Objecteering/UML

Objecteering/SQL Designer User Guide

Version 5.2.2

() bjecteering

Www.objecteering.com Software

Taking object development one step further

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software
Objecteering/UML version 5.2.2 - CODOBJ 001/002
Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents

Chapter 1: Introduction

Overview of the Objecteering/SQL Designer moduleccocceeviiiiiieenne 1-3
PrereqUISITESviiiiiie e 1-5
Developing appliCationS...........coeiiii i 1-6
Structure of this USEr gUIde.........ccciiiiiiee e 1-8
L1077 1 SRR 1-9
Chapter 2: Using the Objecteering/SQL Designer module
Working with the Objecteering/SQL Designer moduleccccceeiieeniene 2-3
The properties editor for SQILcocuiiiiiiii e 2-5
Chapter 3: First Steps
Overview Of the firSt StEPS ...ocvviiieiee e 3-3
Importing the demonstration packageccccceeviiiieiiciie e 3-4
Generating the physical Modelccoveeiiii i 3-6
Creating an SQL generation work productccccceveiiiiiinieniieeiee e 3-9
Generating SQL fil€Sc.ueiiiiiiie e 3-11
Building the database schema: Executing the SQLccoooiiiiiiiiiienns 3-14
Chapter 4: Generation principles
Generating the database schemaccccee v 4-3
Mapping generalization.............cocuiei e 4-5
ATFIDULES ..o 4-16
0..1-" @SSOCIAIONS......eoiiiiiiie it 4-24
GeNErating trigQErS . ..cee i eiie ettt et 4-28
5 (o] ¢=To I o (oYt =Yo (U] =Y SRR 4-32
(07T 4] o To 1= 1 o3 -SSP 4-34
1-1 @SSOCIAtONS ...t 4-37
N-Ary @SSOCIATIONSeeiiiiiiieiiiie e e s e e e e e sneeeeenes 4-38
Class @SSOCIAtIONSoiiiiiiiiiiei e 4-40
Generalization and assoCiationsccceiviiiiiiiiiiere e 4-42
Structure in PACKAGESc.vveiieiiie et e 4-46
Integrity CONSIraINtSoviiee e s 4-47
Standardized logical SChema............cooviiiiiiii e 4-54

Additional annotationsooiiiiiiiiii e 4-55

Chapter 5: User interface

Interactive INterfaceooooiiiiii 5-3
The properties editor and the SQL Designer modulecccooveerieeeninenne 5-7
Generating the physical model

Generating the SQLccccoiiiiiiiieee

Visualizing the SQL

Executing the SQLoooiiii e
Executing the alter table file........ccove e

Chapter 6: Annotating the model
I Te To=To IV 10T Yo =
Note types
) (2T =10 4] o1 USSR
Annotating an associationccccceiiiiiie e
Annotating an association end
Annotating an attribute............oooivi i
Annotating a class
Annotating a component...........
Annotating a constraint.............
Annotating @ datatypeeeviiiiie e
Annotating a generalizationcccceeeiie i
Annotating a model element ..o
Annotating an operation
ANNOtating @ PACKAGEceeeeiiie et

Chapter 7: Module configuration
Overview of module configurationcccveieiiie e
Module parameter SEtScceviiiiiie i
Parameterizing by redefining J methods in a profile
Parameterizing the package unit...........cccccveeiiiiiie e
Parameterizing the class Unit...........coovivi i
Parameterizing the association unit....
Parameterizing attribute Units..........cccoovieiii e
Parameterizing by adding notes predefined by the generation

Chapter 8: Oracle Annex
INTFOAUCHION ...
Class - Generation specific to Oracle
Class annotationscoouiiiiiiiiiiie e
Association - Generation specific to Oraclecccccoeceviiiciieennns
Association annotations............cooieiiiiiiiiic e
Attribute - Generation specific to Oraclecccoccveiiicie e,
Attribute annotationscooiiiiiiii
Distributed databases ..o
Parameterizing generation - SpecifiCitycccvveriiiiiiiiciiee e

Chapter 9: Sybase Annex

INTFOAUCHION ...
Package annotationscceoeeiiiie i
Class - Generation specific to Sybase

Class annotationscccceeieviiiiiie i

Association - Generation specific to Sybase
Association anNotatioNSciiiiiiiiiiiii e
Attribute - Generation specific to Sybasec.cccceveiciie i
Attribute annotationscoiiiiiiiii e
SPECIfIC SQL BITOTS ...t
Parameterizing generation - Specificity
RESIICHONS ... e

Chapter 10: SQL Server Annex

INIFOAUCHION ...
Package annotationscccccoevviveinciieeenns

Class - Generation specific to SQL Server
Class annotationscooceiiiiiiiiei e
Association - Generation specific to SQL Server
Association annNotatioNSeeoiiiiiiiiii e
Attribute - Generation specific to SQL Serverccccocoviiviiieeniec e,
Attribute annotations
Specific SQL errors........ccocoevveviieeiiieieenenn

Parameterizing generation - SpecifiCitycccooveiriie i
RESIICHONS ... s

Chapter 11: Calling on-line module commands
Calling on-line COMMANASoeeiiiiiieiiie e 11-3

Index

Chapter 1: Introduction

Chapter 1: Introduction

Overview of the Objecteering/SQL Designer module

Introduction
Welcome to the Objecteering/SQL Designer user guide!

The Objecteering/SQL Designer module is used to couple Objecteering/UML with
RDBMS, and allows you to use a model to map the persistence of classes into a
relational database.

Persistence characteristics are defined interactively through the simple annotation
(tagged values) of different model units, whilst the generator creates tables,
constraints and triggers.

Using the module

The modeling of an RDB application can be illustrated as shown in Figure 1-1
below.

Analysis Physical

model ::> model

Figure 1-1. The two stages in the modeling of an RDB application

It is possible to pass directly from the analysis model (also called the logical
model) to the physical model, by annotating the analysis model and applying
transformation patterns to it, in order to generate the corresponding physical
model.

The physical model obtained can also be annotated, so as to define specific SQL
generation characteristics.

Operations are carried out using DDL (Data Definition Language) scripts. Here,
SQL is used.

The RDBMS currently covered are Sybase, Oracle and SQL Server.

Objecteering/SQL Designer User Guide 1-3

Chapter 1: Introduction

Specific features of the RDBMS target

1-4

Beyond the mapping provided as standard, the user can annotate his modeling
using tagged values which allow the specification of production towards the
relational, using the characteristics of the different RDBMS available on the
market. For example, it is easy to group tables into clusters, or to add triggers and
constraints.

Objecteering/SQL Designer User Guide

Chapter 1: Introduction

Prerequisites

The Objecteering/UML environment

To work with the Objecteering/SQL Designer module, you must be familiar with
the Objecteering/UML environment, detailed in the following user guides:

+ Objecteering/Administrating Objecteering Sites
+ Objecteering/UML Modeler

The SQL Designer module can only be used with the Enterprise and Professional
Editions of Objecteering/UML.

Objecteering/SQL Designer User Guide 1-5

Chapter 1: Introduction

Developing applications

Development steps
An application composed of persistent classes is developed by:
+ designing a package
+ generating the physical model
+ creating tables (DDL)
.

clarifying tables

Designing a package

The first step is the design of a package containing persistent classes. These
classes are declared persistent by tagged values, which are used to specify the
implementation of the persistence, by guiding the definition of the tables and keys
used.

The "SQL" tab of the properties editor, described in the "The properties editor for
SQL" section in chapter 5 this user guide, makes model annotation easier.

The tagged values provided by the Objecteering/SQL Designer module are
described in chapter 6, "Annotating the model", of this user guide, as well as in the
annex corresponding to the RDBMS used.

Generating the physical model

The Objecteering/SQL Designer module is used to generate and maintain one or
several physical models from a logical model.

1-6 Objecteering/SQL Designer User Guide

Chapter 1: Introduction

Generating SQL code
The user interface is used to:

+ generate creation and destruction scripts for all the package's tables, views,
stored procedures and triggers

+ visualize the scripts produced
+ run the scripts

The database is then created. The user can also use the free parts of SQL code
to insert the first recordings into the database.

Adjusting the tables

This is not yet the end of the application's life. The generator is used to create
individual tables which correspond to a class or an association. It remains
possible to iteratively modify the logical model and to update the physical model(s)
associated with it.

Objecteering/SQL Designer User Guide 1-7

Chapter 1: Introduction

Structure of this user guide

The Objecteering/SQL Designer user guide is structured as follows:

¢ Chapter 2, "Using the Objecteering/SQL Designer module": This chapter

provides information on the module and how to use it.

Chapter 3, "First steps™ A demonstration project will help you discover, step by
step, the creation of tables in a database.

Chapter 4, "Generation principles": This chapter demonstrates the generation
principles for the transformation of the logical model in Objecteering/UML into
the relational model, by detailing the available mapping rules and options
offered to the user. For each unit of the object structure model (class, attribute,
generalization link, association), different possible mappings are detailed.
Integrity checks which can be deduced from the model are presented at the
end of the chapter.

Chapter 5, "User interface". This chapter offers a man/machine interface
approach to the Objecteering/SQL Designer module. Starting with a package
designed according to the principles developed in the previous chapter, the
interface allows:

¢ generation of the physical model from the logical model
¢ interactive generation of the database diagram

+ visualization of the SQL produced and the execution of this SQL using
the target RDBMS

Chapter 6, "Annotating the model™ This chapter contains, for each model unit,
all the "tagged values" common to all RDBMS handled by Objecteering/UML
generation. This chapter represents a reference for users who have become
familiar with the previous chapters.

Chapter 7, "Module configuration™ This chapter details generation
parameterization possibilities. The use of a type project and the configuration
of generated scripts are also dealt with here.

Annexes: for each RDBMS handled by the generator, an annex presents the
required environment, data mapping, special cases of generation and specific
tagged values.

1-8

Objecteering/SQL Designer User Guide

Chapter 1: Introduction

Glossary

¢ DDL (Data Definition Language): DDL code groups together SQL database
schema creation and modification instructions (for example, create TABLE).

+ Generation work product. (Objecteering/UML terminology) This indicates a
source file generated by the CASE tool. A DDL generation work product is an
SQL file.

¢ Logical model: This is an analysis model created by the user and annotated so
as to allow the physical model to be deduced.

+ Physical model: This is a relational model corresponding to a logical model. A
physical model is made up of schemas, tables, views and utility classes
containing stored procedures. These elements are represented by packages
stereotyped <<schema>> and classes stereotyped <<table>>, <<sqglView>>
and <<procedureClass>>.

+ Primary key: The primary key of a relational table is composed of one or more
attributes (the table's columns). It is used to clearly identify instances (in other
words, an ordered list of values).

+ RDBMS: Relational Database Management System. The RDBMS supported
are Oracle, Sybase and SQL Server.

¢ Type project: This is a project which contains the mapping of
Objecteering/UML types to the target RDBMS SQL types.

Objecteering/SQL Designer User Guide 1-9

Chapter 2: Using the
Objecteering/SQL
Designer module

Chapter 2: Using the Objecteering/SQL Designer module
Working with the Objecteering/SQL Designer module

Installation

Before launching the tool, certain environment variables must be initialized.

Platform ... | Variable ... Content ... Role ...
PC, Unix O_SQL_USER | UserName/Passwd/Server | allows you to connect to
Name the DBMS to execute the
generated DDL
PC, Unix OBJING_PATH | path where used during installation
Objecteering/UML is
installed

Module information

The Objecteering/SQL Designer module requires that Objecteering/lUML be
already installed (version 5.1.1 onwards). You must have the correct license in
order to be able to use Objecteering/SQL Designer.

Module data is installed in the $OBJING_PATH/modules/SQLDesigner directory
from the ObjecteeringModules database. This directory contains:

¢ doc

¢ externalization

FirstStepsContainer

.
¢ res
.

TypesPackageContainer

Objecteering/SQL Designer User Guide

2-3

Chapter 2: Using the Objecteering/SQL Designer module

Creating a working environment for developing DDL scripts

To create a working environment used to develop DDL scripts, carry out the
operations detailed below.

¢ Create a new UML modeling project. For details on how to create a UML

modeling project, please refer to the "Creating a new UML modeling project"
section in chapter 3 of the Objecteering/Introduction user guide.

Select the SQL Designer module for the new project. For further information
on how to select the module, please refer to the "Selecting modules in the
current UML modeling project" section in chapter 3 of the
Objecteering/Introduction user guide.

Objecteering/SQL Designer User Guide

Chapter 2: Using the Objecteering/SQL Designer module

The properties editor for SQL

The properties editor is essentially a window designed to aid the user in his
modeling, by providing rapid access to various information and services he may
need to use.

The properties editor contains a number of tabs, including an "SQL" tab when the
Objecteering/SQL Designer module has been selected for the current UML
modeling project. This tab is used to:

+ enter or modify certain information relevant to SQL generation on the element
selected in the explorer, such as notes, tagged values or stereotypes

+ generate SQL, visualize generated SQL and run SQL

For further general information on the properties editor, please refer to the "The
Properties editor" section in chapter 3 of the Objecteering/UML Modeler user
guide.

For information on the "SQL" tab of the properties editor, please refer to the "The
properties editor and the SQL Designer module" section in chapter 5 of this user
guide.

Objecteering/SQL Designer User Guide 2-5

Chapter 3: First Steps

Chapter 3: First Steps

Overview of the first steps

Objective

This chapter will demonstrate how to build the persistent schema of a small library.
It describes all the necessary steps used to obtain the package in the database.

The system to be modeled

Let us take an example to generate a relational database. In this example, a
library system is modeled. This library stores books. The following example is for
an Oracle database.

Objecteering/SQL Designer User Guide 3-3

Chapter 3: First Steps

Importing the demonstration package

The "Library" package

We are now going to import the "Library" demonstration package. To do this,
carry out the following steps:

1- Create a new UML modeling project (in our example, the UML modeling
project is called "FirstStepsProject"), and select the SQL Designer module (for
further information on module selection, please refer to the "Selecting modules
in the current UML modeling project' section in chapter 3 of the
Objecteering/Introduction user guide).

