
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

 Objecteering/UML Teamwork User Guide

 Version 5.2.2

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2002 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/001

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents

Chapter 1: Introduction to teamwork with Objecteering/UML
Teamwork in Objecteering/UML ..1-3
Structure of the Objecteering/UML teamwork user guide1-7
Physical organization ...1-8
Migrating the repository ...1-12
Warnings and restrictions ..1-15
Glossary ...1-18

Chapter 2: Functions of the Objecteering/UML teamwork modules
Overview of teamwork module commands ...2-3
Commands available on elements in read-only mode2-7
Commands available on elements in read-write mode2-9
Commands available on all elements (read-only and read-write)...............2-13

Chapter 3: Typical usage
Overview of typical teamwork module usage ..3-3
Defining the initial model..3-4
Multi-user atomic units ...3-6
Links ...3-8
How should I proceed after a problem? ..3-11
Managing work products and generated files ...3-12

Chapter 4: Transferring elements between UML modeling projects
Running principle ...4-3
Importing elements between UML modeling projects4-5

Chapter 5: Parameterizing the Objecteering/UML teamwork modules
Defining module parameters ...5-3
Graphic representation of the read-only and read-write modes5-7
The administration module ..5-9

Chapter 6: The Objecteering/Multi-user module
Introduction to the Objecteering/Multi-user module6-3
Using the Objecteering/Multi-user module ..6-4
Objecteering/Multi-user commands...6-10

Chapter 7: The Objecteering/ClearCase module
Introduction to the Objecteering/ClearCase module7-3
Using the Objecteering/ClearCase module ...7-5
Objecteering/ClearCase commands ...7-11
Effects of commands in ClearCase ...7-13

Chapter 8: The Objecteering/SCC module
Introduction to the Objecteering/SCC module...8-3
Using the Objecteering/SCC module ..8-5
Objecteering/SCC commands ...8-9
Objecteering/SCC module parameters ...8-16

Index

Chapter 1: Introduction to teamwork
with Objecteering/UML

Chapter 1: Introduction to teamwork with Objecteering/UML

Objecteering/UML teamwork user guide 1-3

Teamwork in Objecteering/UML

Overview of teamwork in Objecteering/UML
Welcome to the Objecteering/UML teamwork user guide!
The Objecteering/UML Modeler tool works in the context of an Objecteering UML
modeling project. All the data from this UML modeling project is located in the
same physical location (an .ofp file) and only one user can work on it at a time.
However, when it comes to teamwork, it is necessary:

♦= for several people to work together at the same time

♦= to manage work spaces, such as development or integration spaces

♦= to exchange model information between different UML modeling projects in a
coordinated manner

 A certain level of knowledge in group work is necessary, and you must be familiar
with the Objecteering/UML environment, detailed in the following user guides:

♦= Objecteering/Administrating Objecteering Sites

♦= Objecteering/UML Modeler
We recommend that all users carry out the Objecteering/UML first steps project in
the Objecteering/Introduction user guide, before starting teamwork activities, in
order to become sufficiently at ease with the various general functions provided by
Objecteering/UML.

Chapter 1: Introduction to teamwork with Objecteering/UML

1-4 Objecteering/UML teamwork user guide

Teamwork modules
To meet all your teamwork needs, Objecteering/UML provides the following
teamwork modules:

♦= The Objecteering/Multi-user module, which is only available in the Enterprise
Edition of Objecteering/UML, is used to simply support teamwork operations

♦= The Objecteering/ClearCase module, which is only available in the Enterprise
Edition of Objecteering/UML, is used to couple Objecteering/UML with Rational
ClearCase, and to carry out the most common ClearCase operations on the
Objecteering/UML model

♦= The Objecteering/SCC module, which is only available in the Enterprise Edition
of Objecteering/UML and exclusively for the Microsoft Windows environment,
is used to couple Objecteering/UML to different version control systems which
use the Microsoft SCC API.

Please note that it is not possible (and would be pointless anyway) to use several
of these modules at once, as each module provides the same commands. They
are not complementary, but are rather functionally independent.

Chapter 1: Introduction to teamwork with Objecteering/UML

Objecteering/UML teamwork user guide 1-5

Work spaces in Objecteering/UML
A site is where the work carried out in a company or in one of its departments is
concentrated. A site can contain several UML modeling projects.
 Several "multi-user projects" can exist on a site. These are defined and managed
by the Objecteering/Multi-user, Objecteering/ClearCase or Objecteering/SCC
modules. These multi-user projects are themselves broken down into UML
modeling projects, which make up Objecteering/UML Modeler development and
user work spaces.
 Within a multi-user project, communication between development spaces is
managed by the Objecteering/Multi-user module.
On a site, the exchange of information (see Figure 1-1) between multi-user
projects is carried out in two different ways:

♦= The import of elements between UML modeling projects

♦= The exchange of externalized data through Objecteering/Multi-user,
Objecteering/ClearCase or Objecteering/SCC.

Figure 1-1. Exchanges between work spaces in Objecteering/UML

Chapter 1: Introduction to teamwork with Objecteering/UML

1-6 Objecteering/UML teamwork user guide

Model exchange facility
In addition to the standard teamwork services provided, there also exist model
exchange functions:

♦= the import service between databases. This service, described in chapter 4 of
this user guide, allows you to use the Objecteering/UML universal model
identification mechanism to carry out exchanges between UML modeling
projects and databases. This service is only available in the Enterprise edition
of Objecteering/UML.

♦= the XMI exchange service. The standard XMI format is used to exchange
models between different UML modeling tools. Whilst not as powerful as the
internal Objecteering/UML formats (no identification mechanism, no exchange
of diagrams, etc.), this service is available in the Personal Edition and the
Professional Edition of Objecteering/UML, subject to certain restrictions
("complete" UML modeling project exchange only). For further information on
XMI, please refer to the Objecteering/XMI user guide.

Creating "multi-user projects" using an Objecteering/UML teamwork module
necessitates a certain level of discipline regarding the use of the module in
question. At the start of development, the user can easily content himself with
exchange services.

Chapter 1: Introduction to teamwork with Objecteering/UML

Objecteering/UML teamwork user guide 1-7

Structure of the Objecteering/UML teamwork user guide

The Objecteering/UML teamwork user guide is structured as follows:

♦= Chapter 1 - "Introduction to teamwork with Objecteering/UML": This chapter
presents the different Objecteering/UML teamwork modules.

♦= Chapter 2 - "Functions of the Objecteering/UML teamwork modules": This
chapter describes the commands provided by the Objecteering/UML teamwork
modules.

♦= Chapter 3 - "Typical usage": This chapter presents typical use of the
Objecteering/UML teamwork modules.

♦= Chapter 4 - "Transferring elements between UML modeling projects": This
chapter describes the transfer of different models elements between UML
modeling projects.

♦= Chapter 5 - "Parameterizing the Objecteering/UML teamwork modules": This
chapter presents the different module parameters which manage the behavior
of the services provided.

♦= Chapter 6 - "The Objecteering/Multi-user module": This chapter describes the
specific behavior of the Objecteering/Multi-user module.

♦= Chapter 7 - "The Objecteering/ClearCase module": This chapter describes the
specific behavior of the Objecteering/ClearCase module.

♦= Chapter 8 - "The Objecteering/SCC module": This chapter describes the
specific behavior of the Objecteering/SCC module.

Chapters 1-5 concern all Objecteering/UML teamwork modules and provide
information which will be of use to all users.
Chapters 6, 7 and 8 discuss the specificities of each Objecteering/UML teamwork
module. Users need only refer to the chapter describing the teamwork module
they are using.

Chapter 1: Introduction to teamwork with Objecteering/UML

1-8 Objecteering/UML teamwork user guide

Physical organization

Introduction
This section presents the organization of the directories and files placed in the
multi-user work space dedicated to teamwork.

Chapter 1: Introduction to teamwork with Objecteering/UML

Objecteering/UML teamwork user guide 1-9

Principle
The Objecteering/UML teamwork modules are based on the
internalization/externalization mechanism managed by Objecteering/UML. The
externalization function is used to generate ASCII files which are representative of
modeling elements (packages, classes, actors, etc) from the contents of an
Objecteering/UML modeling project. Conversely, the internalization function is
used to reread ASCII files, in order to update the information present in an
Objecteering/UML modeling project.
In the suggested organization, each user has an Objecteering/UML database in
which a personal work project is defined. In this way, the user models in a private
work space, whilst being able to reserve elements (check-out), deliver them
(check-in) or quite simply update his personal model with regard to the multi-user
model (Import, ...).
The multi-user model, which is made up of ASCII files, also allows the version and
configuration management of modeling elements to a high level of precision
(packages, classes, actors, use cases, …).

Figure 1-2. The multi-user work space

Chapter 1: Introduction to teamwork with Objecteering/UML

1-10 Objecteering/UML teamwork user guide

Directories
The directory which represents the repository is made up of several levels of
information directly linked to module possibilities:

♦= A directory for each type of multi-user atomic unit

♦= A "tmp" directory used to store temporary files used during optimization
phases, present only with the Objecteering/Multi-user teamwork module

♦= A "Locks" directory containing locking files, used in the locking of elements or
of the repository itself

♦= A "Deleted" directory, present only with the Objecteering/Multi-user module and
containing elements explicitly destroyed in Objecteering/UML Modeler. The
files corresponding to destroyed elements are not deleted from the repository,
but are only moved.

♦= A "root" directory containing each user's log file (username.log). The location
and name of the log can be modified during module configuration. For further
information on module parameterization, please refer to chapter 5,
"Parameterizing the Objecteering/UML teamwork modules ", of this user guide.

Note: It should be noted that the file which manages information relative to
model elements has a name which is internal to Objecteering/UML
(principally constructed from element identifiers).

The location of Objecteering/UML modeling projects
We recommend that users create their databases on their machine's local disk,
rather than a remote disk, as teamwork operations, as well as the use of
Objecteering/UML itself, are much faster in this case. The Objecteering/UML
modeling project is simply a view of the repository, which must be shared and
regularly archived.

Using the externalization binary
The obj_extreport binary is used to find the list of the model's objects through an
externalization hierarchy. To launch this binary, use the following syntax:
obj_extreport<CompleteExternalizationPath>
[<TargetReportFileName>]

Chapter 1: Introduction to teamwork with Objecteering/UML

Objecteering/UML teamwork user guide 1-11

Example
Figure 1-3 below presents an example of objects listed in an externalization
hierarchy.

Figure 1-3. Example of externalized objects in an externalization hierarchy

Chapter 1: Introduction to teamwork with Objecteering/UML

1-12 Objecteering/UML teamwork user guide

Migrating the repository

Introduction
When migrating Objecteering/UML from an earlier version, it is important to
correctly carry out the migration of Objecteering/UML models which use one of the
Objecteering/UML teamwork modules, so as to guarantee that the teamwork
repository will be compatible with the version of the module delivered with
Objecteering/UML 5.2.2.
Two case scenarios are possible:

♦= migration from version 5.2.1 of Objecteering/UML

♦= migration from an earlier version of Objecteering/UML
Before carrying out any migration operations, we recommend that you save your
UML models (.ofp files).
If you are using the Objecteering/Multi-user module, we recommend that you save
the repository.
If you are using the Objecteering/ClearCase or Objecteering/SCC modules, we
recommend that you apply a label to the teamwork repository before carrying out
migration operations. This application of a label must only be carried out if all files
have been checked-in. In this case, all users should run a "Project check-in"
before applying the label. After this operation, an "Import from repository" must be
run on an Objecteering/UML model, so as to transfer the latest corrections made
by other users. It is then possible to run the "Apply label" command on the root of
the Objecteering/UML model.

