a link between the two instances, inside a node instance. The embedding
creation function is used.

Deplopment mstance disgram - PACKAGE Fackage inst

Figure 7-22. Creating a component instance and two instances within a node instance

Steps:

1- Click on the % "Create a component instance" icon.

2 - Click inside the node instance, where you wish to position the component
instance.

3 - Continue by clicking on the % "Create an instance" icon and creating one
instance within the node instance and another within the component instance.
Finish up by creating a link between the two instances. The result of these
operations can be seen in Figure 7-23.

7-36 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Result

Deployment instance diagam - PACEAGE Packsqe instanceleployment? - Update

Madalnslamce

$ Component lnsancs

BEJags =

Instance: | Inslznce

Figure 7-23. Two instances and a component instance within a node instance

Note: Please note that the link between the two instances goes from the first
instance, which is embedded in the node instance, to the second instance,
which is embedded inside the component instance. Links can connect
elements embedded inside other elements.

Objecteering/UML Modeler User Guide 7-37

Chapter 7: Specific graphic editors

Object diagram

Definition

iLn The object diagram (an example of which is shown in Figure 7-24) presents
a set of class instances with their links and the messages exchanged. It can be
created from a package, a subsystem or a class. Objects and links can be
created without being linked to a class or an association. Messages are directly
added to an existing link: if the link is oriented, the message is created with the
same orientation; if not, it is created oriented towards the box nearest to the point
where the user has clicked.

A synchronous message is represented near the link in the form of a complete
arrow and its label. An asynchronous message is represented near the link in the
form of a empty half arrow and its label.

It is not possible to create or represent a message for an n-ary link.

Objects can be connected to existing classes, or created independently for those
classes. Connecting objects to classes will then allow you to connect links to
associations and messages to operations (for further details on strategies for
connecting instances to their models, please refer to the "The Model/lnstance
approach” section of chapter 8 of this user's manual).

Example of an object diagram

Oject name —m triangle:Palygan object
fink
Panof ParOf | Partof ™
paintl:Paint point?:Paint point3: Paint object
=00 ¥=3.0 ¥=30 - attribute valles
y=1.0 y=1.0 y=50

Figure 7-24. Representation of several instances

7-38 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Elements which can be created or referenced

The ...icon

allows you to create ...

an instance

an instance attribute

a binary link between two objects

an n-ary link between objects

a message from one object to another

a constraint

EREEE[

a note

Objecteering/UML Modeler User Guide

7-39

Chapter 7: Specific graphic editors

Object diagram - Behavior of graphic elements

Creation mode

An object diagram can be created from a package, a sub-system or a class (as
shown in Figure 7-25):

[T T e T
Db 4 Yo G ok s T
Bt ala »)

!
= aliaic
o .
= 5 B dm
B Gt
] B o
E ﬂll'.-m
L) Ay H ksl s s
i
-
.l
Kb
L
KE
—hCH
i
ket

Figure 7-25. Creating an object diagram

Steps:
1- Select a package.

2 - Click on the "Create an object diagram" icon in the "Diagrams" tab of the
properties editor. The newly created diagram then opens automatically.

7-40 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Creating instances, associations and messages

Figure 7-26 illustrates how to create instances, associations and messages in an
object diagram.

Digeil dhaginm PADCALT Paclage olyeill lpaae

Pl

|
= 75l Inrtamcs |
1 r

Nt diagems - FALLALE PMacisgs_sbjsct] - Usdsis
Ly
n
H
r
-
B
|
|

Figure 7-26. Creating instances, associations and messages

L ik I—. el

Steps:

1- Click on the % "Create an instance" icon and then click in the background
of the diagram where you wish to position your newly created instance.
Create two instances in this way.

2 - Click on the 1 "Create an association" icon.
3 - Click first on the origin instance and then on the destination instance.

—

4 - Click on the "Create a message" icon and then on the association

between the instances. According to where you click, the message will be
positioned closer to one end of the association than the other.

Objecteering/UML Modeler User Guide 7-41

Chapter 7: Specific graphic editors

Sequence diagram

Definition

Eﬁ\i A sequence diagram (an example of which is shown in Figure 7-27) shows
how different objects cooperate. The objects (vertical bars) can be defined a
priori, and can be roles or class instances. Cooperation between objects is
represented by the sending of messages between objects (horizontal arrows), and
their sequence (order from top to bottom). A sequence diagram can be created

on:

.
.
.
.
.
If

a package

a subsystem

aclass

a use case

a collaboration

the sequence diagram is created in a collaboration, the objects are

ClassifierRoles. If it is created in a package, a class or a use case, the objects are
instances.

Objects can be connected to existing classes, or created independently from any
class. Connecting objects to classes will then allow you to connect messages to
operations (for further information, please refer to the "Creating a graphic object"
section in chapter 5 of this user guide).

7-42

Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Example of a sequence diagram in a collaboration

o P DT | TicentDiR | | Cauzh | | fccoumd;
) crvaton | ! !
o ' |
Agtor | ' |
| Cratehctiond) |
el |,
onthe spot (1] r—
| |
detit) | -~
N | Ll
0,
- ' L_______|_J P —
: -
|
P — | l i
i | ! I
E i | I

Figure 7-27. Sequence diagram

Objecteering/UML Modeler User Guide 7-43

Chapter 7: Specific graphic editors

Elements which can be created or referenced in a sequence
diagram in a collaboration

The ...icon allows you to create ...

arole instance

a sequence message between two ClassifyRole objects. The return
message is also created

Tl

a creation message between two objects

a destruction message from one object to another

an asynchronous message

a branch or fork message between two objects

a constraint

B B ¢l| b k| B

a note

7-44 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Sequence diagram - Behavior of graphic elements

Creating a sequence diagram

A sequence diagram can be created in a collaboration, a sub-system, a class, a
use case or a package (as shown in Figure 7-28).

| QITTTEITSTINT [TP

B L8 S Qpus sk i
HEd f aRa o

=)

L | T

- =
=

qE.

o

o e
B casaz

D

B [ybctares

! Tyt ol

Frinmp

8 [=P

E" L.'H. Lo wehmeel a0

Figure 7-28. Creating a sequence diagram

Steps:
1 - Select the root element in the explorer.

2 - Click on the Eﬁ\i "Create a sequence diagram" in the "Diagrams" tab of the
properties editor. The newly created diagram then opens automatically.

Objecteering/UML Modeler User Guide 7-45

Chapter 7: Specific graphic editors

Messages

A creation or activation message is always created with a return message. If the
creation or activation message is destroyed, the corresponding return or
termination message will also be destroyed. In the same way, if a termination or
return message is destroyed, the corresponding creation or activation message is
also destroyed.

If an activation message is moved, the activation block in its entirety is also moved
(including embedded activations).

A context menu item on an activation message is used to transform the message
into a creation message. In the same way, a context menu item on a return
message is used to transform the message into a termination message.
Furthermore, a context menu item on a message allows you to declare the said
message as being synchronous or asynchronous.

7-46 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

A sequence diagram's objects contain a lifeline on which the user creates
messages. These messages have an activation time (checking focus),
represented by a column between the start of the message and the return. Figure
7-29 below shows examples of messages between objects.

LEipiencE teapiam - FACEAL]D PMsikegs s - Dpdsle

Crefinfct

i 4 ":_'_'-'*-I-“:"“,"-’—"Ei
L"r--"'.- : - --—___--- g CallAr ™
M =T ; a

Figure 7-29. Examples of messages between instances

Note: A message created from one sequence object to another is graphically

represented by an arrow. The object which receives the message is
moved down.

Objecteering/UML Modeler User Guide 7-47

Chapter 7: Specific graphic editors

Conditions and branches

Conditions may be defined on sequence, creation, destruction and asynchronous
messages via the "Sequence message" dialog box (for further details on this
dialog box, please refer to the "Sequence message dialog box" section in chapter
8 of the Objecteering/Model Dialog Boxes user guide), to indicate that an action is
only carried out if certain defined conditions are fulfilled.

Conditions are often used in conjunction with forks and branches. In the context
of sequence diagrams, a fork represents two simultaneous actions, whilst a
branch is used to show two or more different possible outcomes, each with its own
condition.

Figure 7-30 shows an example of a branch with conditions.

do [(Ton | [] [(s

Crsabebebian| T |

[reckd S K e
|52 cash| ey an the spak)

[T i]

o
PR L

L i

Figure 7-30. A sequence diagram containing a branch with conditions

7-48 Objecteering/UML Modeler User Guide

Collaboration diagram

Chapter 7: Specific graphic editors

Definition

EI-E. The collaboration diagram (an example of which is shown in Figure 7-31) is
used to present exchanges of messages between roles. It is semantically very

close to the object diagram. This diagram is created for a collaboration.

A collaboration defines a context in which roles can exist.

Roles can be connected to instances and classes (for further details on strategies
for connecting instances to their models, please refer to the "The Model/Instance
approach” section of chapter 8 of this user guide).

Example of a collaboration diagram

O
i request{order,customer) — e

reque ster
4 message flow

2:cost=reservel(order) e
OrderTaker!

classifer role

tickets

association role

T:checkCredit{customer) + + F:debiticustomer,cost)

"

+—— one wal havigation

sequence numkber

CreditBure aul

Figure 7-31. Example concerning role types

Objecteering/UML Modeler User Guide

TicketDB~

7-49

Chapter 7: Specific graphic editors

Elements which can be created or referenced

The ... icon allows you to create ...
= arole instance. The modification dialog box allows you to attach a role to
3 a class and/or an instance. The role is created with the label

"RoleName/:", "RoleName/ObjectName:" " RoleName/:ClassName", "
RoleName/ ObjectName: ClassName", according to the information
entered. The role name can be directly edited in the diagram.

an attribute value.

an association between roles. The modification dialog box allows you to
attach a link to an association between classes.

an n-ary association.

L e

a message. If the link is oriented, the message is created in the same
direction; if not, it is created oriented towards the box nearest to the point
at which the user has clicked.

a constraint.

B B

a note.

7-50

Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Collaboration diagram - Behavior of graphic elements

Creating a collaboration diagram

A collaboration diagram is created from a collaboration, represented by the
icon (as shown in Figure 7-32).

| CES
e B o fah [i 1
P8 R A

HJ
4 B ok vt
Y By Py
B Ll
E Chami
(=%
P ticsis
Iy Hedrmien
o
Collads i
i
— i3
Crmprn e (npure

Figure 7-32. Creating a collaboration diagram

Steps:
1 - Select the collaboration in the explorer.

2 - Click on the "Create a collaboration diagram" icon in the "Diagrams"” tab
of the properties editor. The newly created diagram then opens automatically.

Objecteering/UML Modeler User Guide 7-51

Chapter 7: Specific graphic editors

Orientation of messages
The orientation of the messages on a link is defined in the following way:

+ If the link is not associated with a navigable association, the message is
oriented towards the element nearest the positioning "click”" of the message.

+ If the link is associated with a navigable association, then the message follows
the direction of the navigability.

7-52 Objecteering/UML Modeler User Guide

Use case diagram

Chapter 7: Specific graphic editors

Definition

-
& The use case diagram (an example of which is shown in Figure 7-33) allows
you to describe the most important services rendered by the system. Starting with
actors, external participants who interact with the system, they represent the most
important cases of system operating. A use case may then be sub-divided into
sequence diagrams, which detail the different functions of one use case.

Example of a use case diagram

Ugn caen diagram - PACKAGE Psckage_useacazed - Updste
Py o
x JEEE—— P
— f gt
L -':_ check slalus H_::-— a| '
o e 7 Calespersos
j- - —— — -.-__..-' P
wl ___.-"' _ . -..___.-'
- - ’ -~ Ry
bt Ll - f phce andar T
g T " li_
| Custamet - P
o - e _
| i £l urdes =T Shipping cleck
e -~
_——
{ embishomat L) lk
'\-.____ ____a-" f
SuparvEnr

Figure 7-33. Use case diagram

Objecteering/UML Modeler User Guide

7-53

Chapter 7: Specific graphic editors

Elements which can be created or referenced in a use case

diagram
The ...icon allows you to create ...
a package

/% an actor
{::} a use case.

F a generalization between actors or UseCases.
a0l an inclusion relation between UseCases
LB an extension relation between UseCases

// a communication link

[y a note

a constraint

7-54 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Use case diagram - Behavior of graphic elements

Creation mode

A use case diagram (shown in Figure 7-34) is created in a package or a sub-
system.

fiw £ Toow 3

REd 2 & alan
]

B Ha=tgpan
= B
B] O
B Dt
El Oux

S 0 o 0 0@

i

E‘EE-EA‘:E} IT :

Cragrora s

Figure 7-34. Creating a use case diagram

Steps:

1- In the explorer, select the package to be edited.

-
2 - Click on the E "Create a use case diagram" button in the "Diagrams" tab of
the properties editor. The newly created diagram then opens automatically.

Objecteering/UML Modeler User Guide 7-55

Chapter 7: Specific graphic editors

Use case boundaries

The "boundaries” of use cases can be displayed or not displayed, according to the
user's choice. This option is available in the "Edit" menu for a diagram.

7-56 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

State diagram

Definition
5
E&' State diagrams (an example of which is shown in Figure 7-35) are defined on
a state machine, which can be created on a class, a sub-system, a package or an

operation. A state diagram allows you to describe the manner in which objects
react to events. Itis used to describe a state machine at the level of a class.

State diagrams can also represent protocol.

Example of a state diagram

E Sasiebpoides siate] - Updste

]
= Rt
D . o | g
= LU TEEL N ez rupiatn]
[t "'-' J - ’
™ Ctiskois P p—— o] D
o . doiplyyr B tuee i g vl o —"
& recwer
S e
s
-1 [1
ITF) - .
& — | T '
m . . B
o e ol B b
|_ Tm | rily I Fm |
. ’ Pl ek

Figure 7-35. Transition syntax

Objecteering/UML Modeler User Guide 7-57

Chapter 7: Specific graphic editors

Elements which can be created or referenced in a state diagram

The ...icon

allows you to create ...

[

a state. A state can be created in a state. In this case, the parent state is
developed and the child state created inside.

a concurrent state. This can be created in a state or in another
concurrent state. Threads can be created within concurrent states (these
threads can themselves be concurrent).

a simple transition of an origin state to a destination state.

an internal transition, to define the corresponding attributes. Chains are
displayed in the internal transitions compartment.

an initial pseudo-state.

a final pseudo-state on a minimum of three existing states / pseudo-
states. Transitions will be created between elements on which you have
clicked and created a pseudo-state.

a pseudo-state Branch, on a minimum of three existing states / pseudo-
states. Transitions will be created between elements on which you have
clicked and created the pseudo-state.

I.-‘I a pseudo-state Fork, on a minimum of three existing states / pseudo-

| states. Transitions will be created between elements on which you have
clicked and created the pseudo-state.

3' a pseudo-state Join, on a minimum of three existing states / pseudo-

states. Transitions will be created between elements on which you have
clicked and created the pseudo-state.

a synchronization state. The bound is either a positive integer or a star
("*") where unlimited. Synchronization states are drawn on the boundary
between two regions when possible. It is the responsibility of the user to
correctly place the synchronization state between two threads.

a history.

an in-depth history.

a note.

EEEENE

a constraint.

7-58

Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

State diagram - Behavior of graphic elements

Creation mode
In order to be able to create a state diagram (shown in Figure 7-36), you must first

create a state machine on the current element in the explorer.

Fe E8 Jook o]
BEa 3 @Ra «

[Ubpecresimg ML Modeler

BB s B L aRa e
E i1
Eﬁﬂl:} E gm“&:.
l‘i B B Pactags
B[Clase
B Class
| = = FTEw

SR i

‘S nhi res

[a1

|HLEGmGMHE

Drisgesms e |

Figure 7-36. Creating a state diagram

Objecteering/UML Modeler User Guide 7-59

Chapter 7: Specific graphic editors
Steps:

1 - Select a package or a class.

2 - Click on the Qt' "Associate a state machine" icon.
3 - Enter the name of the state machine and confirm.

|
4 - Select this state machine in the explorer and click on the "Create a state
diagram" icon in the "Diagrams" tab of the properties editor. The newly
created diagram opens automatically.

7-60 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Creating sub-states

Embedded states can be created by creating new states in existing states (as
shown in Figure 7-37). The parent state (Statel in Figure 7-36) can mask or
unmask its contents. When the contents are masked, then transitions appear as
"stubbed transitions".

Stale diagram - STATEMACHINE SiateMachine]_stalel - Lipdale

Coonwiras marskied
" ———————a
Staed | | I sratel L : Tiated
f i H
o | |‘\—-

FEREEGELARE®e & 10 &

Figure 7-37. Embedded states

Objecteering/UML Modeler User Guide 7-61

Chapter 7: Specific graphic editors

Creating pseudo states

{a (branch), Ir"': (join), :‘ﬂ (fork) are pseudo states that convert at least three
states. These pseudo states can all be created at the same time, or pseudo
states can be created individually, and then connected with other states (see
Figure 7-38).

Stale diagram - STATEMACHINE SialeMachme]_statel - Up

k

State] |
e |
-
-'--.

— el
|:I:-.-:'. L 7

" l State I_*-,/.-;‘;_h
™ /

£,

® Statel |
=2

.
e

SIOFY

Figure 7-38. Branch pseudo state

7-62 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Concurrent states and threads
To create a concurrent state in Objecteering/UML, the user may:

¢ either choose to designate the said state as being concurrent, by simply
checking the "Concurrent” tickbox in the "State" dialog box (for further details
on this dialog box, please refer to the "State dialog box" section in chapter 5 of
the Objecteering/Model Dialog Boxes user guide)

¢ or create the concurrent state, by clicking on the @ "Create a concurrent
state" icon

Note: If the state edited contains a child state, the "Concurrent" checkbox is
grayed out.

Objecteering/UML Modeler User Guide 7-63

Chapter 7: Specific graphic editors

When a thread (or parallel state) is created within a concurrent state, the two
states are graphically represented as shown in Part 1 of Figure 7-38. However, if
subsequent threads are then created, the graphic representation differs, as shown
in Parts 2 and 3 of Figure 7-39.

‘) Siahy dangism - STATDWACHIRT Siabebdo

B
- = SR | cisis o S ATEMALHINE Staluii
L] = Farenlins L
) _" =i
i T Stk - Sl 1
. | & '
° a L
-3
| N -
=
l L]
Figure 7-39. Concurrent states and threads
Key:

1 - Part 1 shows a concurrent state containing one thread.

2 - Part 2 shows a parent concurrent state containing a thread, which itself
contains another thread. Graphic representation shows that the first thread is
not concurrent, since the second thread is simply embedded therein.

3- Part 3 shows the same parent concurrent state as in Part 2. Graphic
representation shows that the first of these threads, created in the original
concurrent state, is itself concurrent. This is shown by the twin bars, used to
represent the second thread. For each subsequent thread created within a
concurrent state, a set of bars appears to graphically represent the addition.

7-64 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Where two threads are created in the same concurrent state, they are graphically
represented as follows (Figure 7-40).

Slale disgram - 51TATEMALHINE 5halak

Slalad

Rf@®e F LS

Figure 7-40. Two threads created in a concurrent state and represented by a dotted line
Note: If you wish to create several threads in the same concurrent state, you

must click on the creation icon and then over the header of the concurrent
state.

Objecteering/UML Modeler User Guide 7-65

Chapter 7: Specific graphic editors

Creating substates in threads

To create substates in threads, you should simply click on the icon used to create
the desired state and then click inside the thread (as shown in Figure 7-41).

Shale disgeaes - 51TATEMALHINE Shalask

Figure 7-41. Creating substates in threads

Steps:

1 - Click on the * "Create an initial state" icon.
2 - Click inside the thread in which you wish to create the substate.

7-66 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Creating and referring to events

There are two ways of creating events in a state diagram:
v
¢ creation in the explorer in the state machine, using the === "Create an event"
icon
¢ creation via the state dialog box, where events are entered as deferred events.
Once these events exist, they can be referred to from any transition dialog box
(see Figure 7-42).

® Transition =100
Propeses | Motes | T agged vahas |
1 lmwaum J
Guard condition |
E wpueessicn of Hex action

I =
Espieszion of tha sant gvent

I =

Final wﬁhml

Add & shenechane

[<More: =l

o | e Oowe | ben |

Figure 7-42. Transition dialog box

Objecteering/UML Modeler User Guide 7-67

Chapter 7: Specific graphic editors

Key:
1 - "Received event": This is the event received which triggers the transition. The

received event can be text entered in the field, or a reference to events
defined in the current state machine.

2 - "Sent event": This is an event sent by the transition once it has been triggered.
An emitted event can be text entered in the field, or a reference to existing
events in the current state machine (combobox). Signals can also be
referenced (shorthand for Signal sending event).

Received or sent events in the transition dialog boxes can refer to existing events.
As a practical shorthand, sent events may also directly refer to signals. Actions
which frequently activate an operation of the class can directly refer to the class'
operations.

7-68 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Activity diagram

Definition

E@ Activity diagrams (an example of which is shown in Figure 7-43) are created
on an activity graph, which can be created for a class, a sub-system, a
component, a node, a signal, a use case, an actor, an operation and a package.
An activity diagram is used to show a procedure or workflow.

Example of an activity diagram

= fales Sarkmons

) Fequen S |
| I

’) T
'_'! L T |T.|.:-|.-l' |

el

[Casrpered]

[Calerilvde |

Figure 7-43. Activity diagram

Objecteering/UML Modeler User Guide 7-69

Chapter 7: Specific graphic editors

Elements which can be created or referenced in an activity diagram

The ... icon allows you to create ...

an action state.

a sub-activity state.

a simple transition of an origin state to a destination state.

an initial pseudo-state.

a final pseudo-state.

a pseudo-state Branch, on a minimum of three existing states/pseudo-
states. Transitions will be created between elements on which you have
clicked and created the pseudo-state.

4 Q@m0

a pseudo-state Fork, on a minimum of three existing states/pseudo-
states. Transitions will be created between elements on which you have
clicked and created the pseudo-state.

a pseudo-state Join, on a minimum of three existing states/pseudo-
states. Transitions will be created between elements on which you have
clicked and created the pseudo-state.

L

a sender signal. This state has no actions, but the out transition sends a
signal.

a receiver signal. This state has no actions, but the in transition receives
a signal.

a partition. Partitions are used to organize the activity graph into different
entities. All activities can be assigned.

an object flow state. This is used to define a certain state.

a note.