2 - Right-click on the UML model root and run the "SQL Designer/Import first
steps" command from the context menu which appears (as shown in Figure
3-1).

@Dhiecleering!UML Modeler - FirstStepsProject

Edit “iew Graph Toolz “Windows 2

EEl e’ Elo o ge
|

E|%®

FirztStepzProject

Madify [s

@ Congult

s Browse. . 3
Check model

% Wizards/Tools @

- O

Analysis Wizard »

0 s

- 1,

Diagrams Items IDocumentation| SOL T

Figure 3-1. The "Import first steps" command

3-4 Objecteering/SQL Designer User Guide

Class diagram

Chapter 3: First Steps

The class diagram shown in Figure 3-2 is available on the " Library" package.

Class diagram - PACKAGE Library - Update [_[O] x|
[& =
_ Author
Media {persistence(persistent)}
= { oneTablePerClass, " creation L +firstnarne : string
o persistencepersistent)}) the creations +the author | §primaryEey 20
— - +nationality © string
+reference | integer . o
{primaryKey(17} +the_creations +narne : string
Hitle : string onDeleteCascade } { primaryeyi 1)}
+available : boolean catalogue 1.* +the_authors
b
X Fr—— { onDeleteCascade }
0 Tib: contract
EEEEs
& +the_editor
1 .
- Rook 0.1 the_editor
2 {persistencepersistent’}
<> _ Editor
[tresume ; string MediaLibrary
= {persistencepersistent)}
. { persistence{persistent)}
- i +address : string
+uame ; string +name : string
[{primaryey 1))} { prirvaryiey 1)
l o[
Figure 3-2. The "Library" package class diagram
Objecteering/SQL Designer User Guide 3-5

Chapter 3: First Steps

Generating the physical model

To generate the physical model, carry out the steps shown in Figure 3-3.

@DhiecteeringiUHL Modeler - FirstStep

[y
o

Edit Yiew Graph Toolk *Windows 72

ER i &R E o
x|

P

FirstStepsProject

F&-Ba
B2 Madiy

Conzult

Check model

Wizards/Tools »
Analyziz Wizard #
SOL Designer

=
" @ Browse. . 3
=

‘HO:}'IODH]I'!IEI
H

Generate physical model

|rpaort first steps
Generate SOL filez

2 [Eem]

R

Figure 3-3. The "Generate physical model' command
Steps:

1 - Right-click on the "Library" package.
2 - Run the "SQL Designer/Generate physical model" command.

3-6 Objecteering/SQL Designer User Guide

Chapter 3: First Steps

The same operation can be carried out in the "SQL" tab of the properties editor, as
shown in Figure 3-4.

@ Dbjecteering/UML Modeler - FirstSteps

File Edit “iew Graph Toolz “Windows 2

W E e a’E
|

FirztStepsProject
ey
-] Media
§ Book
1= Authar
1- B Editor

G- = Medialibrary

=]

Libram

Stereatype:
* Mone Physical model ©© Schema

Logical model
[T Schema name |

Physizal modzl(z)
3 Generate new phypsical model

Diaglams| Itemsl Documnentation SGLI

Figure 3-4. Creating the physical model in the "SQL" tab of the properties editor

Steps:

1 - Select the "Library" package in the Objecteering/UML explorer.
2 - Select the "SQL" tab in the properties editor.

3 - Click on the "Generate new physical model" button.

Objecteering/SQL Designer User Guide 3-7

Chapter 3: First Steps

Whichever method is used, the physical model is then generated. A diagram is
automatically generated (as shown in Figure 3-5).

MPD_Library

<<tabless
Book
reference : integer
resume @ string

Media

z<tabless>
Media

the_editor_name : string
the_author_name : string
firsthame @ string
library_name : string
reference : integer
available : boolean
title : string

library

the _editor

the_mthor

<<tables> <<tablesz>
Editor MediaLibrary

name : string <<tables= narme @ string
address : string Author

the_editor_name : string
name : string

firsthiame @ string
nationality @ string

the_editor

Figure 3-5. The diagram automatically generated for the physical model

Each class of the physical model represents a relational table, and is stereotyped
<<table>>.

3-8 Objecteering/SQL Designer User Guide

Chapter 3: First Steps

Creating an SQL generation work product

Procedure
We are now going to create an SQL generation work product for the physical
model.

After following the procedure represented in Figure 3-6, we will then look at the
dialog box for an SQL work product (Figure 3-7).

@Dhiecleeling}'UML Modeler - FirstStep

File Edit “iew Graph Took ‘Windows 2

= = =R
]

FirstStepsProject

LP [#F

&- A Editor

- F Author

- ﬁ tediaLibrary
- [Book

(oD
e

MPD_Library

< lzglPhysicalM odel

S_D; Library Library

g & i

2._

Diagrams Items | Documentation | SOL

Figure 3-6. Creating a SQL generation work product for the "MPD_Library" package

Steps:
1. Select the "MPD_Library" package in the Objecteering/UML explorer.

2. Click on the "SQL generation work product" icon. The "SQL generation
work product" window (shown in Figure 3-7) then appears.

Objecteering/SQL Designer User Guide 3-9

Chapter 3: First Steps

Defining a SQL generation work product

The SQL generation work product dialog box (shown in Figure 3-7) is used to
indicate the generation directory for SQL scripts.

[r’—._‘_JSIJL generation work product

— Properties
Mame

|suL

Generation path

| C:\Projectzhaql |

Databaze user
|John Smith

[ratabasze user password

| —

Custam server

| kuServer

1] Cancel Help

Figure 3-7. The "SQL generation work product" dialog box

3-10 Objecteering/SQL Designer User Guide

Chapter 3: First Steps

Generating SQL files

Procedure

We are now able to generate the DDL (Data Definition Language), in other words,
the SQL code which describes the database diagram, from the generation work
product which we have just created, simply by following the procedure shown in
Figure 3-8.

The Objecteering/UML console displays the generation steps and results.

2 Objecteering/UML Modeler - FirstStep|
File Edit “iew Graph Toolz Windows 2
R~ S B g | o
EH

FirstStepsProject
Library

- M Hedia

&- f Edior

-- [Author

-- i MediaLibran
-- i Book

« (oo R

x|z

MPD_Library

«# gqlPhyzicaltodel

S_';'; Library Librany

&

Fadify

Congult
Wirardz/Tonlz »
Analysiz Wizard »
= Delete children Visualize creation file
Diagrams Item: _ Propagate Wigualize delete file

z m Wisualize old delete file

Execute SOL creation file
Execute SOL delete file
Execute ALTER TAELE file

Generate SOL f

Figure 3-8. Generating the SQL files for the "MPD_Library" package

Objecteering/SQL Designer User Guide 3-11

Chapter 3: First Steps

Steps:
1. Select the SQL generation work product in the "ltems" tab of the properties
editor using the right mouse-button.

2. Run the "SQL Designer/Generate SQL files" command from the context menu
which appears.

Note: Double-clicking on the generation work product runs the "Propagate"
command for this same work product.

The O_SQL _USER environment variable can be positioned, in order to allow
access to the database from Objecteering/UML.

Example:
setenv O_SQL USER User name/Password/Host name

Note: It is not necessary to position the O_SQL_USER environment variable in
this way, as there exist module parameters for the user and his password,
as well as parameters/attributes for the generation work product itself.
However, this environment variable is necessary where a "Host_name"
must be defined.

3-12 Objecteering/SQL Designer User Guide

Chapter 3: First Steps

Visualizing the generated SQL

The SQL file is generated for the "MPD_Library" package and the classes that
belong to it.

It is possible to visualize the generated SQL file from the Objecteering/UML
explorer. The "SQL Designer/Visualize creation file" menu on the generation work
product allows you to run the generated file's editor (as shown in Figure 3-9).

@Editing the generated file

C:AProjects\zql\MPD_Librar_create.zql

4
/* Objecteenng/S0L Dezigner 1.7 for SOLServer =

/* Generation of "MPD_Librany'' Package. =
/
4
/* Generation of "Media” table =
4
BEGIM tran
go

CREATE TABLE Medial
reference INTEGER MOT MULL ,
litle WARCHAR100] MULL ,
available BIT MULL ,
the_editor_name YARCHAR[40) HOT MULL .
the_author_name WARCHAR([40) MOT MULL ,
firsthiame VAR CHAR[40] WOT HULL ,
libram_name YARCHAR[40] MULL)

oo

COMMIT tran
go

Cloze |

Figure 3-9. Editing the SQL creation file generated for the "MPD_Library" package

Note: The "Visualize SQL" button in the properties editor carries out the same
operation as the "Visualize creation file" menu.

Objecteering/SQL Designer User Guide 3-13

Chapter 3: First Steps

Building the database schema: Executing the SQL

Procedure

Taking the "MPD_Library" package as the starting point, we will now execute the
SQL, by following the steps in Figure 3-10.

[E_‘ Objecteenng/UML Modeler - FirstStep

File Edit “iew Graph Toolz “Windows 2

N2 R &®®aElo
|-

FirstStepsProject
Library
0 Ba P by
- fi Media
& [Edior
-- i Author
-- i MediaLibrary
& i Book

« Owo DL

x|

MPD_Library

3 sqlPhygicalModel

5_';'; Library Library

B

b odify

Congult
‘Wizards/Tools k

G te SOL fil
Analyziz Wizard » A= S e

Yizualize creation file

E%EJ¢»

Delete children

T — Wigualize delete file
Diagramz Item: Propagate o .
———— Wigualize old delete file

0L creation file
Execute SOL delete file
Execute ALTER TABLE file

Figure 3-10. Executing the SQL for the "MPD_Library" package

3-14 Objecteering/SQL Designer User Guide

Chapter 3: First Steps

Steps:

1. Select the SQL generation work product of the "MPD_Library" package with
the right mouse-button.

2. Select the "SQL Designer/Execute SQL creation file" commands from the
context menu which appears.

Objecteering/SQL Designer User Guide 3-15

Chapter 4: Generation principles

Chapter 4: Generation principles

Generating the database schema

General principle

Generation for relational databases takes into account the model in terms of its:

+ classes

associations
+ generalizations
.

attributes

Using tagged values

Tagged values describe specific RDBMS notions in the Objecteering/lUML model.
The characteristics of the target RDBMS (cluster, structure, etc.) can be accessed
using additional tagged values.

Furthermore, parameterization allows the user to add his own tagged values, in
order to his specific generation operations.

Mapping rules

The rules for mapping object model notions in the tables of a relational database

are as follows:

The ... object model

relational databases ...

class table

association table or columns and outside keys

instance not managed by the Objecteering/SQL Designer module
attribute a table's column

generalization

3 alternatives: one table per concrete class (with copying
specialized attributes) , one table per class(without copying
specialized attributes), or only one table for the complete
hierarchy

{primaryKey} tagged value

primary key

{index} tagged value

index

one or more packages

according to the stereotype (schema, database, physical
model)

Objecteering/SQL Designer User Guide 4-3

Chapter 4: Generation principles

Example
department
ronnber: nteger
naeshing
locahsation string
Department tahle
rozher HALE location
10 aales Dallaz
20 accountind Boston
40 R&D Paris

givenin Database

Figure 4-1. Example of mapping

This gives the following in SQL:
CREATE DEPARTMENT TABLE (

NUMBER. . .,
NAME. . .,
LOCATION. ..) ;

Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Mapping generalization

Three mapping possibilities

Three principal techniques exist to solve the problem of table mapping:

1-

2 -

3-

Copying the generalized attributes into all the tables which represent the child
classes (the abstract classes of the persistent generalization tree are not then
represented in any table).

The basic class (which can be abstract) has its own database table. The
tables of the child classes then reference it.

All the classes of a generalization tree are mapped to a single table.

Choosing the right mapping technique

There is no ideal solution to the problem of selecting the mapping.

1-

Solution 1 is normally quicker when running the program, since it does not
necessitate any further links or complex operations in order to access the
data. However, it requires larger tables, since it will be necessary to duplicate
the definition of the generalized columns.

Solution 2 is less redundant, but there can be problems with the management
of identifiers. If this is the case, it is necessary to manage unique primary keys
for all the tables of the persistent generalization graph. Furthermore, access,
like updates, will be more costly.

Solution 3 is the quickest when running the program, and allows the reading
and writing of any BaseClass descendent with a single database operation.
As all BaseClass descendents can be found in a single table, polymorphic
reading is straightforward. The drawback is that the storing of object attributes
requires more space than is absolutely necessary. This waste of space
depends on the depth of the generalization tree. Furthermore, mapping too
many classes to a single table may cause poor performance and database
deadlock problems.

Objecteering/SQL Designer User Guide 4-5

Chapter 4: Generation principles

Example of mapping possibilities

Employee

number | integer
name : string
salary @ integer

Worker Salesman

qualification : string commission ; real

Figure 4-2. Example of mapping possibilities

4-6 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Generalizing persistence

The persistence characteristic is a generalized characteristic. If the parent class is
already persistent, generation detects that a child class is persistent. The
{persistence} tagged value on derived classes is generally redundant (but
nevertheless useful from a documentation point of view).

Example of generalizing persistence

A

{persistence;

Figure 4-3. Example

Note: In this case, B is automatically persistent.

Objecteering/SQL Designer User Guide 4-7

Chapter 4: Generation principles

Selecting your mapping technique

The generalization mapping method is chosen at base class level, using the
following tagged values:

1 - Solution 1: {oneTablePerConcreteClass}, which is used by default
2 - Solution 2: {oneTablePerClass}
3 - Solution 3: foneTable}

4-8 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Example with one table per concrete class

Emplayes
{persistence,
oneTahblePerConcreteClass}

+number :integer
+name : string
+=lary :real

Worker

{persistence}

+qualification : string

Figure 4-4. Example of mapping with the {oneTablePerConcreteClass} tagged value

Note: The tagged value on the "worker" class serves no purpose.