Chapter 1: Introduction to teamwork with Objecteering/UML

Objecteering/UML teamwork user guide 1-13

Migration from version 5.2.1 of Objecteering/UML
In the case of migration from version 5.2.1 of Objecteering/UML, no particular
migration operations are necessary.
After updating your installation to version 5.2.2, you should simply select, for each
database, the new version of the Objecteering/UML teamwork module you are
using. For details on migrating databases, please refer to the "Stand alone
installation in Windows" section in chapter 2 of the Objecteering/Introduction user
guide.
The existing teamwork repository is managed by the new version of the
Objecteering/UML teamwork module. User names and directories defining the
repository remain valid.

Note: Module parameter settings are retained when the latest version of an
Objecteering/UML teamwork module is selected.

Chapter 1: Introduction to teamwork with Objecteering/UML

1-14 Objecteering/UML teamwork user guide

Migration from an earlier version of Objecteering/UML
In the case of migration from a version of Objecteering/UML earlier than the 5.2.1
version, the following steps should be carried out:
1 - For each Objecteering/UML model, run a check-in on all elements which have

been checked-out , so as to guarantee that the repository contains the latest
modifications. This operation can be launched by running the "Project check-
in" command for each Objecteering/UML model.

2 - From an Objecteering/UML model, run the "Import from repository" command,
in order to have a complete Objecteering/UML model, and then unselect the
teamwork module. Only this Objecteering/UML model will exist after site
migration. All the other Objecteering/UML models will no longer be used after
installation of the Objecteering/UML 5.2.2.

3 - After ensuring that you have the correct license file for Objecteering/UML 5.2.2
and stopping the "objingsrv" and "lmgrd" services, launch the update of your
site.

4 - After completing the update of your Objecteering/UML site and restarting the
"objingsrv" and "lmgrd" services, the Objecteering/UML 5.2.2 server is
operational.

5 - All client workstations should be updated, by selecting the new modules
delivered with version 5.2.2, including the teamwork module.

6 - On the Objecteering/UML model used during phase 2, select the teamwork
module, and define the name and directory in which the new teamwork
repository will be created.

7 - A new database should then be created for each user from the database used
to create the new teamwork repository. It is essential that the "Copy a
database" command in the Objecteering/UML database administration tool be
used.

8 - For each database, select the administration module, to define the user fields
with the correct person and then select this module, before making the model
available.

Chapter 1: Introduction to teamwork with Objecteering/UML

Objecteering/UML teamwork user guide 1-15

Warnings and restrictions

Introduction
All the Objecteering/UML teamwork modules are subject to certain restrictions,
which are presented in this chapter. The restrictions described are common to all
the teamwork modules. For restrictions specific to each module, please refer to
the related chapter in this user guide.

Objecteering/UML versions
All users connected to a repository must be using the same version of
Objecteering/UML and the same version of the teamwork module.

Undo/Redo
During check-in, check-out and undo check-out operations, a backup of the UML
modeling project is made. The "Undo/Redo" commands are not, therefore,
available.

Chapter 1: Introduction to teamwork with Objecteering/UML

1-16 Objecteering/UML teamwork user guide

Consistency checks
A consistency check is run within the Objecteering/UML modeling project, but not
within the repository. It is, therefore, possible to inadvertently create
inconsistencies within the model you wish to import. In order to detect possible
consistency problems within the repository as soon as possible, we recommend
that you regularly execute the "Import from repository" command on the UML
modeling project, in order to import the entire contents of the repository, thus
triggering a consistency checking operation on the UML modeling project itself.
To guarantee the consistency of models built using Objecteering/UML, checks are
continually run by the tool during modeling and internalization phases. We
strongly recommend against deactivating consistency checks, and it is imperative
that you NEVER publish ("Check-in") model units in the repository without them
being active.
As a reminder:

♦= The icon indicates that consistency checks are active.

♦= The icon indicates that consistency checks are deactivated.
For further information on removable consistency checks, please refer to the
"Removable consistency checks" section in chapter 3 of the Objecteering/UML
Modeler user guide.

User
For the Objecteering/Multi-user module, it is important not to configure two
Objecteering/UML modeling projects with the same user name. Locking checks
("Check-out") are carried out from this name, and if several simultaneously active
Objecteering/UML modeling projects have been configured with the same user
name, then incorrect processing will be carried out by Objecteering/UML.
The current version of the module carries out no checks on the occurrence of the
repetition of user names.
For the Objecteering/ClearCase and Objecteering/SCC modules, it is imperative
that each user have a different login.

Chapter 1: Introduction to teamwork with Objecteering/UML

Objecteering/UML teamwork user guide 1-17

Modules used
Each private Objecteering/UML modeling project must have available the same
modules (for example, the Objecteering/UML Java or C++ code generation
modules). These modules must be selected in each user's UML modeling project
during this initialization phase, through the "Modules" command of the "Tools"
menu.
For performance-related reasons, we recommend that a template database be
created. This template database should contain all pre-installed and pre-selected
modules. If this is done, connection to a repository when creating a new database
is more efficient. The teamwork module can be pre-installed, but must not be
selected. For further information on this point, please refer to the "Create a UML
model type" command described in the "Detailed view of the Administration menu"
section in chapter 3 of the Objecteering/Administrating Objecteering Sites user
guide.
All users connected to the same repository must use the same teamwork module.
For example, it is not possible to have some users using the Objecteering/Multi-
user module, whilst other users are using the Objecteering/ClearCase module.

Stopping commands
As soon as a command has been launched, it is not possible to stop it.
A command run on a large number of elements can take several minutes to
complete. In this case, we strongly recommend against stopping
Objecteering/UML abruptly, as certain data could be lost if it has not been saved
either in the repository or in the Objecteering/UML modeling project.
If Objecteering/UML is stopped abruptly, the procedures described in the "How
should I proceed after a problem?" section in chapter 3 of this user guide should
be followed.

Launching Objecteering/UML directly on a UML modeling project
When launching Objecteering/UML, it is possible to specify the name of the UML
modeling project in the command line:

objing [<database name>] [<UML modeling project name>]

In order not to have to make selections, and to avoid all errors, we recommend
that you use this possibility via a UNIX script or a Windows shortcut.

Chapter 1: Introduction to teamwork with Objecteering/UML

1-18 Objecteering/UML teamwork user guide

Glossary

♦= API: Application Protocol Interface. Interfaces between application layers and
communicating layers defined in the ISO model.

♦= CMS: Configuration management system. Application used to store different
versions of files, to keep a file history and to retrieve the state of these files as
they were on a given date. This tool is used in group work.

♦= Check-in: The restitution of reserved elements.

♦= Check-out: The reservation of shared elements in the repository. Operation
used to request the modification of model elements. An element cannot be
modified by several users at one time, and to this end a locking mechanism
managed by the CMS (configuration management system) checks requests for
modification.

♦= Inter-project import: Transfer of data between Objecteering/UML modeling
projects, without going through a repository.

♦= Label: A version label which allows you to associate an identifier to an
important version of an element.

♦= Teamwork module: Module allowing a model to be shared, so that teamwork
can be carried out on a UML modeling project. Objecteering/Multi-user,
Objecteering/ClearCase and Objecteering/SCC are teamwork modules.

♦= Multi-user atomic unit: Modeling element which is stored in a file and on which
module commands are available. Multi-user atomic units are packages,
classes, actors, use cases, signals, components, nodes and data types. Other
types of element are not multi-user atomic units and are externalized in the
component multi-user atomic unit file.

♦= Objecteering/UML modeling project: Often called "project", this corresponds to
the Objecteering/UML Modeler area of functioning, and to a user's work area.

♦= Read-only mode: Mode in which an element may not be modified in any way.
An element is put in read-only mode after a check-in operation.

Chapter 1: Introduction to teamwork with Objecteering/UML

Objecteering/UML teamwork user guide 1-19

♦= Read-write mode: Mode in which an element may be modified. An element is
put in read-write mode after a check-out operation.

♦= Repository: Area containing data shared between several developers.

♦= SCC: Source Code Control. Unified interface common to several CMS
(configuration management systems) (VSS, PVCS, etc). This interface only
exists in the Windows environment.

♦= SCC provider repository: Database internal to a CMS (configuration
management system), where information is stored.

♦= User: A person identified by a name, and whose Objecteering/UML modeling
project constitutes a work area.

Chapter 2: Functions of the
Objecteering/UML
teamwork modules

Chapter 2: Functions of the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 2-3

Overview of teamwork module commands

General description
The Objecteering/Multi-user, Objecteering/ClearCase and Objecteering/SCC
teamwork modules contain certain commands which can be run from an element's
context menu. This context menu is accessed by right-clicking over the element in
question.

Three types of command exist:

♦= those commands available on elements in read-only mode ("Check-out",
"Import from repository")

♦= those commands available on elements in read-write mode ("Check-in",
"Check-in and check-out", "Undo check-out")

♦= those commands available on all elements, in both read-only and read-write
modes ("Project check-in”)

The Objecteering/Multi-user, Objecteering/ClearCase and Objecteering/SCC
modules also provide additional module-specific commands. For details on these
commands, please refer to the corresponding chapter in this user guide.

Multi-user atomic units
A multi-user atomic unit is the minimum amount of information which can be
reserved. Teamwork commands can only be run on multi-user atomic units.
Multi-user atomic units are instances of the following metaclasses: Project,
Package, Class, Actor, Component, Node, UseCase, DataType, Signal.
Other types of model element (attributes, operations, instances, etc.) attached to
the multi-user atomic unit are managed along with the multi-user atomic unit itself.
Thus, class operations or attributes are information attached to the class. To
modify or add an operation to a class, the class in question must be reserved.
When the class itself is archived, attributes and operations which may have been
modified are also automatically archived.
To delete a multi-user atomic unit, the unit itself, as well as its embedding unit,
must be reserved. The embedding unit is modified, since its composition link is
altered.

Chapter 2: Functions of the Objecteering/UML teamwork modules

2-4 Objecteering/UML teamwork user guide

Hierarchical mode
The hierarchical mode allows you to carry out reservations and imports, whilst
taking into account model composition hierarchy. This mode is selected by
default, in order to facilitate the consistent update of models. However, users
must be careful when reserving units, as this reservation will also be hierarchical.
This means that if a command is run in hierarchical mode on a high-level element
(for example, a project), it can take several minutes to run, as the command will be
executed on all the components.
The module allows several users to carry out check-out operations on units
defined in the same package, without having to run a check-out on the package
itself. In a situation like this, it is recommended that you avoid running a check-out
on the package itself in non-hierarchical mode, so as to allow the possible
creation of new units.
When the "Check-in", "Import from repository" and "Check-out" commands are
run, a confirmation dialog box (Figure 2-1) is displayed (only if the "Confirm
operations" tick box has been checked during module configuration, through
which it is also possible to define whether or not the command is to be run in
hierarchical mode or not.

Figure 2-1. The hierarchical mode confirmation dialog box

Chapter 2: Functions of the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 2-5

Summary of commands available in read-only mode
The ... command is used to …
Check-out reserve an element, in order to subsequently modify it.

The latest version of the element in question is imported
into the Objecteering/UML model.

Import from repository import the complete element stored in the repository into
the Objecteering/UML modeling project.