E@mgm@

a constraint.

7-70 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Activity diagram - Behavior of graphic elements

Creation mode

In order to be able to create an activity diagram (shown in Figure 7-44), you must
first create an activity graph on the current element in the explorer.

H|'||||-|'Ii-r-||n||.-'lIhll e arh s b

Ebe Edk Took o oo 2
E ﬁ n !I' ﬂ n EI:"'I""""""“I-"'|H| Meodnlm
Ede Edt Jods 700 7
Ba MewFiopect Bﬂn;ﬁﬂl-ﬂﬂr
B h- .
BB Dl m pr—
= Daml B B Package
= ke g =
)
ECJ::I
= B Cars
24 -

Dgns

Figure 7-44. Creating an activity diagram

Objecteering/UML Modeler User Guide 7-71

Chapter 7: Specific graphic editors

Steps:

1- Select the element on which you wish to create the activity graph (in this
example, a package).

2 - Click on the 3@ "Associate an activity graph" icon in the "Diagrams" tab of
the properties editor.

3 - Select the activity graph.

4 - Click on the EE' "Create an activity diagram" icon.

Behavior of graphic elements

The behavior of graphic elements in activity diagrams is similar to that of elements
in a state diagram, since the activity diagram and the state diagram are closely
related.

Action states, sub activity states and object flow states

An action state, which cannot be broken down, represents the execution of an
atomic action, typically the invocation of an operation. An action state belongs to
an activity graph or sub activity state, and always has an associated internal
transition, used to describe the triggered processing.

Sub activity states are states which can be broken down in another activity graph
similar to action states, except that they may have children. A sub activity state
belongs to an activity graph or to another sub activity state, and has no associated
internal transitions.

Object flow states define an object flow between actions in an activity diagram and
represent a state at a certain time in its lifecycle.

7-72 Objecteering/UML Modeler User Guide

Chapter 7: Specific graphic editors

Partitions

Partitions, also known as swimlanes, are used to group states (action states,
pseudo states, sub activity states and object flow states) within an activity
diagram, and often correspond to organizational units in a business model. They
belong to an activity diagram.

Action states, object flow states and sub activity states can be divided into
partitions or not, as the user wishes.

To create a partition in an activity diagram, simply click on the ED "Create a
partition" icon. Partitions are graphically shown stuck together. They can be
moved by selecting the partition in question and dragging it to its new position.
Regardless of the positioning of partitions, they always remain stuck together, and
cannot be superimposed over one another.

Note 1: States in an activity diagram can be assigned to several partitions, but
appear only once in the diagram. In the explorer, however, they appear in
each partition to which they have been assigned. To assign states to a
partition, simply drag the states in question, one by one, into the partition.

Note 2: Action states, pseudo states (except joins and forks) and sub activity
states cannot straddle two partitions. Object flow states, joins and forks,
however, can straddle two partitions, since they are not assigned to a
specific partition, and represent different states in the evolution of an
object.

Objecteering/UML Modeler User Guide 7-73

Chapter 8: Methodological Hints

Chapter 8: Methodological Hints

The Model/Instance approach

Presentation

The Objecteering/lUML CASE tool is very much oriented towards defining a
general model and then detailing this model using examples which refer to it.
There are two possible approaches, particularly concerning the management of a
model with regard to its instances:

¢ Approach 1: we start with a model, and then construct the instances which
refer to this model.

¢ Approach 2: we define the instances as the first examples, before having
created the model. The model will then try to represent these instances, and it
will be necessary, if you should so desire, to associate each of the instances to
a model element.

The aim of the first approach is to show model examples, in order to validate or
illustrate the model itself. The second approach, on the other hand, is used to
provide examples of the domain concerned, in order to then create the model.
Models which deal with instances in Objecteering/lUML (object, sequence,
collaboration and deployment instance diagrams) can handle both these
approaches.

Objecteering/UML Modeler User Guide 8-3

Chapter 8: Methodological Hints

Example of the first approach
Carry out the following steps:

1- In the explorer, create the following three classes, with the operations
indicated: the "Product” class with the "create" and "deliver" operations, the
"Worker" class with the "build" operation, and finally the "Manager" class.

2 - Continue by creating the sequence diagram shown in Figure 8-1. First create
three instances, then display them and associate them to their classes using
the model dialog box shown in Figure 8-2.

3 - Finally, create the messages, then edit them, and associate them to their
operation using the model dialog box shown in Figure 8-3.

Instance: Manager Instancel Worler

tuildProduct()

create])
Instance2: Product

Eeturndiction

R .

delier()

L3

Figure 8-1. Example of a sequence diagram

8-4 Objecteering/UML Modeler User Guide

Chapter 8: Methodological Hints

Figure 8-3. The "Message" dialog box, used for associations to operations

Objecteering/UML Modeler User Guide 8-5

Chapter 8: Methodological Hints

EXx

ample of the second approach

We shall firstly create the sequence diagram shown in Figure 8-1. Neither the
classes nor the model already exist. Object and message names are entered
directly , without being associated to existing operations and classes.

The next step is to enter the classes and operations mentioned in the previous
paragraph. They have been displayed as shown in the example.

Finally, the sequence diagram instances and the message are displayed and
connected to the class model which we have just created.

If we had used an object diagram, the procedure would have been the same, but
also with links connected to associations and attribute instances linked to
attributes.

Objecteering/UML Modeler User Guide

Chapter 8: Methodological Hints

Flow Diagrams and DataFlows

Overview

Flow diagrams are an extension added to UML. This type of model provides a
useful representation of the "preliminary analysis" and "preliminary requirements"
phases. It is also used to represent functional or technical architecture
(preliminary design).

It is often difficult to develop a global vision of the functions of large systems.
UML can provide:
¢ aglobal vision of the system, through package diagrams

¢ an overview of the services provided by the system through actors and use
cases

¢ a detailed view of the dynamics, through state, collaboration and sequence
diagrams

Flow diagrams broadly present the circulation of information between different
system entities, and are effectively the offspring of a procedure called "systematic
analysis", used in the 1980s. They have also been used since 1990 in an object
method called "ClassRelation".

Objecteering/UML Modeler User Guide 8-7

Chapter 8: Methodological Hints

UML extensions

Two simple extensions have been applied to UML:

* — The "DataFlow" , which represents the flow of information between two
system entities (please refer to the "Data flow dialog box" section in chapter 3
of the Objecteering/Model Dialog Boxes user guide, and to the "DataFlows and
Signals" section of chapter 5 of the Objecteering/Metamodel User Guide).

. The "Signal", which extends the definition of a piece of information which
can be transmitted between two parts of the system.

A DataFlow can refer to a signal. A signal can represent a model element which
will subsequently implement a transmissible piece of information, in other words :

¢ aclass
¢ an operation parameter

¢ an operation (please refer to the "Signal dialog box" section in chapter 3 of the
Objecteering/Model Dialog Boxes user guide, and to the "DataFlows and
Signals" section of chapter 5 of the Objecteering/Metamodel User Guide).

Objecteering/UML Modeler User Guide

Chapter 8: Methodological Hints

Example of notation

Exzample of DataFlow.
An item of infermati on
called «Reportn is passed
from the manager to the

—
Todl Flow diagram example. This diagram
involves various kinds of model

element, such as Acots, Packages,
Classes and Interfaces

Accounting department
What will finally support
the «Reports information
has not yet been defined,
but will be modeled later

Product

Y

—— DeliverySystem

:
3

Figure 8-4. DataFlow with various examples

In the example shown in Figure 8-4, "DataFlow" exchanges are shown between
actors, classes, interfaces and packages. Components, nodes and use cases
can also be shown. A flow diagram simply presents an example of information
being exchanged between different system entities, and is used only to show
certain exchanges. For example, we determine here that a "manager" gives
"goals" to an "employee"”, and that the "accounting" department (package) pays a
"salary" to the "employee".

Each of these "DataFlows" can be associated with a signal. For example, a
"salary" signal or an "address" signal can exist. These signals will subsequently
be associated with a model element which will truly represent them. For example,
the "salary" signal can be associated with the "salary" class, or with a "paySalary"
operation. The final model will express how these signals are effectively
transmitted.

Objecteering/UML Modeler User Guide 8-9

Chapter 8: Methodological Hints

Using flow diagrams

Overview

Flow diagrams are a prior study tool and are first defined through discussion and
confirmation with project players. A precise, detailed model is then constructed, to
exactly represent the system which is to be realized.

Step 1: Defining communicating entities

You must first decide Who and What will figure in the first draft of these diagrams.
The Who and What can be:

¢ actors who interact with the system
¢ packages which represent "sub-systems"
¢ important components introduced into the system, etc.

These entities must be significant to all the users who will handle or validate these
diagrams. For example, it is possible to represent classes in this type of diagram,
but they are often too detailed for players to comprehend.

If these entities are numerous (more than 7), they must be structured.

8-10 Objecteering/UML Modeler User Guide

Chapter 8: Methodological Hints

Step 2: Defining the nature of information exchanged in the system
and which we wish to present

1 1
SysternFlows (7 --------=---=-----------1 Systernhodel

1
— Signals

1

Sub_systeml

1
| Sub_system?

Figure 8-5. Typical structure of a model

We can use a structure of the type shown in Figure 8-5. In the system flow
diagram, we will create a package dedicated to the definition of signals, as well as
structure our "communicating entities", if necessary.

In the "signals" package, we will create signals which define every piece of
information exchanged.

Note: We recommend that you document communicating entities and signals as
you go along, by entering "description" notes.

Objecteering/UML Modeler User Guide 8-11

Chapter 8: Methodological Hints

Step 3: Drawing flow diagrams

Starting from communicating entities, define as many diagrams as necessary to
illustrate different communications. Data Flows will reference signals created
during Step 2.

Note: Steps 2 and 3 are often conducted parallel to each other. It is possible, for
example, to create a Data Flow, then name it, and then subsequently
create a signal which corresponds to this type of information, and connect
the Data Flow to the signal.

Check that all Data Flows are connected to a signal, and verify that no signals
have been duplicated. Use generalization between signals where information
specialization exists.

Step 4: Making the detailed model application

Communicating entities are extremely good for structuring the application model.
Each Data Flow asks three questions, which the detailed model must answer:

¢+ Which model element represents the information conveyed (an operation, a
parameter or a class)? The signal which corresponds to the Data Flow must
be linked to this model element.

+ What is sending this signal? Generally speaking, a class is at the origin of a
signal.

+ What deals with this signal? Once again, it is usually a class which deals with
signals.

At the end of detailed modeling, check that the three questions have been
answered for each signal.

Conclusion

Flow Diagrams are a useful preliminary analysis tool. They act alongside other
tools, such as use cases and dictionaries.

Each of these models can be used to justify the detailed model, by providing a
high level angle of vision.

8-12 Objecteering/UML Modeler User Guide

Chapter 8: Methodological Hints

Examples of Flow Diagrams

Overview

Two examples of flow diagrams will be presented here. The first is relative to
preliminary analysis, and the second to preliminary design. In each case, flow
diagrams are used to show the information which can be exchanged between

system entities.

Objecteering/UML Modeler User Guide 8-13

Chapter 8: Methodological Hints

Company organization example

Order l

1
[Fefacade=> - %IMIBT‘
Rales ProductionCrder Production

Product

|

\
Custom erPaym ent EFacadass
acade
Accounting Delivery Order Delivery
. Product
B111/ Delivery Crder l

Figure 8-6. Company organization diagram

In this example, packages represent the various company departments. These
packages are "facade" packages, since they do not necessarily constitute the
definitive structure of the model once completed.

We attempt to clarify the role of each department, by representing the information
it receives and sends. In this diagram, the following is seen:

¢ A Data Flow cannot have an origin or a destination ("order" or "product" case).

¢ Several Data Flows can represent the same information. For example, there
are two "order" and two "product" Data Flows. The "order" or "product”
information will be materialized by the creation of the signal, which itself can
only exist once.

When this model has been accepted, detailed modeling is then carried out, in
order to represent exactly which model element will translate the signal (a class,
an operation or a parameter).

8-14 Objecteering/UML Modeler User Guide

Chapter 8: Methodological Hints

Architecture example

Internal Order

—
=<facade>= =<facade>=>

ApplicationManager ! DriversServer

OrderResponses
Errors
—

EeadData

—»

TeerDrder
StoredDatal LowLevel Crders

\

I
—

Eesults T Status

— |
<<facade>>
<<facade>> BystemState] =<facade>> Dii
Dratallanagement Userlnter face nyers

Figure 8-7. Architecture example

In this example, we use facade packages to show how models which make up
separate final physical units are grouped. Future libraries, processes and
applications are represented.

It is useful to regroup elements before realizing a deployment diagram. Information
which must be exchanged between these elements is then expressed.

Technical questions will then be asked, in order to find out how to implement
these information flows:

+ by sending messages
+ through inter-process communication, etc

Objecteering/UML Modeler User Guide 8-15

Index

- 4-88

:Importing modules into the current
UML modeling project 1-8

{noanalysis} tagged value 4-31

{nodesign} tagged value 4-31

+ 4-88

About 6-18

Accessing macro commands 4-45

Action states 7-72, 7-73

Activating generation on elements 5-
5

Activating/deactivating
Objecteering/UML process wizards
1-8

Activating/deactivating removable
consistency checks 1-8

Activity diagram 1-22, 4-34, 6-8, 7-
71

Definition 7-69

Elements which can be created or
referenced 7-70

Example 7-69
Activity diagram: 5-3
Activity graph 5-3, 7-71
Actor 3-38, 3-40, 4-34, 4-85, 5-6, 7-
53, 7-69, 8-7, 8-10
Adding modules 4-8
Advanced mode search types 4-74
Advanced search mode 4-72
Assisted data entry 1-12
Example 1-14

Association 2-18, 3-40, 5-6, 5-18, 7-
3,7-9,7-13, 7-38

Association end role 3-39
Association link 3-38
Asynchronous messages 7-48
Attribute 4-83, 6-9, 7-16, 7-18, 7-21

Attribute dialog box 1-14
Attribute link 4-83
Attribute role 3-39, 4-83
Available types 4-77, 4-79
Backward compatibility 3-8
Begins with 4-68
Branches 7-48

Case sensitive 4-68, 4-70

Changing the presentation of
elements in diagrams 5-5

Changing UML modeling project 3-6,
3-30

Changing UML modeling project and
saving 3-30

Checking focus 7-47

Class 1-12,1-16, 1-20, 2-16, 3-28,
3-36, 3-38, 3-39, 4-20, 4-34, 4-83,
5-6, 6-9, 7-3, 7-6, 7-9, 7-16, 7-28, 7-

- 9,
38, 7-40, 7-42, 7-57, 7-68, 7-69, 8-
12, 8-14

Class association 7-9

Class diagram 1-11, 1-22, 2-5, 2-11,
2-13, 4-34, 5-3, 5-4, 6-8
Automatic and non-automatic

modes 7-16

Creating a class association 7-9

Creating a qualifier on an
association 7-13

Creating an attribute 7-21

Creating an operation 7-19

Creating rake bar links 7-14

Definition 7-3

Deleting an attribute or an operation
7-24

Elements which can be created or
referenced 7-5

Example 7-4

Expanding elements 7-6

Managing class attributes and
operations 7-18

Modifying a class 7-23
Modifying an attribute 7-22
Operation dialog box 7-20

Redefining generalization rake bar
links 7-15

Template class 7-24
Class instance 7-38, 7-42
Class instances 1-22
ClassAssociation metaclass 7-9
Classifier role 3-39, 7-42
Clearing the contents of the console
3-18
Code generation 1-20, 1-21, 3-18
Collaboration 4-34, 7-42, 7-49, 7-51
Collaboration diagram 1-22, 4-34, 5-
3, 6-8, 8-3, 8-7
Definition 7-49

Elements which can be created or
referenced 7-50

Example 7-49

Orientation of messages 7-52
Commands 1-8
Communication 3-39
Communication link 3-40, 4-34, 4-85
Communication links 3-37

Component 3-38, 3-41, 4-34, 7-25,
7-28, 7-31, 7-69, 8-10

Component instance 3-41
Component-based approach 2-8
Composition tree 1-20, 3-36
Concurrent state 7-65
Concurrent states 7-64
Conditions 7-48

Configuration 1-20

Modules frequently present 3-27

UML Modeler tab 3-27

Consistency checks 1-3, 1-12, 1-20,
3-36, 4-10

Flexibility 1-12, 3-34
Obligatory 3-34, 3-36
Optional 3-34

Removable consistency checks 1-
12

Consistency management 1-12
Example 1-17
Consistency mechanisms
Assisted data entry 1-13
Consistency management 1-16
Console 1-3,1-10, 1-19, 1-20, 2-5,
3-11
Clearing the contents of the console
3-18
Description 3-18
Messages and generation traces
4-36
Messages and import traces 4-37
Saving console contents in a file
3-18
Visualizing a warning 4-36
Visualizing an error message 4-36
Visualizing error messages 3-18
Visualizing warnings 3-18
Console functions
Clearing the console 1-10
Saving the contents of the console
1-10
Tracing operations 1-10
Constraints 4-34
Contains 4-68
Context menu
On aclass in a diagram 6-13

Context menu on a diagram element
6-11

Context menus 4-19 Classifier role 4-23

Continuous entry creation mode 2- Collaboration 4-22

10 Component 4-22
Control transition 5-6 Component instance 4-23
Copy/Paste operation 4-16 Data flow 4-22
Copy/Pasting diagrams 5-5 Enumeration 4-22
Creating a box 5-7 Event 4-22
Creating a collaboration diagram 7- Instance 4-22

51

Interface class 4-22
Link 4-22

Node instance 4-22
Object flow state 4-24
Operation 4-22

Creating a deployment diagram 7-27

Creating a deployment instance
diagram 7-34

Creating a diagram 5-5

Creating a new UML modeling project

1-8, 3-4 Package 4-22
Creating a state diagram 7-59 Parameter 4-23
Creating a sub-system in a class Partition 4-24

diagram 7-8 Return parameter 4-23
Creating a use case diagram 7-55 State 4-22
Creating an activity diagram 7-71 Structural units 4-22
Creating an object diagram 7-40 Sub-activity state 4-23
Creating elements in diagrams 5-5 Sub-system 4-22
Creating several elements of the same Template parameter 4-22

Kind 56 Type 4-22
Creation icons Creation messages 7-48

Actor - 4-22 CtrlA 4-87

Class 4-22 ctrlC 4-87

Node 4-22 CtiD 4-87

Signal ~ 4-22 CtlE 4-87

State machine 4-22 CtrlE 4-87

Use case 4-22 CtrlG 4-87
Creation icons Ctrll 4-87

Action state 4-23 culK 4-87

Activity graph 4-22 culL 4-87

Association 4-22 CtrlM 4-87

Attribute 4-22 CtrlN 4-87

Attribute link 4-23 CtrlO 4-87

CirlP 4-87

CtrIR 4-87
CirlS 4-87
CirlU 4-88
CtrlV 4-88
Ctrl X 4-88
CtrlY 4-88
Ctrlz 4-88

Cut operation 4-84
Data flow 5-6, 8-8, 8-12, 8-14
Data type 3-36, 3-39
Data types 3-37
DataFlow 3-39, 3-40
DataFlows 3-37
Overview 8-7
DataType 3-38, 4-34
Delete operation 4-84
Dependency 5-6, 5-18, 7-3
Deployment diagram 1-22, 4-34, 5-3,
6-8, 8-15
Creating a component inside a node
7-28
Definition 7-25

Elements which can be created or
referenced 7-26

Example 7-25

Referencing elements within a
component 7-29

Deployment instance diagram 1-22,
4-34, 5-3, 6-8, 8-3
Creating a node instance 7-36
Definition 7-31

Elements which can be created or
referenced 7-33

Example 7-32
Destroying elements in diagrams 5-5
Destruction messages 7-48

Diagram
Activating a context menu 5-25
Context menu 5-26
Deactivating a context menu 5-25
Diagram creation
Properties editor 2-11

Diagrams 1-11, 1-20, 2-5, 3-17, 3-
21, 4-21, 4-26, 4-58, 5-3, 7-7

Activity diagram 3-22
Class diagram 3-21
Collaboration diagram 3-22
Context menu 7-16
Deployment diagram 3-21

Deployment instance diagram 3-
22

Model elements 3-21
Modify command 6-8
Object diagram 3-21
Sequence diagram 3-21
State diagram 3-22
Use case diagram 3-21
Diagrams set

Description 4-62
Dialog box 1-20
Directories set

Description 4-64

Dockable windows 1-4, 1-8, 1-20, 3-
14

Documentation generation 1-21
Documentation work product 3-23
Drag and drop 4-16
Drag and drop 5-22
Drag and drop function 2-15, 5-22
Drag and drop operation 4-84
Edit menu 4-4

Consult command 4-4

Copy command 4-4

Cut command 4-4

Delete command 4-4

Empty clipboard command 4-4

Modify command 4-4

Move command 4-4

Paste command 4-4

Redo command 4-4

Undo command 4-4
Edit/Search 4-66
Element type 4-73, 4-79

Elements
Masking 5-24
Showing 5-22

Embedded creation 7-28

Ends with 4-68

Enterprise Edition 1-20
Enumeration 3-38, 3-39
Enumerations 3-37

Error messages 1-10, 1-20, 3-18
Event 5-6, 7-67

Events 1-22

Example of a simple search 4-69

Example of an advanced search 4-
81

Exceptions 7-11
Exiting the tool
Exiting and saving 3-29
Expanding elements in a class
diagram
Expanding a package 7-7
Explorer
Context icons 4-20

Explorer 1-9, 1-12, 1-16, 1-20, 2-5,
2-6, 2-14, 2-15, 2-16, 3-13, 3-15, 3-
21, 4-19, 4-21, 4-83, 4-84, 5-3, 5-4,
5-22, 7-13, 7-24, 7-59, 7-67, 7-71,
7-73

Browsing 4-19

Graphic representation 3-15
Launching an explorer 4-16
Principal functions 4-16
Read-only mode 4-18
Update mode 4-17
Explorer functions
Constructing a model 1-9

Creating and editing graphic
elements 1-9

Explorer functions
Browsing 1-9
Creating elements 4-16
Destroying elements 4-16
Duplicating elements 4-16
Filtering visualized element types