This maps the worker class as follows:

CREATE WORKER TABLE {
NUMBER ...,
NAME ...,
SALARY ...,
QUALIFICATION

7

Objecteering/SQL Designer User Guide 4-9

Chapter 4: Generation principles

The result is shown in Figure 4-5 below.

55
worker

number ; integer
Tprimarykey{1h}
name : string
salary ; integer
gualification : string

Figure 4-5. Result of mapping with the {foneTablePerConcreteClass} tagged value

4-10 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Generalization of the generation mode

If the mode for generating persistence is not defined in the current class, and
owns a parent class, the mode will be generalized by it. An error is detected if the
generalization type defined locally is incompatible with the previous rule.

Objecteering/SQL Designer User Guide 4-11

Chapter 4: Generation principles

Example with one table per class

Ernplalee
ipersistencs,
arneT ableP erClass}

+number :integer
+name : string
+=3lary :real

Worker

{persistence}

+qualification : string

Figure 4-6. Example of mapping with the {oneTablePerClass} tagged value

This maps the worker class as follows:
CREATE WORKER TABLE
NUMBER .,

QUALIFICATION ..

b

.

The result is shown in Figure 4-7 below.

Worker

nurnber @ integer

{primarykey(1],

foreignkey(Emplovee ,nurmber Emplovee_of _Worker) b
gualification : string

Figure 4-7. Result of mapping with the {oneTablePerClass} tagged value

4-12 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Example with one table

Ernplay ee
{persistencelpersistent),
oneTable}

+number :integer
+name : string
+=alary :integer

Worker

{persistence}

+qualification : string

Figure 4-8. Example of mapping with the {oneTable} tagged value

This maps both the employee and the worker classes as follows:

CREATE EXPLOYEE TABLE
NUMBER ...,
NAME ...,
SALARY ...,
QUALIFICATION ...,

7

Objecteering/SQL Designer User Guide 4-13

Chapter 4: Generation principles

The result in shown in Figure 4-9 below.

i

Employee

Type : string
number : integer
Tprimarykey 1)}
name : string
salary : integer
qualification : string

Figure 4-9. Result of mapping with the {foneTable} tagged value

Without specifying the generalization mapping mode, the "one table per concrete
class" mode is adopted.

If foneTablePerClass} had been defined at the level of the "Worker" class, there
would have been an error!

Applying this rule allows the user to mix three mapping modes within the same
database diagram, while fixing only one type of persistency per simple
generalization tree.

4-14 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Multiple generalization

This version of the module does not take into account the generalization of
several persistent classes. Using persistent multiple generalization provokes an
error during the generation of the package.

However, it is possible that a persistent class specializes a persistent class and
one or more non-persistent classes.

Abstract class

The Objecteering/SQL Designer module does not produce any tables
corresponding to a derived abstract class with the "one table per concrete class"
pattern. Indeed, such tables cannot contain any recordings.

Integrity

The current version does not generate any uniqueness constraints on keys
between several classes which specialize the same class with the "one table per
concrete class" pattern.

Generalization with the "one table per class" pattern implies the creation of outside
keys in the child classes, which allow you to guarantee the existence of a
recording in a parent class.

The automatic deletion by reflex of recordings through references from child
classes towards their parent classes ("delete on cascade" notion) is not carried
out.

Objecteering/SQL Designer User Guide 4-15

Chapter 4: Generation principles

Attributes

"Atomic" attributes

The mapping of attributes "in columns" implies that only atomic attributes should
be used: we thus obtain the first normal form. Therefore, basic types (or
predefined primitive classes) must have a relational non-decomposable
equivalent.

Type mapping

The action of mapping attributes poses a problem commonly known as the
"impedance problem" (because of the similarity to problems in electricity). An
object-oriented information structure has to be transformed in a table-oriented
structure, in other words, language types have to be converted into RDBMS
primitive types.

Generation suggests, by default, a global conversion policy that can be adapted
and increased by the user (see chapter 7, "Module configuration", of this user
guide for further details). The table below presents the mapping rules for the
Oracle RDBMS.

Model ORACLE Data Types
integer INTEGER
{short} integer INTEGER
{long} integer INTEGER
{unsigned} integer INTEGER
boolean INTEGER
real FLOAT
{long} real FLOAT
string(n) VARCHAR2(n)
char CHAR (1)
set {array} (n) of char VARCHAR?2 (n)

4-16 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Note: The generator does not check the uniqueness of the names in the SQL
sense, not being case sensitive. This type of error, therefore, only
appears when the SQL script is executed.

Access restriction

Attributes can be declared public, protected or private.

Class attributes

A class attribute is unique for the set of instances of the class. In the context of
databases, this concept should be clarified as follows: a class attribute is unique
for the database which memorizes it.

Two transformations are possible:

+ By the creation of a table which groups together all the class attributes of all
the application's classes

+ By the creation of a specific table associated with the class on which one or
several class attributes are defined.

The first transformation is simple to implement, and limits the number of tables. All
class attributes for all classes are grouped in a table, indicated by the parameter
of the {globalTable} tagged value on the class attributes. Each line of this table
contains the value of a class attribute.

However, this pattern presents a major disadvantage, in as much as it requires the
definition of one column per type of class attribute. For example, if five class
attributes are present, three of which are integer type and two string type, the
global table will contain two columns:

¢ an"att_int" integer-type column
¢ an"alt_string" string-type column

The table structure also includes a "ref_attribute" attribute, to contain the name of
the class and of the class attribute. It is possible to have several tables which
group together class attributes.

Objecteering/SQL Designer User Guide 4-17

Chapter 4: Generation principles

The following model (as shown in Figure 4-10) presents two class attributes which
will be grouped in a global table.

Classl

{ persistence

Directory : string,
i glcbalTable(Class A thiba teTable)}
Mane : shing

Class2

| persisterce }

CptHare : irteger
{glchalTable(Class A thibuteTable)}
Firstname : sting

Dretinll el : shing
{glcbalTable(Class A thibuteTable)}

Figure 4-10. The analysis model, modeling two class attributes

Figure 4-11 shows the physical model after transformation and automatic

generation of a global table.

4-18

== tahle=s
Chssl
Hame : strmg
==tahla==
ChssativibuteTah le
vef_attrbut :shing
{primaryiley(1]}
tablane att_imteger : nbeger
Chss? att shing @ shing

First name : shing

Figure 4-11. The physical model, implementing a global table for class attributes

Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Figure 4-12 presents the "ClassAttributeTable" table for the "Class1" and Class2"
classes.

E Tablel : Table

¥ Class1_Directory 0 citmp
|| Class2_CptMame 164
| Class2_DefaultLabel 0 Label to add

Figure 4-12. Example of a table containing class attributes

The second transformation consists of the definition of one table per class,
including one or several class attributes. This transformation is more in line with
the class attribute notion, despite the generation of a specific table. No annotation
is necessary, and a finer management of attributes and their associated type is
possible. The generated table bears the "classname_attribute" name. This name
can be modified, by using the {classAttributesTableName} tagged value.

Figure 4-13 shows the analysis model.

Chass3
{ atbithute_specific_td lenameClass3 Athdh),
persisterce}

oid : cad Type
{oid}
reference : shing

Figure 4-13. Analysis model, modeling a class attribute for the generation of a specific table

Objecteering/SQL Designer User Guide 4-19

Chapter 4: Generation principles

Figure 4-14 shows the corresponding physical model.

==tahle== ==tahle==
Class3 Chssd Adtirih
oid : ud Type Zererall omter : imteger
{ prmaryFer(1 0}
referenee : shing

Figure 4-14. Physical model, generating a class attribute in a specific table

The {sqlDefault} value

In Oracle or Sybase, the DEFAULT clause is used to specify the value which will
be assigned to a column if the insertion of a set of values misses a value for this
column. In SQL coupling, this feature is implemented using the {sq/Default}
tagged value on attributes.

Note: This notion is separate from the notion of initial value in the model (taken
into account in dynamic code). Specifying this value in an attribute's dialog
box has no effect whatsoever on SQL generation. The properties editor
can be used to enter this tagged value.

The {sqlType} tagged value

This tagged value is used to map specific types. For further information, please
refer to:

+ the "Parameterizing generation - Specificity" section in chapter 8 of this user
guide for Oracle

+ the "Parameterizing generation - Specificity" section in chapter 9 of this user
guide for Sybase

+ the "Parameterizing generation - Specificity" section in chapter 10 of this user
guide for SQL Server

4-20 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Primary key definition

The primary key of a relational table is composed of one or more attributes (the
table's columns). It allows the clear identification of the instances (in other words,
the sets of values).

Second normal form: the primary key must be composed of the smallest
combination of attributes which are used in identification.

The {primaryKey} tagged value

The user must define the primary key of the associated table for a persistent basic
class using the {primaryKey(rank)} tagged value, with as parameter the rank of the
attribute in the primary key. Its declaration consequently forbids null values for
columns thus specified, as well as guaranteeing the key's uniqueness. This
uniqueness constraint will be mentioned in the following paragraphs. Just like
{persistence}, this tagged value is generalized.

Note: Key order can influence access to the database. It is preferable to rank its
components from the most discriminating to the least selective. A button
in the properties editor on a class and a menu on classes can be used to
open a window used to graphically define the primary key.

Objecteering/SQL Designer User Guide 4-21

Chapter 4: Generation principles

Example

gradesal

{ persistence(persiste nt) }

grade : string
{priraryde w10}
lewel : integer
{primary®e i)}
galmin ; real
salmax ; real

Figure 4-15. Defining the primary key

In other words, in SQL (without taking into account the key's uniqueness
constraint):
CREATE TABLE GRADESAL (

GRADE... NOT NULL,
LEVEL... NOT NULL,
MINSAL. . .,
MAXSAL. . .

4-22 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Uniqueness of the primary key

The declaration of a primary key brings about an integrity constraint. Each time
sets of values are created, it is necessary to check that the value of the key does
not already exist in the database, in order to preserve the uniqueness of the
primary key.

As the primary key is also a priority access key to the information, this constraint is
implanted via the declaration of a "unique index", the generation of which depends
on the target RDBMS. For example, Oracle uses the "PRIMARY KEY" command.
The name of this index is the name of the table with the "_PK" suffix.

This gives the following in SQL:
CREATE TABLE GRADESAL (

GRADE... NOT NULL,
LEVEL... NOT NULL,
MINSAL. ..,
MAXSAL. . .

)i
CREATE UNIQUE INDEX GRADESAL_ PK
ON GRADESAL (GRADE, LEVEL) ;

Generalization and the primary key

The primary key of a child class is obligatorily the same as the parent class’
primary key.

Objecteering/SQL Designer User Guide 4-23

Chapter 4: Generation principles

0..1-* associations

Patterns for transforming 0..1-* associations

A 0..1-* association defined between two classes is mapped by implementing one
or several class attributes on the * side of the association. Attributes which define
foreign keys are automatically generated and must correspond to the primary key
defined on the class on the 0..1 side of the relationship.

Client clisnt 035 5 P AT Tesermation Reservation
{percictence} 0.1 . {percictence}
mum CLent : mteger roum Beserration | dteger
{ privvarytler(])} { primaryileyv(1]}
rum Seq : Mteger
| prmarytey(2 }

Figure 4-16. Analysis model, modeling 0..1-* relationships

Figure 4-17 shows the above model after transformation.

< <tahles = << tahles =
Client Resernation

rum C Lent : integer num Recermation : integer

{ primaryEey(1)} { primaryKap(1}

rum Seq ; mteger roam G lient : teger

| primaryEer(2)} foreizrFlaw(Chert mm Clant]}
num Seq ; Mteger
foreig nElar{Clant mm Seq)}

Figure 4-17. Physical model, modeling a 0..1-* association

Classes annotated {persistence(persistent)} have been transformed into classes
stereotyped <<table>>. Attributes annotated {primaryKey} will allow, for each
table, the generation of constraints linked to primary keys.

4-24 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Primary keys defined on the "Client" class have been taken into account in the
"Reservation" class, in the form of foreign keys. The names of the attributes
defined as foreign keys are generated as follows: "role_attributename”.

Note: To simplify the diagrams of this specification, the names of the roles have
voluntarily been omitted.

By default, role names are not used in model transformation. If a naming conflict
is detected on the generated attributes (several attributes with the same name
having to be generated in one table), the name of the association's role is added
before the name of the attribute.

It should be noted that the columns created can be defined as being NULL if the
minimum multiplicity is zero. A constraint stereotyped <<notNull>> is added to the
generated attributes if the multiplicity is 1 on the aggregation side. This constraint
is used to add a NOT NULL clause to SQL file generation.

The {foreignKey} tagged value is used to reference the corresponding attributes,
in order to allow the generation of the correct integrity constraints. This
transformation of the 0..1 multiplicity of the association does not generate
intermediary tables, whatever the browsing direction of the association.

Associations of aggregation type (empty diamond), which model weak coupling
between instances, are considered as associations, as far as the transformation of
the analysis model into a physical model is concerned.

The model illustrated in Figure 4-18 presents an aggregation between two
classes. The transformation applied to this type of relationship is identical to that
of an association (see Figure 4-17, "Physical model, modeling a 0..1-*
association").

Chent client subscribe comtract Coniract

o.1 * .
{prersistence} {persistence }

pum lient : irte ger num Combract © imteger

primaryEay(17} { privnaryFep(] 1}

Figure 4-18. Analysis model, modeling a 0..1-* aggregation

Objecteering/SQL Designer User Guide 4-25

Chapter 4: Generation principles

For associations whose multiplicity is 1-*, attributes which define foreign keys are
generated with the {not_null} tagged value, so as to respect modeled multiplicity.
An example is shown in Figure 4-19.