Summary of commands available in read-write mode
The ... command is used to …
Check-in free the element and export it into the repository, so that

the element is available to other users in its latest version.

Check-in and check-out check-in and then check-out model elements. By doing
this, model elements are updated for all other users, but
remain locked against further modifications.

Undo check-out cancel the check-out and go back to the previous version.

Summary of commands available on all elements (read-only and
read-write)

The ... command is used to …
Project check-in check-in all project elements currently in checked-out

state. This command cannot be run on the current
element, but only the entire Objecteering/UML project.

Properties display the element's properties.

Chapter 2: Functions of the Objecteering/UML teamwork modules

2-6 Objecteering/UML teamwork user guide

Unselecting the module
When the module is unselected, a check is run to ensure that all elements in the
current UML modeling project are in read-only mode, which signifies that these
elements have been archived.
If elements have remained in read-write mode, a confirmation dialog box allows
you to force unselection (Figure 2-2).

Figure 2-2. Confirming module unselection

The module unselection operation puts all elements into read-write mode.

Chapter 2: Functions of the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 2-7

Commands available on elements in read-only mode

Overview
Elements in read-only mode cannot be directly modified. The available
commands are used to make elements modifiable or to import them into the
repository as they are.

Figure 2-3. Representation of elements in read-only mode

Chapter 2: Functions of the Objecteering/UML teamwork modules

2-8 Objecteering/UML teamwork user guide

Check-out
This command allows you to mark one or more units as reserved. Thus, if another
user tries to make a reservation at a later date, the command will not work. When
a check-out is run, the model is first updated, in order to carry out the
modifications only on the latest version of the unit.
In hierarchical mode, the components of the element are also checked-out and
imported.

Import from repository
This command updates the element with the contents present in the repository. It
is used to retrieve all the modifications made to an element, without actually
checking out the element in question.

Chapter 2: Functions of the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 2-9

Commands available on elements in read-write mode

Overview
Elements in read-write mode can be directly modified. The available commands
are used to make these elements non-modifiable, by integrating the modifications
into the repository ("Check-in") or by cancelling the modifications carried out
("Undo check-out").

Figure 2-4.Representation of elements in read-write mode

Chapter 2: Functions of the Objecteering/UML teamwork modules

2-10 Objecteering/UML teamwork user guide

Check-in
This command is used to check-in and export the unit which was previously
reserved or which has just been created by the user.
At the end of this operation, those elements on which the command has been run
are unlocked and can be reserved by another user.
This command can only be run on components which have been checked-out.
When the "Check-in" command is run on the elements concerned, they are
subsequently put into read-only mode.
In certain cases, units which depend on other units, on which a check-out is
requested, can be automatically checked-in, in order to make the project
consistent with the repository. For example, a new unit cannot be checked-in, in
order to retain the composition between units in the multi-user repository.
If the element has not been modified, then an "Undo check-out" is automatically
run, instead of a check-in. This means that the element's version is not
incremented if the element is identical to the previous version.

Chapter 2: Functions of the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 2-11

For the Objecteering/ClearCase and Objecteering/SCC modules, a comment can
be entered on the check-in. A dialog box is displayed; if the "Confirm operations"
module parameter has been activated and the element has been modified (if this
is not the case, another check-out is carried out and no comment is requested).

Figure 2-5. Comment entry dialog box for a check-in

The "Store the comment for the whole session" tickbox allows you to apply the
same comment or a different comment to all the components. Where the check-in
is carried out hierarchically, the comment entered the time before is then re-used.

Note: Clicking on the "Cancel" button cancels the check-in for the current unit
and all the following units.

Chapter 2: Functions of the Objecteering/UML teamwork modules

2-12 Objecteering/UML teamwork user guide

Check-in and check-out
This command is used to check-in and export a unit into the repository, thereby
making it available to other users working on the multi-user project, and then to
check-out this unit once again, in order to continue working on it.
This command can only be run on checked-out components.
For further information, please refer to the "Check-in" and "Check-out "
commands.

Undo check-out
This command is used to undo the check-out of the element and abandon the
reservation. The repository is not updated, but elements for which the check-out
has been cancelled are re-imported into the Objecteering/UML modeling project,
in order to retrieve their latest version.
At the end of this operation, those elements on which the command has been run
are unlocked and can be reserved by another user.
This command can only be run on checked-out components.

Chapter 2: Functions of the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 2-13

Commands available on all elements (read-only and
read-write)

Project check-in
This command is used to carry out a check-in of all the elements of the project
which have been checked-out by the user in a single operation.
If the "Confirm operations" tick box has been checked at module configuration
level, confirmation is requested before the check-in of all the elements is run.

Figure 2-6. Confirmation dialog box in the "Project check-in" command

Properties
This command is used to display information on the current element. The
behavior of the command varies depending on which module is being used.
For further information, please refer to the chapter related to the module in
question in this user guide (chapters 6, 7 and 8).

Chapter 3: Typical usage

Chapter 3: Typical usage

Objecteering/UML teamwork user guide 3-3

Overview of typical teamwork module usage

Introduction
The aim of this chapter is to provide you, the user, with further, complementary
information on the configuration and implementation of the Objecteering/UML
teamwork modules Objecteering/Multi-user, Objecteering/SCC and
Objecteering/ClearCase.
In this section, you will find information on the following areas:

♦= creating an initial model before sharing it with other users

♦= creating, deleting, renaming and moving multi-user atomic units

♦= module behavior with regard to links between elements

♦= what to do after a problem occurs with Objecteering/UML

♦= managing work products and generated files
The advice and tips given in this chapter are the result of the vast experience
gained in industrial development using Objecteering/UML by development teams
of all different sizes.

Chapter 3: Typical usage

3-4 Objecteering/UML teamwork user guide

Defining the initial model

Introduction
Before starting work on defining the initial model, each user participating in the
teamwork project must have a database (locally on his machine, if possible), and
a shared directory must already exist. Access is possible via UNC paths
(\\machine\, etc).
The multi-user directory is common to all users wishing to work on the same
model. If several models are shared independently, you should:

♦= create different multi-user directories

♦= allocate the correct value at module configuration level for the
Objecteering/UML modeling projects concerned

The name of the multi-user directory directly corresponds to the physical location
of the directories created for the storage of models.
Users who wish to be able to modify the model must be able to access these
directories in read-write mode.
The UML modeling project start-up phase is important. The initial structure of the
model is used to:
1 - define the system's principal packages and the dependencies between these

packages
2 - organize the work to be carried out by the first people to work on the UML

modeling project

During this phase, changes made to the structure of the model can be important
and non-optimal if special care is not taken. We recommend that you:
1 - Define the principal packages collectively, in order to create an initial model

which corresponds to a perception common amongst the different players.
Typically, it is possible to start with "blackboard" definition meetings, whose
aim is to identify the system's principal packages, the choice of UML models
and the functional division of the application in terms of packages and actors.

2 - Build an initial work plan with the affectation of packages to different players.
3 - Define consolidation meetings, whose purpose is to collectively review the

structure of the model, where necessary.

Chapter 3: Typical usage

Objecteering/UML teamwork user guide 3-5

At Objecteering/UML level, this principle is represented by:

♦= the constitution of the initial model from a first Objecteering/UML modeling
project, followed by the initial check-in of the model (this is automatically
carried out when the module is selected)

♦= the creation of a database for each user

♦= the reservation (check-out) and delivery (check-in) of each person's work

♦= the taking into account of other users' work (Import...)

♦= if the structure is questioned, we recommend that you:
1 - Integrate into a UML modeling project all the latest modifications (Import)
2 - Reserve impacted elements (possibly the entire project) through a check-
out
3 - realize and deliver structural modifications (check-in)

♦= synchronize all users from the new structure through a “Import complete
element from repository” on the entire project

Creating a "model" database
To reduce the administration work previously described, we recommend that you
prepare a "model" database, which will be used in the creation of different users'
private work spaces. This database should be initialized according to the
sequence described above, except for the activation of the Objecteering/Multi-
user module.
Private work spaces can then be created by copying the "model" database, using
the Objecteering/UML database administration tool. Only the activation of the
Objecteering/Multi-user module is necessary for each individual private work
space.

Chapter 3: Typical usage

3-6 Objecteering/UML teamwork user guide

Multi-user atomic units

Adding elements
When adding elements, you must carry out a check-out on the embedding
element.
To save the new element, the user should simply carry out a check-in on the
embedding element. The check-in on the new element may be directly accepted,
but an "Undo check-out" without import on the parent is forbidden.

Deleting elements
To delete model elements, the standard Objecteering/UML delete command
should be used.
Warning!
This deletion can only be run:

♦= on an element which has been reserved through a check-out

♦= on an element whose embedding element has been reserved through a check-
out

Destroying a referenced element
With regard to element references, the behavior of the teamwork module being
used differs from that of the explorer. We therefore recommend against the use of
module commands on references. The sequences below should be respected
according to their context.
To delete a referenced element, both the element itself and its parent must be in
read-write mode.
1 - First run the check-out command on the package to which a reference is

associated.
2 - Delete the referenced element using the classic Objecteering/UML "Delete"

command (available through the "Edit/Delete" menu or via the "Delete"
keyboard key).

3 - Run the check-in command on the package to which a reference was
associated.

Chapter 3: Typical usage

Objecteering/UML teamwork user guide 3-7

Renaming elements
The renaming of elements is an operation which is carried out on reserved
elements (elements in check-out).
After a renaming operation, we recommend that all those involved carry out an
“Import element using current mode” on a package encompassing all impacted
elements, on the first level package or on the entire UML modeling project, in
order to update all the local model's links.
When “circular” renaming is to be carried out (for example, if the user has two
classes, C1 and C2, and he wishes to change the names of these classes from
C1 to C2 and from C2 to C1), the following operations should be carried out:

♦= Check-out C1 and C2.

♦= Change the name of C2 to xC2.

♦= Change the name of C1 to C2.

♦= Change the name of xC2 to C1.

♦= Check-in C2 and xC2.

Moving elements
When an element is moved, the embedding origin and destination element must
be reserved. To retain references to the element which is moved, the drag & drop
operation should be used, and not the cut/paste or the copy/paste operations.
After moving an element, we recommend that all those involved carry out an
“Import element using current mode” on a package encompassing all impacted
elements, on the first level package or on the entire UML modeling project, in
order to update all the local model's links.

Adding and modifying diagrams
Bearing in mind that diagrams are associated with model elements, the element in
question must be reserved (check-out) before the creation or modification of any
diagram.

Chapter 3: Typical usage

3-8 Objecteering/UML teamwork user guide

Links

Introduction
Two types of link between modeling elements can be distinguished:

♦= links which necessitate the prior check-out of all linked elements (this is the
case for non-oriented links)

♦= links which only necessitate the check-out of the origin elements (this is the
case for oriented links)

Adding non-oriented links
In the case of non-oriented links, all linked elements must be checked out before
the creation of the link within the model.
The types of link concerned are:

♦= associations and aggregations between classes, nodes, components, objects,
etc.

♦= communication links between actors and use cases

♦= DataFlows between packages, classes, …

Note: If the user wishes to add an association between two classes belonging to
two different packages, then he must carry out a check-out:

♦= either on both the classes

♦= or on the package for one of the classes and then on the class belonging to the
other package

♦= or on both the packages
A typical example of this is where work is carried out on a package, where it is
then necessary to add a link towards a class belonging to another package.