4-16

Modifying elements 4-16
Moving elements 4-16
Referencing elements 4-16

Visualizing UML modeling project
components 4-16

Explorers 1-3
Facade package 8-15
File menu 4-3
Clear console command 4-3
New command 4-3
Open command 4-3
Quit command 4-3
Save command 4-3
Save console command 4-3
Filter conditions 4-72
First Steps
Creating a class diagram 2-11
Creating a diagram 2-3
Creating a link in a diagram 2-18
Creating a package 2-7

Creating a sub-system in the
explorer 2-8

Creating a UML modeling project
2-3

Creating an operation 2-16

Creating and manipulating objects
in adiagram 2-3

Creating classes 2-9

Creating elements in the explorer
2-3

Launching the tool 2-3

Masking elements in a diagram 2-
14

Modifying an element 2-17
Preparation 2-3
Resizing an object 2-19

Showing elements in a diagram 2-
13

Showing elements using the drag
and drop function 2-15

Working in the explorer 2-6
Flow diagram

Example of notation 8-9
Overview 8-7

UML extensions 8-8
Flow diagrams 8-13
Formalism set

Description 4-58

General contents 6-18
General ergonomics 1-4

General view of Objecteering/UML on
PC 15

Generalization 3-41, 4-34, 5-6, 5-11,
5-18, 7-3, 7-14, 8-12

Generalization link
Modifying the drawing 7-15
Generalization links 3-36, 3-37, 3-
39, 3-40, 4-27

Grab function 5-19
Grabbing elements 5-19
Graph menu 4-6
Align command 4-6, 6-17
Fit to contents command 4-6
Grid command 4-6, 6-16
Home command 4-6
Layout command 4-6
Redraw command 4-6
Resources command 4-6, 6-14
Zoom back command 4-6
Zoom forward command 4-6
Graphic editor 2-16
Description 5-4
Pop-up menu 5-4
Principal functions 5-5
Graphic editor functions

Creating a model element and its
graphic representation
simultaneously 1-9

Destroying a model element 1-9
Diagram management 1-9

Graphic representation of model
elements 1-9

Masking 1-9

Modifying a model element 1-9

Modifying the graphic
representation of a model element
1-9

Printing a diagram 1-9

Showing 1-9

Graphic editor tool bar 2-19

Graphic editors 1-3, 1-9, 1-12, 1-20,
2-6, 3-13, 4-83, 4-84

Graphic elements 1-9, 2-13
Zoom function 6-4
Graphic object

Categories 5-6
Creating a class in a class diagram
5-7

Creating alink 5-8

Creating an association 5-9

Modifying link values 5-10
Graphic objects

Boxes 5-6

Links 5-6
Help 6-18
help menu 6-18
Highlight function 6-7
Hypertext links 3-20, 4-39, 4-41
Icons 1-6
Implementation link 4-34
Implementations 3-40
Import administration 1-20, 3-18
Import all from server 4-46
Import operations 4-37

Importing elements from other UML
modeling projects 3-28

Instance 3-39, 3-41, 4-83, 5-6, 7-31
Instances 3-40

Interface class 3-38, 3-39
Interface classes 3-40
Interface set

Description 4-60

Interfaces 3-37

Internal transition 7-72

J expressions 4-73

J filter conditions 4-72
Jlanguage 4-72

Jrules 3-27
Jumping to elements 4-71
Keyboard shortcuts 4-66
Launching a graphic editor 5-5

Launching a new explorer 1-8
Launching Objecteering/UML 3-3
Launching the search 4-66
Launching the search engine 4-38
Laying out elements in diagrams 5-5
Link 4-83, 4-85, 5-8, 7-7, 7-38
Linkend 3-39
Link forms

Free 5-11,5-13

Orthogonal 5-11, 5-13

Rake bar 5-11, 7-15

Shared target 5-11
Links 1-22, 2-18

Color presentation 5-11

Drawing links 5-11

Drawing orthogonal links 5-12
Local 4-46
Local notes 3-33, 4-86

Handling 4-86
Local tagged values 3-33, 4-86
Handling 4-86

Looking for information 4-40
Lowercase characters 4-67
Macro commands

Heavyweight/Lightweight client 4-
46

Server 4-48
Standalone 4-47
Macros 1-7

Comment to description notes 4-
49

Creating macros 4-51
Deleting macros 4-56
Executing macros 4-49
External editors 3-25
Macro commands 4-45

Modifying macros 4-54
Overview 3-25
Parameterizing the Macros module
4-44
Selecting the Macros module 4-42
Sort by name 4-49
Sort by visibility 4-49
Main explorer 1-4, 4-16, 6-7

Main window 1-3, 1-8, 1-20, 2-5, 4-
16

Console 3-13

Description 3-12

Explorer 3-13

Graphic editors 3-13

Menu bar 3-13

Properties editor 3-13

Status bar 3-13

The console 1-10

Tool bar 3-13
Manipulating graphic elements

Modifying the size of elements 6-3

Manipulating model elements within a
UML modeling project 3-15

Masking elements 5-22

Masking elements in diagrams 5-5
Matches exactly 4-68

Members 3-37

Menu bar 1-20, 3-13

Menus 1-6

Message 5-3,7-38, 7-42, 7-46, 7-49
Asynchronous 7-46
Synchronous 7-46

Message lifeline 7-47

Messages 1-22

Metamodel 4-67

Model elements 1-3, 1-9, 1-12, 1-13,
1-16, 1-20, 3-13, 3-15, 3-21

Associated diagrams 1-11
Model/Instance
Example of the first approach 8-4
Example of the second approach
8-6
Model/Instance approach
Presentation 8-3
Models 4-67
Modification of modules used 4-8
Modifying a graphic element 5-21
Modifying elements
Procedure 4-25
Modifying elements in diagrams 5-5

Modifying UML modeling project
configuration 1-8

Module 1-21
Modules 1-6, 3-23, 3-26, 3-27, 4-9

Modules in charge of the read-only
mode 3-33

Move operation 4-84

Moving an element 5-18

Moving elements in diagrams 5-5

Multi-user atomic units 3-33

NameSpaces 3-37, 3-38, 3-39, 3-40,
3-41

N-ary link 7-38

Navigating between diagrams 5-5

Node 3-38, 3-40, 7-28, 7-31, 7-36, 7-
69

Node instance 3-41, 7-36

Notes 4-21, 4-27, 4-34

Notes and constraints 4-77

Object 7-42

Object diagram 1-22, 4-34, 5-3, 6-8,
8-3, 8-6
Definition 7-38

Elements which can be created on
referenced 7-39

Example 7-38

Object diagrams

Creating associations 7-41
Creating instances 7-41
Creating messages 7-41
Object flow state 7-73

Object flow states 7-72
Objecteering/C++ 1-6, 3-23, 4-26

Objecteering/Design Patterns for C++
orJava 1-6

Objecteering/Design Patterns for Java
2-5,3-5

Objecteering/Documentation 1-6, 1-
21, 3-23, 3-26, 3-27, 4-26

Objecteering/Introduction 4-8

Objecteering/Java 1-6, 1-21, 2-5, 3-
5, 3-17, 3-23, 3-26, 3-27, 4-8, 4-26

Objecteering/Macros 1-7
Objecteering/Metamodel 8-8
Objecteering/Metrics 1-21
Objecteering/Model Dialog Boxes 1-
3, 2-17, 4-25, 6-9, 7-20, 7-48, 7-63,
8-8
Objecteering/Multi-user 3-33
Objecteering/Process Wizard 4-9
Objecteering/Process Wizards 1-7
Objecteering/UML configuration 4-8
Objecteering/UML consistency checks
3-34
Objecteering/UML consistency
mechanisms 2-6
Objecteering/UML diagrams 1-22

Objecteering/UML environment
variables

OBJING_PRINTER 6-5
Objecteering/UML Modeler 2-5, 3-5,
3-6
Objecteering/UML modules 1-6

Objecteering/UML obligatory
consistency checks on different
elements 3-36

Objecteering/UML Profile Builder 1-
21, 3-27

Objecteering/UML Teamwork 3-28,
5-4

Objecteering/lUML terms

Glossary 1-20
Objecteering/UML windows 1-3
Console 1-3

Explorers 1-3

Graphic editors 1-3

Main window 1-3
Objecteering/Visual Basic 4-26
Objects 1-22

objing command

Parameters 3-3

Obligatory consistency checks 3-36
Actor class 3-39

Association class 3-38
AssociationEndRole class 3-39
Attribute class 3-38
AttributeRole class 3-39
Class class 3-37
Communication class 3-40
Component class 3-41
Componentinstance class 3-41
DataFlow class 3-39
DataType class 3-37
Element class 3-36
Enumeratioon class 3-37
Generalization class 3-38
InternalTransition class 3-40
LinkEnd class 3-39

Node class 3-40
Nodelnstance class 3-41

Package class 3-36
Parameter class 3-38
Realization class 3-38
Signal class 3-39
StateMachine class 3-40
Transition class 3-40
Use class 3-38
UseCase class 3-40

Opening a diagram 5-5

Opening a graphic editor 5-5

Opening an existing UML modeling
project 1-8, 3-6

Opening the search window 4-66

Operation 1-16, 2-16, 2-17, 4-16, 4-
34, 4-83, 6-9, 7-16, 7-18, 7-42, 7-57,
7-68, 7-69, 8-12, 8-14

Operation traces 3-18

Package 1-9, 1-11, 1-17, 1-20, 3-28,
3-36, 3-39, 3-40, 4-16, 4-20, 4-34,
5-6, 5-23, 7-3, 7-6, 7-28, 7-34, 7-38,
7-40, 7-42, 7-55, 7-57, 7-69, 8-10,
8-14

Parameter 4-16, 8-12, 8-14

Parameter sets
Diagrams 4-61
Directories 4-63
Formalism 4-58
Interface 4-59
UML Profiles 4-65

Parameters 3-26

Parent type 4-77

Partitions 7-73

Paste operation 4-84

Personal Edition 1-21

Predefined types 3-6

Printing a diagram 6-5

Printing diagrams 5-5

Process Wizards 4-9

Professional Edition 1-21

Properties editor 1-3, 1-10, 1-12, 1-
16, 1-21, 2-5, 3-13, 4-21, 4-84

C++tab 1-10, 4-33

Diagrams tab 1-10, 2-11, 3-17, 4-
29,5-5

Documentation tab 1-10, 3-17, 4-
31

ltemstab 1-10, 3-17, 4-27
Javatab 1-10, 3-17, 4-33
Overview 4-26

Tabs added for specific modules
1-7

VBtab 4-33

Visual Basic tab 1-10

Pseudo state 7-62, 7-73
Branch 7-62

Fork 7-62

Join 7-62

Read-only elements

Graphic representation 4-83

Handling elements and the read-
only mode 4-84

Read-only mode 1-21, 3-33, 4-18, 4-
21, 4-83, 5-4
Destroying a model element 4-84
Graphic representation 3-33

Handling elements and the read-
only mode 4-84

Links 4-85
Local annotation 3-33, 4-86
Model elements 3-33
Overview 3-33

Read-write mode 3-33

Receiving a UML modeling project
3-8

Receiving and renaming a UML
modeling project 3-8

Receiving and upgrading a UML
modeling project 3-8

Receiving UML modeling projects 3-
7

Receiving, renaming and upgrading a
UML modeling project 3-8

Redefining a free link
Free mode 5-15
Orthogonal mode 5-14
Redefining links
Moving a link 5-13
Moving a link end 5-13
Redrawing links 2-18
Referencing elements 7-29

Referencing elements within a
component 7-29

Removable consistency checks 1-
12, 1-21, 3-34, 4-10

Checking the model 4-12
Correcting errors 4-13
Deactivation 4-11
Displaying errors 4-13
Principle 3-35
Reactivation 4-15

Removing modules 4-8

Repeated entry system 5-6

Re-sizing an element 5-20

Role 5-3,7-42,7-49

Roles 1-22

Saving 1-8

Saving a diagram 6-6

Saving a work session 3-29

Saving console contents in a file 3-
18

Saving the model context 3-31
Search 3-32
Search engine 3-19, 4-38, 6-18

Search engine window 4-39
Search from 4-68
Search function 3-32
Searchin 4-68, 4-73, 4-77, 4-79
Searchinall 4-74
Search in diagrams 4-74
Search in notes and constraints 4-74
Search in the model 4-74
Search options 4-68, 4-75
Begins with 4-68
Contains 4-68
Ends with 4-68
Matches exactly 4-68
Search results 4-70
Search window 3-32, 4-66
Searching diagrams 3-32
Searching for information 4-40

Searching for information in on-line
documentation 3-19

Searching in all 4-80
Searching in diagrams 4-78
Searching in notes and constraints
4-76
Searching in the model 4-75
Searching metamodels 3-32
Searching models 3-32
Searching textual elements 3-32
Selecting an element 5-18
Selecting modules
Tabs added to the properties editor
1-7
Selecting several elements 5-18
Sequence diagram 1-11, 1-16, 1-22,
4-34, 5-3, 7-53, 8-3, 8-6, 8-7
Creating 7-45
Definition 7-42

Elements which can be created or
referenced 7-44

Example 7-43

Messages 7-46

Modify command 6-10
Sequence message 5-6
Sequence message activation time

7-47
Sequence messages 7-48
Server 4-46
Shortcuts 4-66

+ 4-88

Ctrl P 4-87

Ctrl A 4-87

CtrlC 4-87

CtrlD 4-87

CtrlE 4-87

Ctrl F 4-68, 4-87

Ctrl G 4-87

Ctrl 1 4-87

Ctrl K 4-87

CtrlL 4-87

CtrlM 4-87

CtrIN 4-87

CtrlO 4-87

CtrlR 4-87

Ctrl S 4-87

CtrlU 4-88

CtrlV 4-88

Ctrl X 4-88

CtrlY 4-88

Ctrlz 4-88
Showing and hiding the console 1-8
Showing and hiding the principal

explorer 1-8

Showing and hiding the properties
editor 1-8

Showing contents 7-30
Showing elements 5-22
Drag and drop 5-23
Links 5-24
Showing elements in a diagram
The drag and drop function 2-15

Signal 3-37, 3-38, 3-39, 4-34, 5-6, 7-
68, 7-69, 8-12, 8-14

Signals 4-58
Simple search

Example 4-69
Simple search mode 4-67
Site 3-26
Softeam on the Web 6-18
State 4-16, 5-6, 7-72

State diagram 1-16, 1-22, 4-34, 4-
83, 5-3, 6-8, 7-72, 8-7

Concurrent states 7-63

Creating and referring to events 7-
67

Creating pseudo states 7-62
Creating sub-states 7-61
Creating substates in threads 7-66

Elements which can be created or
referenced 7-58

Example 7-57

Threads 7-63
State machine 1-22, 3-40, 4-34, 4-

83, 7-57, 7-59, 7-60
Status bar 1-21, 3-13
Step by step search 4-68
Stereotypes 1-21, 4-34
Structural element 1-21
Structural elements 4-20
Sub activity state 7-73
Sub activity states 7-72

Sub-system 1-21, 2-8, 7-42, 7-55, 7-
69

Swimlanes 7-73

Switching from an element in a
diagram to the same element in the
explorer 6-7

Tag type 3-36
Tagged value 7-24
Tagged value definitions 1-21

Tagged values 1-21, 4-21, 4-27, 4-
34, 4-58, 4-86

Template class 7-24
Template parameter 7-24

Terminal element creation icons 3-
17, 4-26

Terminal elements 1-10, 1-21, 4-26
Icons 4-34

Text type 3-36

Thread 7-65

Threads 7-64

Throwing and catching exceptions 7-
11

Tool bar 3-13
Tools menu 4-7
Import command 4-7
Modify configuration command 4-7
Modules command 4-7
Process wizard command 4-7
Transfer function
Description 3-28

Transferring elements between UML
modeling projects 3-28

Transition 3-40, 7-67

Trigger transition 5-6

Type 4-77

Type of UML modeling project 2-5,
35

UML extensions 8-8

UML model root 1-3, 1-21, 2-5, 2-7,
3-5, 3-15, 4-16, 4-19

UML model root name tickbox 2-5,
3-5

UML model type 2-5, 3-5

UML Modeler
Diagrams 3-27
Directories 3-27
Formalism 3-27
Interface 3-27
UML profiles 3-27

UML modeling project 1-8, 1-9, 1-21,
2-6, 3-3, 3-6, 3-13, 3-26, 3-28, 3-29,
3-36, 5-5

UML profile 1-21, 3-36

UML profiles 1-21

UML Profiles set
Description 4-65

UML profiling project 1-21, 3-3, 4-83

Unmasking elements in diagrams 5-
5

Upgrading a UML modeling project
3-10

Upgrading UML modeling projects 3-
7

Uppercase characters 4-67
Use 3-40, 5-6

Use case 3-38, 3-39, 3-40, 4-85, 5-
6, 7-42, 7-53, 7-69, 8-7, 8-12

Use case diagram 1-11, 1-22, 4-34,
5-3
Definition 7-53

Elements which can be created and
referenced 7-54

Example 7-53

Modify command 6-10

Use case boundaries 7-56
Use link 4-34

Use links 3-36, 3-37
Using flow diagrams
Overview 8-10
Using the grab function 5-19
View menu 4-5
Copy graph image command 4-5
Mask command 4-5
Print command 4-5
Save as command 4-5
Select all command 4-5
Show command 4-5
Visualizing elements in diagrams 5-5
Volumes 6-18

Warnings 1-10, 1-19, 1-20, 3-18
What's new 6-18
Windows menu 4-7
Cascade command 4-7
Close all command 4-7
Close command 4-7
Next command 4-7
Previous command 4-7
Wizards 1-7

Work product 1-21
Work products 4-34
Description 3-23
Example 3-24

Objecteering/UML

Objecteering/Model Dialog Boxes User Guide

Version 5.2.2

() bjecteering

Www.objecteering.com Software

Taking object development one step further

Contents

Chapter 1: Overview and general ergonomics

INTFOAUCHION ... 1-3
Creating @ NeW €lemMENt............oiiiiee e 1-4
Creating elements using the continuous entry creation mode....................... 1-7
Modifying an existing elementccccvee i 1-10
Consulting an existing element............cccee e 1-13
Entering references between elements.........cccceveeiiiiciie e, 1-14
Standard dialog boX tabsc.evveiiiiiee 1-19
(€10 T1T= | SRR 1-25
Chapter 2: Extensibility mechanism and general element dialog boxes
Constraint dialog DOXveiiiiiiie e 2-3
[N [0 (=3 [=1 oo T o o) G SR 2-6
Tag parameter dialog DOXccviviiiiiie e 2-8
Tagged value dialog DOX........coouiiiiiiiie e 2-9
Chapter 3: Static model dialog boxes
Package dialog DOXccueeiiiiiie e s 3-3
Class and interface dialog bOXcoovuiiiiiiiiiieciie e 3-6
Data type dialog DOX ..ccceeieiiiieee e s 3-9
Attribute dialog DOXvevieeiieeeeee s 3-12
Operation dialog DOX..........ueiiiiiiieiiiie e 3-15
Parameter dialog DOX........oooieiiiiiiie e 3-20
Return parameter dialog bOXcoveeiiiiiiiiiie e 3-23
Binary association dialog bOXcccuirieiiiiiiiiiie e 3-25
N-ary association dialog DOX..........oeeiiviiiiiiiiie e 3-28
Class association dialog DOXcc.eeeeruiieiiiiiieeeiir e 3-30
Enumeration dialog DOXeveiiiiiiiiiie e 3-32
Enumeration literal dialog bOXccceveieiiieiiiiiee e 3-35
ST Te =1 I L= (oo TN oo) GRS 3-36
Data flow dialog DOX.....ccuvveiiiiiie e 3-38
Generalization dialog DOXccccuieiiiiiiiiiiie e 3-40
USE di@log DOX ..t 3-42
Realization dialog DOX.......ccovuiiiiiiiiie et 3-44

Template parameter dialog DOX.........cceevuiieeiiiiieeiiiee e 3-46

Chapter 4: Use case model dialog boxes

Use case dialog DOXcc.veeeiiiiiieiiiie e 4-3
P Yer (o) gl [=1 0o T oo)G S 4-5
Communication link dialog bOXccccuuieiiiiiieiiiee e 4-7
Use case dependency dialog boXcocciveeiiiieeiiiiir e 4-9
Chapter 5: State machine model dialog boxes
State machine dialog BOXoveiiiiiiic e 5-3
State dialog DOXeiiiiiie e 5-5
Pseudo state dialog DOXc..oeeeiiiiiiiee e 5-7
Transition dialog DOX........ccuviiiiiiiie e 5-9
Internal transition dialog bBOX.........ccccvieieiiiii e 5-12
Event didlog DOXeeeiiiiie e 5-15
Chapter 6: Activity model dialog boxes
Activity graph dialog DOX........ceooiiiiiiiiii 6-3
Action state dialog DOX.........coouiiiiiiiiiii 6-5
Sub activity state dialog bOXoccueiiiiiiiii e 6-8
Object flow state dialog BOX.........coouiiiiiiiiiiii e 6-11
Partition dialog DOXcocuiiiiiiiiii i 6-14
Chapter 7: Physical model dialog boxes
[N\ [0 [T 1= 1 oo o T)G SRR 7-3
Component dialog DOXccocuueieiiiiieeriie e e e 7-5
Node instance dialog DOXcooiiiiiiiiiie e s 7-7
Component instance dialog boXccovviiiiiiiicic e 7-9
Chapter 8: Sequence and collaboration model dialog boxes
Collaboration dialog DOXccuviviiiiiiee e 8-3
INStance dialog DOXoeeiiiiiieiiie e 8-5
Classifier role dialog DOX........c.uuviiiiiiiiiieie e 8-8
Attribute linkK dialog DOX........coiiiiiiiiiie e 8-11
Attribute role dialog DOXooeiiiiieiie e 8-13
{01 [=1 oo I o) SRS SSSPRR 8-15
Collaboration message dialog boXcceveviiiiiiiiiirecee e 8-17

Sequence message dialog DOXccovuieeiiiiiieeiiiiee e 8-20

Chapter 9: Diagram dialog boxes

Class diagram dialog DOXevveiiiiiiiiie e 9-3
Deployment diagram dialog DOXceeeeiiieiiiiieie e 9-6
Deployment instance diagram dialog boXcceeecviviiiiiie i, 9-9
Object diagram dialog DOXcceevviiiiiiiiie e 9-12
Sequence diagram dialog boXooeiviiiiiiiiiie e 9-15
Collaboration diagram dialog bOXc.ceeeeruiiiiiiiiireciiie e 9-18
Use case diagram dialog DOXccovuieiiiiiiiiiiiiiee e 9-21
State diagram dialog DOXeeveiiiiieiiiie e 9-24
Activity diagram dialog DOXceeiuiiiiiiiiee e 9-27

Index

Chapter 1: Overview and general
ergonomics

Chapter 1: Overview and general ergonomics

Introduction

General presentation
Welcome to the Objecteering/Model Dialog Boxes user guide!