Client client asanciafion reservation Reservation
{remistence } | R {rersistence }
nurnClisnt © integer runFessration :
[{ prirnan A1)} { primaryElew(1])}
nurnSeq : integer
{ primaryF (2]}

Figure 4-19. Analysis model, modeling a 1-* association

Complex modeling can cause the appearance of scenarios, for which the
transformation rules presented below cannot be applied. It is then necessary to
specify the associated SQL elements for each relationship between classes
(associations, compositions, aggregations).

The following analysis model (Figure 4-20) for which the association is annotated
{external} forces the generation of an intermediary table, to map the association.
Here, the {sq/IName} tagged value is used to specify the name used to name the
generated intermediary table. If no tagged value is present, a name is
automatically generated from the name of the end tables and the name of the
association.

Client Reservation
{ persistence } { persistence }
rum C lisnt : inte ger roum Eecerwation ; integer
{ primardley(1)} { prirvaryey(1]}
a5 PEIAReN

1 sq 1 arelet_reservabon tadle)
client external} Tesermation

0.1 *

Figure 4-20. Analysis model, modeling a 0..1-* composition with an intermediary table

4-26 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

The analysis model shown in Figure 4-20 is transformed as shown in Figure 4-21.

< <dtables = < <table=
Client Reservation
= <tabler »
num Client @ itegr " i takle roum B ecerwation @ hteger
. ext reservation _tal .

prmaryi ey} - — { primaryiey(1]}
roum Client © e ger rum Clent : ftegr
1 foreiznE ep{Clierd m Client)} ¢ foweig i ey(Clisrt mum Cliend)}
rum Eeservation : iteger
1 foreiznE ey Feservation mm Fes evvation)}

Figure 4-21. Physical model, modeling a 0..1-* composition with an intermediary table

According to the transformation pattern applied, naming conflicts for attributes can
appear. It is possible to give two attributes in two different classes the same
name. In this case, the name of the role is used as discriminator. The use of the
{sqIName} tagged value defined on an attribute is another way of getting round
this problem, but can lead to the modification of the attribute name in all
generations in which it takes part.

Cyclic associations

It is possible to specify cyclic associations (in the RDBMS sense). This does not
present any particular problem for the generator. However, it is important to note
that the generation of tables can only be carried out through the SQL script of the
entire package. Indeed, as the outside keys refer to tables that have not yet been
created, so the SQL files that correspond to the classes use each other.

As the method forbids mutual use between packages, the problem cannot arise
between two of the model's packages.

Managing instances and "all" multiplicity

From a structure UML profile, associations which implement the management of
persistent instances, as well as those whose multiplicity is "all" (the latter assume
that the destination class has itself instance management) do not require any
particular mapping. Indeed, they are already directly represented in a database
using the tables associated to the persistent destination classes.

Objecteering/SQL Designer User Guide 4-27

Chapter 4: Generation principles

Generating triggers

Multiplicity constraints

Objecteering/SQL Designer uses triggers to map multiplicity constraints in

associations, for Oracle, Sybase and SQL Designer.

Multiplicity constraints are

checked by a trigger before and after insertion for Sybase and SQL Server, and

after insertion for Oracle.

For further information on using triggers to map multiplicity constraints, please
refer to the relevant annex at the end of this user guide.

Figures 4-22 and 4-23 show an example of the use of triggers to map multiplicity
constraints, Figure 4-22 showing the starting model and Figure 4-23 the physical

model.

Curve

{persistence(persistent)

idCurve ; integer
{primarykey(1) 7}
measure | integer

agregate

0.1

0.4

cormponent

Point
{persistencel{persistent)

idPoint : integer

{primarykey(1F
® 0 integer
¥ @ integer

Figure 4-22. The starting model

4-28

Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

5]
MPD_modele
i
Point
idCurve : integer
{foreignkeyiCurve ,idCurve ,agregate_of Point_FK)}
idPoint : integer
{primaryKey(21F
% 1 integer
y @ integer
i
TI_agregate_of Point_INSERT()
{tgBefore, 0.4
tglnsert}
=

.

IF NOT|{ (SELECT COUNT(*j

<L5glCodes>
FROM Point, inserted

agregate_of Point_FK

i

Curve

idCurve | integer
{primarykey(1)}F
measure : integer

WHERE Point.idCurwve
BEGIN

[N
inserted.idCurve | <= 4)
ROLLEACK TERANIACTION
RATSERROR 20501
"Point :
constraint violation”
ENL

May not insert element, agregate_ of_ FPoint FK maximum cardinality

Figure 4-23. The physical model

Objecteering/SQL Designer User Guide

4-29

Chapter 4: Generation principles

The generated SQL file is as follows:

/***/

/* Objecteering/SQL Designer 1.1.g for SQLServer */

/* Generation of "MPD modele" Package. */
/***/

/***/

/* Generation of "Curve" table */
/***/

BEGIN tran
go

CREATE TABLE Curve (
idCurve INTEGER NOT NULL ,
measure INTEGER NULL)

go

COMMIT tran
go

/**/

/* Generation of "Point" table */
/**/

BEGIN tran
go

CREATE TABLE Point (
idCcurve INTEGER NULL ,
idPoint INTEGER NOT NULL ,
x INTEGER NULL ,
y INTEGER NULL)

go

COMMIT tran
go

/***/

/* Generation of <MPD modele> Package table primary key */

/* constraints */
/***/

BEGIN tran
go

4-30 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

ALTER TABLE Curve ADD
CONSTRAINT Curve PK PRIMARY KEY (idCurve)

go

ALTER TABLE Point ADD
CONSTRAINT Point PK PRIMARY KEY (idPoint)

go

COMMIT tran
go

/***/

/* Generation of "TI agregate of Point INSERT" trigger on
*/

/* "Point" table */
/***/
BEGIN tran

go

CREATE TRIGGER TI_agregate of Point INSERT
ON Point
FOR INSERT
AS
IF NOT((SELECT COUNT (*)
FROM Point, inserted
WHERE Point.idCurve = inserted.idCurve) <= 4)
BEGIN
ROLLBACK TRANSACTION
RAISERROR 20501
"Point : May not insert element,
agregate of Point FK maximum
cardinality constraint violation"
END

go

COMMIT tran
go

Objecteering/SQL Designer User Guide 4-31

Chapter 4: Generation principles

Stored procedures

Overview

Stored procedures are operations annotated <<storedProcedure>>, which can be

modeled in the logical or the physical model.

Figure 4-24 and the code which follows show an example of a stored procedure.

File Edit Wiew Tools Test Windows 2

| @DhiecleetinngML Profile Builder - SALDesigner_3 - Package principalT estProject - Update ___ B [=] [E3

=181 x|

WS e ERE o~ B AN

. = i [A] +attZ : integer
24 2 int 4]
p In integer i .))
B +0peration(ln pl:integer In p2integer)
14 -l Type(decimal) 2 .

- . — =1 e >P 1 Incinteger =
Diagrams Items IDocumentati0n| Metamt{ Al F-4>P |2 In tinkeger |
Ready

Figure 4-24. Example of a stored procedure

4-32

Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

The generated SQL file will contain the following for SQL Server:

/***/

/* Generation of "Operation" stored procedure */
/***/

BEGIN tran

go

CREATE PROCEDURE Operation (
@pl INTEGER,

@p2 DECIMAL)
AS

go

COMMIT tran
go

Stored procedure parameter types

As with attributes, the types of stored procedure parameters can be customized
using either the properties editor or the {sqlType} tagged value. For further
information on type mapping, please see the "Aftributes" section in the current
chapter of this user guide.

For further information on the {sqlType} tagged value, please refer to:

+ the "Parameterizing generation - Specificity" section in chapter 8 of this user
guide for Oracle

+ the "Parameterizing generation - Specificity" section in chapter 9 of this user
guide for Sybase

+ the "Parameterizing generation - Specificity" section in chapter 10 of this user
guide for SQL Server

Objecteering/SQL Designer User Guide 4-33

Chapter 4: Generation principles

Compositions

Model and relational

The mapping of compositions in a relational model is optimized with regard to the
general case of an association. This specific mapping allows you to save space in
the database and to improve performance when loading tables into the memory.

c Point
ume
{ persistence(p er sistent) aITre ate cotmp onent | persist encep e s stent)
T R——— 01 - 1dP oint : integer
(erimayK ey pemer ey

) % indeger
theasure | integer v - irteger

Figure 4-25. Example of a composition

4-34 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Generated tables

fig
Composition physical model
<<tabless
Point
<<tabless idCuree | inteqer
Curve {primarykey(1),
idCurve : integer foreignkey(Curve idCurve) b
{primarykey(1); idPoirt : integer
measure ! integer L primarykey(2)
=1 integer
w ! integer

Figure 4-26. Example of a composition

Curve (idCurve, measure)
Point (idCurve, idPoint, abscissa, co-ordinates)

The association is materialized by copying the primary key(s) of the aggregate
class, here "Curve", into the table of the class which has the role of component,
here the "Point" class.

"Component" type objects are always handled through the "aggregate" class. The
addition, removal and update of objects which are components of a composition is
carried out by modifying "aggregate" objects in the memory, and by asking for an
update of this object in the database.

Objecteering/SQL Designer User Guide 4-35

Chapter 4: Generation principles

Application domain

This optimized mapping of a composition, a special instance of an association,
cannot be applied in the cases detailed below:

¢ The "component" class of the composition cannot belong to a generalization
graph except as a root class.

+ The "component" class cannot be component of more than one class.

When one of the clauses is not respected, the mapping of general associations
will be adopted.

4-36 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

1-1 associations

Pattern for taking into account associations of 1-1 type
Associations of 1-1 multiplicity can be transformed in two different ways:
+ By merging the two tables
+ By generating a foreign key on both sides

The first method limits the number of tables. It consists of merging the two tables
into one. The primary keys of each of the modeled classes are assembled to
create the primary key of the resulting table. After model transformation, it is
possible to delete the definition of a {primaryKey} tagged value, in order to limit the
attributes used as the primary key of the table obtained. In this case, subsequent
transformation of the analysis model into the physical model will generate the
attribute with an associated {primaryKey} tagged value. Attributes should be
annotated {sq/DoNotUpdate}. This transformation is effective if a role has the
{sqlOptimized} tagged value. The destination table is then merged in the source
table.

Depending on the model of the application, this first solution may not suit, because
of the association(s) from these classes towards or from other classes.

The second method allows the generation of two distinct tables, and strictly
respects the analysis model, by transforming each of the classes into a table
stereotyped <<table>>. In this case, attributes which define the primary keys of
each of the two tables are generated in the other table as foreign keys. This
transformation is applied by default.

Objecteering/SQL Designer User Guide 4-37

Chapter 4: Generation principles

n-ary associations

n-ary association pattern

The transformation of an n-ary association is mapped through the generation of an
intermediary table stereotyped <<table>>, which contains the set of primary keys
for the different classes positioned at the ends of the association.

The following example (Figure 4-27) shows the transformation of an association
between three persistent classes.

A
{ persistence{ persistent) }
pkd :integer
(primaryKey(1)}
B
{ persiste nce(persistent) }
pkB integer
{ primary Keyi 1)}
C
{ persiste noel persistent) }
pkC mteger
{ primaryKegi 1)}

Figure 4-27. Analysis model, modeling an n-ary association

4-38 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

After transformation, an intermediary table has been generated. This table is

made up of the set of attributes modeled as primary key of the classes which take
part in the n-ary association.

Physical rnodel

<<table==
A
pkd o integer
fprimarykey(1)}

<<table==
association

pkd integer
{primarikKey(1}, <=<table=x=
foreignkey(d ,plka) k- B
pkB: integer
{primarykey(z],
foreignkey (B ,pkBI*
pkC:integer
{primarykey(3),
foreignkey(C pkCi};

pkB: integer
{primnarykey (1)}

<<table==

C
pkC:integer
{primarykey (1)}

Figure 4-28. Physical model, modeling an n-ary association

- association pattern

An association of *-* multiplicity is treated as an n-ary association. For further
information, please see the previous paragraphs.

Note: An association which is annotated {external} is managed like a *-*
association.

Objecteering/SQL Designer User Guide 4-39

Chapter 4: Generation principles

Class associations

Class association patterns

The transformation of an association including a class association depends on its
multiplicity and on the presence of the {persistence(persistent)} tagged value.

Default transformation consists of generating an intermediary table in the same
way as a *-* association. The class association is used as intermediary table
(please refer to the "n-ary associations" section of the current chapter of this user
guide for further information).

For an association of 0..1-* multiplicity, and in the aim of limiting the number of
tables, the class association can be generated in the table bearing the ™"
multiplicity, if the role is annotated {sq/Optimized}. In this case, all the attributes of
the class association are transferred (except those annotated
{persistence(transient)}).

The analysis model shown in Figure 4-29 presents this possibility.

4 theB) B
{ persistence(persistent)} | thet { sglDptimized } | {persistencel persistent)}
phkd : integer 01 « |pEB integer
{primarylCey (1)} {privaryKey (1)}
Association
{ persistence persistent)}

assoclationProperty : integer

Figure 4-29. Analysis model, optimizing a class association

4-40 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

It is generated as shown in Figure 4-30.

fig
Merged class-association physical model
<=table x>
<<tahle == B

A pkB : integer
pla o integer {primgr\,rKE\,r(l)}
! prirnaryke w1} pka o integer

{foregnkeyl s pla)}
associationProperty ; integer

Figure 4-30. Physical model, optimizing a class association

Objecteering/SQL Designer User Guide 4-41

Chapter 4: Generation principles

Generalization and associations

Generalization and associations

From the UML profile of a table, associations are not specialized as such. The
associated table contains all the references, including the child class instances.