Chapter 3: Typical usage

Objecteering/UML teamwork user guide 3-9

Adding oriented links
Where oriented links are concerned, only a check-out of the origin element is
required.
The types of link concerned are:

♦= generalizations between packages, classes, actors, use cases, nodes, etc.

♦= dependencies between packages, classes, actors, components, etc.

♦= implementation links between classes, components and interfaces
For this type of link, other than the check-out of the origin element, no particular
precautions are necessary.

Deleting links between elements
The same recommendations must be taken into account when links between
elements are deleted as when they are added.
For oriented links, a check-out of the origin element must be carried out before
deletion.
For non-oriented links, a check-out of the origin and destination elements must be
carried out before deletion.

Chapter 3: Typical usage

3-10 Objecteering/UML teamwork user guide

Link circularity problems
After “concurrent” model modifications, it is possible to produce circular
dependencies between packages.

Example:

On a model which has two packages, P1 and P2, a user U1 carries out a check-
out on P1, adds a dependency from P1 to P2 and then carries out a check-in.
During this time, a second user, U2, is carrying out the opposite operations. The
result of these modifications renders importing an update impossible, since
Objecteering/UML displays an error message, due to the mutual dependency
between packages.
To correct this type of problem, one of the users should simply re-execute the
check-out of his package and replace one of the circular dependencies by a
reference link.
Reference links are not graphically visible, but can be entered using the icons
situated in the central column of the explorer. They are used by
Objecteering/UML to calculate visibility between modeling elements, but are not
checked for circularity.
Once a model containing all the modifications has been built, we recommend that
the user review this model, in order to check that the circularity (now with
referencing) is not linked to the incorrect structuring of the applications.

Chapter 3: Typical usage

Objecteering/UML teamwork user guide 3-11

How should I proceed after a problem?

Objecteering/UML crashes
1 - Remove the locks.
2 - Run a synchronization if the command was a check-in, a check-out or an undo

check-out.
3 - Relaunch the command for all elements on which it failed.

Consistency checks
If a model cannot be imported because of consistency checks, you should carry
out the following operations:
1 - Deactivate consistency checks.
2 - Check-out the part of the model causing consistency errors.
3 - Correct the model.
4 - Activate consistency checks.
5 - If consistency checks have been activated, check-in the modified elements.

How can I resolve a problem of dependency cycles?
If two users create a dependency cycle between two packages and validate their
actions via the check-in command, then no check-out commands can be carried
out on "destination" packages.
To solve this problem, re-run a check-out of the "origin" packages, change the use
link into a referencing link and then confirm these changes by carrying out a
check-in command.

Chapter 3: Typical usage

3-12 Objecteering/UML teamwork user guide

Managing work products and generated files

Taking into account modifications in generated files
The Objecteering/Multi-user, Objecteering/ClearCase and Objecteering/SCC
modules do not manage generated files and consider these to be independent
files.
In Objecteering/UML, there are three ways of modifying the code of a generated
file:
1 - Modification of notes (C++, Java, etc.)
2 - Use of the module external edition command
3 - Modification of generated files outside Objecteering/UML

As regards this third manner of modifying generated file code, a command
available for each code generation module must be run, allowing all modifications
carried out directly in generated files to be reported to Objecteering/UML.
This command can only be carried out if the modified elements have been
checked-out. If a check-in is run on elements without having run this command,
all modifications carried out in generated files will be lost.
The Objecteering/Multi-user, Objecteering/ClearCase and Objecteering/SCC
modules all provide the "Update generation work products before check-in"
module parameter, used to automatically carry out this code retrieval before
running a check-in.

Chapter 3: Typical usage

Objecteering/UML teamwork user guide 3-13

Generating C++ or Java sources in personal environments
In a UML modeling project managed in multi-user mode, work products are
common to all users and sources are generated in the same directory which is
common to all users. In a Windows environment, it is possible to define an
identical path for all users, but which is specific to each individual user (for
example, "C:\Project\sources"). In this way, even though you have an identical
path to all users, each user generates in his own environment.
To solve this problem in Unix, and to define a different generation path for each
user (even in Windows), the "Update generation work products after import"
module parameter is used to modify each work product after the "Import from
repository" command or after a check-out, so that the parameterization of this
product be proper to the user.
By activating this parameter, generation paths defined for each work product are
updated with the default value (that defined by the parameterization of the C++ or
Java modules).

Note: This update only concerns C++ and Java work products, for modules
delivered as standards and for user modules inheriting from these two
modules.

Chapter 4: Transferring elements
between UML modeling
projects

Chapter 4: Transferring elements between UML modeling projects

Objecteering/UML teamwork user guide 4-3

Running principle

Description of the transfer function
The transferring elements feature (shown in Figure 4-1) gives the user the
possibility of importing elements which come from another UML modeling project
into his current UML modeling project. The elements imported can be packages
or classes.

Figure 4-1. The transfer function allows the import of elements which come from other UML
modeling projects

Note: If the elements which are to be imported come from another database and
do not figure in an Objecteering/UML modeling project, then they must not
already be present in the repository. However, if the elements already
exist in the Objecteering/UML modeling project, then they must also
already exist in the repository. They are updated in Objecteering/UML
when the "Import from repository" command is run, and updated in the
repository when the check-in command is run.

To import elements from other Objecteering/UML databases, the following steps
should be carried out:
1 - Carry out a check-out on the UML model root in "non-hierarchical" mode.
2 - Import the package through the classic import window.
3 - Finally, carry out a check-in on the UML model root in "hierarchical" mode.

Chapter 4: Transferring elements between UML modeling projects

4-4 Objecteering/UML teamwork user guide

Identifying model elements
Objecteering/UML identifies all elements entered graphically (diagrams) or in the
model explorer, in a universally unique way (site/base/project/element) as soon as
they are created. Transfer logic uses these identifiers to ensure their automatic
update.

Example:
1 - Create the C1 class in the P1 UML modeling project.
2 - Transfer C1 to the P2 UML modeling project.
3 - Rename C1 as C2 in the P2 UML modeling project.
4 - Transfer C2 from the P2 UML modeling project to the P1 UML modeling

project.
Result: C2 replaces C1 in the P1 UML modeling project model.

Import logic
Import operations use identifiers in their logic.
1 - A copy of the element is made, if elements with the same identifier do not yet

exist.
2 - If an element with the same identifier already exists, it is replaced.
3 - If a newly-imported element has links towards other elements, the links are

retained it the linked elements with the same identifiers exist. If not, the links
are destroyed.

For example, the import of the C1 class into an empty UML modeling project
creates this class, but destroys its associations, generalizations, and so on. The
import of the S1 diagram into an empty UML modeling project creates the diagram
and its classes and creates the links between these classes, but not those which
reference external elements.
Note: For further details on import operations, please refer to the "Importing
elements between UML modeling projects" section in the current chapter of this
user guide.

Chapter 4: Transferring elements between UML modeling projects

Objecteering/UML teamwork user guide 4-5

Importing elements between UML modeling projects

The "Import" dialog box
The "Import" dialog box (shown in Figure 4-2) contains a list of available UML
modeling projects, and details of their contents, presented in the form of a
hierarchical explorer.

Figure 4-2. The "Import" window and its components

Chapter 4: Transferring elements between UML modeling projects

4-6 Objecteering/UML teamwork user guide

Description:
1 - UML modeling projects.
2 - Components of the selected UML modeling project. To display the

components of a given UML modeling project, simply click on the + boxes in
the tree structure.

Chapter 4: Transferring elements between UML modeling projects

Objecteering/UML teamwork user guide 4-7

Imported objects
Component elements, which appear when you click on the "+" boxes in the
"Import" window tree structure, are listed in the following order: packages and
classes. The import will fail if there is any inconsistency between imported
elements.

Object ... imported component elements...
UML modeling project the whole UML modeling project (packages, classes,

...)

Package classes (with their operations, attributes, "visible"
associations), documents, tagged values, diagrams

Class operations, attributes, "visible" associations,
documents, tagged values, diagrams

Non-imported objects are:

♦= reference links from a package to another element which is not imported and
which does not already exist in the current UML modeling project

♦= non-oriented associations (visibility NULL on both sides)

Note 1: Before importing an element, the check-out command must be run on the
UML model root, in non-hierarchical mode.

Chapter 4: Transferring elements between UML modeling projects

4-8 Objecteering/UML teamwork user guide

Example of an import
Figure 4-3 describes how to carry out an import from a package into the current
UML modeling project.

Figure 4-3. Example of an import of a package into a UML modeling project

Chapter 4: Transferring elements between UML modeling projects

Objecteering/UML teamwork user guide 4-9

Steps:
1 - Click on the "Tools/Import" menu.
2 - Select the package you wish to import.
3 - A confirmation dialog box then appears, indicating the element you have

selected for import. Click on the "OK" button to confirm.
The selected package is then imported into your current UML modeling project.
The "Import" window remains open, in case you wish to import other elements. If
this is not the case, simply close the window.

Note: The selection of a UML modeling project from the list of components
replaces the current UML modeling project by the selected UML modeling
project. It deletes those elements in the current UML modeling project
which do not exist in the selected UML modeling project, replaces those
which exist in the two UML modeling projects and adds those which did
not already exist in the current UML modeling project.

Chapter 5: Parameterizing the
Objecteering/UML
teamwork modules

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 5-3

Defining module parameters

Introduction
When a teamwork module is selected, module parameters are automatically
initialized with optimal default values.
This section presents the different module parameters, and describes their impact
on the behavior of the teamwork modules.

Configuring the Objecteering/UML teamwork modules
The Objecteering/UML teamwork modules can be parameterized through the
"Modifying configuration" dialog box (as shown in Figure 5-1 below), which is

launched by clicking on the "Modify module parameter configuration" icon.

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

5-4 Objecteering/UML teamwork user guide

The "General settings" parameter set

Figure 5-1. The "General settings" set of parameters for the Objecteering/Multi-user module

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 5-5

The ... parameter is used to ...
Hierarchical operations run commands on components. This parameter

determine the hierarchical or non-hierarchical
functioning modes of the check-out, check-in and
model import operations (to know whether, for
example, a package check-in automatically leads to
the check-in of the classes it contains).

Confirm operations select a mode employed by users to confirm
operations. If this option is activated, certain
commands run by the user will be subject to interactive
confirmation.

Update project at start-up automatically run the "Import from repository"
command when Objecteering/UML is started. By
doing this, the project is automatically updated with
regard to the repository. Those elements which are
still in check-out are not updated.

Memorize actions in the log record in a file all actions carried out by the user. By
default, this file is created in the repository directory,
and its name corresponds to the user's name followed
by the ".log" suffix.

Log define the file which will contain a record of all the
actions carried out by the module. This parameter is
only used if the "Memorize actions in the log"
parameter has been activated.

Note: The parameters described above exist for the Objecteering/SCC and
Objecteering/ClearCase modules, as well as the Objecteering/Multi-user
module.

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

5-6 Objecteering/UML teamwork user guide

The "Work product options" parameter set

Figure 5-2. The "Work product options" set of parameters for the Objecteering/Multi-user
module

The ... parameter is used to ...
Update generation work products
after import

update the paths of C++ generation work products
(code generation and makefiles) and Java generation
work products, using the values defined during C++ or
Java module parameterization.

Update generation work products
before check-in

reverse the contents of the files generated before
carrying out the check-in. This parameter is
indispensable if the source code is modified outside
Objecteering/UML. If this is the case, this parameter
allows modifications made to the source code to be
automatically incorporated, before carrying out the
check-in operation.