Model elements are entered in Objecteering/UML through the various different
Objecteering/UML dialog boxes.

These dialog boxes can be opened from:
+ the explorer

+ the properties editor

+ the graphic editors

Shortcuts exist to create large numbers of elements in a row (continuous entry
creation mode), or to rapidly modify several existing elements, without having to
close or open many different dialog boxes.

Operations on model elements
The following operations are possible:
+ the creation of a new element
+ the creation of elements using the continuous entry creation mode
+ the editing of an element
+ the consultation of an element

Elements may be edited or consulted from the explorer or graphic editor which is
currently active.

Non "modal” windows

Objecteering/lUML dialog boxes are non "modal”, meaning they do not block the
use of Objecteering/UML. You are, therefore, able to access other windows and
browse the model (explorer, graphic editors, properties editor) in read only mode
while a dialog box is active.

Objecteering/Model Dialog Boxes User Guide 1-3

Chapter 1: Overview and general ergonomics

Creating a new element

Explorer

To create an element in the explorer, carry out the following steps (see figure 1-2
for an example of the creation of a new element):

1 - Select an embedding element.
2 - Click on a creation icon.

3 - Press "Return" to accept the name proposed by default, or click over the
highlighted text in order to change this suggested name.

Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Example: Creating an attribute in a class

@ Objecteenng/UML Modeler

File Edit Yiew Graph Toolz ‘Windows 7

WMER s®B e~ o |[OE%

) x|
g UMLTraining [
. E| TrainingSystem
2. =
@ ResponzibleFcorTraining
0!
. Trainingtd anagerment
3 —1 Lites o
+doTrainirgReview(] e
H < Ea
Qb LR +doTrainirgTypeR eview e
%) i] Trairings ession —
. @ TrainngT ype
= § O Teoiien T - [
- | 4] | I»
-3
x4

Trainingh anager L,
M 5
i} 1

—

Figure 1-1. Creating an attribute in the "TrainingManager" class

Steps:
1 - Select a class.

2 - Click on the "Create an attribute" icon.

3 - Press "Return" to accept the name suggested by default, or click over the
highlighted text in order to change the suggested name. Confirm by pressing
"Return".

Objecteering/Model Dialog Boxes User Guide 1-5

Chapter 1: Overview and general ergonomics

Properties editor

The properties editor can be used to create certain elements, such as diagrams
and links. To create an element in the properties editor:

1 - Select the embedding element in the explorer.

2 - Click on the relevant tab in the properties editor ("Diagrams" to create a
diagram and "ltems" to create different links and other terminal elements).

3 - Define the relevant information in the window which then appears.
4 - Confirm.

Note: Certain notes and tagged values specific to modules such as
Objecteering/Documentation and Objecteering/Java can be created or
associated through the "Documentation" and "Java" tabs of the properties
editor. For further information, please refer to the user guide for the
module in question.

Graphic editors
To create an element in a graphic editor:
1 - Click on a creation button in the palette.
2 - Click in the editing zone where you wish to position the element.

3 - Press "Return" to accept the name proposed by default, or click over the
highlighted text in order to change the suggested name. Confirm by pressing
"Return".

1-6 Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Creating elements using the continuous entry creation
mode

Description

The continuous entry creation mode allows you to create several occurrences of
the same type of element in the same dialog box (for example, classes). This
mode is activated by clicking on the icon which corresponds to the type of element
selected, whilst at the same time holding down the "Citrl" key, or by double-clicking
on the icon, and is recommended for entering large numbers of elements. The
continuous entry creation mode functions in the explorer. In diagrams, the
repeated entry system is used.

Creating from the explorer
To create elements using the continuous entry creation mode in the explorer:
1 - Select the embedding element.

2 - Click on a creation button in the palette holding down the "Ctrl" key, or double-
click on the creation button.

3 - Still holding down the "Ctr" Key, press "Return" to accept the name suggested
by default, or click over the highlighted text in order to change the suggested
name.

4 - Repeat this step as many times as necessary (step 3).

5- To exit the continuous entry creation mode, clicking on the "Escape" key
cancels both the creation in progress and the continuous entry mode itself.
Alternatively, clicking at any other point in the explorer instead of pressing
"Return" confirms the creation in progress and exits the continuous entry
mode.

Objecteering/Model Dialog Boxes User Guide 1-7

Chapter 1: Overview and general ergonomics

Example: Creating a class in a package

@ Objecteering/UML Modeler - UMLTraining

File Edit “iew Graph Tools ‘windows 7

MR e @ -~ [EOEE

N :
1 LML Training
\\m B[] TrainingSystem [3
7 Trainingkdanagement
I
= 5
User =
% Trainingk ahagement
o -EEEE ®
==l
Training o]y
[=
R =
i 4,
i s

Figure 1-2. Creating a class using the continuous entry creation mode in the "TrainingSystem"
package

Steps:

1 - Select the package in which the classes are to be created.

2 - Click on the g "Create a class" icon.

3 - Either accept the name proposed by default, or click over the highlighted text
in order to change the suggested name.

4 - Press "Enter" to create the next class, and continue in this way until as many
classes as necessary have been created.

5 - You may exit the continuous entry creation mode by clicking elsewhere in the
explorer.

1-8 Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Creation from a graphic editor
To create elements using the repeated entry system in a graphic editor:

1 - Click on a creation button in the palette holding down the "Ctrl" key, or double-
click on the creation button.

2 - Click in the editing zone where you wish to position the element.

3 - Press "Return" to accept the name proposed by default, or click over the
highlighted text to change the suggested name.

4 - Click once again on the left mouse button where you wish to locate the next
element.

5 - Repeat this step as many times as necessary to create as many elements as
you wish.

6 - To exit the repeated entry system, press the "Escape" key.

Objecteering/Model Dialog Boxes User Guide 1-9

Chapter 1: Overview and general ergonomics

Modifying an existing element

Description

You can modify all the visible attributes of an existing element through its dialog
box. The dialog box can be used to modify several occurrences of the same type
of element, without the user having to close the dialog box.

Modifying from the explorer or the properties editor

To modify an element's name, simply select the element in question, and then
click once on the left mouse button. The current name is highlighted, and you may
type over it to make the necessary modifications.

Another way of modifying elements in the explorer and the properties editor is to
carry out the following steps:

1 - Select the element.

2 - Click on the "Modify" item in the context menu or the "Edit" menu (you may
also double-click on the element in question, which automatically edits the
modification dialog box). Pressing "Return" also displays the modification
dialog box.

3 - Modify the data in the dialog box which then appears.
4 - Click on "Apply".
5 - Redo steps 1 to 3 to modify another of the same element's properties.

6 - Click on "Close" when you have finished your modifications.

1-10 Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Modifying from a graphic editor
To modify the elements in the graphic editors without exiting the dialog box:
1 - Select the element.

2 - Double-click on the graphic element, or indeed click on the right mouse button
and choose the "Modify" option from the context menu which appears.
Pressing "Return" also displays the modification dialog box.

3 - Modify data in the dialog box which appears.

4 - Click on "Apply".

5 - Redo steps 1 to 3 to modify another of the same element's properties.
6 - Click on "Close" when you have finished your modifications.

Graphic representation

@ Class M=l E

Properties MHaotes T agged values

Marme I RezponzibleForT raining

[~ &bstract [~ Primitive

[Leaf [Main

[~ Raoat O Actve
Wigibility Add a stereatype

I Public: ;I I <Mone: ;I

ok | Apply | Close | Help |

Figure 1-3. Editing the "Class" dialog box

Objecteering/Model Dialog Boxes User Guide 1-11

Chapter 1: Overview and general ergonomics

Dialog box buttons

The ... button | is used to ... Keyboard
shortcut...
OK confirm the entry and quit the dialog box. Return
Apply apply the changes. Return
Close exit the dialog box, without recording the Escape
entered data.
Help provide online help on the element’s entry F1
fields.

Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Consulting an existing element

Description

Dialog boxes are the same in consult mode as in edit mode, except that their
generic buttons are not identical (the "OK" and "Apply" buttons are not available in
consult mode) and no modifications can be made.

@ Class H=] =

Froperties Hotes Tagged walues

MHarme | RezponzibleF orT raining

[Abstract [Eirnitive
[0 Leaf i E
[T Root [T Lctive

Add a stereatype

;I | rira ;I

| Close | Help |

Figure 1-4. Consulting a class

Objecteering/Model Dialog Boxes User Guide 1-13

Chapter 1: Overview and general ergonomics

Entering references between elements

Overview

In the dialog boxes or the explorer, it is often necessary to define links between
elements, such as, for example, a reference between a package and a class, or a
class which types an attribute, and so on. Three methods of entering references
exist:

+ Selection from a list. Objecteering/UML provides a limited list of possible
elements.

+ Free selection: Here, Objecteering/UML does not guide the user in his choice,
which can be very wide, and the user will establish the reference by using drag
and drop from the explorer.

+ Mixed selection: Here, Objecteering/UML makes an incomplete suggestion to
the user, with a list which is sometimes too extensive. The free selection mode
is then proposed as an alternative.

1-14 Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Selecting from a list

To create references using the "selection from a list" mode, carry out the following
steps, illustrated in Figure 1-5:

@ Objecteering/UML Modeler

File Edit Yiew Graph Tool: ‘windows 7

W EE & &R e[=

=

Fia] UMLTrairing =

=
1. o

-

f54

Traininghd ahagerment

Uzer [::TrainingS ystern: User)
2— il

=
2
MR
4 Diagrarme—Hems [Becurmentatio aoply | m&amh | m |

Figure 1-5. Selecting references from a list

Objecteering/Model Dialog Boxes User Guide 1-15

Chapter 1: Overview and general ergonomics

Steps:

1- Select a package, node instance, component, data flow or object in the
explorer.

2 - Click on the @ "Reference a unit" icon in the "ltems" tab of the properties
editor.

3 - Choose the element to be referenced from the combobox in the window. If
necessary, click on the "Search" button to carry out a search of all elements
which may be referenced.

4 - Click on "Apply" to confirm.

1-16 Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Free selection

To create references using the "free selection" mode, carry out the following

steps, illustrated in Figure 1-6:

@ Objecteering/UML Modeler

File Edit “iew Graph Tool: ‘Windows 2

W& % EEE| o |

EH|
ML T raining -
E| TrainingSystam
=] User

; E] ResponzibleForT raining

@Acc essible elements
+Altribute : unde Diiop zone

« 3 O >elo [LFEP

+doT rainingFes
ol

< Accesfible elements

Apply Search |

Diagrams [tems |Documentation|

Help |

Figure 1-6. Using the "free selection" mode

Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Steps:
1 - Select a package, node instance, component, data flow or object.

2 - Click on the @ "Reference a unit" icon.

3 - Select the item to be referenced, and using the drag and drop function,
transport it to the "Drop zone" field. It will then appear both in the "Drop zone"
field and the "Accessible elements" box.

4 - Click on "Apply" to confirm.

1-18 Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Standard dialog box tabs

Overview

Standard dialog boxes contain three tabs: the "Properties" tab, the "Notes" tab
and the "Tagged values" tab.

Properties tab

Figure 1-7 shows the "Properties" tab in a modification dialog box.

@ Claszs | _ (O] =]
Propertiez Motes Tagged values
Namel Class
™ Abstract ™ Primitive
™ Leat ™ Main
[Root [Aclive
Wizibility Add a stereatype
I Public: ;l | <Mones j

| Ok | Apply | LClose | Help |

Figure 1-7. The "Properties" tab in the "Class" dialog box

The "Properties" tab is used to enter the essential attributes of an element (name,
etc.).

Objecteering/Model Dialog Boxes User Guide 1-19

Chapter 1: Overview and general ergonomics

Notes tab

3 Each element can have several associated descriptive texts. Each text has a
name, chosen from a list of authorized names, defining its nature and function.
For example, a text called "description” can be found in generated documentation,
a text called "C++" in generated C++ code, and so on.

Note: The note types available depend on which Objecteering/lUML modules have
been chosen for the project.

[(—_‘.' Class [[3] =]

1- Propefies Mates | Tagged values

Mates
Tl it | ;I
— e

2 = | Erote M= B

<< Remave | Propertiss Tagoed valuss

<& Hemaye sl | Type
3. o 4|
Contents

ak Apply I

4,
Ok Cloge Help

Figure 1-8. The "Notes" tab in the "Class" dialog box

1-20 Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Steps:

1 - Select the "Notes" tab.

2 - Click on "Add" to open a new entry dialog box.

3 - Click on the scrolling list and select the "description" note type.
4 - Enter your text.

5 - Confirm.

Objecteering/Model Dialog Boxes User Guide 1-21

Chapter 1: Overview and general ergonomics

Modifying a description

To modify a description, carry out the following steps:

1-
2 -

3-
4-

1-22

Select the element in the right-hand list.

Click on the "Modify" option from the context menu, available by clicking on the
right mouse button over the selected element (double-clicking on the element
in question also edits the modification dialog box), or the "Edif' menu.
Pressing "Return" also displays the modification dialog box.

Modify the data in the dialog box which appears.
Click on "OK" to confirm.

Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Tagged values tab
i Tagged values are used to annotate model elements, in order to add a special

meaning to them. For example, adding the {persistent} tagged value to a class will
make the class persistent.

[®ciass | _ (O] =]

1'4PWIEFI_NW Tagaged values

Tagged values

iy |

2———— Adds> @Tagged value M=
Properties
SR Dtinition
3. T
<< HEemove
Paranneter
ity =
ok | S
4. s Add >
<4 Hemove
4 Hemove all ‘l | » I_
Qualifier
ddss |
& Hemove
5. oK | Cloge Help

Figure 1-9. The "Tagged values" tab in the "Class" dialog box

Objecteering/Model Dialog Boxes User Guide 1-23

Chapter 1: Overview and general ergonomics

To enter a tagged value, carry out the following steps:

1 - Select the "Tagged values" tab.

2 - Click on the "Add" button. The "Tagged value" dialog box then appears.
3 - Click in the scrolling list to select the tagged value definition.

4 - Click on the "Add" buttons in the "Parameter' and "Qualifier" zones, if these
are to be added. (When you click on the "Add" button in these zones, the
"Tag parameter" dialog box is displayed, and the value for the qualifier or
parameter may be entered.).

5 - Click on "OK" to associate a text component to an element.

Note: The tagged values available depend on which Objecteering/UML modules
have been chosen, and on the nature of the model element itself.

Modifying a tagged value

To modify a tagged value, carry out the following steps:
1 - Select the element in the "ltems" tab of properties editor.

2 - Click on the "Modify" option from the context menu, available by clicking on the
right mouse button over the selected element (double-clicking on the element
in question also edits the modification dialog box), or in the "Edit" menu.
Pressing "Return" also displays the modification dialog box.

3 - Modify the tagged value in the dialog box which appears.
4 - Click on "OK" to confirm.

1-24 Objecteering/Model Dialog Boxes User Guide

Chapter 1: Overview and general ergonomics

Glossary

Dialog box: Window in which model element values are entered.

Element: Model element the user can display, manipulate, or enter (for example,
class, attribute, note, ...).

Continuous entry creation mode: Mode used to enter large numbers of elements
of the same nature "in a row".

Property: Value which describes an element’s characteristics and which will have
an effect on the model.

Note: Free text, characterized by its type and content. This text completes the
attached element for documentation and programming purposes.

Tagged value: Model annotation in the form of a "{tag}". It completes the
properties and provides additional information which will be used by the
Objecteering/UML modules.

Objecteering/Model Dialog Boxes User Guide 1-25

Chapter 2: Extensibility mechanism
and general element
dialog boxes

Chapter 2: Extensibility mechanism and general element dialog boxes

Constraint dialog box

Entering constraints

A constraint expresses a semantic restriction on an element or a set of
elements being modeled. A constraint appears in the form of more or less formal
text, which can be interpreted by a programming language.

The "Constraint" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on constraints, please refer to the "Constraint class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 2-3

Chapter 2: Extensibility mechanism and general element dialog boxes

The "Properties” tab of the "Constraint” dialog box

This screen (shown in Figure 2-1) is used to enter constraint values.

EJ Constraint | _ (O] =]

Properties MHotes Tagged values

Name||

Body
I

Add a sterectype

I <Maones LI

| Ok | Close Help

Figure 2-1. The "Properties" tab of the "Constraint" dialog box

2-4 Objecteering/Model Dialog Boxes User Guide

Chapter 2: Extensibility mechanism and general element dialog boxes

Description of "Properties" tab fields

¢ "Name": This field presents the name of the constraint (a scrolling menu
presents existing constraints from which the user can select). This field is
exclusive of the "Body" field.

+ "Body": This field allows the user to specify the body of the constraint, where its
expression has not been reduced to a token or a symbol. This field is
exclusive of the "Name" field.

¢ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide). Pre- and post-conditions or
invariant specific cases are defined here.

Objecteering/Model Dialog Boxes User Guide 2-5

Chapter 2: Extensibility mechanism and general element dialog boxes

Note dialog box

Entering notes

2-6

B3 A note is any text part attached to a model element. Notes are used to add
comments, descriptions, code and so on. In Objecteering/UML, notes are typed
and may contain tagged values.

A note is made up of a name indicating its nature, and a textual content. A text
must conform to the definition provided by its "type" (TextType).

The list of text types depends on the Objecteering/UML modules available.

The "Note" dialog box contains two tabs - "Properties" and "Tagged values". For
information on these standard dialog box tabs, please refer to the "Standard
dialog box tabs" section of this user guide.

For further information on notes, please refer to the "Note class" section of the
Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide

Chapter 2: Extensibility mechanism and general element dialog boxes

The "Properties” tab of the "Note" dialog box

This screen (shown in Figure 2-2) is used to enter values for the note.

@ Hote | _ (O] =]

Propertiez Tagged waluez

Type

| <Monex ;l

Contents

oK LClose Help

Figure 2-2. The "Properties" tab of the "Note" dialog box

Description of "Properties” tab fields

+ "Type": This field allows the user to choose the note type from the scrolling list
which appears, when the arrow is clicked on.

¢ "Contents": This field allows the user to enter the associated text.

Objecteering/Model Dialog Boxes User Guide 2-7

Chapter 2: Extensibility mechanism and general element dialog boxes

Tag parameter dialog box

Entering tag parameters

A tag parameter is a parameter added to a tagged value, used to impose certain
criteria on the tagged value in question. The selected tagged value definition
imposes the existence and number of parameters.

For further information on tag parameters, please refer to the "TagParameter
class" section of the Objecteering/Metamodel User Guide.

The "Tag parameter” dialog box

This screen (shown in Figure 2-3) is used to enter values for a tag parameter.

@ Tag parameter M=l E
Fropertiez

Walue | |

| (]S | LCloze | Help |

Figure 2-3. Entering properties in the "Tag parameter" dialog box

Description of fields in the "Tag parameter” dialog box

¢ "Value": This field allows the user to enter the parameter value for the tag
parameter.

2-8 Objecteering/Model Dialog Boxes User Guide

Chapter 2: Extensibility mechanism and general element dialog boxes

Tagged value dialog box

Entering tagged values
i A tagged value allows the user to refine the semantics of existing classes,
through the addition of new attributes defined in a use case.

Tagged values are typed (see "Tag Type" dialog box) and can have values (see
"Tag Parameter" dialog box).

A tagged value is expressed as follows: "{tagged
value_name:Qualifier(p1,p2,p3)}".

The "Tagged value" dialog box contains no standard tabs, but instead contains
three zones - "Definition", "Parameter" and "Qualifier".

For further information on tagged values, please refer to the "TaggedValue class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 2-9

Chapter 2: Extensibility mechanism and general element dialog boxes

Tagged value dialog box

This screen (shown in Figure 2-4) is used to enter the values of a tagged value.

@ Tagged value
Froperties

=] B

Definition |
Farameter

T Edifi

Add x>

¢ Hemowe

<< Bemawe &l

Cualifier

Al |

<< Hemnyve

LCloge Help

Figure 2-4. The "Tagged value" dialog box

Objecteering/Model Dialog Boxes User Guide

Chapter 2: Extensibility mechanism and general element dialog boxes

Description of fields in the "Tagged value” dialog box

+ "Definition": Tagged values are previously defined at UML profiling project level
(for further information, please refer to the Objecteering/UML Profile Builder
user guide).

+ "Parameter": This field is used to add, remove or modify parameters which will
be added to the tagged value. When you wish to add or modify a parameter,
the "Tag parameter' dialog box is displayed (please refer to the "Tag
parameter dialog box" section of this user guide. The buttons in this dialog box
are used as follows:

¢ "Modify": This button is used to modify an existing parameter.

¢ "Add": This button is used to add a new parameter. When you click
on this button, the "Tag parameter" button is displayed, and the
value for the parameter which is to be added may be entered.

¢ "Remove": This button is used to remove a parameter from the
tagged value in question.

¢+ "Remove all': This button is used to remove all parameters from the
tagged value in question.

+ "Qualifier": A tagged value qualifier is a specific parameter. A maximum of one
may exist for each tagged value. The selected tagged value definition either
enforces or does not enforce the existence of qualifiers. Qualifiers are used to
qualify the information entered for the tagged value in question.

¢ "Add": This is used to add a qualifier to the tagged value in question.
When you click on this button, the "Tag parameter" dialog box is
displayed, and the value for the qualifier may be entered.

¢ "Remove": This button is used to remove a qualifier from the tagged
value in question.

Objecteering/Model Dialog Boxes User Guide 2-11

Chapter 3: Static model dialog boxes

Chapter 3: Static model dialog boxes

Package dialog box

Entering packages

A package is a general purpose mechanism used to organize elements into
groups of model elements and diagrams. Packages may contain other packages.