Example:
A B
{ pes istencel(pens istent) } el R el { persistencelpers istent) }
al : mieger b1 mteger
. # .
primaryEey(1)} 0.1 primaryEey(17}
a2 mieger b2 mbager
C
P i persistence(peristent)}
eIs1sTencel pels 15Te;
{ pes istencel(pens istent) } r -
T cl @ mteger
i primaryKey(17}
mieger 2 mteger

Figure 4-31. Example 3: Generalization and associations

4-42 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Let us take the example of primary keys, respectively b1 for the B class, c1 for C,
a1l for A and D, where the generalization is implemented by one table per concrete
class, we will obtain the following associations (Figure 4-32).

Physical model

fiF

<<tablex=

A
al :integer
{primarykey(l)}t

az :integer
cl :integer
{foreignkey(C cli}

<=table ==

D
al :integer
{primarykey(l}:
az :integer
di :integer
dz :integer

cl :integer
{foreignkey(C 1)}

<=table ==
B
bl :integer
fprimarykey{l)+
bz :integer
al :integer

<<table==

C
cl :integer
primarykey(l)+

cZ :integer

Figure 4-32. Generalization of associations with "One table per concrete class" pattern

Textually, this gives the following:

A(al,a2,cl)
B(bl,b2,al)
C(cl,c2)

D(al,a2,d1l,d2,cl)

«specialized»!

Objecteering/SQL Designer User Guide

the external key role2 cl is

4-43

Chapter 4: Generation principles

If the generalization had been mapped one table per class, the following would

have been obtained (Figure 4-33).

fig
One table per class
<<tables» <«<tables>
A B
al : integer b1 :integer
{primarykey(1) F {primarykey(1) F
az : integer b2 : integer
cl :integer al: integer
| foreignkey(C ,cli} {foreignkey(as a1l

z<tablez>
D
al : integer
1primarykey(1),
foreignkey(s a1l 7}
dl : integer
d2 : integer

z«<tabler»
C

cl:inteqer
Lprimarykey(1)}
c2 ¢ integer

Figure 4-33. Generalization of associations with "One table per class" pattern

Textually, this would have given the following:

A(al,a2,cl)
B(bl,b2,
C(cl,c2)
D(al,d1,d2)

4-44

al)

only the primary key is common to D and A.

Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

If the generalization is mapped with "One table per generalization tree", the
following would have been obtained (Figure 4-34).

fiE

One table
<<table ==

A

al :integer
{primarykey(1 1}

a2 :integer
cl iinteger
{foreignkey(C ,c1);
dl : integer
dz : integer

<<tablex=

B
b1 :integer
{primarykiey (1)}
b2 :integer

al :integer
{foreignkey(d ,al)t

<<table=>
C

cl :integer
fprmarykey(l};
c? :integer

Figure 4-34. Generalization of associations with "One table per generalization tre€" pattern

Textually, this would have given the following:
A(al,bl,cl,d1,d2)

B(bl,b2,al)
C(cl,c2)

Objecteering/SQL Designer User Guide

4-45

Chapter 4: Generation principles

Structure in packages

Overview

Structuring in model packages does not entail any restriction of the database
diagram generation. In particular, a database diagram can be modeled using
several model packages.

Packages stereotyped <<schema>>

It is possible to group together several relational tables into a relational diagram.
This grouping is carried out using the <<schema>> (package name) stereotype,
which can be attached to a model package or to a class. This stereotype allows
the creation of relational tables in a specific relational diagram. Access to these
tables is then carried out with the complete name of the table: diagram name of
the table.

Classes belonging to a package stereotyped <<schema>> are generated in a sub-
package of the physical model, which is also stereotyped <<schema>>.

Components stereotyped <<database>>

In an environment of distributed databases, it is possible to specify the name of
the database. This information is available with the <<database>> component,
which can reference several model packages or classes. The generated SQL
linked to the referenced elements allows "distant" requests to other databases
accessible via a local network.

The tables of the referenced classes are generated in a sub-package stereotyped
<<database>>.

4-46 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Integrity constraints

Uniqueness constraint

Definition: Each time an n-tuple is created, the uniqueness constraint makes
sure the value of the primary key does not already exist.

The preservation of the uniqueness of a table's primary key is an integrity
constraint which has already been dealt with using a "unique index".

Referential integrity

Definition: Inter-table constraint, which consists of the imposition that the value
of a group of attributes of a first table should appear as key value in a
second table.

This integrity constraint, which generally only applies to associations, specifies
that an association instance can only exist if the entities which take part in this
association already exist. It is set up through the re-definition of outside keys that
have an impact on the updating operations. When an association element is
inserted, it is necessary to check that the referenced elements do exist. Similarly,
when a referenced element is deleted, it is necessary to check that the element no
longer exists in the association (or, depending on the case, to destroy the
corresponding association instance).

Objecteering/SQL Designer User Guide 4-47

Chapter 4: Generation principles

Example

Employee

0 Aelong ! Service

*name : stiing +his_senrice -
+zalany : real +name : string
+results :real

+one_senice

Building

1.7 lacalization

+identifier : integer an_place
+address : string

Figure 4-35. Example of associations with integrity control

The mapping of the "belong" and "localization" associations introduces several
reference integrity constraints:

+ any value of the HIS_SERVICE attribute appearing in the EMPLOYEE table
should be described in the SERVICE table

+ any tuple of the BUILDING_LOCALIZATION_SERVICE and
SERVICE_LOCALIZATION_BUILDING, must reference a tuple of the
BUILDING table and a tuple of the SERVICE table

Consequences

Referential integrity constraints are used to check consistency during extraction
from and insertion into the table that represents the association.

A ban is imposed during the deletion of an instance referenced by an outside key,
or during insertion into a table representing an association of keys which
references instances which do not exist. The implementation of these constraints
depends on the RDBMS used.

The effect of the integrity constraints can be modified using tagged values specific
to the RDBMS, such as {onDeleteCascade}.

4-48 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles
Generalization and constraints

Between classes which have children, constraint generation on association tables
differs according to the chosen generalization mode:

+ one table per concrete class

+ one table per class

One table per concrete class

A B
| persistencelpersistent), wled RI mlel { persistencepersistent] }
ohe TaklePerConcteteClass } 01 * bl : integer
al : mteger i primaryk ey 1}
{ primaryF ey 13}
C D
{ persistencepersistent)} | persistencelpersistent) }
cl : integer dl : integer

Figure 4-36. One table per concrete class

Objecteering/SQL Designer User Guide 4-49

Chapter 4: Generation principles

The SQL tables generated are as follows (Figure 4-37):

fiz
Physical rodel
z«tables=> z«tables==
A B
al: integer b1l integer
[primarykeyl 19} {primaryKey(1)}
al: integer
<<tables== z«tables==
C D
al: integer al: integer
{primarykey(1)} {primarykey(1)F
cl: integer di: integer

Figure 4-37. The SQL tables generated with one table per concrete class

Textually, this gives the following:
A(al)

B(bl)

C(al, a2, cl)

D(al, a2, di)
role0 of B(bl, roleO al)

For the "B" table, the "a7" attribute can correspond to the "a7" attribute of the "A",
"C" or "D" table.

The module cannot, therefore, generate constraints towards three different tables.
The module will add no {foreignKey} tagged values to the "a7" column, and will
generate no constraints for the "B" table.

4-50 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

One table per class

A B
{ persistenoe(persis tent, rolel RI rolel { persistenoe(persis tent)}
oreTahkPerConoretel lass } 01 * b1 : intezer
al : mteger primary Key(1]}
primary Eey(1)}
C D
{ persis tenoel persis tent)} 1 persis tenoe persis tent)}
cl : mieger d1 : mieger

Figure 4-38. One table per class

Objecteering/SQL Designer User Guide 4-51

Chapter 4: Generation principles

The SQL tables generated are as follows (Figure 4-39):

fig
one tahle perclass
<<table==
<<tablex= B
A 0
— bl :integer
al k integer b rimanke 1)}
tprimanyke (1)t al :integer
fforeignicew(d ,al)}
<«table== <<table==
C D
al :integer al :integer
fprimarykey(l), {primaryke (1),
foreignkeyia al)} fareignke via a1}
cl :integer dil :integer

Figure 4-39. The SQL tables generated with one table per class

Textually, this gives the following:
A(al)
B(bl, al)

C(al, c1)

D(al, di1)

In one table per class, the module adds a {foreignKey(A,a1) tagged value to the
a1 attribute of the B table, which generates an integrity constraint. It is sure that

for every recording in the C and D tables, a recording must exist in table A with the
same primary key.

Constraints generated for "role0_ofB" will be as follows:

ALTER TABLE B ADD (
CONSTRAINT I‘OleO_of_B_DFK FOREIGN KEY (al)
REFERENCES A (al)
)i

4-52 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

"Not null" attributes

In addition to the "not null" deduced from the model (constraints on keys,
association multiplicity ...), the user may define locally that a particular attribute
must always be entered in a database, using the <<notNull>> constraint.

Integrity tagged values

The code generated ensures the database is complete, but if it must be used by
other sources, specific reflexes have to be added, such as on delete cascade (see
the annex specific to the RDBMS used).

Objecteering/SQL Designer User Guide 4-53

Chapter 4: Generation principles

Standardized logical schema

Definition

The standardization of a relational database conceptual diagram is generally
based on only the first three Normal Forms (NF).

The first three NF have the following definition:

+ (1NF) An association is called standardized, or in first normal form, if and only if
each of the domains concerned in the association contains only atomic
elements.

¢ (2NF) The association must be in 1 NF and ensure for its primary key total
functional dependency of each of its non-key attributes (an fd is called total of
A in comparison to B, if no part of B - if B is composed ! - is sufficient to
maintain the fd).

(3NF) The association must be in 2NF and ensure with regard to its primary
key, a direct functional dependency (i.e. non transitive) of each of its non key
attributes.

Standardization

The Objecteering/SQL Designer module checks that the first normal form is
respected. Indeed, "Set of..." attributes are not accepted.

The user must respect the 2 and 3 normal forms when annotating with the
{primaryKey} tagged value.

4-54 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Additional annotations

The {persistence} tagged value

Attributes, associations or generalization links can, where necessary, be
annotated locally as non-persistent by the user. The {persistence} tagged value is
used in this case.

Objecteering/SQL Designer User Guide 4-55

Chapter 4: Generation principles

Example

Graphic_0Object

+pos_x @ irteger
+pos_y : integer

Department
{persi gence(persistent) are_relation Mon_persistant_object
i K 4] — —
primaryKey(umbent e itence(trandent))

+rurnber : integer

+rame @ string
Inot_null}

+Hocalization : string

Figure 4-40. Example

in which:

CREATE DISTRICT TABLE
NUMBER. . .,
NAME. . .,
LOCATION. ..

Note: The {persistence(transient)} tagged value will be simple and is attached to
the non-persistent element for attributes and associations. Classes
specialized in a non-persistent way are specified by a parameterized
tagged value (with the same name {persistence(transient)}), but are
located at the level of the child class.

4-56 Objecteering/SQL Designer User Guide

Chapter 4: Generation principles

Indexes

Indexes can be defined using the {indexName(index_name)} tagged value on a
class and the {indexKey(index_name, rank} tagged value on each attribute of the
index. The advantage of this (in addition to the documentation aspect) is the
automatic generation of secondary indexes (indexes which are not unique), used
to optimize access to data. An index can either be defined on a class in the
analysis model or on a table in the physical model.

Secondary composite keys

Secondary composite keys are used to define unique keys as well as the primary
key. For this, the {keyName(key_name)} tagged value is used on a class, and the
{compositeKey(key name, rank)} tagged value on each of the class' attributes.

Objecteering/SQL Designer User Guide 4-57

Chapter 5: User interface

Chapter 5: User interface

Interactive interface

Overview
The user interface of generation for relational databases allows you:
to annotate your model, through the properties editor and the dialog boxes
to generate a physical model from a logical model
to update a physical model from a modified logical model

.
.
.
+ to generate the SQL which corresponds to the physical model
+ to visualize the SQL produced

.

to launch the interpretation of the produced SQL

UML modeling project configuration

Before executing any operations concerning the generation of the relational
database, you must configure your UML modeling project in order to:

+ take into account the UML profile corresponding to the target RDBMS you are
using

+ choose the default generation characteristics you wish to use

For further information, please refer to the chapter 7, "Module configuration", of
this user guide.

Outlook

The interface for generating the database diagram provides all or part of the
predefined characteristics at UML modeling project level, depending on the case.
In this way, default interactive generation corresponds to the planned
configuration. However, it is possible to modify these choices dynamically, in
order to:

+ test different characteristics

+ carry out updates on the existing diagram database but without requesting the
re-interpretation of the whole of the SQL leading to the final package

Objecteering/SQL Designer User Guide 5-3

Chapter 5: User interface

Menus

Commands are available by clicking on the right mouse-button.

todify

Conzult

Wizardz/Tools P
Analyziz Wizard #
Delete children

Propagate

SOL Designer

3

Generate physical model

|mport first steps
Gererate SOL filez

Figure 5-1. Commands available on a package in the Objecteering/UML explorer

The ... command

is used to ...

Generate physical model

launch the generation of the physical model.

Import first steps

import the SQL Designer first steps project.

Generate SQL files

launch the generation of SQL files.

Objecteering/SQL Designer User Guide

Modify
Conzult
Analyziz Wizard »
Browse. .
Check model
Wizards/Tools

Chapter 5: User interface

Add a composite key...
Indexes...

Composite keys...

Update from logical model

Figure 5-2. Commands available on a class in the Objecteering/UML explorer

The ... command

is used to ...

Primary key open the primary key window, in which primary keys
can be created and managed.
Add an index open the index creation window, in which indexes can

be created.

Add a composite key

open the composite key creation window, in which
composite keys can be created.

Indexes

open the index editing window, in which indexes can
be managed.

Composite keys

open the composite key editing window, in which
composite keys can be managed.

Update from logical model

update a single table of the physical model, without
having to update the entire model.