Note: The parameters described above exist for the Objecteering/SCC and
Objecteering/ClearCase modules, as well as the Objecteering/Multi-user
module.

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 5-7

Graphic representation of the read-only and read-write
modes

Overview
By default, Objecteering/UML Modeler graphically represents elements in read-
only mode through the "No entry" icon superimposed over the icon
representing the model element itself. Elements in read-write mode are simply
represented by their icon with no additional mask superimposed.
The user can, however, choose to implement a bitmap indicating the read-write
status of modeling elements. To do this, he should simply change the name of the
"RWmode_optional.gif" file, which is delivered as standard in the
$OBJING_PATH/res directory, to "RWmode.gif".
The user can use the bitmap of his choice to represent the read-write state of
model elements.
It is also possible to change the read-only mode bitmap, by modifying the
"ROmode.gif" file in the $OBJING_PATH/res directory.

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

5-8 Objecteering/UML teamwork user guide

Example of graphic representation of the read-only and read-write
modes

Figure 5-3. Graphic representation of the read-only and read-write modes

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 5-9

The administration module

Overview
The administration module should be used when module commands are not
functioning, when the user is "blocked" or when Objecteering/UML has crashed
and consistency must be re-established between the repository and the UML
modeling project.
The aim of this module is to allow the user to unblock a Objecteering/UML
modeling project which is in an incoherent state.
Warning! It is imperative that you have a sound knowledge of the workings of the
module, in order to be able to use this administration module with no risk of losing
valuable data.
The administration module must not be installed by default in user databases, but
only if the teamwork module functions incorrectly. When it is being used, it is
preferable that no other users use the teamwork module (check-in, check-out or
import commands).
All commands are available on elements in both read-only mode and read-write
mode.
If the "Hierarchical operations" tickbox has been checked in the module
configuration window, then the effect of these commands is propagated on all
sub-elements.

Note: The module must have already been selected in order for the administration
module commands to work properly.

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

5-10 Objecteering/UML teamwork user guide

Administration module commands
The ... command is used to …
Generate element in repository generate a multi-user atomic unit in the form of a file in the

repository.

Modify the parameters modify module parameters, which should be modified with
care.

Synchronize element state in
project

synchronize the state of a multi-user atomic unit with
regard to its state in the repository.

Unlock repository delete the locks present on the repository.

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 5-11

The "Generate element in repository" command
The "Generate element in repository" command can be run on all multi-user
atomic units and is used to generated a multi-user atomic unit in the form of a file.
When the "Confirm operations" module parameter has been activated,
confirmation is requested before the command is launched. The confirmation
dialog box which appears allows you to specify the directory where the element is
to be externalized, as well as indicating whether the command should be run in
hierarchical mode or not (as shown in Figure 5-4).

Note: It is not necessary to create the externalization directory before running the
command. This directory will be automatically created by the command.

Two possibilities are available to the user:
1 - Generation directly in the repository. By default, the repository associated with

the Objecteering/UML is proposed.
2 - Generation in a directory other than the repository.
If the element is generated directly in the repository, the user must make sure that
he has the latest version of the element before launching the command, as other
users will retrieve the version which is going to be generated in the repository.

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

5-12 Objecteering/UML teamwork user guide

For the Objecteering/ClearCase module, if the element is generated directly in the
view, the file corresponding to the element must first be checked-out from the
ClearCase interface and in the Objecteering/UML modeling project, and then a
check-in run on this file before launching the "Generate element in repository"
command.
For the Objecteering/SCC module, the file generated is not transferred to the
provider, but is instead exclusively generated in the directory defined by the "Work
directory" module parameter. In this case, the retrieval operation should be run in
the provider.

Figure 5-4. Running the "Generate element in repository" command

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 5-13

The "Modify the parameters" command
The "Modify the parameters" command is used to modify the module's sensitive
parameters.
For the Objecteering/Multi-user module, this command is used to modify:
1 - The name of the user. All the users connected to the same repository must

have different user names. If this parameter is modified, we recommend that
you first run a "Project check-in" operation, to check-in all those elements
which have been checked-out. If the "Modify the parameters" command is run
while elements are still checked-out, the state of the elements in the
Objecteering/UML model will be out of synch with regard to the repository, and
the modifications made to these elements could be lost.

2 - The directory where the repository is stored. After modifying this parameter,
we recommend that you run the "Import from repository" command on the
UML modeling project, in order to obtain the latest version of the model stored
in the new repository. If this new repository is completely different from the
former one, you should create a new UML modeling project, install the
teamwork module and connect to the new repository.

3 - The optimization mode. For reasons of performance, we recommend that you
never deactivate this parameter. If this parameter is deactivated, the version
of elements will not be used to optimize "Check-in", "Check-out" and "Import
from repository" operations. If this parameter is active, all elements will be
imported into Objecteering/UML, even if no modifications have been made to
them in the repository.

Given the importance of these parameters, confirmation is systematically
requested (with warnings).
The "Modify the parameters" command is not available in the Objecteering/SCC
Administration module.

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

5-14 Objecteering/UML teamwork user guide

Figure 5-5. Running the "Modify the parameters" command on the Objecteering/MultiUser
module

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

Objecteering/UML teamwork user guide 5-15

The "Synchronize element state in project" command
The "Synchronize element state in project" command synchronizes the state of a
multi-user atomic unit with regard to its state in the repository. This command
does not re-import elements, but simply updates their check-in/check-out state in
Objecteering/UML. This command must only be used when a standard operation
cannot be carried out, when Objecteering/UML and the repository are out of
synch.
A save is made if at least one element has been resynchronized.
When the "Synchronize element state in project" command is run, its result can be
seen in the Objecteering/UML console.

Chapter 5: Parameterizing the Objecteering/UML teamwork modules

5-16 Objecteering/UML teamwork user guide

The "Unlock repository" command
The "Unlock repository" command is used to unlock the repository after a system
error.
For the Objecteering/Multi-user module, this command deletes:

♦= all the files present in the "Locks" directory with the ".read", ".write" and ".cout"
extensions

♦= the "multiuser.lock" file

For the Objecteering/ClearCase module, this command runs:

♦= an "Undo check-out" of the file associated with the project located in the
"Project" directory if this file is checked-out

♦= an "Undo check-out" of the <username>.read file located in the "Locks"
directory, if this file has been checked-out by the used who is running the
command

♦= a "Check-in" of the "Actor", "Class", "Component", "DataType", "Item", "Locks",
"Package", "Project", "Node", "Signal" and "UseCase" directories

For the Objecteering/SCC module, this command runs:

♦= an "Undo check-out" of the file associated with the project located in the
"Project" directory if this file is checked-out

♦= a "Check-in" of the users.txt file, if this file has been checked-out by the user
who is running the command and if it has been modified, or an "Undo check-
out" if it has not been modified

♦= an "Undo check-out" of the <username>.read file located in the "Locks"
directory if this file has been checked-out by the user who is running the
command

For further information on repository locks, please refer to chapter 6, 7 or 8 of this
user guide, depending on the Objecteering/UML teamwork module you are using.

Chapter 6: The Objecteering/Multi-user
module

Chapter 6: The Objecteering/Multi-user module

Objecteering/UML teamwork user guide 6-3

Introduction to the Objecteering/Multi-user module

Functions
Using the Objecteering/MultiUser module, it is possible to:

♦= Check-in and/or check-out a model element

♦= Undo check-out

♦= Update the Objecteering/UML model

Saving/Restoring
The use of the Objecteering/Multi-user module does not replace the action of
backing up directories and files. In the case of the restoration of files following a
system problem, you should be careful regarding ".lock" files present in the root
directory after restoration. It is, therefore, imperative that:

♦= all users unselect the Multi-user module and quit the editing of their model

♦= all ".lock", ".cout", ".read" and ".write" files be destroyed after the restoration of
the files

All users can then restart work on the restored version, by selecting the Multi-user
module and defining the user name and the multi-user directory.

Chapter 6: The Objecteering/Multi-user module

6-4 Objecteering/UML teamwork user guide

Using the Objecteering/Multi-user module

Initializing the repository
To initialize the repository, the following sequence of operations must be carried
out:
1 - A UML modeling project must be created. First, define a name and a location

for this new UML modeling project in the first two fields of the "Create a UML
modeling project" dialog box below. Next, check the "Model root name"
tickbox and define the model name in the associated field (as shown in Figure
6-1). This model name is important for what will follow, as all users have to
define the same model root name when creating their UML modeling projects,
so as to be able to access the associated repository.

Figure 6-1. Creating a UML modeling project

2 - The main elements of the UML modeling project must be created. We
recommend that you create an initial model structure, within which other users
can start their modeling work. Without this initial structure, users have no
predefined model structure and cannot start modeling in an organized way.

Chapter 6: The Objecteering/Multi-user module

Objecteering/UML teamwork user guide 6-5

3 - The Objecteering/Multi-user module must be selected for the new UML
modeling project. To do this, run the "Modules" command from the "Tools"
menu, and define the current user name and repository path (as shown in
Figure 6-2).

Figure 6-2. Defining Multi-user parameters

Chapter 6: The Objecteering/Multi-user module

6-6 Objecteering/UML teamwork user guide

After the Objecteering/Multi-user module has been selected:

♦= A directory hierarchy is automatically created in the repository. The initial
model elements are positioned there, in the form of externalized ASCII files.

♦= The icon appears on all model elements in the Objecteering/UML explorer
(as shown below in Figue 6-3).

Figure 6-3. The explorer after selection of the Objecteering/Multi-user module

Chapter 6: The Objecteering/Multi-user module

Objecteering/UML teamwork user guide 6-7

Initializing private work spaces
Once the repository has been created, each user must initialize his own private
work space, by carrying out the steps below.
1 - A new Objecteering/UML modeling project must be created. First, define a

name and a creation location for this new UML modeling project in the first two
fields of the dialog box shown below. Next, check the "Model root name"
tickbox and enter in the associated field exactly the same name as that used
when creating the repository (as shown in Figure 6-4).

Figure 6-4. Creating a user's private work space

Chapter 6: The Objecteering/Multi-user module

6-8 Objecteering/UML teamwork user guide

2 - The Objecteering/Multi-user module must be selected for this new UML
modeling project. To do this, run the "Modules" command in the "Tools"
menu, and allocate the current user name and the path to the existing
repository (Figure 6-5).

Figure 6-5. Defining Multi-user parameters

If the UML modeling project is not empty, all elements present therein will be
deleted. Confirmation is requested before retrieving elements present in the
repository (as shown in Figure 6-6).

Figure 6-6. Confirmation dialog box before retrieving the model from the repository

Chapter 6: The Objecteering/Multi-user module

Objecteering/UML teamwork user guide 6-9

After activating the Objecteering/Multi-user module:

♦= the data present in the repository is automatically imported into the user's
private work space, and the model reconstructed

♦= the icon appears on all the model elements in the Objecteering/UML explorer
(as shown in Figure 6-7 below).

Figure 6-7. The explorer after selection of the Objecteering/Multi-user module

Chapter 6: The Objecteering/Multi-user module

6-10 Objecteering/UML teamwork user guide

Objecteering/Multi-user commands

Overview
The following commands are specific to the Objecteering/Multi-user module.

The ... command is used to …
Get information list new elements, reserved or not yet reserved in the

UML modeling project, with regard to the repository.

Properties display an element's properties.

The "Get information" command
The "Get information" command allows you to list the following items in the
Objecteering/UML console.