The "Package" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on packages, please refer to the "Package class" section
of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 3-3

Chapter 3: Static model dialog boxes
The "Properties” tab of the "Package" dialog box

This screen (shown in figure 3-1) is used to enter values for a package.

@ Package |_ (O] =]

Mates

Propertiez Tagged values

Namel Package

[Abstract
[Leaf

[~ Root
Yizibility

| Public =l

[© | [istantiable

Add a stereatype

| <Mone: ;I

I [1]:8 | Apply | LCloze | Help |

Figure 3-1. The "Properties" tab of the "Package" dialog box

3-4 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

*

*

"Name": The package's name. This name must be unique in the model.

"Abstract": This indicates if the package is abstract (that is, which cannot be
directly instantiated) or not.

"Leaf": This indicates if the package is a leaf package (a generalizable
package with no children in the generalization hierarchy) or not.

"Root": This indicates whether the package is a root package (with no
ancestors) or not.

"Visibility": This indicates the visibility of the package (public, protected, private
or none).

"Instantiable™: This indicates whether or not the package may be instantiated.

"Add a stereotype" : This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-5

Chapter 3: Static model dialog boxes

Class and interface dialog box

Entering classes

T

g A class represents a pattern for an object's creation.(see also the "Class"
metaclass).

A class has an extended description in a model. For example, enumerates are
classes in the general sense, but are not developed in a model. A class
represents its instances, and has operations and attributes.

Classes can have dependency links between them, and also support
generalization links and associations.

“Y Interfaces are created through the same dialog box, with the "interface"
stereotype.

A class can be:
"abstract": This means that it cannot have direct instances.
"leaf": This means that it cannot be re-decomposed.
"root": This means that it specializes no other classes, except "Object".

"primitive": This means that its value cannot be decomposed. It can then be
used as a type of attribute.

"main": This means that it represents the application.

"active": This means that the class can receive events, be multithreaded, or
have specific active behavior.

"interface": This means that the class is an interface. It will be defined by a set
of services, and can be implemented by classes. This feature is frequently
used for targets such as Java, Corba, etc.

"public" or "private": This defines the visibility of this class from outside the
package.

he "Class" dialog box contains three tabs - "Properties", "Notes" and "Tagged

values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

F

or further information on classes, please refer to the "Class class" section of the

Objecteering/Metamodel User Guide.

3-6

Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Class" dialog box

This screen (shown in Figure 3-3) is used to enter values for a class.

EJ Class | _ (O] =]
Properties Motes Tagged waluez
Namel Clazs
™ Abstract [Primitive
™ Leaf C Main
[Root [Achive
Wizibility Add a sterectype
| Public: j I <Mone j

| ok | Apply | LClose | Help |

Figure 3-2. The "Properties" tab in the "Class" dialog box

Objecteering/Model Dialog Boxes User Guide 3-7

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This indicates the name of the class.

"Abstract": An abstract class is defined very generally, and does not own
direct instances.

"Primitive": This determines if the class is primitive. A class is primitive if its
value is not de-composable, and if its instances are not managed by the
application. For example, "integer" and "boolean" are primitive classes,
whereas "Human" or "peripheral" generally are not.

"Leaf": This indicates if the class is a leaf class (a generalizable class with
no children in the generalization hierarchy) or not.

"Main": A main class is a class whose unique instance represents the
application.

"Root": This indicates if the class is a root class (with no ancestors) or not.

"Active": This indicates if the class is an active class (a class whose
instances are active objects) or not.

"Visibility": This only applies if a class belongs to a leaf package. The
visibility can either be public or protected. A public class is accessible from
any user package of the current package. A private class can only be
accessed from the current package or by an heir package.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Data type dialog box

Entering data types

A data type is a descriptor of a set of primitive values which lacks identity,
and which allows the user to define base types. Data types include numbers,
strings, and enumerated values. They are passed by value and are immutable
entities.

The "Data type" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on data types, please refer to the "DataType class" section
of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 3-9

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Data type" dialog box

This screen (shown in Figure 3-3) is used to enter values for a data type.

@ Data type | _ (O] =]

Propertiez Motes Tagged values

Namel DataTwpe

™ Abstract ¥ Frimnitive

[Leaf Add a stereatype
C Root I <Mones ;l

Yizibility

| Public =l

| ar. | Apply Cloze Help

Figure 3-3. The "Properties" tab of the "Data type" dialog box

3-10 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

*

*

*

"Name": This indicates the name of the data type.
"Abstract": This indicates whether the data type is abstract or not.

"Primitive": This indicates whether the data type is primitive or not (this
property should always be true).

"Leaf": This indicates whether the data type is leaf (a generalizable data
type with no children in the generalization hierarchy) or not.

"Root": This indicates if the data type is a root data type (with no ancestors)
or not.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

"Visibility": This indicates the visibility of the data type (public, protected,
private or none).

Objecteering/Model Dialog Boxes User Guide 3-11

Chapter 3: Static model dialog boxes
Attribute dialog box

Entering attributes

An attribute specifies a primitive property of a class.

Its value is shared by all the instances of the class. It is characterized by a
name, a type, and, optionally, by a default value.

An attribute can be:
¢ aclass attribute, in which case it is related to the class itself.

+ an instance attribute, in which case it belongs to each of the class instances.
Its value is particular to a given instance.

+ a functional dependency attribute, in which case its value depends on other
values (for example other attributes). It is dynamically evaluated.

The "Attribute” dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on attributes, please refer to the "Attribute class" section of
the Objecteering/Metamodel User Guide.

3-12 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes
The "Properties” tab of the "Attribute" dialog box

This screen (shown in Figure 3-4) is used to enter values for an attribute.

E_J_Attrihute |_ (O] =]
Properties Motes Tagged waluez
M armne | Abtribute
Wizibility Clazz
| Fublic LI £F | undefined j
[ls class Type constraint#String sizel
LEs Accesz mode
[~ Dynarnic dependency I Read LI
Setdarmay sizel 1 [T Targetis class
Exprezsion of valuel
Add a stereatype
I <Mones =]
| (1] Apply | LCloze | Help |

Figure 3-4. The "Properties" tab of the "Attribute" dialog box

Objecteering/Model Dialog Boxes User Guide 3-13

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the attribute's name.

"Visibility": This is the visibility of the attribute (undefined, public, protected
or private).

"Class": This determines which class will give a type to the attribute. A list
selects those classes that are "primitive" and that are accessible by the
current class.

"Is class": This determines whether the attribute is static or not.

"Type constraint/String size": This is used to indicate the size of string-type
attribute, and gives an indication of instantiation of the attribute’s primitive
class.

"Abstract": This indicates whether the attribute is abstract or not.

"Access mode": This determines the access mode of the attribute (read,
write, read/write or neither).

"Dynamic dependency": This determines whether the attribute is a dynamic
dependency, i.e. whether its value is calculated dynamically through an
expression. This also corresponds to the "derived" attributes.

"Set/array size": This is used to indicate the size of the set. The attribute is
not a set if the value is 1. Otherwise, it is a set with the indicated size (* for
the sets with unlimited size).

"Target is class": This indicates that the attribute type is a metaclass.

"Expression of value": If the attribute is a dynamic dependency, then this
field will contain the expression of the dynamic calculation in the target
language (such as C++ or Java). If not, the associated field contains the
attribute’s default value.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

3-14

Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Operation dialog box

Entering operations

or (redefinition of an operation). This is the definition of a service
provided by a class and its descendent classes. It characterizes the messages
that its class instances can deal with.

The "Operation" dialog box contains two standard tabs - "Properties" and "Tagged
values" - and one additional tab, "Implementation". For information on the two
standard dialog box tabs, please refer to the "Standard dialog box tabs" section of
this user guide.

For further information on operations, please refer to the "Operation class" section
of the Objecteering/Metamodel User Guide.

u]
Note: The "Redefine an operation" icon is used to redefine operations of
parent classes, without re-entering its properties.

Objecteering/Model Dialog Boxes User Guide 3-15

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Operation" dialog box

This screen (shown in Figure 3-5) is used to enter values for an operation.

EJ Operation |_ (O] =]

Properties Irmplementation Tagged values

MHame Farameters
| Operation j kit 155
Wizibility
| Public -] figd >
Ahstract
Ll <4 BEemoye
[~ Cannot be zpecialized L
[T Class <4 Bemowe &l ‘| | N I_
Pazzing mode Return parameter
I ('" in ﬁ' out .&.dd 33 |
<< Bemowe

Add a stereatype

<Mone: ;I

(1] | Apply LCloze Help |

Figure 3-5. The "Properties" tab in the "Operation" dialog box

3-16 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the operation.

"Visibility": This is the visibility of the member (none, public, protected or
private).

"Abstract": This determines abstract methods.

"Cannot be specialized": This indicates that the operation may not be
specialized, that is to say made more specific. It is a leaf operation.

"Class": This defines a "class" operation, i.e. shared by all its instances.

"Passing mode": This is the operation's passing mode (in or out). The default
is "out". This mode indicates whether the object receiving the message is
modified (out), or not (in) by the operation's execution.

"Parameters" (See Parameter): This defines the parameters that the operation
receives.

"Return parameter" (See Return parameter): This defines the possible return
parameter.

"Add a stereotype™: This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiling level (for further information, please refer to the Objecteering/UML
Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-17

Chapter 3: Static model dialog boxes

The "Implementation” tab of the "Operation" dialog box

This screen (shown in Figure 3-6) allows the user to add, modify or remove the
operation's code.

@ Operation |_ (O] =]

Propertiez Implermentation Tagged values

Irmplementation

el Edifir

|»

Add =

<< Hemoyve

<<% Bemoyve &l

=
1 [

| (1] Apply LCloze Help

Figure 3-6. The "Implementation" tab of the "Operation" dialog box

3-18 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Description of "Implementation” tab fields

+ "Implementation": This is text which represents the operation's content in the
target language. It may be added, modified or removed by clicking on the
relevant button.

Objecteering/Model Dialog Boxes User Guide 3-19

Chapter 3: Static model dialog boxes

Parameter dialog box

Entering parameters
“F parameters are information received by an operation, and may be entered
either from the explorer, or from an operation's dialog box.

Parameters are defined for each operation. Their name, type and passing mode
are essential information.

A parameter has:
+ a passing mode (in, out, in/out)

+ a compulsory or optional feature, indicating whether the caller must supply it or
not

The "Parameter" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on parameters, please refer to the "Parameter class"
section of the Objecteering/Metamodel User Guide.

3-20 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Parameter" dialog box

This screen (shown in Figure 3-8) is used to enter values for a parameter.

[f—_‘J Parameter _[O]

Froperties Maotes Tagged values

Namel Parameter

Pararmeter pazzing maode Setdamay sizel 1

Iﬁ' it outd™ indout
Type constraint/String sizel

Default valuel

Class
{t} | <Mones> j

Add a stereatype

| <Mone: ;I

| ok LCloze | Help |

Figure 3-7. The "Properties" tab of the "Parameter" dialog box

Objecteering/Model Dialog Boxes User Guide 3-21

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the element

"Parameter passing mode": This indicates whether the parameter is in "read
only" mode (in) or may be modified (out or in/out).

"Set/array size": If the value is other than 1, the parameter is a set with the
indicated size (* if unlimited, constant, or integer).

"Type constraint/String size": This is the constraint on the parameter type
(for example, the size of the character string)

"Default value": This is the possible default value of the parameter.
"Class": This defines the class to which the parameter belongs.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

3-22

Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Return parameter dialog box

Entering return parameters

B Return parameters are information sent back after an operation has been
carried out. Return parameters can be entered either from the explorer, or from

an operation's dialog box.

The "Return parameter" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on parameters, please refer to the "Parameter class"
section of the Objecteering/Metamodel User Guide.

The "Properties” tab of the "Return parameter” dialog box

This screen (shown in Figure 3-8) is used to enter values for a parameter.

@ Return parameter H=] =

MHaotes Tagged values

Properties

Setdaray sizel 1

Type constraint |

Clasz

¥ |<None> j

Add a stereatype

| <Monex -]

I (]9 | Close Help |

Figure 3-8. The "Properties" tab of the "Return parameter" dialog box

Objecteering/Model Dialog Boxes User Guide 3-23

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

*

"Set/array size": If the value is other than 1, the parameter is a set with the
indicated size (* if unlimited, constant, or integer).

"Type constraint": This is the constraint on the parameter's type (for
example, size of the character string)

"Class": This defines the class to which the parameter belongs.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

3-24

Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Binary association dialog box

Entering binary associations

~ 1 An association (or aggregation) specifies a stable link between two or more
instances or sets of instances, and can be binary or n-ary. Where a binary
association is concerned, the association entry dialog box allows the entry of both
the association and the association ends. For n-ary associations there exists a
dialog box for each extremity, as well as for the association itself.

The "Binary association" dialog box contains three tabs - "Properties", "Notes" and
"First link Tagged values". For information on these standard dialog box tabs,
please refer to the "Standard dialog box tabs" section of this user guide.

For further information on associations, please refer to the "Association class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 3-25

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Binary association" dialog box

This dialog box (shown in Figure 3-9) is used to enter values for a binary
association.

@ Binary association

Froperties Motes Tagged walues

I the association or the aggregationlAssociatior{

Add a stereotype to an aszociation

| <Mone> LI
The clazs The class
{:} | Clazs1 j {3— | Class2 j
Hasz the role ofl undefined Has the rale DFI undefined
Quantity [rnir.. rmax) Quantity [in..max]
Aszociation kind Aszociation kind

% Azsociation (™ Aggregation ™ Composition

IG' Azzociation © Aggregation ¢ Composition

¥ |: changeable [|z changeable
[ls navigable ¥ ls navigable
Acceszible the following way : Accessible the following way :
| Undefined x| |[Public =l
Access mode Access mode
I Read LI | Read ;I
[T Abstract [Abstract
[T Class [Class
Add a sterectype Add a stereotype
I <Mones LI | <Mone: ;I

|] Apply | LCloze | Help |

Figure 3-9. The "Properties" screen of the "Binary association" dialog box

3-26 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

+ "In the association or the aggregation": This specifies the binary association
name.

+ "Add a stereotype to association": This field allows the user to add a stereotype
to the association.

¢ "The class": This defines the names of the classes at both ends of the link.

+ "Has the role of": This is the role played by the class with regard to the class at
the other end of the link.

+ "Quantity (min-max)": This is the interval multiplicity written "min*max". "min"
gives the minimum number of instances of the class, and "max" indicates the
maximum number of instances of the class. The ™" symbol means unlimited.

+ "Association kind": This is used to define the kind of association concerned.
"Association" is for standard associations, "Aggregation" represents "shared
aggregations" (indicated by a white triangle), and "Composition" represents
strong composition (graphically shown by a black triangle).

+ "Is changeable": When placed on a target end, this specifies whether or not an
instance of the association may be modified from the source end.

+ "Is navigable": This specifies whether or not the association (which must be
binary) can be traversed from the opposite class to the class attached to the
association end in question.

+ "Accessible the following way": This is the visibility of the member (public,
protected or private). Choosing visibility orientates the relation between the
current class and the class at the other end (navigability).

¢ "Access mode": This determines the access mode of the association (read,
write, read/write or no access).

¢ "Abstract": This determines if the role is abstract or not.
¢ "Class": This determines if the role is class or not.

¢ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-27

Chapter 3: Static model dialog boxes

N-ary association dialog box

The "Properties” tab of the "N-ary association” dialog box

<>

This screen (shown in Figure 3-10) is used to enter values for an n-ary
association or aggregation.

@ M-ary azsociation H=] =

Properties Mate Tagged walues

Aszzociation hame | undefined

Link name

| undefined:: Class1 ;I

Link. namel undefined

Fuiltiplicity

[¥ | changeable

Yizibility

[Ondsfined =

[Abstract

[Class
Add a stereatype

| <Maones j

|] | Apply | LCloze | Help |

Figure 3-10. The "Properties" screen of the "N-ary association" dialog box

3-28 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Description of "Properties” tab fields

*
.
*
.

"Association name": This is the name of the n-ary association or aggregation.
"Link name": This is the name given to the link.
"Multiplicity": This indicates the multiplicity of the n-ary association.

"Is changeable": When placed on a target end, this specifies whether or not an
instance of the association may be modified from the source end.

"Visibility": This indicates the visibility of the package (public, protected, private
or none).

"Abstract: This determines if the role is abstract or not.
"Class": This determines if the role is class or not.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-29

Chapter 3: Static model dialog boxes

Class association dialog box

Entering class associations
=
M This is a class which relates other classes by adding features to associations,
and is both a class and an association. A class association is a component of an

association.

The "Class association" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on class associations, please refer to the
"ClassAssociation class" section of the Objecteering/Metamodel User Guide.

The "Properties” tab of the "Class association” dialog box

This screen (shown in Figure 3-11) is used to enter values for a class association.

@ Class association |_ (O] =]

Motes Tagged values

Propertiez

Add a stereatype

<Monex ;I

] | Apply | LCloze | Help |

Figure 3-11. The "Properties" tab of the "Class association" dialog box

3-30 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

¢ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-31

Chapter 3: Static model dialog boxes

Enumeration dialog box

Entering enumerations

3-32

1
%24 An enumeration defines a finite sub-set of positive integers, in which each
value has a symbolic name.

The enumerate types represented here can correspond either to C++ enumerate
types or to Pascal or Ada enumerate types (which have different semantics). All
the possible symbolic values of the enumerations are defined by a "Literal value"
class.

The "Enumeration" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please
refer to the "Standard dialog box tabs" section of this user guide.

For further information on enumerations, please refer to the "Enumeration class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Enumeration" dialog box

This screen (shown in Figure 3-12) is used to enter values for an enumeration.

@ Enumeration type |_ (O] =]

Properties MHotes Tagged values

Mame | Enumeration

Wizibility

| Public =1

E numeration literal value

|»

T mdlify

Add >

<% Hemnve

-
<< Bemnaye &l *l | ’l_

Add a sterectype

I <Maones j

| (]S | Apply | LCloze | Help |

Figure 3-12. The "Properties" tab of the "Enumeration" dialog box

Objecteering/Model Dialog Boxes User Guide 3-33

Chapter 3: Static model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the enumeration.

"Visibility": This indicates the visibility of the enumeration, which can be
public, protected, private or none.

"Enumeration literal value": (see the "Enumeration literal" referenced
element) This is the link with the "Enumeration literal" representing the
possible values of the type.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

3-34

Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

Enumeration literal dialog box

Entering enumeration literals

3y An enumeration literal is a symbolic value of an enumeration type element.
For further information, please refer to the "EnumerationLiteral class" section of
the Objecteering/Metamodel User Guide.

An enumeration type is defined as an integer type sub-set, composed of several
possible values and defined with a symbolic name. The enumeration literal is
this symbolic name.

The "Enumeration literal" dialog box

This screen (shown in Figure 3-13) is used to enter values for an enumeration
literal.

@ Enumeration literal

Froperties

Literal name |

I (]9 | Close | Help |

Figure 3-13. Entering an enumeration literal

Description of fields

+ ‘"Literal name": This is the name of the enumeration literal, and represents a
symbolic value of the associated enumeration.

Objecteering/Model Dialog Boxes User Guide 3-35

Chapter 3: Static model dialog boxes

Signal dialog box

Entering signals

Signals are specifications of asynchronous stimuli communicated between
instances. Events and Data flows are representations (occurrences) of signals.
By extension, signals are a representation of any kind of information that can
travel between packages, classes, instances or messages. This information can
be an object or a request.

The "Signal" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on signals, please refer to the "Signal class" section of the
Objecteering/Metamodel User Guide.

3-36 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Signal” dialog box

This screen (shown in Figure 3-14) is used to enter values for a signal.

@ Signal _ O] =]

Propertiez Motes T agged values

Namel Signal

Baze
¥ | <Manes j

Add a stereatype

| <Monex =]

|] | Apply | LCloze | Help |

Figure 3-14. The "Properties" screen of the "Signal" dialog box

Description of "Properties” tab fields

+ "Name": This is the name of the signal.

¢ "Base": This field is used to show represented information. The user can

choose from the combo box. A signal can be a representation of a parameter,
passing, or message call, or of any class instance navigation.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-37

Chapter 3: Static model dialog boxes

Data flow dialog box

Entering data flows

— A data flow is a circulation of information between model elements, the
representation of all types of information that can be transmitted between
elements. Data flows can be objects or requests.

The "Data flow" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on data flows, please refer to the "DataFlow class" section
of the Objecteering/Metamodel User Guide.

3-38 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Data flow" dialog box

This screen (shown in figure 3-15) is used to enter values for a data flow.

EJ Data flow | _ (O] =]

Properties MHotes Tagged values

Mame | DrataFlow

Signal

¥ |<None> j
Destination element

{:} |<N0ne> j

Add a stereotype

I <Mone> LI

| (0] | Apply | LCloze | Help |

Figure 3-15. The "Properties" tab of the "Data flow" dialog box

Description of "Properties” tab fields

+ "Name": This is the data flow's name. This name must be unique in the model.

+ "Signal': This combobox allows the user to choose a signal in the UML

modeling project. The dataflow will indicate that the signal may circulate
between its origin and destination.

"Destination element": This combobox indicates the destination of the data
flow.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-39

Chapter 3: Static model dialog boxes

Generalization dialog box

Entering generalizations

3-40

= A generalization is a generalization link between classes, which represents
the hierarchy of packages or classes (see also the "Generalization" metaclass).

A generalization link can have tagged values.

The "Generalization" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please
refer to the "Standard dialog box tabs" section of this user guide.

For further information on generalizations, please refer to the "Generalization
class" section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Generalization" dialog box

This screen (shown in Figure 3-16) is used to enter values for a generalization.

@ Generahzation

Propertiez Motes Tagged values

Discriminator |

Add a stereatype

<Monex j

|] | Apply | LCloze | Help |

Figure 3-16. The "Properties" tab of the "Generalization" dialog box

Description of "Properties” tab fields

¢ "Discriminator": This field designates the partition to which the
generalization link belongs.

¢ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-41

Chapter 3: Static model dialog boxes

Use dialog box

Entering uses

A use is a usage dependency between model elements; in other words, one
element requires the presence of another element for its correct functioning or
implementation.

The "Use" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on uses, please refer to the "Use class" section of the
Objecteering/Metamodel User Guide.