Objecteering/SQL Designer User Gu

ide 5-5

Chapter 5: User interface

Usage precautions

For each execution of a new SQL, it is recommended that you keep an SQL script
after having previously generated it. This will enable you to destroy tables and
constraints added to the database. Without this precaution, you may lose table
names or constraints always present in the database. Pollution can then occur, or
the database can be blocked because of obsolete constraints related to the tables
to be destroyed.

For this, the Objecteering/SQL Designer module keeps the former SQL delete file,

and can launch it automatically before running the creation script. This behavior
can be deactivated at module parameter level.

5-6 Objecteering/SQL Designer User Guide

Chapter 5: User interface

The properties editor and the SQL Designer module

The "SQL" tab of the properties editor on a logical model package

==

Library

Stereotype:
" Mone ¢ Physical model € Schema

Logical model

™ Schema name

Fhysical model(=]

% 'MPD_Library' phyzical model Lipdate

Generate new phyzical model |

Diagramsl Itemsl Docurmentation SGLl

Figure 5-3. The "SQL" tab of the properties editor on a logical model package

Key:

¢ The "Stereotype" radio buttons are used to add the <<schema>> or
<<sqlPhysicalModel>> stereotypes to a package.

¢ The "Schema name" field is used to add the {sq/Name} tagged value to the
package. This tagged value defines the name of the schema which
corresponds to the physical model, if the package is stereotyped <<schema>>,
or the name of the physical model, if a physical model is generated from this
package.

¢ The "Generate new physical model" button generates a new physical model
from the package.

Objecteering/SQL Designer User Guide 5-7

Chapter 5: User interface

The "SQL" tab of the properties editor on a physical model
package

Figure 5-4. The "SQL" tab of the properties editor on a physical model package

5-8 Objecteering/SQL Designer User Guide

Chapter 5: User interface
Key:

+ The "Do not update" tickbox is used to add the {sq/DoNotUpdate} tagged value
to the package. This tagged value means that this schema is not updated
when the physical model is updated. If this tickbox is checked on a physical
model, updating it will do nothing.

+ The "Stereotype" radio buttons are used to indicate whether or not the model is
physical. By default, the "Physical model" button is selected.

+ The "Update" button is used to update the physical model from a package.

¢+ The "Generate SQL" button is used to generate the SQL corresponding to the
physical model.

¢ The "Visualize SQL" button is used to generate, if necessary, the SQL
corresponding to the physical model, and visualize the creation file in a
window.

¢ The "Run SQL" button is used to generate, if necessary, the SQL
corresponding to the physical model, and run the creation script using the SQL
script interpreter of the target RDBMS. If it is not the first generation and if the
"Keep old deletion file" and "Execute old deletion file before creation"
parameters have been activated, the old SQL deletion script is executed first.

Objecteering/SQL Designer User Guide 5-9

Chapter 5: User interface

The "SQL" tab of the properties editor on a package inside a

physical model

x|
FackagelnzidePhwsicaltodel

Stereotype:
f* Mone {© Databaze © Schema

Generats SOL | Visusles SOL| Run AL

Diagramsl Itemsl Diocumentation SQLl

Figure 5-5. The "SQL" tab of the properties editor on a package inside a physical model

Key:

L4

The "Stereotype" radio buttons are used to add the <<schema>> or
<<database>> stereotypes to a package inside a physical model. In a physical
model, a package can only be stereotyped <<schema>>.

The "Generate SQL" button is used to generate the SQL corresponding to the
physical model package.

The "Visualize SQL" button is used to generate, if necessary, the SQL
corresponding to the physical model package, and visualize the creation file in
a window.

The "Run SQL" button is used to generate, if necessary, the SQL
corresponding to the physical model package, and run the creation script using
the SQL script interpreter of the target RDBMS. If it is not the first generation
and if the "Keep old deletion file" and "Execute old deletion file before creation"
parameters have been activated, the old SQL deletion script is executed first.

Objecteering/SQL Designer User Guide

Chapter 5: User interface

The "SQL" tab of the properties editor on a class

Figure 5-6. The "SQL" tab of the properties editor on a class

Objecteering/SQL Designer User Guide 5-11

Chapter 5: User interface

Key:

L4

The "Persistence" radio buttons are used to add the {persistence} tagged value
to the class. If the "Undefined" radio button is selected, the class will have the
same behavior as the parent class.

The "Generalization handling" field is used to select the way in which
generalization is managed. "Undefined (same as parent)" indicates that the
class will handle generalization in the same way as its parent class; "One
table" adds the {oneTable} tagged value to the class; "One table per class"
adds the {oneTablePerClass} tagged value to the class; "One table per
concrete class" adds the {oneTablePerConcreteClass} tagged value to the
class.

The "Stereotype" radio buttons are used to stereotype the class <<sqlView>>
or <<procedureClass>>. <<sqlView>> means the class is an SQL view, whilst
<<procedureClass>> indicates that the class is only meant to contain stored
procedures.

The "oid type" field is used to select the type of the oid.

The "SQL name" fields are used to add the {sq/Name} tagged value to the
class.

The "Primary key..." button is used to add or remove primary keys to or from
the class.

Objecteering/SQL Designer User Guide

Chapter 5: User interface

The "SQL" tab of the properties editor on an attribute

o
r
r
(l
r

Drefault translation -

Figure 5-7. The "SQL" tab of the properties editor on an attribute

Objecteering/SQL Designer User Guide 5-13

Chapter 5: User interface

Key:

L4

5-14

The "Persistence" radio buttons are used to add the {persistence} tagged value
to the attribute.

The "SQL name" fields are used to add the {sq/Name} tagged value to the
attribute.

The "SQL default value" fields are used to add the {sqg/Default} tagged value to
the attribute.

The "Not null" tickbox is used to add the <<notNull>> constraint to the attribute.
The Unique" tickbox is used to add the <<unique>> constraint to the attribute.

The "SQL type" field adds the {sq/Type(selected element)} to the attribute, if an
element other than "Default translation" is selected from the dropdown list. The
list of values available depends on the RDBMS selected at module
configuration level.

The "Check constraint" field, if defined, adds a <<check>> type constraint with
the text as its body.

The "Rule constraint" field, if defined, adds a <<rule>> constraint, with the
entered text as its body.

Objecteering/SQL Designer User Guide

Chapter 5: User interface

The "SQL" tab of the properties editor on an association

|

+0, role::another clazs

Persistence:
¥ Persistent Transient

' ah association ' aszociation ophions
[T Tahble Mame

[Extemnal association

Azzociation roles :

A role’ rale :
[T SEL Marme |

Rale from ‘another class":
[T SEL Marme |

1. ‘another class' class not persistent

Dizgramsz | Iterms SOL |

Figure 5-8. The "SQL" tab of the properties editor on an association

Objecteering/SQL Designer User Guide 5-15

Chapter 5: User interface

Key:

L4

The "Persistence" radio buttons are used to add the {persistence} tagged value
to the attribute.

The "X association options" are the options which apply to the association.

The "Table name" field indicates the name of the table which manages the
association, if it is external.

The "External association" tickbox forces the association to be external, by
adding the {external} tagged value.

The "Association roles" fields are used to add the {sq/Name} tagged value one
or both of the association ends.

The "X class not persistent" warning warns the user that the class connected to
the association is not persistent and the model is not consistent (either the
association should be transient or the class should be persistent).

For an association which has 0..1 multiplicity, the following option is also available:

*

The "Add "class2" PK to "class1" PK" tickbox is used to add the {primaryKey}
tagged value to the "the_class2" role.

For an association in which both roles have multiplicity of 1, the following options
are also available:

.

The "Merge "class1" into "class2" " tickbox adds the {sq/Optimized} tagged
value to the "the_class1" role. This signifies that the table which corresponds
to the "class1" class must be merged in the table which corresponds to the
"class2" class. The name of the table is then "class2".

Conversely, the "Merge "class2" into "class1" " tickbox adds the {sq/Optimized}
tagged value to the "the_class2" role.

Objecteering/SQL Designer User Guide

Chapter 5: User interface

The "SQL" tab of the properties editor on a datatype

|2

[DataType

[T SOL Marne
SOL code

Rule constraint

Diagrams| Itemsl Documentation SGL

Figure 5-9. The "SQL" tab of the properties editor on a datatype

Key:

+ The "SQL name" tickbox, when checked, adds the {sq/Name} tagged value to
the datatype.

¢ The "SQL code" field is used to add an "sq/Code" note to the datatype. This
field only appears if the database manager selected at module configuration
level is "Sybase" or "SQLServer".

¢ The "Rule constraint" field, if defined, adds a <<rule>> constraint, with the
entered text as its body.

Objecteering/SQL Designer User Guide 5-17

Chapter 5: User interface

The "SQL" tab of the properties editor on a physical model class or
a class stereotyped <<table>>

x| =

tedia
Generated from "Media’ Class ﬁl

[Donot update

Stereotype:
= Mone & Table SOL view procedure class

Frimary Fey ... |
Update ... |

SOL Server options
[Fill factar |

[Segment |

Diagramslltems D ocumentation SDLl

Figure 5-10. The "SQL" tab of the properties editor on a physical model class or a class
stereotyped <<table>>

Key:

+ The "Stereotype" radio buttons add, respectively, the <<table>> stereotype (the
"SQL table" button), the <<sqlView>> stereotype (the "SQL view" button) or the
<<procedureClass>> stereotype (the "Procedure class button).

¢ The "Primary key..." button is used to add or remove primary keys to or from
the class.

¢ The "Update" button is used to update a single table of a physical model
without updating the whole model.

+ The "SQL Server options" fields are used to add tagged values specific to the
database selected at module configuration level.

5-18 Objecteering/SQL Designer User Guide

Chapter 5: User interface

The "SQL" tab of the properties editor on a physical model

attribute or a table column

I

+ieference | integer

[T Do rnot update

[SOL default value

[Mat null

™ Unique

SOL type

| Default tranglation j

Check constraint

Rule constraint

Diagrams | Items | Documentation SQLI

Figure 5-11. The "SQL" tab of the properties editor on a physical model attribute or table

column

Key:

*

The "Do not update" tickbox is used to add the {sq/DoNotUpdate} tagged
value.

The "SQL default value" field is used to add the {sql/DefaultValue} tagged
value.

The "Not null' tickbox, when checked, adds the <<notNull>> constraint to the
attribute.

The "Unique" tickbox, when checked, adds the <<unique>> constraint to the
attribute.

The "SQL type" field is used to add the {sq/Type} tagged value with the
selection as its parameter, as long as the selection is not " Default translation".

The "Check constraint" field, if defined, adds a <<check>> constraint, with the
entered text as its body.

The "Rule constraint" field, if defined, adds a <<rule>> constraint, with the
entered text as its body.

Objecteering/SQL Designer User Guide 5-19

Chapter 5: User interface

Generating the physical model

Introduction
There are two ways to generate a physical model:

+ by running the "SQL Designer/Generate physical model' command available in
the context menu which appears when you right-click

+ by clicking on the "Generate new physical model" button, available in the "SQL"
tab of the properties editor on a package

Updating a physical model

A physical model can be updated if the logical model to which it is linked has been
modified. For this, three solutions are available:

+ running the "SQL Designer/Generate physical model" command on the
physical model, available in the context menu which appears when you right-
click. A dialog box informs you that the physical model will be updated. Simply
confirm by clicking "OK" to start the update.

+ clicking on the "Update" button in the "SQL" tab of the properties editor for a
physical model. Simply click on this button to update the physical model.

+ clicking on the "Update" button in the "SQL" tab of the properties editor for a
logical model, which is opposite a list of all the physical models generated from
this package. Click on this button to start the update of the physical model in
question.

Avoiding the update of the physical model

If the user wants a part of the physical model not to be updated, for example, a
table or a column added manually, he can annotate this element
{sqIDoNotUpdate}. The "Do not update" tickbox in the "SQL" tab of the properties
editor can be used to add this tagged value.

Note: If a table is annotated {sq/DoNotUpdate}, neither the table nor its contents
will be updated.

5-20 Objecteering/SQL Designer User Guide

Generating the SQL

Chapter 5: User interface

Generated files

On a work product, the "SQL Designer/Generate SQL files" command produces a
relational diagram. By default, two files are produced. They are located in the
directory indicated in the generation work product's dialog box, and are called:

unit name create.sqgl

and

unit name delete.sqgl

For attributes which have been annotated {alterTable}, a third file is generated:

unit_name_alter.sql

The file suffix can be parameterized at GUI configuration level.

@SQL generation work product

— Properties
Mame

|suL

Generation path

| C:A\Projectsheql

[atabase user

L

|John St

Databasze user pazzword

Custom server

| MyServer

Cancel

Help

Figure 5-12. The generation work product dialog box

Objecteering/SQL Designer User Guide

5-21

Chapter 5: User interface

Selection

If generation is activated from a physical model or a package, then it is linked to all
the tables belonging to it. Generation cannot be launched from a table.

E._‘_Dhiecleering!UHL Modeler - FirstStep

File Edit Wiew Graph Tool: Windows ¥

M= 8 &R E
x|

FirgtStepsProject
; Library
@ [Medi
& [Editor
-- i Authar
-- i Medialibran
-- i Book

« Owo 0P E

x| -

MPD_Library

@3 glPhysicalM odel
-3 Eﬂ Libramy Library

HModify
Consult
& 12!
Wizards/Tools »
Analysiz Wizard » Gener

Delete children

- Wizualize creation file
Uiegran: | (2 “opEgEE Wizualize delete file

P
Wizsualize old delete file

Execute SOL creation file
Execute SOL delete file
Ewecute ALTER TABLE file

Figure 5-13. Generating the SQL files for the "MPD_Library" package

5-22 Objecteering/SQL Designer User Guide

Chapter 5: User interface

Steps:

1. Click on the SQL generation work product of the "MPD_Library" package in the
"ltems" tab of the properties editor using the right mouse-button.