♦= elements which are reserved by the current user or by another user

♦= newly created elements or elements which have not yet been recorded in the
repository

♦= elements which are not in the UML modeling project

♦= elements which are present in the model but destroyed in the repository

This command is always carried out in hierarchical mode, so as to handle all the
components of the current element. When this command is run on the UML
modeling project, all information on all project elements is obtained.

Chapter 6: The Objecteering/Multi-user module

Objecteering/UML teamwork user guide 6-11

The "Properties" command
For the Objecteering/Multi-user module, the information displayed is as follows:

♦= The location of the repository

♦= The name of the file corresponding to the element

♦= The version of the element present in the Objecteering/UML model

♦= The version of the element present in the repository

♦= The state of the element (checked-in, checked-out, new, deleted)

Figure 6-8. The properties of an element with the Objecteering/Multi-user module

Chapter 7: The
Objecteering/ClearCase
module

Chapter 7: The Objecteering/ClearCase module

Objecteering/UML teamwork user guide 7-3

Introduction to the Objecteering/ClearCase module

Overview
The Objecteering/ClearCase module has been designed to function with
ClearCase 4.0, ClearCase 4.1, ClearCase 4.2 and ClearCase 5.0 .
The Objecteering/ClearCase module is used to configure elements of an
Objecteering/UML model, to carry out the most frequently used ClearCase
operations and to simplify a developer's work in the domain of configuration
management.
The functions of the Objecteering/ClearCase module, necessary to configuration
management, are accessed through the Objecteering/UML interface.
The Objecteering/ClearCase module does not substitute the ClearCase tool. The
administration of this tool is not, therefore, available from Objecteering/UML.
Notably, it is necessary for ClearCase to be active and for a view to have been
selected before launching Objecteering/UML.

Limitations
The Objecteering/ClearCase module does not handle the following configuration
management functions:

♦= the administration of ClearCase VOB

♦= the merge of Objecteering/UML objects

♦= the manual selection of earlier versions of the configuration's objects
These functions are handled through the standard ClearCase interface.

Consistency rules
ClearCase commands can only be run if:

♦= a view has been defined.

♦= the configuration parameters of the module have been correctly entered
(positioning of ClearCase and positioning of the VOB).

♦= the ClearCase environment is accessible.

Chapter 7: The Objecteering/ClearCase module

7-4 Objecteering/UML teamwork user guide

Functions
Using the Objecteering/ClearCase module, it is possible to:

♦= Check-in and/or check-out a model element

♦= Undo check-out

♦= Update the Objecteering/UML model in relation to the ClearCase view

♦= Apply a label

♦= Open a history browser

♦= Open a version tree browser

In Unix, a view must have been defined and positioned (using the "cleartool
setview <view-tag>" command).

Glossary
♦= View: A view which you use to select a particular version of files placed in

configuration.

♦= VOB: Versioned Object Base. A VOB stores all versions of all objects.

Chapter 7: The Objecteering/ClearCase module

Objecteering/UML teamwork user guide 7-5

Using the Objecteering/ClearCase module

Selecting the Objecteering/ClearCase module in your UML
modeling project

Launch the Objecteering/UML Modeler tool on your UML modeling project. The

 "UML modeling project modules" icon launches the window used to select
the module (as shown in Figure 7-1).

Figure 7-1. Selecting the Objecteering/ClearCase module

Chapter 7: The Objecteering/ClearCase module

7-6 Objecteering/UML teamwork user guide

Steps:

1 - Click on the "UML modeling project modules" icon.
2 - Select the Objecteering/ClearCase module from the available modules list on

the left-hand side of the window.
3 - Click on the "Add" button. The Objecteering/ClearCase module then appears

in the right-hand "Modules used" column.
4 - Click on "OK" to confirm.

Two case scenarios are possible:

♦= A new user wishing to connect to a view. In this case, module configuration
parameters should simply be updated. By selecting the module, a wizard is
used to initialize these parameters.

♦= The project is new and has not yet been archived in a VOB. This work is
particularly destined for the build manager, who must export the
Objecteering/UML model in the form of a file and migrate these files into a
VOB. This case scenario does not allow the module to be selected, but can be
used to create the view, through a wizard.

Figure 7-2. Choices available when selecting the module

Steps:
1 - Select the desired options.
2 - Confirm.

Chapter 7: The Objecteering/ClearCase module

Objecteering/UML teamwork user guide 7-7

Exporting the Objecteering/UML model
To be put in version in a VOB, a model must be generated in the form of files.
The "Export the Objecteering/UML model" option is used to generate all files
which are indispensable between Objecteering/UML and ClearCase.
This option is only used once, by the administrator, to create the ClearCase VOB.
The ClearCase migration directory contains files representing the model which are
archived in ClearCase. It contains three types of import (complete, interface,
structural) for the same element in a single file.

Figure 7-3. Creating files which represent the model

Steps:
1 - In the "ClearCase migration directory" field, define the migration directory. The

default value of this field is <OBJING_PATH>\CMDirectory.
2 - Confirm.

Note: The directory entered in this dialog box is not the definitive directory. The
administrator can change these values at any time after the migration of
the files into ClearCase or at any other time during the development cycle.

Chapter 7: The Objecteering/ClearCase module

7-8 Objecteering/UML teamwork user guide

Once the model has been exported into the directory entered, the administrator is
informed of the actions to be carried out.

Figure 7-4. Actions to be carried out after creating the repository

This operation cannot be used to select the module, but only to generate files
which can be migrated into ClearCase.
The following steps are used to update the ClearCase environment, in order to
integrate the Objecteering/UML model into this environment. These steps must
be carried out in the ClearCase environment.

Chapter 7: The Objecteering/ClearCase module

Objecteering/UML teamwork user guide 7-9

Configuring the ClearCase environment
The Objecteering/ClearCase module cannot be used to create the repository
directly within ClearCase. This must be carried out manually. Once the module
has externalized the directory for ClearCase, the directory must be injected into
ClearCase. This operation is carried out over two stages:
1 - The creation of an archive specific to ClearCase, which contains all the

directories and all the externalized files. This operation is carried out via the
"clearexport_ffile" command. We recommend that you rename the
CMDirectory directory, using the name of the project, in order to better
distinguish projects in the VOB.

2 - The import of this specific archive into ClearCase. This operation is carried
out via the "clearimport" command. In Windows, it is imperative that you
launch this ClearCase command with the "pcase" option, so as to retain
capitals present in the names of directories.

The ClearCase environment is now ready.

Note: For further information on ClearCase functions, please refer to the
ClearCase user guides.

Chapter 7: The Objecteering/ClearCase module

7-10 Objecteering/UML teamwork user guide

Connecting to the ClearCase VOB
All the environments have now been defined. All that remains is to select the
Objecteering/ClearCase module and to position it on the ClearCase VOB.
To initialize your Objecteering/UML modeling project with the contents of the
repository, select the Objecteering/ClearCase module in your UML modeling
project and choose the "Connect to the ClearCase VOB" option.

Figure 7-5. Connecting to the ClearCase VOB

Steps:
1 - Enter the shared project directory in VOB.
2 - Confirm.
After these operations, the project contained in the previously specified view is
imported.
The Objecteering/UML project is now initialized with the name of the view and the
positioning of the VOB. It will no longer be possible to use the project with a view
other than that used to initialize the project.
To modify the link between the view and the Objecteering/UML project, the
"Modify the parameters" administration module command should be used.

Chapter 7: The Objecteering/ClearCase module

Objecteering/UML teamwork user guide 7-11

Objecteering/ClearCase commands

Overview
The following commands are specific to the Objecteering/ClearCase module.

The ... command is used to …
Apply label attach a label to a unit version defined by a view.

History open the History window of the current element.

Version tree open the version tree window for the current element.

Properties display an element's properties.

The "History" command
This command starts a history browser on the current element, to display event
records.
For further information on this dialog box, please refer to the related ClearCase
documentation.

The "Version tree" command
This command starts a version tree browser on the current element.
For further information on this dialog box, please refer to the related ClearCase
documentation.

Chapter 7: The Objecteering/ClearCase module

7-12 Objecteering/UML teamwork user guide

The "Apply label" command
This command allows you to attach a label to a modeling unit and any
components it may have.

Figure 7-6. Applying a label

Note: This command cannot be used to create new labels. The creation of new
labels is carried out from the ClearCase interface.

The "Store the label for the whole session" tickbox allows you not to enter a label
for all components. When labeling is carried out in depth, the label entered the
time before is then re-used.

The "Properties" command
The "Properties" command is used to display an element's properties.

Chapter 7: The Objecteering/ClearCase module

Objecteering/UML teamwork user guide 7-13

Effects of commands in ClearCase

Introduction
This section describes the ClearCase commands run when
Objecteering/ClearCase module commands are executed.
The following table details the ClearCase commands which are run for each
Objecteering/UML command. Users must have the right to run these commands,
as well as read-write rights for all the files which make up the repository.
The Objecteering/UML interface suggests that a comment be entered when an
element is created or checked-in. Certain comments are added automatically by
the Objecteering/ClearCase module, for example, during the check-out/check-in of
a directory for the creation of a new element.

Note: So as to avoid complicating the table, it should be pointed out that certain
operations are carried out with comments and others without comments.
In the description of the commands, we do not, therefore, indicate options
concerning comments.

Objecteering/UML commands ClearCase commands
Check-out cleartool checkout <file>

Check-in If the element has not been modified, the
Objecteering/UML "Check-in" command runs
the ClearCase "Undo check-out" command.
This operation is used to limit the number of
versions of an element in ClearCase.

To know whether or not the element has been
modified before running the check-in:

cleartool diff -predecessor <file>

Check-in of the element:

cleartool checkin <file>

Check-in and check-out Check-in followed by a check-out

Chapter 7: The Objecteering/ClearCase module

7-14 Objecteering/UML teamwork user guide

Objecteering/UML commands ClearCase commands
Create a model element (NameSpace
except Enumeration)

Check-out of the directory:

cleartool checkout <directory>

Creation of the element:

cleartool mkelem -ci -ptime <file>

Check-in of the directory:

cleartool checkin <directory>

Destroy a model element (NameSpace
except Enumeration)

Check-out of the directory:

cleartool checkout <directory>

Destruction of the element:

cleartool rmname <file>

Check-in of the directory:

cleartool checkin <directory>

Undo check-out cleartool uncheckout –rm <file>

Apply label Retrieval of the different labels:

cleartool lstype -kind lbtype -fmt "%En " –invob
<VOB>

Attachment of a label:

cleartool mklabel <label> <file>

History cleartool lshistory –graphical <file>

Version tree cleartool lsvtree –graphical <file>

Import element from repository No ClearCase operations

Project check-in Check-in of all the elements of the
Objecteering/UML project in check-out

Properties cleartool describe –graphical <file>

Chapter 8: The Objecteering/SCC
module

Chapter 8: The Objecteering/SCC module

Objecteering/UML teamwork user guide 8-3

Introduction to the Objecteering/SCC module

Overview
The Objecteering/SCC module is based on an SCC API. This SCC API is used to
interface development tools with different CMS (configuration management
system) tools which use it (SCC providers). CMS tools which implement this SCC
API include PVCS, VSS, ClearCase, CVS and CM Synergy. The SCC API only
exists in the Microsoft Windows environment.
The Objecteering/SCC user guide concentrates particularly on the PVCS provider.
The Objecteering/SCC module does not substitute the provider. The
administration of this tool is not, therefore, available from Objecteering/UML.
In order to use the Objecteering/SCC module, the Objecteering/UML tool must
already have been installed. The SCC provider used must also have been
installed. As far as PVCS is concerned, you should first install PVCS Version
Manager and then SCC.
The Objecteering/SCC module can only be deployed on a Windows platform.