3-42 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Use" dialog box

This screen (shown in Figure 3-17) is used to enter values for a use.

[Euse =] =

Propertiez Motes Tagged values

Add a stereatype

<Monex ;I

|] | Apply | LCloze | Help |

Figure 3-17. The "Properties" screen of the "Use" dialog box

Description of "Properties” tab fields

+ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-43

Chapter 3: Static model dialog boxes

Realization dialog box

Entering realizations

A realization is an implementation link between a class and its interface, or
between a component and its interface.

The "Realization" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on realizations, please refer to the "Realization class"
section of the Objecteering/Metamodel User Guide.

3-44 Objecteering/Model Dialog Boxes User Guide

Chapter 3: Static model dialog boxes

The "Properties” tab of the "Realization" dialog box

This screen (shown in figure 3-18) is used to enter values for a realization.

@ Healization |_ (O] =]

Propertiez Motes Tagged values

Add a stereatype

<Monex ;I

|] | Apply | LCloze | Help |

Figure 3-18. The "Properties" tab of the "Realization" dialog box

"Properties" Tab: Description

+ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 3-45

Chapter 3: Static model dialog boxes

Template parameter dialog box

Entering template parameters

Ehe A template parameter is a parameter for templated elements. Typically,
parameters are classifiers which represent attribute types, but they can also
represent integers or even operations.

For further information on template parameters, please refer to the
"TemplateParameter class" section of the Objecteering/Metamodel User Guide.

The "Template parameter” dialog box

This screen (shown in Figure 3-19) is used to enter values for a template
parameter.

@ Template parameter H=] =
Froperties

"alue | |

| OF. | Close | Help |

Figure 3-19. The "Template parameter" dialog box

Description of fields

¢ "Value": This is the value assigned to the template parameter.

3-46 Objecteering/Model Dialog Boxes User Guide

Chapter 4: Use case model dialog
boxes

Chapter 4: Use case model dialog boxes

Use case dialog box

Entering use cases

".::} A use case represents a system's functions. One or more sequence
diagrams show how these functions or activities are carried out by external users
called actors and objects of the system.

The relationships between uses and actors are described in use case diagrams.

The "Use case" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on use cases, please refer to the "UseCase class" section
of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 4-3

Chapter 4: Use case model dialog boxes

The "Properties” tab of the "Use case" dialog box

This screen (shown in Figure 4-1) is used to enter the values of a use case.

EJ Usze case =] 2

Properties MHotes Tagged walues

Mame | zeCase

Add a stereatype

I <Maones LI

(]S | Apply | LClose | Help |

Figure 4-1. The "Properties" tab of the "Use case" dialog box

Description of "Properties” tab fields

+ "Name": This is the use case's name. This name must be unique in the model.

+ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML

profiing project level (for further information, please refer to
Objecteering/UML Profile Builder user guide).

4-4 Objecteering/Model Dialog Boxes User Guide

Chapter 4: Use case model dialog boxes

Actor dialog box

Entering actors

% An actor is defined in a package.

An actor symbolizes a user and his relationship to an application model. It will be
used by use case diagrams and sequence diagrams and represents the modeled
system's external participants.

The "Actor" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on actors, please refer to the "Actor class" section of the
Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 4-5

Chapter 4: Use case model dialog boxes

The "Properties” tab of the "Actor" dialog box

This screen (shown in figure 4-2) is used to enter values for an actor.

@ Actor |_ (O] =]

Propertiez Motes Tagged values

f ame | Actar

Add a stereatype

| <Maones j

|] | Apply | LCloze | Help |

Figure 4-2. The "Properties" tab of the "Actor" dialog box

Description of "Properties” tab fields

+ "Name": The actor’'s name. This name must be unique in the model.

+ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML

profiing project level (for further information, please refer to
Objecteering/UML Profile Builder user guide).

4-6 Objecteering/Model Dialog Boxes User Guide

Chapter 4: Use case model dialog boxes

Communication link dialog box

Entering communication links

// A communication link represents the interaction that a user external to the
system can have with the system in specific use modes. Communication links are
defined in a use case.

The "Communication link" dialog box contains three tabs - "Properties", "Notes"
and "Tagged values". For information on these standard dialog box tabs, please
refer to the "Standard dialog box tabs" section of this user guide.

For further information on communication links, please refer to the
"Communication class" section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 4-7

Chapter 4: Use case model dialog boxes

The "Properties” tab of the "Communication" dialog box

This screen (shown in Figure 4-3) is used to enter values for the communication
link.

EJ Communication ink

Properties MHotes Tagged walues
Namel
Add a stereatype

I <Maones LI

| (]S | Apply | LClose | Help |

Figure 4-3 The "Properties" tab of the "Communication link" dialog box

Description of "Properties” tab fields
¢ "Name": The communication link's name.

+ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

4-8 Objecteering/Model Dialog Boxes User Guide

Chapter 4: Use case model dialog boxes

Use case dependency dialog box

Entering use case dependencies

wir HEY

===%* and -==* A use case dependency is a use link between two use cases.
UML defines two use types between use cases. These are presented in the form
of a stereotype («extend» and «include») attached to the use link.

The "Use case dependency" dialog box contains three tabs - "Properties”, "Notes"
and "Tagged values". For information on these standard dialog box tabs, please
refer to the "Standard dialog box tabs" section of this user guide.

For further information on use case dependencies, please refer to the
"UseCaseDependency class" section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 4-9

Chapter 4: Use case model dialog boxes

The "Properties” tab of the "Use case dependency" dialog box

This screen (shown in Figure 4-4) is used to enter values for a use case
dependency.

E.J_((extend)) | _ (O] =]

Properties MHotes

Tagged walues

Add a sterectype

| extend ;l

Target use case

£ | UseCasel j

| (]S | Apply | LClose | Help |

Figure 4-4. The "Properties" tab of the "Use Case dependency" dialog box

Description of "Properties” tab fields

+ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

¢ "Target use case": In a dependency between use cases, this combobox is
used to define the link to the target use case.

4-10 Objecteering/Model Dialog Boxes User Guide

Chapter 5: State machine model dialog
boxes

Chapter 5: State machine model dialog boxes

State machine dialog box

Entering state machines

Qt' A state machine is a graph of states and transitions which describes the
dynamic behavior of objects, that is to say, the sequence of states that an object
or an interaction goes through in response to events during its life, together with
its responsive actions.

In Objecteering , a state machine belongs to a package, an operation, a use case
or a class. Its natural position is to belong to a class.

The "State machine" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on state machines, please refer to the "StateMachine
class" section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 5-3

Chapter 5: State machine model dialog boxes

The "Properties” tab of the "State machine" dialog box

This screen (shown in Figure 5-1) is used to enter the values for a state machine.

EJ State machine | _ (O] =]

Properties MHotes Tagged walues

Mame | Statet achine

Kind of state machine

IF' Dynamic © Protocal

Add a stereatype

I <Maones LI

(]S | Apply | LClose | Help |

Figure 5-1. The "Properties" tab of the "State machine" dialog box

Description of "Properties” tab fields

¢
¢

"Name": This is the name of the state machine.

"Kind of state machine": Here, the user checks either the "Dynamic" button to
indicate that the state machine is dynamic, or the "Protocol" button to indicate
that the state machine is protocol.

"Add a stereotype™: This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

5-4

Objecteering/Model Dialog Boxes User Guide

Chapter 5: State machine model dialog boxes

State dialog box

Entering states

=

A state represents either a period of time during which an object waits for
certain events to occur, or a period of time during which an object performs an
ongoing activity. States are interconnected by transitions.

The "State" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on states, please refer to the "State class" section of the
Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 5-5

Chapter 5: State machine model dialog boxes

The "Properties” tab of the "State" dialog box

This screen (shown in Figure 5-2) is used to enter values for a state.

EJ State | _ (O] =]

Properties MHotes Tagged walues

Mame | State

[T Concurent

Add a stereatype

I <Mone> LI

(]S | Apply | LClose | Help |

Figure 5-2. The "Properties" tab of the "State" dialog box

Description of "Properties” tab fields

*

*

*

"Name": This is the name of the state.
"Concurrent": This indicates whether or not the state is concurrent.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide

Chapter 5: State machine model dialog boxes

Pseudo state dialog box

Entering pseudo states

A pseudo state is an abstraction of different types of nodes in the state machine
graph.

Pseudo states are used to link transition segments, and a transition to one implies
a further automatic transition to another state, without an event being necessary.

The "Pseudo state" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on pseudo states, please refer to the "PseudoState class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 5-7

Chapter 5: State machine model dialog boxes

The "Properties” tab of the "Pseudo state" dialog box

This screen (shown in Figure 5-3) is used to enter values for a pseudo state.

EJ Pzeudo state | _ (O] =]

Properties MHotes Tagged walues

Nameli

Add a stereatype

I <Maones LI

(]S | Apply | LClose | Help |

Figure 5-3. The "Properties" tab of the "Pseudo state" dialog box

Description of "Properties” tab fields
+ "Name": This is the name of the pseudo state.

+ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

5-8 Objecteering/Model Dialog Boxes User Guide

Chapter 5: State machine model dialog boxes

Transition dialog box

Entering transitions

] [A transition is a relationship between two states, indicating that an object in
the first state will perform specified actions and enter the second state when a
specified event occurs and specified guard conditions are satisfied.

The "Transition" dialog box contains two tabs - "Properties" and "Tagged values".
For information on these standard dialog box tabs, please refer to the "Standard
dialog box tabs" section of this user guide.

For further information on transitions, please refer to the "Transition class" section
of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 5-9

Chapter 5: State machine model dialog boxes

The "Properties” tab of the "Transition" dialog box

This screen (shown in Figure 5-4) is used to enter values for a transition.

EJ Transition

Properties MHotes Tagged waluez

Received event
[-]

Guard condition

Exprezsion of the action
| -
Expreszsion of the sent event

| [

Final conditian

Add a sterectype

| <Mones =]

(0] | Apply | LCloze | Help |

Figure 5-4. The "Properties" tab of the "Transition" dialog box

5-10 Objecteering/Model Dialog Boxes User Guide

Chapter 5: State machine model dialog boxes

Description of "Properties" tab fields

+ "Received event": This is the event received which triggers the transition. The
received event can be text entered in the field, or a reference to events defined
in the current state machine.

¢ "Guard condition": This is the condition under which a transition may be
triggered (for further information on conditions, please refer to the "Condition
class" section of the Objecteering/Metamodel User Guide).

+ "Expression of the action": This is an action realized when the transition is
triggered. The combobox makes it possible to simply designate an operation
(message call).

¢ "Expression of the sent event": This is an event sent by the transition once it
has been triggered. A sent event can be text entered in the field, or a
reference to existing events in the current state machine (combobox). Signals
can also be referenced (shorthand for Signal sending event).

¢ "Final condition": This is a condition obtained once the transition has occurred
(this can be useful for protocol state diagrams).

¢ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 5-11

Chapter 5: State machine model dialog boxes

Internal transition dialog box

Entering internal transitions

dos, . . o i

An internal transition is a transition which is internal to a state. It is related to
a state. It may be triggered upon entering or exiting the state, or can describe an
activity that is performed whilst in the state.

The "Internal transition" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on internal transitions, please refer to the
"InternalTransition class" section of the Objecteering/Metamodel User Guide.

5-12 Objecteering/Model Dialog Boxes User Guide

Chapter 5: State machine model dialog boxes

The "Properties” tab of the "Internal transition™ dialog box

This screen (shown in Figure 5-5) is used to enter values for an internal transition.

EJ Internal Transition | _ (O] =]

Properties MHotes Tagged waluez

Received event
| -

Guard condition

Exprezsion of the action
| -
Expreszsion of the sent event

| [

Final conditian

Add a sterectype

| <Mones =]

| (0] | LCloge Help

Figure 5-5. The "Properties" screen of the "Internal transition" dialog box

Objecteering/Model Dialog Boxes User Guide 5-13

Chapter 5: State machine model dialog boxes

Description of "Properties" tab fields

¢ "Received event": This is the received event which triggers the internal

transition.

"Guard condition": This is the condition under which an internal transition is
triggered.

"Expression of the action": This is an action realized when the transition is
triggered. The combobox makes it possible to simply designate an operation
(message call).

"Expression of the sent event": This is an event sent by the internal transition
once it has been triggered.

"Final condition": This is a condition obtained once the transition has occurred
(this can be useful for protocol state diagrams).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

5-14

Objecteering/Model Dialog Boxes User Guide

Chapter 5: State machine model dialog boxes

Event dialog box

Entering events
7
== An event is a specification of a significant occurrence that has a location in

time and space. An instance of an event can lead to the activation of a behavioral
feature in an object.

An event can be either an occurrence of a signal, a message occurrence or a time
or change expression occurrence.

The "Event" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on events, please refer to the "Event class" section of the
Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 5-15

Chapter 5: State machine model dialog boxes

The "Properties” tab of the "Event" dialog box

This screen (shown in Figure 5-6) is used to enter values for an event.

EJ Event | _ [O0] =]

Properties MHotes Tagged values

Mame | Event

Kind of event

I Call event LI

Event expression |

Instantiated signal
{D‘ |<?'<E;';?=;=;

Called operation 1

L

{:} | <Maones j
Add a stereatype
I <Maones LI
| (]S | LCloze Help |

Figure 5-6. The "Properties" screen of the "Event" dialog box

5-16 Objecteering/Model Dialog Boxes User Guide

Chapter 5: State machine model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the event.

"Kind of event": This defines the nature of the event (Time, Signal occurrence,
and so on).

"Event expression": This is an expression which initiates the event. It can be a
time expression, or a triggering condition, and may contain parameter values in
the case of operation call events, and so on.

"Instantiated signal": This is the signal from which the event is an occurrence.

"Called operation 1": This is a direct link to an operation in the case of a call
event.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 5-17

Chapter 6: Activity model dialog boxes

Chapter 6: Activity model dialog boxes

Activity graph dialog box

Entering activity graphs

g§ An activity graph is a special case of a state machine in which all or most of
the states are activity states or action states, and in which all or most of the
transitions are triggered by completion of an activity in the source states.

An activity graph emphasizes the sequential and concurrent steps of a
computational procedure.

The "Activity graph" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on activity graphs, please refer to the "ActivityGraph class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 6-3

Chapter 6: Activity model dialog boxes

The "Properties” tab of the "Activity graph" dialog box

This screen (shown in Figure 6-1) is used to enter and modify values for an
activity graph.

E_J_Activil_l,l graph | _ (O] =]

Properties MHotes Tagged walues

Mame | ActivityGraph

Add a stereatype

I <Maones LI

| (]S | Apply | LClose | Help |

Figure 6-1. The "Properties" screen of the "Activity graph" dialog box

Description of "Properties" tab fields
+ "Name" : This is the name of the activity graph.

+ "Add a stereotype" : This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

6-4 Objecteering/Model Dialog Boxes User Guide

Chapter 6: Activity model dialog boxes

Action state dialog box

Entering action states

- An action state is a state which cannot be further broken down and which
describes an action. The purpose of an action state is to execute an action and
then transition to another state.

The "Action state" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on action states, please refer to the "ActionState class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 6-5

Chapter 6: Activity model dialog boxes

The "Properties” tab of the "Action state" dialog box

This screen (shown in Figure 6-2) is used to enter and modify values for an action
state.

| Action state _ (O] =]

Properties MHates Tagged values

Mame

| ActionState] j

[~ Dynaric

Argumentsl

Mulliplicityl

Expression of the sent event
¥ | <Mohe> j

Deferred event

| Search |
i alalb
<o Hemaye:
1| |’|_ << Femowe il 1| |’|_
Add a stereatype
I <Mones :I
| Ok Apply Cloze Help |

Figure 6-2. The "Properties" screen of the "Action state" dialog box

6-6 Objecteering/Model Dialog Boxes User Guide

Chapter 6: Activity model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the action state.

"Dynamic": This specifies whether or not the action state's actions can be
executed concurrently.

"Arguments": This determines at runtime the number of parallel executions of
the action state's actions. The value must be a set of lists of objects, each list
serving as an argument for one execution.

"Multiplicity": This indicates the multiplicity of the action state.

"Expression of the sent event": This is linked to the associated transition. The
assisted data entry function suggests, if the case arises, the names of the
operations belonging to the current class (which contains the activity diagram).
If a partition representing a classifier is associated, Objecteering/UML
proposes the names of the methods belonging to the classifier.

"Deferred event": This indicates those events not handled by the action, but
postponed until later.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 6-7

Chapter 6: Activity model dialog boxes

Sub activity state dialog box

Entering sub activity states

A sub activity state represents the execution of a non-atomic sequence of
steps that has some duration (in other words, it consists internally of a set of
actions and possibly waiting for events). A sub activity state can be split into
another activity graph.

The "Sub activity state" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on sub activity states, please refer to the "SubActivityState
class" section of the Objecteering/Metamodel User Guide.

6-8 Objecteering/Model Dialog Boxes User Guide

Chapter 6: Activity model dialog boxes
The "Properties” tab of the "Sub activity state" dialog box

This screen (shown in Figure 6-3) is used to enter and modify values for a sub
activity state.

[® 5ub activity state _ (O] =]

Properties MHates Tagged values

Namel SubsctiviyState

[~ Dynaric
.t’-‘-.lgumentsl
Multplicity {
Defered event
| Search |
i alalb
<< Hemaye
= =
q |’|_ << Femowe il q| |’|_
Add a stereatype
I <Mones :I
| Ok, Apply Cloge Help |

Figure 6-3. The "Properties" screen of the "Sub activity state" dialog box

Objecteering/Model Dialog Boxes User Guide 6-9

Chapter 6: Activity model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the sub activity state.

"Dynamic": This specifies whether or not the sub activity state's actions can be
executed concurrently.

"Arguments": This determines at runtime the number of parallel executions of
the sub activity state's actions. The value must be a set of lists of objects,
each list serving as an argument for one execution.

"Multiplicity": This indicates the multiplicity of the sub activity state.

"Deferred event": This indicates those events not handled by the action, but
postponed until later.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

6-10

Objecteering/Model Dialog Boxes User Guide

Chapter 6: Activity model dialog boxes

Object flow state dialog box

Entering object flow states

EI An object flow state is a state which represents the existence of an object of
a particular class at a specific point within a computation. It defines an object flow
between actions in an activity graph.

The "Object flow state" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on object flow states, please refer to the "ObjectFlowState
class" section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 6-11

Chapter 6: Activity model dialog boxes

The "Properties” tab of the "Object flow state" dialog box

This screen (shown in Figure 6-4) is used to enter and modify values for an object
flow state.

EJ Object flow state | _ (O] =]

Properties MHotes Tagged walues

Mame | ObjectFlowState

Defines the baze class

¥ |<None> j

[Synchranize

Expression of the curment state

Curent state
{:} | <Mones j

Add a stereotype

I <Mone> LI

| (0] | Apply | LCloze | Help |

Figure 6-4. The "Properties" screen of the "Object flow state" dialog box

6-12 Objecteering/Model Dialog Boxes User Guide

Chapter 6: Activity model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the object flow state.

"Defines the base class": This defines the base class on which the object flow
state is based.

"Synchronize": This indicates whether or not an object flow state is used as a
synch state.

"Expression of the current state": This is the value of the current state. If the
"ClassifierInState" association is set, then this value has no meaning. By
extension, this value can be a boolean expression or any text expressing a
current situation. This is a more flexible way of representing "ClassifierinState"
in an activity diagram.

"Current state": This indicates the current state of the object flow state.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML

profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 6-13

Chapter 6: Activity model dialog boxes

Partition dialog box

Entering partitions

EEI A partition in an activity graph organizes responsibilities for activities.
Partitions do not have a fixed meaning, but often correspond to organizational
units in a business model.

The "Partition" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on partitions, please refer to the "Partition class" section of
the Objecteering/Metamodel User Guide.

6-14 Objecteering/Model Dialog Boxes User Guide

Chapter 6: Activity model dialog boxes

The "Properties” tab of the "Partition" dialog box

This screen (shown in Figure 6-5) is used to enter and modify values for a
partition.

EJ Partition | _ (O] =]

Properties MHotes

Tagged walues

Mame | Partition

Feprezent unit
¥ | <Mores j

Add a stereatype

I <Mone> =]

| (]S | Apply | LClose | Help |

Figure 6-5. The "Properties" screen of the "Partition" dialog box

Description of "Properties" tab fields

+ "Name": This is the name of the partition.

¢ "Represent unit: In Objecteering/lUML, partitions can represent

"NameSpaces". They very often represent "Classifiers" as active elements, or
"Packages" as organizational units.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 6-15

Chapter 7: Physical model dialog
boxes

Chapter 7: Physical model dialog boxes

Node dialog box

Entering nodes

I:l A node is a run-time physical object which represents a computational
resource. Nodes generally have at least a memory and often processing
capability as well. Associations between nodes represent communication paths.

The "Node" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on nodes, please refer to the "Node class" section of the
Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 7-3

Chapter 7: Physical model dialog boxes
The "Properties” tab of the "Node" dialog box

This screen (shown in Figure 7-1) is used to enter values for a node.

EJ Hode _ O] =]

Properties MHotes Tagged walues

Mame | Made
Visibility
| Public =l

Add a stereotype

I <Mones LI

(]S | Apply | LClose | Help |

Figure 7-1. The "Properties" tab of the "Node" dialog box

Description of "Properties” tab fields

¢
¢

"Name": This is the name of the node.

"Visibility": This indicates the visibility of the node (public, protected, private or
none).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide

Chapter 7: Physical model dialog boxes

Component dialog box

Entering components

E A component is a physical unit of implementation with well-defined interfaces
that is intended to be used as a replaceable part of a system. Each component
embodies the implementation of certain classes from the system design. Any
physical element in a software development can be represented by a component.
By extension, any work product (a C++ source, documentation etc) can be a
specific kind of component.

The "Component" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on components, please refer to the "Component class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 7-5

Chapter 7: Physical model dialog boxes

The "Properties” tab of the "Component" dialog box

This screen (shown in Figure 7-2) is used to enter values for a component.

EJ Component | _ (O] =]

Properties MHotes Tagged walues

Mame | Component

YWizibility
| Public =l
Add a stereotype

I <Mones LI

(]S | Apply | LClose | Help |

Figure 7-2. The "Properties" tab of the "Component" dialog box

Description of "Properties” tab fields
+ "Name": This is the name of the component.