2. Select the "SQL Designer/Generate SQL files" commands from the context
menu which appears.

Two alternative methods of SQL file generation are also available:

+ by clicking on the "Generate SQL" button in the properties editor on a package

+ by right-clicking on the package and then running the "SQL Designer/Generate
SQL" commands

Note: Double-clicking on the generation work product runs the "Propagate"
command for this work product.

Objecteering/SQL Designer User Guide 5-23

Chapter 5: User interface
Visualizing the SQL

Visualizing the generated SQL

It is possible to visualize the generated SQL file from the properties editor (as
shown in Figure 5-14).

¥ Dbjecteening/UML Modeler - FirstStep

File Edit Yiew Graph Toole Windows 2

MEBR | ¢ @R E| -

x|
FirstStepsProject
Library
@ rPD_Libran
i Media
L B Edior
% i Author
e} i MediaLibrary
. =- [Bock
£ ||
tPD_Librem
* || « = sglPhysicalModel
--3 ﬁ Library Library
1 [— L
BE Maodify
" Consult
2] 12!
Wwizards/Tools »
Analysiz Wizard ¥ Generate SAL fles
Delete children

Diagrams Item: Propagate Yisualize delete file
Yizualize old delete file
Execute 50L creation file
Erecute SOL delete file
Execute ALTER TABLE file

Figure 5-14. Visualizing the SQL file

5-24 Objecteering/SQL Designer User Guide

Chapter 5: User interface

Steps:
1. Select the "MPD_Library" package in the Objecteering/UML explorer.

2. Click on the "SQL" generation work product in the "ltems" tab of the properties
editor using the right mouse-button.

3. Select the "SQL Designer/Visualize creation file" commands from the context
menu which appears.

The "alter" file can also be visualized using the " Visualize creation file" command.

The "Visualize delete file" and "Visualize old delete file" commands are used to
visualize the delete file and the delete file from a previous generation. This file
only exists if the "Keep old delete file" module parameter is active.

Objecteering/SQL Designer User Guide 5-25

Chapter 5: User interface

Generated SQL

The "Editing the generated file" window (as shown in Figure 5-15) is used to
visualize the element's generated SQL file.

@ Editing the generated file

C:\Projectz\sqlsMPD_Libran)_create. zql

/
/# Objecteering/SOL Designer 1.7 for SCLServer !
/= Generation of "MPD_Librany"' Package. =

/ i

4 ¢

/* Generation of "Media" table *

/
BEGIM tran
go

CREATE TABLE Medial
reference INTEGER MOT HIJLL .
title WARCHAR[100) MULL ,
available BIT MULL .
the_editar_name YARCHAR(40] MOT WULL |
the_author_name WaRCHAR[40] MOT MULL ,
firstname WARCHAR[40) NOT MNULL |
library_name YARCHAR[40) MULL)

go

COMMIT tran
qo

LClose |

Figure 5-15. SQL generated for the "MPD_Library" package

5-26 Objecteering/SQL Designer User Guide

Chapter 5: User interface

Executing the SQL

Procedure

We are now going to execute the SQL, by following the procedure represented
below in Figure 5-16.

=% Objecteenng/UML Modeler - FirstStep

File Edit iew Graph Took *#indows 2

N2 a’elo

x| =
FirstStepsProject
=|
O il Editor
% T Author
(o i MediaLibrary
- & [Bock
|4
MPD_Librany

= aglPhysicalModel
--3 Ei; Library Library

EE todify

" Cotzuilt

() 151
Wizards/Tools »
Analysis Wizard »

Generate SOL files
Delete children

e Yisualize creation file
_Dlagrarns iz PepeEi Visualize delete file

e T
WizLialize old delate file

L creation file
Execute SOL delete file
Execute 4l TER TABLE file

Figure 5-16. Executing the SQL

Objecteering/SQL Designer User Guide 5-27

Chapter 5: User interface

Steps:

1. Select the generation work product of the "MPD_Library" package in the
"Iltems" tab of the properties editor using the right mouse-button.

2. Select the "SQL Designer/Execute SQL creation file" commands from the
context menu which appears.

Example of tables created in a database

The descriptions of the tables created below correspond to the "MPD_Library"
package.

Columns:
Coalumn) =
MM Type Size Scale F'a:I
‘I -
2 |TITLE ARCHARZ [100, I
3 avallABLE [MUMBER =1 I I
4 JTHE_AUTHORARCHARZ [40 I
5 JTHE_AUTHORASRCHARZ [=j 40 I
B =1
i =1
5 =1
3 =1
10 =1
11 =1
12 =1
13 =1

Figure 5-17. Tables created for the "Media" class

5-28 Objecteering/SQL Designer User Guide

Executing the alter table file

Chapter 5: User interface

Where attributes have been annotated using the {alterTable} tagged value,
Objecteering/SQL Designer generates, in addition to the normal SQL files, a file

named:

unit name alter.sqgl

To execute this file, the "Execute alter table file" command is used (as shown in

Figure 5-18).

) Objecteering/UML Modeler - FirstStep

File Edit Miew Graph Tool: ‘Windows 7

= R = =R

I
FirstStepsProject
Library
= E- @7 [MPD_Library
i Media

Q A Eciter

£ i
) i Medialibram

- [Book
|z

MPD_Library

|| == sglPhysicalMadel

-3 S_D; Library Library

1 —— =t
Todify
Congzult
2 151
Wizards/Tools »
Analysis Wizard * Generate SOL files

, Delete childien isualize credion file

Diagrams ltem: Fropagate Yisualize delece file

Yisualize old delete file

Execute SOL creation file
Execute SOL delete filz
| TER TAELE file

Figure 5-18. Running the "Execute alter table file" command

Objecteering/SQL Designer User Guide

5-29

Chapter 5: User interface

Steps:

1- Select the generation work product of the "MPD_Library" package in the
"ltems" tab of the properties editor using the right mouse-button.

2 - Select the "SQL Designer/Execute alter table file" commands from the context
menu which appears.

5-30 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Chapter 6: Annotating the model

Tagged value types

Introduction

The tagged values provided by Objecteering/lUML are used to adapt UML Profile
for SQL semantics to a specific UML model, in order to generate UML Profile for
SQL notions accurately.

Tagged values on an association

Tagged value SQL RDBMS
{external}
{cluster(cluster_name)} CLUSTER Oracle
{tablespace(tablespace_name)} | TABLESPACE

(Oracle)

SEGMENT (Sybase)
{partition(partition_name)} Sybase only
{pctfree(value)} PCTFREE Oracle
{pctused(value)} PCTUSED Oracle
{initrans(value)} INITRANS Oracle
{maxtrans(value)} MAXTRANS Oracle
{storage(value)} STORAGE Oracle
{maxRowsPerPage(value)} Sybase
{fillfactor(value)}

Tagged values on an association end

Tagged value SQL

{sqlOptimized}

{onDeleteCascade}

{primaryKey}

Objecteering/SQL Designer User Guide 6-3

Chapter 6: Annotating the model

Tagged values on an attribute

6-4

Tagged value

sQL

{sqlDefault(default_value}

Default

{globalTable(table_name)}

{indexKey(index_name,rank)}

{primaryKey(rank)}

{foreignKey(table_name,column_name
[constraint_name])}

{compositeKey(key_name,rank)}

{persistence(type_persistence)}

{sqlType(specific_type)}

{alterTable}

Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Tagged values on a class

Tagged value sQL
{fillfactor(value)} WITH FILLFACTOR (Sybase)
{maxRowsPerPage(value)} WITH MAX_ROWS_PER_PAGE
(Sybase)
cluster_name : {cluster(cluster_columns,...)} | CLUSTER (Oracle)
{initrans(value)} INITRANS (Oracle)
{maxtrans(value)} MAXTRANS (Oracle)
{pctfree(value)} PCTFREE (Oracle)
{pctused(value)} PCTUSED (Oracle)
{storage(clause)} STORAGE (Oracle)
{indexSpace(tablespace_name)} TABLESPACE (Oracle)
{indexStorage(clause)} STORAGE (Oracle)

{classAttributesTableName(table_name)}

{oneTablePerConcreteClass}

{oneTablePerClass}
{oneTable}
{noDDL}

{oid}
{tablespace(tablespace_name)} TABLESPACE (Oracle), ON (Sybase)
{partition(number)} PARTITION (Sybase)
{keyName(key_name)}

{indexName(index_name)}

{persistence(type_persistence)}

Objecteering/SQL Designer User Guide 6-5

Chapter 6: Annotating the model

Tagged values on a component

Tagged value

sQL

{dbName(database_path)}

Tagged values on a generalization

Tagged value

sQL

{persistence(the_persistence)}

Tagged values on a model element

Tagged value

sQL

{sqIName(SQL_Name)}

Tagged values on an operation

Tagged value

sQL

{tginsert}

{tgUpdate}

{tgDelete}

{tgBefore}

{tgAfter}

Note: The tagged values detailed in the table above must only be used on
operations which are stereotyped <<trigger>>.

6-6

Objecteering/SQL Designer User Guide

Note types

Chapter 6: Annotating the model

Introduction

Objecteering/lUML note types are
UML Profile for SQL syntax.

Note types on a class

used to complete the UML model with texts in

The ... note type

is used to...

sqlBefore indicate the SQL code to be added to the .SQL file
before the SQL code corresponding to the modeled
class.

sqlAfter indicate the SQL code to be added to the .SQL file

after the SQL code corresponding to the modeled
class.

Note types on a datatype

The ... note type

is used to...

sqlCode

provide the SQL definition of the datatype (Sybase).

Note types on an operation

The ... note type

is used to...

sqlCode

indicate the SQL code of an operation, so as to
allow the entry of the code for a stored procedure or
a trigger.

Objecteering/SQL Designer User Guide 6-7

Chapter 6: Annotating the model

Note types on a package

6-8

The ... note type

is used to...

sqlBefore define the SQL code which will be added at the
beginning of the .SQL file associated with the
modeled package.

sqlAfter indicate the SQL code which will be added to the

end of the .SQL file associated with the modeled
package.

Objecteering/SQL Designer User Guide

Stereotypes

Chapter 6: Annotating the model

Introduction

Objecteering/UML defines stereotypes, used to designate certain objects as being
In this way, a class
concerning an error which has occurred will be treated as an exception, if it bears
the <<XXX:exception>> stereotype.

concerned by the generation of UML Profile for SQL code.

Stereotypes on a constraint

constraint to an attribute
(Sybase).

The ... stereotype is used to... SQL

<<notNull>> indicate that the column must | NOT NULL
have a value.

<<null>> indicate the column may not NULL
have a value.

<<unique>> Indicate that the values taken | UNIQUE
by the attribute must be unique
for the entire table.

<<check>> associate a "check" type CHECK
constraint to an attribute.

<<rule>> associate a "rule" type CREATE RULE

Stereotypes on a class

The ... stereotype

is used to...

sQL

<<procedureClass>> specify that the class only
contains stored procedures.
<<table>> indicate that the class is an

SQL table.

<<sqlView>>

describe an SQL view.

Objecteering/SQL Designer User Guide

6-9

Chapter 6: Annotating the model

Stereotypes on a component

The ... stereotype is used to... SQL

<<database>> indicate the creation of a
database. The implementation
of components is used to
model dependencies between
databases, and their
deployment.

Stereotypes on an operation

The ... stereotype is used to... SQL

<<createView>> indicate that the operation
contains SQL code, placed on
an "sqglcode" note, allowing a
view to be created.

<<trigger>> indicate that the operation is a | CREATE TRIGGER
trigger.

<<storedProcedure>> indicate that the operation is a | CREATE
stored procedure. PROCEDURE

Stereotypes on a package

The ... stereotype is used to... SQL
<<schema>> indicate that the package is a

schema.
<<database>> indicate that the package is a

database. This stereotype is
only used in the physical
model.

<<sqlPhysicalModel>> indicate that the package is a
physical model.

6-10 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Annotating an association

Tagged values on an association

The tagged values used to annotate associations are presented in the following
table:

The ... tagged value Role SQL

{external} Indicates that the association
should be managed by a
specific table, whatever its

multiplicity.

{cluster(cluster_name)} Links the table to a predefined | CLUSTER
cluster.

{tablespace(tablespace_name)} | Indicates the name of the TABLESPACE

"tablespace" for Oracle or the | (Oracle)

name of the "segment" for

Sybase, used during table SEGMENT (Sybase)
creation.

{partition(partition_name)} Used to parameterize the
physical model table, which
manages this external
association.

{pctfree(value)} Used to parameterize the PCTFREE
physical model table, which
manages this external
association.

{pctused(value)} Used to parameterize the PCTUSED
physical model table, which
manages this external
association.

{initrans(value)} Used to parameterize the INITRANS
physical model table, which
manages this external
association.

{maxtrans(value)} Used to parameterize the MAXTRANS
physical model table, which
manages this external
association.

Objecteering/SQL Designer User Guide 6-11

Chapter 6: Annotating the model

The ... tagged value

Role

sQL

{storage(value)}

Used to parameterize the
physical model table, which
manages this external
association.

STORAGE

{maxRowsPerPage(value)}

Used to parameterize the
physical model table, which
manages this external
association.

{fillfactor(value)}

Used to parameterize the
physical model table, which
manages this external
association.

6-12

Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

The {external} tagged value

The {external} tagged value is used to force the creation of an external table, and
applies to those associations normally included (in other words, whose maximum
multiplicity is 1).

The {cluster} tagged value

The {cluster} tagged value is used to link the table to a predefined cluster.

The {tablespace} tagged value

The {tablespace} tagged value is used to specify the logical storage unit of the
data.

The {partition} tagged value

The {partition} tagged value is used to specify the number of pages linked together
in the table.

The {pctfree} tagged value

The {pctfree} tagged value is used to change the table's characteristics.

The {pctused} tagged value

The {pctused} tagged value is used to change the table's characteristics.

The {initrans} tagged value

The {initrans} tagged value is used to change the table's characteristics.