Limitations
In order to take into account possible new elements created by other users, the
"Folder/Update Project Folder" menu command in PVCS Version Manager V6.0
must be run.
Please note that with PVCS, the name used is that given by PVCS Version
Manager V6.0 in the "Configure Project/Network" menu. By default, this is
positioned to HOST, in other words, the current user name is the Windows login
name.

Chapter 8: The Objecteering/SCC module

8-4 Objecteering/UML teamwork user guide

Functions
Using the Objecteering/SCC module, it is possible to:

♦= Check-in and/or check-out a model element

♦= Undo check-out

♦= Update the Objecteering model in relation to the SCC provider

♦= Open a history browser

♦= Obtain information on an element by opening the properties dialog box

♦= Display the provider options dialog box (according to the provider in question, it
is possible to attach a label via this dialog box)

Chapter 8: The Objecteering/SCC module

Objecteering/UML teamwork user guide 8-5

Using the Objecteering/SCC module

Presentation
During module selection and unselection operations, consistency must be
maintained between the information contained in the Objecteering/UML model and
in that of PVCS. The Objecteering/SCC module manages these operations, in
order to guarantee this consistency.

Selecting the module
After the Objecteering/SCC module has been selected for the new UML modeling
project, a series of operations is automatically carried out, in order to ensure
consistency between the information in the CMS and that contained in the
Objecteering/UML model.
First, a dialog box (shown in Figure 8-1) opens, asking the user to enter details on
the exchange directory.

Figure 8-1. Entering the exchange directory

Chapter 8: The Objecteering/SCC module

8-6 Objecteering/UML teamwork user guide

The module then attempts to open the PVCS project. If the PVCS project does
not exist, a dialog box appears, through which a new project may be created
(Figure 8-2).

Figure 8-2. Creating a new PVCS project

Steps:

1 - Click on the "Create Project..." button. The "Create Source Control Project"
window then appears, in which the name of the project should be entered.

2 - A project name is proposed. If this name is different to that entered in
Objecteering/UML, change it.

3 - Click on "OK" to confirm.
4 - Click on "OK" to confirm.

Important: The project name must be identical to that entered in
Objecteering/UML!

Chapter 8: The Objecteering/SCC module

Objecteering/UML teamwork user guide 8-7

After this, all model elements are imported into Objecteering/UML, and are put into
read-only mode.
If the PVCS project exists, the window shown in Figure 8-3 appears, through
which the project may be selected.

Figure 8-3. Selecting a PVCS project

Steps:

1 - Select the PVCS project you wish to use.
2 - Confirm by clicking on "OK". The structure of the project is then imported into

Objecteering/UML.

Chapter 8: The Objecteering/SCC module

8-8 Objecteering/UML teamwork user guide

Elements are then presented in Objecteering/UML with a bitmap symbol,
indicating that they are locked and may not be modified (Figure 8-4).

Figure 8-4. Representation of model elements in Objecteering/UML

The information contained in the Objecteering/UML modeling project is consistent
with that of the PVCS project. All commands in the SCC menu are now available.

Chapter 8: The Objecteering/SCC module

Objecteering/UML teamwork user guide 8-9

Objecteering/SCC commands

Overview
The following commands are specific to the Objecteering/SCC module.

The ... command is used to …
History open the History window of the current element.

Properties display the element's properties.

Options open the provider's options dialog box. For PVCS, this
dialog box is used to launch PVCS or to attach a label to
the files corresponding to the Objecteering/UML model.

Chapter 8: The Objecteering/SCC module

8-10 Objecteering/UML teamwork user guide

History
The "History" command is used to obtain details on the modifications made to an
element.
It should be noted that the file which manages information relative to model
elements has a name which is internal to Objecteering/UML (principally
constructed from element identifiers).

Figure 8-5. An element's history

For further information on this dialog box, please refer to the related PVCS
documentation.

Chapter 8: The Objecteering/SCC module

Objecteering/UML teamwork user guide 8-11

Properties
The "Properties" command is used to obtain information on the state of the file in
relation to the model element on which the command has been run.
It should be noted that the file which manages information relative to model
elements has a name which is internal to Objecteering/UML (principally
constructed from element identifiers).

Figure 8-6. Information relative to an element

For further information on this dialog box, please refer to the related PVCS
documentation.

Chapter 8: The Objecteering/SCC module

8-12 Objecteering/UML teamwork user guide

Options
The "Options" command is used to display the provider options, allowing the user
to define preferences regarding provider functioning. For example, PVCS
proposes:

♦= the attaching, renaming and deleting of a label on the files of a PVCS project

♦= the definition of the default database

♦= the definition of options on the check-in or the check-out
This command is only available on packages, and can be called from any
package.

Figure 8-7. Provider options

For further information, please refer to the related PVCS documentation.

Chapter 8: The Objecteering/SCC module

Objecteering/UML teamwork user guide 8-13

Assigning a label

Figure 8-8. Assigning a label

Steps:
1 - After clicking on the "Assign" button in the window shown in Figure 8-7, enter

the name of the label in the "Assign version label" field.
2 - Select the project.
3 - Check the "Include files in subprojects" tickbox.
4 - Select all the files.
5 - Click on "OK" to confirm.

Chapter 8: The Objecteering/SCC module

8-14 Objecteering/UML teamwork user guide

Advanced options
When the "Advanced options" module parameter has been activated, additional
options are available on the "Check-out" and "Import..." commands. These
options are used to retrieve an earlier version of the model or a model element.
When the model element retrieval mode is hierarchical, a warning window is
displayed (as shown in Figure 8-9), to indicate the importance of retrieving
elements according to a label. In this case, all model elements are retrieved
according to the label in question, which means that all elements must have this
label. If this is not the case, certain elements cannot be retrieved and the
imported model runs the risk of being inconsistent.
Similarly, if a version number is entered rather than a label for a hierarchical
retrieval, the number may not exist for certain elements. In this case, some
elements will not be retrieved properly, and the model runs the risk of being
inconsistent.

Figure 8-9. Warning window which appears during a hierarchical retrieval

Chapter 8: The Objecteering/SCC module

Objecteering/UML teamwork user guide 8-15

After this warning window, the PVCS provider options window opens, in which the
revision which is to be retrieved can be entered (Figure 8-10).

Figure 8-10. Advanced mode for "Import..." commands

Steps:
1 - Select a label or a version in the "Revision" field.
2 - Click on "OK" to confirm.

Retrieval by label in hierarchical mode is used for functional retrieval. In this way,
a set of model elements which are consistent between themselves can be
transferred into Objecteering/UML.
In non-hierarchical mode, a version or a label can be specified. In this case, the
user wishes to retrieve an earlier version of a particular element.
In the "Advanced options" mode, element retrieval only checks the read-only state.
If the retrieval of an element requires the modification of an element in read-only
mode, the retrieval operation is aborted. The user must then manually resolve the
problem, by importing or checking-out the elements which are modified by the
element retrieval operation. This case arises when element retrieval requires the
retrieval of other dependent elements which are components of the elements in
read-only.

Chapter 8: The Objecteering/SCC module

8-16 Objecteering/UML teamwork user guide

Objecteering/SCC module parameters

The Objecteering/SCC module provides three additional module parameters in the
"General settings" parameter set.

The ... parameter is used to ...
Work directory define the directory for the exchange of information

between Objecteering and the SCC provider. This
temporary directory parameter is initialized when the
module is selected.

When this parameter is modified, the following steps
should be carried out in order to take into account the
modifications:

1) Restart Objecteering/UML.

2) Check the "Open the SCC project for every
operation" tickbox.

Advanced options refine the execution of SCC commands specifically for
the "Check-out" and "Import from repository"
commands. For example, it is possible to retrieve an
earlier version of an element, by providing a specific
version number or a label name. For this, the option
must be activated before execution of the "Import
element from repository" or "Check-out" command.

Open the SCC project for every
operation

is used to close and open the SCC project before
every command. This parameter is very useful if
parameters have been modified in the SCC provider
and reloading of these SCC parameters has to be
forced.

Index

.cout 5-16

.cout files 6-3

.lock files 6-3

.ofp files 1-3, 1-12

.read 5-16

.read files 6-3

.write 5-16

.write files 6-3
<username>.read file 5-16
Activating consistency checks 3-11
Actor 1-18
Actors 1-9
Adding and modifying diagrams 3-7
Adding comments 7-13
Adding elements 3-6
Adding links between elements 3-8
Adding non-oriented links 3-8
Adding oriented links 3-9
Administration module 1-14, 5-9
Administration module commands 5-

9
Generate element in repository 5-

10
Modify the parameters 5-10, 7-10
Synchronize element state in project

5-10
Unlock repository 5-10

Adminstrating ClearCase VOB 7-3
Advanced options 8-14, 8-16
Aggregations 3-8
API 1-18
Apply label 7-11
Applying a label 7-4, 7-12
ASCII files 1-9, 6-6
Assigning a label 8-13
Associations 3-8

Attaching a label 7-12, 8-4, 8-9, 8-12
Build manager 7-6
C++ work products 3-13
Changing bitmaps 5-7
Check-in 1-9, 1-14, 1-15, 1-18, 2-3,

2-4, 2-5, 2-10, 3-5, 3-6, 3-10, 3-11,
3-12, 4-3, 5-5, 5-9, 5-13, 5-16, 6-3,
7-4, 8-4

Check-in and check-out 2-3, 2-5, 2-
12

Check-out 1-9, 1-14, 1-15, 1-16, 1-
18, 2-3, 2-4, 2-8, 3-5, 3-6, 3-8, 3-9,
3-11, 3-13, 4-3, 4-7, 5-5, 5-9, 5-13,
6-3, 7-4, 8-4

Check-out: 2-5
Circular dependencies 3-10
Circular renaming 3-7
Class 1-9, 1-18
Classes 1-9, 3-8
ClearCase 8-3
ClearCase 4.0 7-3
ClearCase 4.1 7-3
ClearCase 4.2 7-3
ClearCase 5.0 7-3
ClearCase commands 7-13

Apply label 7-4, 7-11
cleartool checkin <directory> 7-14
cleartool checkin <file> 7-13
cleartool checkout <directory> 7-

14
cleartool checkout<file> 7-13
cleartool describe –graphical <file>

7-14
cleartool diff -predecessor <file>

7-13
cleartool lshistory –graphical <file>

7-14

cleartool lstype -kind lbtype -fmt 7-
14

cleartool lsvtree –graphical <file>
7-14

cleartool mkelem -ci -ptime <file>
7-14

cleartool mklabel <label> <file> 7-
14

cleartool rmname <file> 7-14
cleartool uncheckout -rm <file> 7-

14
History 7-11
History browser 7-4
Properties 7-11
Version tree 7-11
Version tree browser 7-4

ClearCase interface 7-3
ClearCase migration directory 7-7
ClearCase operations 1-4, 7-3
clearexport_ffile command 7-9
clearimport command 7-9
cleartool checkin <directory> 7-14
cleartool checkin <file> 7-13
cleartool checkout <directory> 7-14
cleartool checkout <file> 7-13
cleartool describe –graphical <file>

7-14
cleartool diff -predecessor <file> 7-

13
cleartool lshistory –graphical <file>

7-14
cleartool lstype -kind lbtype -fmt 7-14
cleartool lsvtree –graphical <file> 7-