+ "Visibility": This indicates the visibility of the component (public, protected,
private or none).

¢ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

7-6 Objecteering/Model Dialog Boxes User Guide

Chapter 7: Physical model dialog boxes

Node instance dialog box

Entering node instances

@I A node instance is an instance of a node. Nodes represent a kind of
executable unit, whereas node instances represent examples of communicating
nodes. Through clustering associations, node instances can present the
instances that they contain, such as objects or components.

The "Node instance" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on node instances, please refer to the "Nodelnstance
class" section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 7-7

Chapter 7: Physical model dialog boxes

The "Properties” tab of the "Node instance" dialog box

This screen (shown in Figure 7-3) is used to enter values for a node instance.

EJ Mode instance | _ [O0] =]

Properties MHotes Tagged values

Mame | Modelnstance

[~ Constant

Exprezsion of value

Instantiate
{'} | <Mones j

Add a stereotype

I <Mone> LI

| (0] | Apply | LCloze | Help |

Figure 7-3. The "Properties" tab of the "Node instance" dialog box

Description of "Properties” tab fields

¢
¢
¢

"Name": This is the name of the node instance.
"Constant": This is used to specify that the value of the node cannot change.

"Expression of value": This is the expression of the initial value in the target
language, used to instantiate the object.

"Instantiate": This combobox is used to indicate the element to be instantiated.

"Add a stereotype™: This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide

Chapter 7: Physical model dialog boxes

Component instance dialog box

Entering component instances

% A component instance is an instance of a component. The semantic range
of components starts from a C++ source code, documentation, an executable
library, from the component model dedicated to business objects such as Java
ejb, for example. Component instances can be deployed in specific node
instances, and their behavior is specific.

The "Component instance" dialog box contains three tabs - "Properties", "Notes"
and "Tagged values". For information on these standard dialog box tabs, please
refer to the "Standard dialog box tabs" section of this user guide.

For further information on component instances, please refer to the
"Componentinstance class" section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 7-9

Chapter 7: Physical model dialog boxes

The "Properties” tab of the "Component instance" dialog box

This screen (shown in Figure 7-4) is used to enter values for a component
instance.

EJ Component instance

Properties MHotes Tagged values

Mame | Component nstance]

[~ Constant

E xprezsion of valuel

Instantiate
{'} | <Mones j

Add a stereotype

I <Mone> LI

| (0] | Apply | LCloze | Help |

Figure 7-4. The "Properties" tab of the "Component instance" dialog box

7-10 Objecteering/Model Dialog Boxes User Guide

Chapter 7: Physical model dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the component instance.

"Constant": This is used to specify that the value of the component cannot
change.

"Expression of value": This is the expression of the initial value in the target
language, used to instantiate the object.

"Instantiate": This combobox is used to indicate the element to be instantiated.

"Add a stereotype" : This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 7-11

Chapter 8: Sequence and
collaboration model dialog
boxes

Chapter 8: Sequence and collaboration model dialog boxes

Collaboration dialog box

Entering collaborations

% A collaboration is the description of a general arrangement of objects and
links that interact within a context to implement a behavior, such as a use case or
operation.

The "Collaboration" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on collaborations, please refer to the "Collaboration class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 8-3

Chapter 8: Sequence and collaboration model dialog boxes

The "Properties” tab of the "Collaboration" dialog box

This screen (shown in figure 8-1) is used to enter values for a collaboration.

EJ Collaboration | _ (O] =]

Properties MHotes Tagged walues

Mame | Callaboration

[T Concurent

Add a stereatype

I <Mone> LI

(]S | Apply | LClose | Help |

Figure 8-1. The "Properties" tab of the "Collaboration" dialog box

Description of "Properties” tab fields

¢ "Name": This is the collaboration's name. This name must be unique in the

model.

"Concurrent": When this box is checked, it is possible for two or more activities
to be carried out at the same time, without the implication that these activities
are synchronized.

"Add a stereotype™: This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

8-4

Objecteering/Model Dialog Boxes User Guide

Chapter 8: Sequence and collaboration model dialog boxes

Instance dialog box

Entering instances

% An instance is the result of the instantiation of a class.

The "Instance" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on these standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on instances, please refer to the "Instance class" section of
the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 8-5

Chapter 8: Sequence and collaboration model dialog boxes

The "Properties” tab of the "Instance" dialog box

This screen (shown in figure 8-2) is used to enter values for an instance.

EJ Instance | _ [O0] =]

Properties MHotes Tagged values

Mame | Instance

[~ Constant

Exprezsion of value

Instantiate
{'} | <Mones j

Add a stereotype

I <Mone> LI

| (0] | Apply | LCloze | Help |

Figure 8-2. The "Properties" tab of the "Instance" dialog box

8-6 Objecteering/Model Dialog Boxes User Guide

Chapter 8: Sequence and collaboration model dialog boxes

Description of "Properties" tab fields

¢ "Name": This is the name of the instance. This name must be unique in the
model.

¢ "Constant": When this box is checked, all values on attribute roles and
association roles remain the same.

¢ "Expression of value": This is the expression of the initial value in the target
language, used to instantiate the object.

¢ "Instantiate": This combobox is used to indicate the element to be instantiated.

¢ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 8-7

Chapter 8: Sequence and collaboration model dialog boxes

Classifier role dialog box

Entering classifier roles

(in a collaboration) or "’T’ (in a sequence diagram) A classifier role is a slot
in a collaboration that describes the role played by a participant in a collaboration.
It has a reference to a classifier (the base) and a multiplicity, and may have a

name or be anonymous.

The "Classifier role" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer

to the "Standard dialog box tabs" section of this user guide.

For further information on classifier roles, please refer to the "ClassifierRole class"
section of the Objecteering/Metamodel User Guide.

8-8 Objecteering/Model Dialog Boxes User Guide

Chapter 8: Sequence and collaboration model dialog boxes

The "Properties” tab of the "Role" dialog box

This screen (shown in figure 8-3) is used to enter values for a classifier role.

EJ Role _ O] =]

Properties MHotes Tagged walues

MName | ClaszifierRole

[~ Constant

E xprezsion of value

Instantiate

{'} |<N0ne> j
Represented object

{:} |<N0ne> j

Add a stereotype

I <Mone> LI

(0] | Apply | LCloze | Help |

Figure 8-3. The "Properties" tab of the "Classifier role" dialog box

Objecteering/Model Dialog Boxes User Guide 8-9

Chapter 8: Sequence and collaboration model dialog boxes

Description of "Properties" tab fields

¢ "Name": This is the name of the classifier role. This name must be unique in

the model.

"Constant": When this box is checked, all values on attribute roles and
association roles remain the same.

"Expression of value": This is the expression of the initial value in the target
language, used to instantiate the object.

"Instantiate": This combobox is used to indicate the class which is represented.
"Represented object": The relation between the role and the instance.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

8-10

Objecteering/Model Dialog Boxes User Guide

Chapter 8: Sequence and collaboration model dialog boxes

Attribute link dialog box

Entering attribute links

lEI An attribute link is an occurrence of an attribute in an instance. In particular,
it contains an attribute value.

The "Attribute link" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on attribute links, please refer to the "AttributeLink class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 8-11

Chapter 8: Sequence and collaboration model dialog boxes

The "Properties” tab of the "Attribute link" dialog box

This screen (shown in figure 8-4) is used to enter values for an attribute link.

[® Attribute link [_ Ol =]

Properties MHotes Tagged walues

NamelAttributeLink

Valuel
B aze Attribute
{:} |<None> j

Add a stereatype

I <Maones LI

(]S | Apply | LClose | Help |

Figure 8-4. The "Properties" tab of the "Attribute link" dialog box

Description of "Properties” tab fields

¢

"Name": This indicates the name of the attribute link. This name must be
unique in the model.

"Value": This indicates the value of the attribute link. This field may be freely
defined.

"Base Afttribute": This is the attribute represented by the attribute link.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

8-12

Objecteering/Model Dialog Boxes User Guide

Chapter 8: Sequence and collaboration model dialog boxes

Attribute role dialog box

Entering attribute roles

An attribute role is an instance of an attribute in a role.

The "Attribute role" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on attribute roles, please refer to the "AttributeRole class"
section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 8-13

Chapter 8: Sequence and collaboration model dialog boxes

The "Properties” tab of the "Attribute role" dialog box

This screen (shown in figure 8-5) is used to enter values for an attribute role.

E_J_Attrihute role | _ (O] =]

Properties MHotes Tagged walues

MName | AttributeR ale

Valuel
B aze Attribute
{:} |<None> j

Add a stereatype

I <Maones LI

(]S | Apply | LClose | Help |

Figure 8-5. The "Properties" tab of the "Attribute role" dialog box

Description of "Properties” tab fields

¢

"Name": This indicates the name of the attribute role. This name must be
unique in the model.

"Value: This indicates the value of the attribute role. This field may be freely
defined.

"Base Afttribute": This is the attribute represented by the attribute link.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

8-14

Objecteering/Model Dialog Boxes User Guide

Chapter 8: Sequence and collaboration model dialog boxes

Link dialog box

Entering links

"1 Alink is a tuple of object references that is an instance of an association or
an association role.

The "Link" dialog box contains three tabs - "Properties", "Notes" and "Tagged
values". For information on the standard dialog box tabs, please refer to the
"Standard dialog box tabs" section of this user guide.

For further information on links, please refer to the "Link class" section of the
Objecteering/Metamodel User Guide.

The "Properties” tab of the "Link™ dialog box

This screen (shown in Figure 8-6) is used to enter values for a link.

@Assncialiun on role M=l E

Properties MHates Tagged values

Namel undefined

Reprezented element

| <Mones LI
Ihstance 1 Instance 2
€3 | ClassifioFiole1 x| @ |CasshieRolez: -

Mame of the first Iinkl undefined Mame of the second Linkl undefined

Add & sterectype

I <Mones ﬂ

I ok | Apply | LCloze | Help |

Figure 8-6. The "Properties" tab of the "Link" dialog box

Objecteering/Model Dialog Boxes User Guide 8-15

Chapter 8: Sequence and collaboration model dialog boxes

Description of "Properties" tab fields

¢ "Name": This indicates the link's name. This name must be unique in the
model.

"Element represented": This defines the element which is represented.
"Instance 1": This is the name of the first instance.

"Instance 2": This is the name of the second instance.

"Name of the first link": This is the name of the first link.

"Name of the second link": This is the name of the second link.

* & & o o o

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

8-16 Objecteering/Model Dialog Boxes User Guide

Chapter 8: Sequence and collaboration model dialog boxes

Collaboration message dialog box

Entering collaboration messages
~ A collaboration message is a message sent by a role to another role in a
collaboration diagram.

The "Collaboration message" dialog box contains three tabs - "Properties",
"Notes" and "Tagged values". For information on these standard dialog box tabs,
please refer to the "Standard dialog box tabs" section of this user guide.

For further information on collaboration messages, please refer to the
"CollaborationMessage class" section of the Objecteering/Metamodel User Guide.

Objecteering/Model Dialog Boxes User Guide 8-17

Chapter 8: Sequence and collaboration model dialog boxes

The "Properties” tab of the "Collaboration message" dialog box

This screen (shown in figure 8-7) is used to enter values for a collaboration
message.

EJ Collaboration message | _ [O0] =]

MHotes

Properties Tagged values

Name||

Target Iistl

Sequence |

Invoked operation
I <Mones LI

Guard condition

Add x>

<< Hemnve

Add a stereatype

| <Mone: ;I

| (]S | Apply | LClose | Help |

Figure 8-7. The "Properties" tab of the "Collaboration message" dialog box

8-18 Objecteering/Model Dialog Boxes User Guide

Chapter 8: Sequence and collaboration model dialog boxes

Description of "Properties" tab fields

+ "Name": This is the name of the collaboration message. This name must be
unique in the model. The name may only be freely defined where the "Invoked
operation" field is set to "<None>". If an operation has been selected in the
"Invoked operation" field, the "Name" field is automatically defined in
accordance with the operation selected.

+ "Target list": This is the list of arguments for the operation.

+ "Sequence": This field allows the user to give the order number of the
message.

+ "Invoked operation": This field allows the user to select an existing operation on
the destination object of the message. If an operation is selected, the "Name"
field is automatically defined in accordance.

+ "Guard condition": This is the condition under which a collaboration message
may be triggered (for further information on conditions, please refer to the
"Condition class" section of the Objecteering/Metamodel User Guide).

+ "Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 8-19

Chapter 8: Sequence and collaboration model dialog boxes

Sequence message dialog box

Entering sequence messages
_}
== A sequence message is a message between two roles or two instances,
expressed in a sequence diagram.

The "Sequence message" dialog box contains three tabs - "Properties", "Notes"
and "Tagged values". For information on these standard dialog box tabs, please
refer to the "Standard dialog box tabs" section of this user guide.

For further information on sequence messages, please refer to the
"SequenceMessage class" section of the Objecteering/Metamodel User Guide.

8-20 Objecteering/Model Dialog Boxes User Guide

Chapter 8: Sequence and collaboration model dialog boxes

The "Properties” tab of the "Sequence message" dialog box

This screen (shown in Figure 8-8) is used to enter values for a sequence
message.

EJ Sequence message M=l B

Properties MHotes Tagged walues

Namel

T arget Iistl

Invoked operation
I <Mones LI

Guard condition

Add x>

<2 Hemnve

Add a stereatype

| <Mone: ;I

| (]S | Apply | LClose | Help |

Figure 8-8. The "Properties" tab of the "Sequence message" dialog box

Objecteering/Model Dialog Boxes User Guide 8-21

Chapter 8: Sequence and collaboration model dialog boxes

Description of "Properties" tab fields

*

"Name: This is the name of the sequence message. This name must be
unique in the model. The name may only be freely defined where the "Invoked
operation" field is set to "<None>". If an operation has been selected in the
"Invoked operation" field, the "Name" field is automatically defined in
accordance with the operation selected.

"Target list": This is the list of arguments for the operation.

"Invoked operation": This field allows the user to select an existing operation on
the destination object of the message. If an operation is selected, the "Name"
field is automatically defined in accordance.

"Guard condition": This is the condition under which a sequence message may
be triggered (for further information on conditions, please refer to the
"Condition class" section of the Objecteering/Metamodel User Guide).

"Add a stereotype™: This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

8-22

Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Chapter 9: Diagram dialog boxes

Class diagram dialog box

Entering class diagrams

% Class diagrams allow you to present the internal structure of an element and
its relationships with other elements (referenced by it). They are editors capable
of presenting a great variety of elements.

The main elements of class diagrams are classes, packages, associations,
generalizations and dependencies.

A class diagram is created in a package or a class. For further details on the
creation of a diagram, please refer to the "Class diagram" section in chapter 7 of
the Objecteering/UML Modeler user guide.

The "Class diagram" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on class diagrams, please refer to the "Diagram class"
section of the Objecteering/J Libraries User Guide.

Objecteering/Model Dialog Boxes User Guide 9-3

Chapter 9: Diagram dialog boxes

The "Properties” tab of the "Class diagram™" dialog box

This screen (shown in Figure 9-1) is used to modify values for a class diagram.

@ Class diagram |_ (O] =]

Propertiez Motes Tagged values

Mame | [&nalysiz) - NewProject clazs diagram

[~ Detailed visibilit
[~ Tagged wvalue visibility

Stereotype display
If" Mane = lcon ™ Label

Haorizontal zpacin
P [o] 50

Yertical zpacing =

30

Add a stereatype

| <Mone: ;I

[1]:8 | Apply | LCloze | Help |

Figure 9-1. The "Properties" tab of the "Class diagram" dialog box

9-4 Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Description of "Properties" tab fields

*
*

"Name": This is the name of the class diagram.

"Detailed visibility": This indicates whether or not the visibility and path are
detailed. For example, the "+,-#" symbols are shown on class members,
and the class name includes the package paths "P1:P2:C1".

"Tagged value visibility": This indicates whether or not tagged values are
presented in the diagram.

"Stereotype display": This indicates the form of the stereotype display.
Stereotypes are presented as icons only if the element contains no other
elements (for example, a class can present an icon stereotype if it does not
show its members).

"Horizontal spacing": This indicates the horizontal spacing between boxes
after automatic positioning (layout).

"Vertical spacing": This indicates the vertical spacing between boxes after
automatic positioning (layout).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 9-5

Chapter 9: Diagram dialog boxes

Deployment diagram dialog box

Entering deployment diagrams

9-6

Q The deployment diagram is used to represent the physical architecture of the
system. It presents the distribution of software components on the set of
execution units (Node).

Nodes and components are its main concepts.

A deployment diagram is created in a package or a class. For further details on
the creation of a diagram, please refer to the "Deployment diagram" section in
chapter 7 of the Objecteering/UML Modeler user guide.

The "Deployment diagram" dialog box contains three tabs - "Properties”, "Notes"
and "Tagged values". For information on these standard dialog box tabs, please
refer to the "Standard dialog box tabs" section of this user guide.

For further information on deployment and component diagrams, please refer to
the "Diagram class" section of the Objecteering/J Libraries User Guide.

Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

The "Properties” tab of the "Deployment diagram" dialog box

This screen (shown in Figure 9-2) is used to modify values for a deployment
diagram.

@ Deployment diagram |_ (O] =]

Propertiez Motes Tagged values

Mame | [&nalysiz] - NewProject deployment diagram

[~ Detailed visibilit
[~ Tagged wvalue visibility

Stereotype display
If" Mane = lcon ™ Label

Haorizontal zpacin
P [o] 50

Yertical zpacing =

30

Add a stereatype

| <Mone: ;I

I [1]:8 Apply LCloze Help

Figure 9-2. The "Properties" tab of the "Deployment diagram" dialog box

Objecteering/Model Dialog Boxes User Guide 9-7

Chapter 9: Diagram dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the deployment diagram.

"Detailed visibility": This indicates whether or not the visibility and path are
detailed. For example, the "+,-#" symbols are shown on class members,
and the class name includes the package paths "P1:P2:C1".

"Tagged value visibility": This indicates whether or not tagged values are
presented in the diagram.

"Stereotype display": This indicates the form of the stereotype display.
Stereotypes are presented as icons only if the element contains no other
elements (for example, a class can present an icon stereotype if it does not
show its members).

"Horizontal spacing": This indicates the horizontal spacing between boxes
after automatic positioning (layout).

"Vertical spacing": This indicates the vertical spacing between boxes after
automatic positioning (layout).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

9-8

Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Deployment instance diagram dialog box

Entering deployment instance diagrams

b —T]
The deployment instance diagram presents a particular instance of
deployment.

It represents instances of nodes and instances of components that can
correspond to an example illustration component and the deployment diagrams.

A deployment instance diagram is created in a package or a class. For further
details on the creation of a diagram, please refer to the "Deployment instance
diagram" section in chapter 7 of the Objecteering/UML Modeler user guide.

The "Deployment instance diagram" dialog box contains three tabs - "Properties",
"Notes" and "Tagged values". For information on these standard dialog box tabs,
please refer to the "Standard dialog box tabs" section of this user guide.

For further information on deployment instance diagrams, please refer to the
"Diagram class" section of the Objecteering/J Libraries User Guide.

Objecteering/Model Dialog Boxes User Guide 9-9

Chapter 9: Diagram dialog boxes
The "Properties” tab of the "Deployment instance diagram” dialog
box

This screen (shown in Figure 9-3) is used to modify values for a deployment
instance diagram.

@ Deployment instance diagram H=] =

Properties MHaotes Tagged values

M arne | [&nalyziz] - MewProject deploprment instance diagrarn

[Detailled visibility
[T Tagged value wisibility

Stereotype dizplay
I(" Maone % lconi™ Label

Harizontal zpacing

50

Yertical spacin .
P d a0

Add a stereatype

| <Maones j

|] | Apply | LCloze | Help |

Figure 9-3. The "Properties" tab of the "Deployment instance diagram™ dialog box

9-10 Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Description of "Properties" tab fields

*
*

"Name": This is the name of the deployment instance diagram.

"Detailed visibility": This indicates whether or not the visibility and path are
detailed. For example, the "+,-#" symbols are shown on class members,
and the class name includes the package paths "P1:P2:C1".

"Tagged value visibility": This indicates whether or not tagged values are
presented in the diagram.

"Stereotype display": This indicates the form of the stereotype display.
Stereotypes are presented as icons only if the element contains no other
elements (for example, a class can present an icon stereotype if it does not
show its members).

"Horizontal spacing": This indicates the horizontal spacing between boxes
after automatic positioning (layout).

"Vertical spacing": This indicates the vertical spacing between boxes after
automatic positioning (layout).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 9-11

Chapter 9: Diagram dialog boxes

Object diagram dialog box

Entering object diagrams

EI The object diagram presents a set of class instances with their links and the
messages exchanged. It can be created from a package or a class. Objects and
links can be created without being linked to a class or an association. Messages
are directly added to an existing link; if the link is oriented, the message is created
with the same orientation; if not, it is created oriented towards the box nearest to
the point where the user has clicked.

A synchronous message is represented near the link in the form of a complete
arrow and its label. An asynchronous message is represented near the link in the
form of a empty half arrow and its label.

It is not possible to create or represent a message for an n-ary link.

Objects can be connected to existing classes, or created independently for those
classes. Connecting objects to classes will then give the ability to connect links to
associations and messages to operations.

An object diagram is created in a package or a class. For further details on the
creation of a diagram, please refer to the "Object diagram" section in chapter 7 of
the Objecteering/UML Modeler user guide.

The "Object diagram" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on object diagrams, please refer to the "Diagram class"
section of the Objecteering/J Libraries User Guide.

9-12 Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

The "Properties” tab of the "Object diagram" dialog box

This screen (shown in Figure 9-4) is used to modify values for an object diagram.

@ Object diagram

Propertiez Motes Tagged values

Mame | [nalysiz] - NewProject object diagram

[~ Detailed visibilit
[~ Tagged wvalue visibility

Stereotype display
If" Mane = lcon ™ Label

Haorizontal zpacin
P [o] 50

Yertical zpacing =

30

Add a stereatype

| <Mone: ;I

I [1]:8 | Apply | LCloze | Help |

Figure 9-4. The "Properties" tab of the "Object diagram" dialog box

Objecteering/Model Dialog Boxes User Guide 9-13

Chapter 9: Diagram dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the object diagram.