14
cleartool mkelem -ci -ptime <file> 7-

14
cleartool mklabel <label> <file> 7-14
cleartool rmname <file> 7-14

cleartool setview <view-tag> 7-4
cleartool uncheckout –rm <file> 7-14
CM Synergy 8-3
CMS 1-18, 8-5
CMS tools 8-3
Command line 1-17
Commands available on all elements

2-3
Commands available on elements in

read-only mode 2-3, 2-7
Commands available on elements in

read-write mode 2-3
Comments 7-13
Communication links 3-8
Component 1-18
Component multi-user atomic unit file

1-18
Components 3-8
Configuration management 1-9, 7-3
Configuration management system

1-18, 8-3
Configuring the ClearCase

environment 7-9
Configuring the Objecteering/UML

teamwork modules 5-3
Connecting to the ClearCase VOB

7-10
Consistency checks 1-16, 3-11
Consistency rules 7-3
Console 5-15, 6-10
Copy/paste operation 3-7
Create source control project 8-6
Creating a model database 3-5
Creating a new PVCS project 8-6
Creating an initial model 3-3
Creating new labels 7-12
Cut/paste operation 3-7
CVS 8-3

Data type 1-18
Database 1-6
Deactivating consistency checks 3-

11
Default database 8-12
Defining a default database 8-12
Defining options 8-12
Defining principal packages 3-4
Defining the initial model 3-4
Delete command 3-6
Deleted directory 1-10
Deleting a label 8-12
Deleting elements 3-6
Deleting links between elements 3-9
Deleting locks 5-10
Dependencies 3-4
Dependency cycles 3-11
Destroying referenced elements 3-6
Developing and merging

Objecteering/UML objects 7-3
Development space 1-3, 1-5
Diagrams 3-7
Directories 1-8
Directory hierarchy 6-6
Element history 8-10
Element identifiers 1-10, 4-4, 8-11
Element versions 6-11
Embedding elements 3-6
Embedding units 2-3
Entering the exchange directory 8-5
Enterprise Edition 1-4, 1-6
Example of an import 4-8
Exchange directory 8-6
Exchanging externalized data 1-5
Exchanging model information 1-3
Exchanging models 1-6

Explorer 3-6, 4-5
Exporting the Objecteering/UML

model 7-7
External edition 3-12
Externalization 5-11, 7-9
Externalization binary
Externalization command 5-11
Externalization function 1-9
Externalization hierarchy 1-11
Files 1-8
First level package 3-7
General settings parameter set 5-4
Generalizations 3-9
Generate element in repository 5-11
Generating ASCII files 1-9
Generating C++ sources 3-13
Generating Java sources 3-13
Generation work products 5-6
Get information 6-10
Glossary 7-4
Graphic representation of the read-

only mode 5-7
Graphic representation of the read-

write mode 5-7
Group work 1-18
Hierarchical mode 2-4, 2-8, 4-3, 5-5,

5-11, 6-10, 8-14
Hierarchical retrieval 8-14
History 7-11, 8-9
History browser 7-11
Identifiers 4-4
Identifying model elements 4-4
Implementation links 3-9
Import 1-9
Import commands 3-5
Import complete element from

repository 3-5

Import dialog box 4-5
Import element from repository 2-3
Import element using current mode

3-7
Import from repository 1-12, 1-16, 2-

4, 2-5, 2-8, 3-13, 4-3, 5-5, 5-9, 5-13
Import logic 4-4
Import service 1-6
Imported objects 4-7
Importing a whole UML modeling

project 4-9
Importing elements 4-3, 4-5
Importing elements between UML

modeling projects 1-5
Importing elements from other

databases 4-3
Initial model 3-4
Initial model structure 3-4, 6-4
Initializing private work spaces 6-7
Initializing the repository 6-4
Integration space 1-3
Interfaces 3-9
Internalization 1-16
Internalization function 1-9
Internalization/externalization

mechanism 1-9
Inter-project import 1-18
Java work products 3-13
Label 1-18
Labels 8-14
Link circularity problems 3-10
Links 3-3, 3-8, 4-4
Location of Objecteering/UML

modeling projects 1-10
Locking checks 1-16
Locking files 1-10
Locking mechanism 1-18
Locks 3-11

Locks directory 1-10, 5-16
Managing generated files 3-3
Managing work products 3-3
Managing work spaces 1-3
Manually selecting earlier versions of

configuration objects 7-3
Microsoft SCC 1-4
Microsoft SCC API 1-4
Migrating Objecteering/UML 1-12
Migration directory 7-7
Migration from an earlier version of

Objecteering/UML 1-12
Migration from Objecteering/UML

5.2.1 1-12
Model elements 1-18, 2-7, 3-7, 3-8

Actors 3-8
Dataflows 3-8
Use cases 3-8

Model exchange facility 1-6
Model root name 6-4, 6-7
Model structure 3-4
Modify module parameter

configuration 5-3
Modify the parameters 5-13
Modifying code 3-12
Modifying configuration 5-3
Modifying module parameters 5-10
Modifying notes 3-12
Module behavior 3-6
Module configuration 5-9
Module parameters 1-13, 5-3

Confirm operations 2-4, 2-11, 2-
13, 5-5, 5-11

Default values 5-3
Hierarchical operations 5-5, 5-9
Log 5-5
Memorize actions in the log 5-5

Update generation work products
after import 5-6

Update generation work products
before check-in 5-6

Update project at start-up 5-5
Work directory 5-12

Module restrictions
Destroying a referenced element

3-6
Module selection 8-5
Module unselection 8-5
Modules used 1-17
Moving elements 3-7
Multi-user atomic unit 1-18
Multi-user atomic units 1-10, 2-3, 3-

3, 5-10
Multi-user commands

Check-in 3-6
Get information 6-10
Properties 6-10

Multi-user directory 3-4
Multi-user projects 1-5
Multi-user space 1-8, 1-16
Multi-user work area 1-18
Multi-user work space 1-9
multiuser.lock file 5-16
Node 1-18
Nodes 3-8
Non-hierarchical mode 2-4, 4-3, 4-7,

5-5
Non-oriented associations 4-7
Non-oriented links 3-8
obj_extreport 1-10
Objecteering

Work spaces 1-5
Objecteering/Administrating

Objecteering Sites 1-3, 1-17

Objecteering/ClearCase 1-4
Objecteering/ClearCase module

functions
Apply label 7-12

Objecteering/Introduction 1-3, 1-13
Objecteering/Multi-user 1-4
Objecteering/SCC 1-4
Objecteering/UML crashes 3-11
Objecteering/UML database 1-9
Objecteering/UML environment 1-3
Objecteering/UML first steps 1-3
Objecteering/UML model 1-4
Objecteering/UML Modeler 1-3
Objecteering/UML modeling project

1-9, 1-18
Objecteering/UML objects 7-3
Objecteering/UML versions 1-15
Objecteering/XMI 1-6
Objects 3-8
objing 1-17
Open a history browser 7-4
Open a version tree browser 7-4
Open the SCC project for every

operation 8-16
Opening a history browser 8-4
Optimization mode 5-13
Optimization phases 1-10
Options 8-9
Organization

Directories 1-10
Principle 1-9

Oriented links 3-8
Overview of teamwork in

Objecteering/UML 1-3
Package 1-18
Packages 1-9
Personal Edition 1-6

Physical organization 1-8
Principal packages 3-4
Professional Edition 1-6
Project check-in 1-12, 2-3, 2-5, 2-13,

5-13
Properties 2-5, 6-11, 7-11, 8-4, 8-9
Provider functioning preferences 8-

12
Provider options 8-4
PVCS 8-3, 8-5
PVCS project 8-6
PVCS provider options window 8-15
PVCS Version Manager 8-3
Rational ClearCase 1-4
Read-only mode 1-18, 2-3, 2-5, 2-7,

5-7, 5-9, 8-7, 8-15
Read-write mode 1-19, 2-3, 2-5, 2-9,

3-4, 5-7, 5-9
Reference links 3-10, 4-7
Referenced element 3-6
References 3-6
Referencing links 3-11
Removable consistency checks 1-16
Renaming a label 8-12
Renaming elements 3-7
Repository 1-19
Repository location 6-11
Repository locks 5-16
Rereading ASCII files 1-9
Reserved elements 3-7
Reserved units 2-8
Reserving units 2-4
Restoring 6-3
root directory 1-10
Saving 6-3
Saving elements 3-6
SCC 1-4, 1-19, 8-3

SCC API 8-3
SCC commands 8-9

History 8-4, 8-10
Options 8-4, 8-12
Properties 8-4, 8-11

SCC module parameters
Advanced options 8-16
Open the SCC project for every

operation 8-16
Work directory 8-16

SCC provider 8-3
SCC provider repository 1-19
Selecting a module 6-5
Selecting the

Objecteering/ClearCase module
7-5

Selecting the SCC module 8-5
Several developers working together

at the same time 1-3
Shared elements 1-18
Signal 1-18
Site 1-5
Source Code Control 1-19
Stopping commands 1-17
Summary of commands available in

read-only mode 2-5
Summary of commands available in

read-write mode 2-5
Summary of commands available on

all elements 2-5
Supporting teamwork operations 1-4
Synchronization 3-11, 5-10
Synchronize element state in project

5-15
Teamwork commands 2-3

Check-in 1-14, 2-4, 2-10, 3-6, 3-
10, 3-11, 3-12, 4-3, 5-5, 5-9, 5-13,
5-16, 6-3, 7-4, 8-4

Check-in and check-out 2-5, 2-12
Check-out 1-14, 1-16, 1-18, 2-4,

2-8, 3-6, 3-8, 3-11, 3-13, 4-3, 4-7,
5-5, 5-9, 5-13, 6-3, 7-4, 8-4

Import from repository 1-12, 1-16,
2-4, 2-8, 3-13, 4-3, 5-5, 5-9, 5-13

Project check-in 1-12, 2-5, 2-13,
5-13

Properties 2-5, 2-13
Undo check-out 2-5, 2-12, 3-6, 3-

11, 5-16, 6-3, 7-4, 8-4
Teamwork module 1-18
Teamwork modules 1-4
Teamwork operations 1-4
Teamwork repository 1-12
tmp directory 1-10
Tools/Import 4-9
Transfer function 4-3
Transfer logic 4-4
Transferring elements 4-3
UML model root 4-3, 4-7, 6-7
UML modeling project 1-3
UML modeling project data 1-3
UML modeling projects 1-5
UML models 3-4
Undo check-out 1-15, 2-3, 2-5, 2-12,

3-6, 3-11, 5-16, 6-3, 7-4, 8-4
Undo/redo operations 1-15
Universal model identification

mechanism 1-6
Unlock repository 5-16

Unselecting the module 2-6
Updating generation work products

after import 3-13
Updating generation work products

before check-in 3-12
Updating the Objecteering/UML model

6-3, 7-4, 8-4
Updating your model 1-9
Use case 1-18
Use cases 1-9
Use links 3-11
User 1-19
users.txt file 5-16
Version control systems 1-4
Version label 8-13
Version numbers 8-14
Version tree 7-11
Version tree browser 7-11
Versioned Object Base 7-4
Views 7-3, 7-6
VOB 7-3, 7-4, 7-6
VSS 8-3
Work directory 8-16
Work product options parameter set

5-6
Work products 3-3
Work space 1-3
XMI 1-6
XMI exchange service 1-6