"Detailed visibility": This indicates whether or not the visibility and path are
detailed. For example, the "+,-#" symbols are shown on class members, and
the class name includes the package paths "P1:P2:C1".

"Tagged value visibility": This indicates whether or not tagged values are
presented in the diagram.

"Stereotype display": This indicates the form of the stereotype display.
Stereotypes are presented as icons only if the element contains no other
elements (for example, a class can present an icon stereotype if it does not
show its members).

"Horizontal spacing": This indicates the horizontal spacing between boxes after
automatic positioning (layout).

"Vertical spacing": This indicates the vertical spacing between boxes after
automatic positioning (layout).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at UML
profiing project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

9-14

Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Sequence diagram dialog box

Entering sequence diagrams

Eﬁ\i A sequence diagram shows how different objects cooperate. The objects
(vertical bars) can be defined a priori, and can be roles or class instances.
Cooperation between objects is represented by the sending of messages between
objects (horizontal arrows), and their sequence (order from top to bottom). A
sequence diagram can be created in:

+ apackage

¢ aclass

¢ ause case

+ a collaboration

If the sequence diagram is created in a collaboration, the objects are classifier
roles. If it is created in a package, a class or a use case, the objects are
instances.

Objects can be connected to existing classes, or created independently from any
class. Connecting objects to classes will then give the ability to connect links to
associations and messages to operations.

A sequence diagram is created in a package or a class. For further details on the
creation of a diagram, please refer to the "Sequence diagram" section in chapter 7
of the Objecteering/UML Modeler user guide.

The "Sequence diagram" dialog box contains three tabs - "Properties", "Notes"
and "Tagged values". For information on these standard dialog box tabs, please
refer to the "Standard dialog box tabs" section of this user guide.

For further information on sequence diagrams, please refer to the "Diagram class"
section of the Objecteering/J Libraries User Guide.

Objecteering/Model Dialog Boxes User Guide 9-15

Chapter 9: Diagram dialog boxes

The "Properties” tab of the "Sequence diagram" dialog box

This screen (shown in Figure 9-5) is used to modify values for a sequence
diagram.

@ Sequence diagram |_ (O] =]

Propertiez Mates Tagged values

Namel [&nalysiz] - Package sequence diagram

[~ Detailed visibilit
[~ Tagged value wvisibility

Stereotype dizplay
If" Mane = lcon ™ Label

Haorizontal zpacin
P [o] 50

Yertical spacing =

30

[¥ Show focus of control

[¥ Show return messages

Add a stereatype

| <Mone: ;I

I [1]:8 | Apply | LCloze | Help |

Figure 9-5. The "Properties" tab of the "Sequence diagram" dialog box

9-16 Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the sequence diagram.

"Detailed visibility": This indicates whether or not the visibility and path are
detailed. For example, the "+,-#" symbols are shown on class members,
and the class name includes the package paths "P1:P2:C1".

"Tagged value visibility": This indicates whether or not tagged values are
presented in the diagram.

"Stereotype display": This indicates the form of the stereotype display.
Stereotypes are presented as icons only if the element contains no other
elements (for example, a class can present an icon stereotype if it does not
show its members).

"Horizontal spacing": This indicates the horizontal spacing between boxes
after automatic positioning (layout).

"Vertical spacing": This indicates the vertical spacing between boxes after
automatic positioning (layout).

"Show focus of control": Focus of control of messages can be presented or
hidden by this button.

"Show return messages": The dotted arrow which symbolizes the return of
messages can be hidden or not.

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 9-17

Chapter 9: Diagram dialog boxes

Collaboration diagram dialog box

Entering collaboration diagrams

EI-E. The collaboration diagram allows you to present exchanges of messages
between roles. It is semantically very close to the object diagram. This diagram is
created for a collaboration.

A collaboration defines a context in which roles non exist.

A collaboration diagram is created in a package or a class. For further details on
the creation of a diagram, please refer to the "Collaboration diagram" section in
chapter 7 of the Objecteering/UML Modeler user guide.

The "Collaboration diagram" dialog box contains three tabs - "Properties", "Notes"
and "Tagged values". For information on these standard dialog box tabs, please
refer to the "Standard dialog box tabs" section of this user guide.

For further information on collaboration diagrams, please refer to the "Diagram
class" section of the Objecteering/J Libraries User Guide.

9-18 Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

The "Properties” tab of the "Collaboration diagram" dialog box

This screen (shown in Figure 9-6) is used to modify values for a collaboration
diagram.

@ Collaboration diagram

Propertiez Motes Tagged values

Namel [&nalysiz] - Collaboration collaboration diagram

[~ Detailed visibilit
[~ Tagged wvalue visibility

Stereotype display
If" Mane = lcon ™ Label

Haorizontal zpacin
P [o] 50

Yertical zpacing =

30

Add a stereatype

| <Mone: ;I

I [1]:8 Apply LCloze Help

Figure 9-6. The "Properties" tab of the "Collaboration diagram" dialog box

Objecteering/Model Dialog Boxes User Guide 9-19

Chapter 9: Diagram dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the collaboration diagram.

"Detailed visibility": This indicates whether or not the visibility and path are
detailed. For example, the "+,-#" symbols are shown on class members,
and the class name includes the package paths "P1:P2:C1".

"Tagged value visibility": This indicates whether or not tagged values are
presented in the diagram.

"Stereotype display": This indicates the form of the stereotype display.
Stereotypes are presented as icons only if the element contains no other
elements (for example, a class can present an icon stereotype if it does not
show its members).

"Horizontal spacing": This indicates the horizontal spacing between boxes
after automatic positioning (layout).

"Vertical spacing": This indicates the vertical spacing between boxes after
automatic positioning (layout).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

9-20

Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Use case diagram dialog box

Entering use case diagrams

-
E The use case diagram is used to describe the most important services
rendered by the system. Starting with actors, external participants who interact
with the system, they represent the most important cases of system operating. A
use case may then be sub-divided into sequence diagrams, which detail the
different functions of one use case.

A use case diagram is created in a package or a class. For further details on the
creation of a diagram, please refer to the "Use case diagram" section in chapter 7
of the Objecteering/UML Modeler user guide.

The "Use case diagram" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on use case diagrams, please refer to the "Diagram class"
section of the Objecteering/J Libraries User Guide.

Objecteering/Model Dialog Boxes User Guide 9-21

Chapter 9: Diagram dialog boxes

The "Properties” tab of the "Use case diagram" dialog box

This screen (shown in Figure 9-7) is used to modify values for a use case
diagram.

@ Usze case diagram |_ (O] =]

Propertiez Motes Tagged values

Namel [&nalysiz] - Package use case diagram

[~ Detailed visibilit
[~ Tagged value wvisibility

Stereotype display
If" Mane = lcon ™ Label

Haorizontal zpacin
P [o] 50

Yertical zpacing =

20

*

[¥ Representation of the "systern boundary'

Add a stereatype

| <Maones j

|] | Apply | LCloze | Help |

Figure 9-7. The "Properties" tab of the "Use case diagram" dialog box

9-22 Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the use case diagram.

"Detailed visibility": This indicates whether or not the visibility and path are
detailed. For example, the "+,-#" symbols are shown on class members,
and the class name includes the package paths "P1:P2:C1".

"Tagged value visibility": This indicates whether or not tagged values are
presented in the diagram.

"Stereotype display": This indicates the form of the stereotype display.
Stereotypes are presented as icons only if the element contains no other
elements (for example, a class can present an icon stereotype if it does not
show its members).

"Horizontal spacing": This indicates the horizontal spacing between boxes
after automatic positioning (layout).

"Vertical spacing": This indicates the vertical spacing between boxes after
automatic positioning (layout).

"System boundary representation": This indicates whether or not the system
boundary is represented (square symbolizing the owner package).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 9-23

Chapter 9: Diagram dialog boxes

State diagram dialog box

Entering state diagrams

.

E’&' State diagrams can be defined from a class, a package or an operation. A
state diagram allows you to describe the manner in which objects react to events.
It is used to describe a state machine at class level.

State diagrams can also represent protocol.

A state diagram is created in a state machine created on a package or a class.
For further details on the creation of a diagram, please refer to the "State diagram"
section in chapter 7 of the Objecteering/UML Modeler user guide.

The "State diagram" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on state diagrams, please refer to the "Diagram class"
section of the Objecteering/J Libraries User Guide.

9-24 Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

The "Properties” tab of the "State diagram" dialog box

This screen (shown in Figure 9-8) is used to modify values for a state diagram.

@ State diagram |_ (O] =]

Propertiez Motes Tagged values

Namel [&nalysiz) - Stateb achine state diagram

[~ Detailed visibilit
[~ Tagged wvalue visibility

Stereotype display
If" Mane = lcon ™ Label

Haorizontal zpacin
P [o] 50

Yertical zpacing =

20

Add a stereatype

| <Mone: ;I

[1]:8 | Apply | LCloze | Help |

Figure 9-8. The "Properties" tab of the "State diagram" dialog box

Objecteering/Model Dialog Boxes User Guide 9-25

Chapter 9: Diagram dialog boxes

Description of "Properties" tab fields

*

*

"Name": This is the name of the state diagram.

"Detailed visibility": This indicates whether or not the visibility and path are
detailed. For example, the "+,-#" symbols are shown on class members,
and the class name includes the package paths "P1:P2:C1".

"Tagged value visibility": This indicates whether or not tagged values are
presented in the diagram.

"Stereotype display": This indicates the form of the stereotype display.
Stereotypes are presented as icons only if the element contains no other
elements (for example, a class can present an icon stereotype if it does not
show its members).

"Horizontal spacing": This indicates the horizontal spacing between boxes
after automatic positioning (layout).

"Vertical spacing": This indicates the vertical spacing between boxes after
automatic positioning (layout).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

9-26

Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Activity diagram dialog box

Entering activity diagrams

E@ Activity diagrams graphically illustrate activity graphs, which show a
procedure or a workflow. An activity graph is a special instance of a state
machine in which all or most of the states are activity states or action states, and
in which all or most of the transitions are triggered by completion of activity in the
source states.

The main elements of activity diagrams are action states, sub activity states,
object flow states and partitions.

An activity diagram is created in an activity graph on a package or a class. For the
creation of a diagram, please refer to the "Activity diagram" section in chapter 7 of
the Objecteering/UML Modeler user guide.

The "Activity diagram" dialog box contains three tabs - "Properties", "Notes" and
"Tagged values". For information on these standard dialog box tabs, please refer
to the "Standard dialog box tabs" section of this user guide.

For further information on activity diagrams, please refer to the "Diagram class"
section of the Objecteering/J Libraries User Guide.

Objecteering/Model Dialog Boxes User Guide 9-27

Chapter 9: Diagram dialog boxes

The "Properties” tab of the "Activity diagram™ dialog box

This screen (shown in Figure 9-9) is used to modify values for an activity diagram.

E_J_Activil_l,l diagram

Properties MHotes Tagged walues

Namel [&nalysiz) - ActiviteGraph activite diagram

[~ Detailed wisibility
[Tagged walue visibility

Stereotype dizplay
III"' MNone @+ lconi™ Label

Horizontal spacin =
pacing |5|j 'I

Wertical spacing =

30

-

Add a stereotype

I <Mone> LI

| (0] | Apply | LCloze | Help |

Figure 9-9. The "Properties" tab of the "Activity diagram" dialog box

9-28 Objecteering/Model Dialog Boxes User Guide

Chapter 9: Diagram dialog boxes

Description of "Properties" tab fields

*
*

"Name": This is the name of the activity diagram.

"Detailed visibility": This indicates whether or not the visibility and path are
detailed. For example, the "+,-#" symbols are shown on class members,
and the class name includes the package paths "P1:P2:C1".

"Tagged value visibility": This indicates whether or not tagged values are
presented in the diagram.

"Stereotype display": This indicates the form of the stereotype display.
Stereotypes are presented as icons only if the element contains no other
elements (for example, a class can present an icon stereotype if it does not
show its members).

"Horizontal spacing": This indicates the horizontal spacing between boxes
after automatic positioning (layout).

"Vertical spacing": This indicates the vertical spacing between boxes after
automatic positioning (layout).

"Add a stereotype": This field allows the user to specify the semantics of a
given existing class, if he wishes. Stereotypes are previously defined at
UML profiling project level (for further information, please refer to the
Objecteering/UML Profile Builder user guide).

Objecteering/Model Dialog Boxes User Guide 9-29

Index

{persistent} tagged value 1-23
<<extend>> 4-9

<<include>> 4-9

Action state 6-3, 9-27
Properties tab 6-6
Properties tab description 6-7
Activity diagram 9-27
Properties tab 9-28
Properties tab description 9-29

Activity graph 6-3, 6-8, 6-11, 6-14, 9-
27

Properties tab 6-4
Properties tab description 6-4
Activity state 6-3, 9-27

Actor 4-3, 4-5, 9-21

Properties tab 4-6
Properties tab description 4-6
Aggregation 3-25

Association 3-6, 3-25, 3-30, 7-3, 8-
15, 9-3, 9-12, 9-15

Association role 8-15
Asynchronous message 9-12
Attribute 1-14, 1-25, 2-9, 3-6, 8-11,
8-13

Properties tab 3-13
Properties tab description 3-14
Attribute link 8-11, 8-14
Properties tab 8-12
Properties tab description 8-12
Attribute role 8-13
Properties tab 8-14
Properties tab description 8-14
Binary association 3-25
Properties tab 3-26
Properties tab description 3-27
C++ 1-20

Class 1-14, 1-25, 2-9, 3-12, 3-30, 3-
36, 3-44, 5-3, 8-5, 9-3, 9-9, 9-12, 9-

15, 9-24

Properties tab 3-7
Properties tab description 3-8
Class association 3-30
Properties tab 3-30
Properties tab description 3-31
Class diagram 9-3

Properties tab 9-4
Properties tab description 9-5
Class instance 9-12, 9-15
Classifier role 8-8

Properties tab 8-9
Properties tab description 8-10
Classifier role 9-15
Collaboration 8-3, 8-8, 9-15, 9-18
Properties tab 8-4
Properties tab description 8-4
Collaboration diagram 8-17
Properties tab 9-19
Properties tab description 9-20
Collaboration message 8-17
Properties tab 8-18
Properties tab description 8-19
Communication 4-7

Properties tab 4-8

Properties tab description 4-8
Communication link 4-7

Component 1-16, 3-44, 7-5, 7-7, 7-9,

9-6, 9-9

Properties tab 7-6
Properties tab description 7-6
Component instance 7-9
Properties tab 7-10
Properties tab description 7-11

Condition 5-11

Constraint
Properties tab 2-4

Constraint 2-3
Properties tab description 2-5

Consult mode 1-13

Consulting an element 1-3

Consulting an existing element
Description 1-13

Continuous entry creation mode 1-3,
1-7,1-25

Creating a diagram 9-6, 9-9, 9-12, 9-
15, 9-18, 9-21, 9-24, 9-27

Creating a new element 1-3

Creating a new element in a graphic
editor 1-6

Creating a new element in the explorer
1-4

Creating a new element in the
properties editor 1-6

Creating elements using the
continuous entry creation mode

Creating from the explorer 1-7
Description 1-7

Creating elements using the repeated
entry system

Creating from a graphic editor 1-9

Creation new elements using the
continuous entry creation mode 1-
3

Data entry

Shortcuts 1-3

Data flow 1-16, 3-36, 3-38
Properties tab 3-39
Properties tab description 3-39
Data type 3-9

Properties tab 3-10
Properties tab description 3-11

Dependency 9-3
Dependency link 3-6
Deployment diagram 9-6
Properties tab 9-7
Properties tab description 9-8
Deployment instance diagram 9-9
Properties tab 9-10
Properties tab description 9-11
Diagrams 1-7
Dialog box 1-25
Dialog box buttons 1-12
Documentation 1-20, 1-25
Drag and drop 1-14
Drag and drop function 1-18
Editing an element 1-3
Element 1-25
Entering action states 6-5
Entering activity diagrams 9-27
Entering activity graphs 6-3
Entering actors 4-5
Entering attribute links 8-11
Entering attribute roles 8-13
Entering attributes 3-12
Entering binary associations 3-25
Entering class associations 3-30
Entering class diagrams 9-3
Entering classes 3-6
Entering classifier roles 8-8
Entering collaboration diagrams 9-18

Entering collaboration messages 8-
17

Entering collaborations 8-3
Entering communication links 4-7
Entering component instances 7-9
Entering components 7-5
Entering constraints 2-3

Entering data flows 3-38

Entering data types 3-9

Entering deployment diagrams 9-6

Entering deployment instance
diagrams 9-9

Entering enumeration literals 3-35

Entering enumerations 3-32

Entering events 5-15

Entering generalizations 3-40

Entering instances 8-5

Entering internal transitions 5-12

Entering links 8-15

Entering n-ary associations 3-28

Entering node instances 7-7

Entering nodes 7-3

Entering notes 2-6

Entering object diagrams 9-12

Entering object flow states 6-11

Entering operations 3-15

Entering packages 3-3

Entering parameters 3-20

Entering partitions 6-14

Entering pseudo states 5-7

Entering realizations 3-44

Entering references between elements

1-14

Free selection 1-14

Mixed selection 1-14

Selection from a list 1-14
Entering return parameters 3-23
Entering sequence diagrams 9-15
Entering sequence messages 8-20
Entering signals 3-36
Entering state diagrams 9-24
Entering state machines 5-3
Entering states 5-5

Entering sub activity states 6-8
Entering tag parameters 2-8
Entering tagged values 2-9
Entering template parameters 3-46
Entering transitions 5-9
Entering use case dependencies 4-9
Entering use case diagrams 9-21
Entering use cases 4-3
Entering uses 3-42
Enumerates 3-6
Enumeration

Properties tab 3-33

Properties tab description 3-34
Enumeration literal

Description of fields 3-35
Event 3-36, 5-15, 9-24

Properties tab 5-16

Properties tab description 5-17

Explorer 1-3, 1-7, 1-10, 1-14, 1-16,
3-20, 3-23

Creating new elements 1-4
Generalization 3-40, 9-3

Properties tab 3-41

Properties tab description 3-41
Generalization link 3-6
Graphic editors 1-3

Creating new elements 1-6

Instance 3-6, 3-36, 5-15, 7-9, 8-5, 8-
11, 8-20

Properties tab 8-6
Properties tab description 8-7
Interface 3-6, 3-44

Properties tab description 3-8
Properties tab screen 3-7
Internal transition 5-12
Properties tab 5-13

Properties tab description 5-14
Link 8-15,9-12
Properties tab 8-15
Properties tab description 8-16
Links between elements 1-14
Message 3-36, 9-12, 9-15, 9-18
Asynchronous 9-12
Synchronous 9-12
Model elements 2-3
Modifying a description 1-22
Modifying a tagged value 1-24
Modifying an existing element
Description 1-10

Modifying from a graphic editor 1-
11

Modifying from the explorer or the
properties editor 1-10

N-ary association 3-25, 3-28, 9-12
Properties tab 3-28
Properties tab description 3-29

Node 7-3,7-7,9-6, 9-9
Properties tab 7-4
Properties tab description 7-4

Node instance 1-16, 7-7
Properties tab 7-8
Properties tab description 7-8

Non-modal windows 1-3

Note 1-25, 2-6
Properties tab 2-7
Properties tab description 2-7

Notes on model elements 1-20

Object 1-16

Object diagram 9-12, 9-18
Properties tab 9-13
Properties tab description 9-14

Object flow state 6-11, 9-27

Properties tab 6-12

Properties tab description 6-13
Objecteering/Documentation 1-6
Objecteering/Java 1-6
Objecteering/UML modules 1-25

Operation 3-6, 3-20, 3-23, 5-3, 5-11,
8-3, 9-12, 9-15, 9-24

Implementation tab 3-18

Implementation tab description 3-
19

Properties tab 3-16
Properties tab description 3-17
Operations on model elements 1-3

Package 1-14, 1-16, 3-3, 3-36, 4-5,
5-3, 9-3, 9-9, 9-12, 9-15, 9-24

Properties tab 3-4
Properties tab description 3-5
Parameter 3-20

Properties tab 3-21
Properties tab description 3-22
Parameter: 3-17

Partition 6-14, 9-27
Properties tab 6-15
Properties tab description 6-15
Properties editor 1-3, 1-10, 1-16
Creating new elements 1-6
Property 1-25

Pseudo state

Properties tab 5-8
Properties tab description 5-8
Realization

Properties tab 3-45
Properties tab description 3-45
Repeated entry system 1-7
Return parameter 3-17, 3-23
Properties tab 3-23
Properties tab description 3-24

Role 8-13, 8-20, 9-15, 9-18

Sequence diagram 4-3, 4-5, 8-8, 8-
20, 9-15, 9-21

Properties tab 9-16
Properties tab description 9-17
Sequence message 8-20
Properties tab 8-21
Properties tab description 8-22
Signal 5-11, 5-15

Properties tab 3-37
Properties tab description 3-37
Standard dialog box tabs

Notes tab 1-20

Overview 1-19
Properties tab 1-19

Tagged values tab 1-23

State 5-3, 5-5, 5-9, 5-12, 6-3, 6-5, 9-
24

Properties tab 5-6

Properties tab description 5-6
State diagram 5-11, 5-14, 9-24

Properties tab 9-25

Properties tab description 9-26
State machine 5-3, 5-7, 5-11, 9-24,

9-27

Properties tab 5-4

Properties tab description 5-4
Stereotypes

<<extend>> 4-9

<<include>> 4-9
Sub activity state 6-8, 9-27

Properties tab 6-9

Properties tab description 6-10
Synchronous message 9-12
Tag parameter 2-8

Description of fields 2-8
Tagged value 1-25, 2-8, 2-9

Description of fields 2-11
Tagged value dialog box 2-10
Tagged values

{persistent} tagged value 1-23
Template parameter 3-46

Description of fields 3-46
Transition 5-3, 5-5, 5-9, 6-3, 9-27

Properties tab 5-10

Properties tab description 5-11
Use

Properties tab 3-43

Properties tab description 3-43
Use case 2-9, 4-3,4-7,4-9, 5-3, 8-3,

9-15

Properties tab 4-4

Properties tab description 4-4
Use case dependency 4-9

Properties tab 4-10

Properties tab description 4-10
Use case diagram 4-3, 4-5, 9-21

Properties tab 9-22

Properties tab description 9-23
Work product 7-5

	0304cover.pdf
	Untitled