Objecteering/SQL Designer User Guide 6-13

Chapter 6: Annotating the model

The {maxtrans} tagged value

The {maxtrans} tagged value is used to change the table's characteristics.

The {storage} tagged value

The {storage} tagged value is used to change the table's characteristics.

The {maxRowsPerPage} tagged value

The {maxRowsPerPage} tagged value is used to specify the maximum number of
tuples per page.

The {fillfactor} tagged value

The {fillfactor} tagged value is used to specify the percentage of pages taken up
by the index.

6-14 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Annotating an association end

Tagged values on an association end

The tagged values used to annotate association ends are presented in the
following table:

The ... tagged value Role SQL

{sqlOptimized} Indicates that the source table
should be merged with the
destination table (1-1
association).

For class associations or 0..1
or 1..1 associations, it
indicates that the class
association's attributes are
placed in the opposite class,
without generating
intermediate tables.

{onDeleteCascade} Indicates that foreign keys
must be destroyed if the
primary key is deleted, and
provides the ON DELETE
CASCADE option for Oracle
and an ON DELETE trigger for
Sybase.

{primaryKey} Adds the primary key of the
destination class to the primary
key of the source class (as for
a composition association).

Objecteering/SQL Designer User Guide 6-15

Chapter 6: Annotating the model

The {sqlOptimized} tagged value

For an association with 1-1 multiplicity, this tagged value indicates that the source
table must be merged with the destination table.

For a class association with 1-1 or 1-* multiplicity, the attributes of the class
association will be placed in the destination class of the association end annotated
{sqlOptimized}, without generating an intermediary table.

The {onDeleteCascade} tagged value

The {onDeleteCascade} tagged value is used to maintain repository integrity
constraints on associations. For further information, please refer to the
"Association annotations" section in chapter 9 of this user guide.

The {primaryKey} tagged value

The {primaryKey} tagged value adds the primary key of the destination class to the
primary key of the source class (as for a composition association).

6-16 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Annotating an attribute

Tagged values on an attribute

The tagged values used to annotate attributes are presented in the following table:

The ... tagged value Role SQL

{sqlDefault(default_value} Used to specify a default
value for the attribute.

{globalTable(table_name)} Indicates that the attribute will
be generated in a global table
(this applies only to class
attributes).

{indexKey(index_name,rank)} Indicates that the attribute
participates in the definition of
an index.

{primaryKey(rank)} Indicates that the attribute is

the primary key of the table in
which the attribute is defined.
This tagged value contains
one parameter, used to
specify the order of the field,
if the primary key is made up
of several attributes.

{foreignKey(table_name,column_n | This indicates that the
ame [constraint_name])} attribute is a foreign key
defined on a table.

{compositeKey(key_name,rank)} | Indicates that the attribute
participates in the definition of
an index. This tagged value
has two parameters, used to
specify the name of the

index, and the order in which
the attribute will be defined in
this index. This type of index
must be defined for a table.

{persistence(type_persistence)} Indicates in the analysis
model whether or not the
attribute is persistent.

Objecteering/SQL Designer User Guide 6-17

Chapter 6: Annotating the model

The ... tagged value Role SQL

{sqlType(specific_type)} Allows the used of specific
types, such as LONG, RAW,
LONG RAW, LONG
VARCHAR, and so on.

{alterTable} Indicates to the module that it
should generate a
"unit_name_alter.sql" file for
each table containing
attributes annotated
{alterTable}

6-18 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

The {sqlDefault} tagged value

The {sqlDefault} tagged value indicates the default value in the SQL table. This
tagged value is used to express a default value which is not equal to that of the
standard "Expression of value" field.

The {globalTable} tagged value

The {globalTable} tagged value is only used on class attributes. It indicates
whether the class attribute should be generated in a global table, which groups
together all class attributes. The structure of this table is explained in "Class
attributes" paragraph of the "Afttributes" section in chapter 4 of this user guide.

This tagged value's parameter specifies the name of the global table. If this
tagged value is not defined, the attribute will be generated in the table specific to
the class attributes of the class.

The {indexKey} tagged value

The {indexKey} tagged value indicates that the attribute participates in the
definition of an index. This tagged value contains two parameters - the name of
the index, and the order in which the attribute will be defined in this index. The
class or the table must be annotated {indexName(index_name)}.

The {primaryKey} tagged value

The {primaryKey} tagged value indicates that the attribute is the primary key of the
table in which the attribute is defined. This tagged value contains one parameter,
used to specify the order of the field in the primary key.

The {foreignKey} tagged value

The {foreignKey} tagged value indicates that the attribute is a foreign key defined
on a table. Two parameters are necessary with this tagged value - the name of
the class containing the referenced attribute, and the name of the attribute itself.
The third parameter is only necessary if more than one foreign key constraint
exists between the same two tables.

Objecteering/SQL Designer User Guide 6-19

Chapter 6: Annotating the model

The {compositeKey} tagged value

The {compositeKey} tagged value indicates that the attribute participates in the
definition of a composite key. This tagged value has two parameters - the name
of the key, and the order in which the attribute will be defined within this key. The
class or the table must be annotated {keyName(key_name)}.

The {persistence} tagged value

The {persistence} tagged value is used to specify whether or not the attribute is
persistent. If its parameter is (persistent), then the attribute is persistent and has
an equivalent in the physical model (a column). If the parameter is (transient),
then the attribute is not persistent.

The {sqlType} tagged value

The {sqlType} tagged value indicates that the module should use a specific type
given as a parameter. Available types differ according to the RDBMS selected at
module parameter level. It is possible to customize generation, by modifying
existing types or creating new types in the types package.

The {alterTable} tagged value

The {alterTable} tagged value is used to indicate that the module should generate
a "unit_name_alter.sql" file for every existing table which contains attributes
annotated in this way.

6-20 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Annotating a class

Tagged values on a class

The tagged values used to annotate classes are presented in the following table:

The ... tagged value

Role

sQL

{fillfactor(value)}

Specifies the percentage of
pages filled by the index.

WITH FILLFACTOR
(Sybase)

{maxRowsPerPage(value)}

Specifies the maximum
number of tuples per page.

WITH
MAX_ROWS_PER_
PAGE (Sybase)

cluster_name :
{cluster(cluster_columns,...)}

Links the table to a
predefined cluster.

CLUSTER (Oracle)

{initrans(value)}

Changes the characteristics
of the table.

INITRANS (Oracle)

{maxtrans(value)}

Changes the characteristics
of the table.

MAXTRANS
(Oracle)

{pctfree(value)}

Changes the characteristics
of the table.

PCTFREE (Oracle)

{pctused(value)}

Changes the characteristics
of the table.

PCTUSED (Oracle)

{storage(clause)}

Changes the characteristics
of the table.

STORAGE (Oracle)

{indexSpace(tablespace_name)}

Specifies the tablespace for
the index.

TABLESPACE
(Oracle)

{indexStorage(clause)}

Specifies the STORAGE
class for creating the index.

STORAGE (Oracle)

name)}

{classAttributesTableName(table_

Defines the name of the table

which will contain all the
class attributes, except those
annotated {globalTable}.

{oneTablePerConcreteClass}

Indicates table mapping.

Objecteering/SQL Designer User Guide

6-21

Chapter 6: Annotating the model

The ... tagged value Role SQL
{oneTablePerClass} Indicates table mapping.
{oneTable} Indicates table mapping.
{oid} Indicates that an attribute of
"oid" type should be
generated in the table
corresponding to this class.
{tablespace(tablespace_name)} Specifies the logical storage | TABLESPACE
unit of the data. (Oracle), ON
(Sybase)
{partition(number)} Specifies the number of PARTITION
pages linked together in the | (Sybase)

table.

{keyName(key_name)}

Defines "unique" constraints.

{indexName(index_name)}

Declares an index associated
to a table.

{persistence(type_persistence)}

Indicates in the analysis
model whether or not the
class is persistent.

6-22

Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

The {fillfactor} tagged value

The {fillfactor} tagged value specifies the fill factor of each index page. This must
be between 1 and 100. If the fill factor is not defined, its default value is 0. A O fill
factor creates indexes clustered with full pages and indexes which are not
clustered by full page sheets.

Note: For further information, please refer to volume 1 of Sybase SQL Server
Reference Manual, page 3-79.

The {maxRowsPerPage} tagged value

The {maxRowsPerPage} tagged value is used to specify the maximum number of
tuples per page in the table. This must be between 0 and 256. If it is not defined,
its default value is 0. A 0 value creates indexes that are clustered with full pages
and indexes which are not clustered by full page sheets.

Note: For further information, please refer to volume 1 of Sybase SQL Server
Reference Manual, page 3-80.

The {cluster} tagged value

The {cluster} tagged value is used to link the table to a pre-existing cluster (for
example, one created within an "sqlbefore" item).

The descriptor of this tagged value provides the cluster's name, whilst the
parameters correspond to the list of columns associated with the cluster.

The {initrans} tagged value

The {initrans} tagged value takes as its unique parameter the value of the Oracle
parameter, with the same name as is generated in this case. It must not be used
with a cluster (for further information, please refer to the Oracle SQL
documentation, page 4-210).

Objecteering/SQL Designer User Guide 6-23

Chapter 6: Annotating the model

The {maxtrans} tagged value

The {maxtrans} tagged value takes as its unique parameter the value of the
Oracle parameter, with the same name as is generated in this case. It must not
be used with a cluster (for further information, please refer to the Oracle SQL
documentation, page 4-210).

The {pctfree} tagged value

The {pctfree} tagged value takes as its unique parameter the value of the Oracle
parameter, with the same name as is generated in this case. It must not be used
with a cluster (for further information, please refer to the Oracle SQL
documentation, page 4-210).

The {pctused} tagged value

The {pctused} tagged value takes as its unique parameter the value of the Oracle
parameter, with the same name as is generated in this case. It must not be used
with a cluster (for further information, please refer to the Oracle SQL
documentation, page 4-210).

The {storage} tagged value

The {storage} tagged value takes as its unique parameter the value of the Oracle
parameter, with the same name as is generated in this case. It must not be used
with a cluster (for further information, please refer to the Oracle SQL
documentation, page 4-210).

The {indexSpace} tagged value

The {indexspace} tagged value is used to specify the "tablespace" where the class
index will be created.

6-24 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

The {indexStorage} tagged value

The {indexStorage} tagged value is used to specify the "STORAGE" Oracle clause
for indexes. The parameter of this tagged value must contain, between inverted
commas, the different Oracle parameters associated with a parameter's values.
For example:

"INITIAL 1024 NEXT 2048"

The {classAttributesTableName} tagged value

The {classAttributesTableName} tagged value is used to indicate the name of the
table which will contain all those class attributes of this class not annotated
{globalTable}.

The {oneTablePerConcreteClass} tagged value

The {oneTablePerConcreteClass} tagged value is the default generalization table
mapping mode. It associates a table in the physical model with each concrete
class.

The {oneTablePerClass} tagged value

The {oneTablePerClass} tagged value is used to specify the generalization table
mapping mode. This mode generates, for each modeled class, a table in the
physical model. The rules for the previous transformation then apply to all
classes, without exception.

The {oneTable} tagged value

The {oneTable} tagged value is used to specify the generalization table mapping
mode. This mode generates a single table containing the set of attributes for all
the tables which make up a generalization tree.

Objecteering/SQL Designer User Guide 6-25

Chapter 6: Annotating the model

The {oid} tagged value

The {oid} tagged value is used to indicate that a primary key "oid" attribute must be
generated.

If this tagged value has no parameters, the type of this attribute depends on the
RDBMS selected in the "Database" module parameter (this is ROWID type for
Oracle, and INTEGER with the IDENTITY option for Sybase). The user can add
an "integer" parameter, indicating that the attribute will be an integer, or the
"string" parameter, indicating that the attribute will be a string.

This tagged value must only be used on logical model classes.

The {tablespace} tagged value

For Oracle, the {tablespace} tagged value is used to specify the logical storage
unit of the data. Classes not annotated {tablespace} are stored in the SYSTEM
tablespace.

For Sybase, the {tablespace} tagged value is used to specify a specific segment
of allocation of the table's pages. The segment will have to have been created
first by the adminstrator, using the following procedure:

sp_addsegment

The {partition} tagged value

The {partition} tagged value specifies the number of chain pages in the table. It
allows the SQL to execute insertions at the same time on the last page of each
chain. The partition must be greater than or equal to 2. By default, there is only
one chain of pages per table.

Note: For further information, please refer to volume 1 of Sybase SQL Server
Reference Manual, page 3-15.

The {keyName} tagged value

The {keyName} tagged value allows you to declare a composite key on the table
associated with the class. The parameter must contain the composite key name.
The composite key content is defined with {keyName} tagged values on the
attributes belonging to it. Several composite keys can be declared for the same
class.

6-26 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

The {indexName} tagged value

The {indexName} tagged value allows you to declare an index on the table
associated with the class. The parameter must contain the index name. The
index content is defined with {indexKey} tagged values on the attributes belonging
to it. Several indexes can be declared for the same class.

The {persistence} tagged value

The {persistence} tagged value's parameter is used to indicate whether or not the
class is persistent. If the parameter is (persistent), the class is persistent and has
an equivalent in the physical model (a table). If the parameter is (transient), the
class is not persistent.

Objecteering/SQL Designer User Guide 6-27

Chapter 6: Annotating the model

Notes on a class

The notes used to annotate classes are presented in the following table:

The ... note type is used to...

sqlBefore indicate the SQL code to be added to the .SQL file
before the SQL code corresponding to the modeled
class.

sqlAfter indicate the SQL code to be added to the .SQL file
after the SQL code corresponding to the modeled
class.

Stereotypes on a class

The stereotypes used to annotate classes are presented in the following table:

The ... stereotype is used to...

<<procedureClass>> specify that the class only contains stored
procedures.

<<table>> indicate that the class is an SQL table.

<<sqlView>> describe an SQL view.

6-28 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Annotating a component

Tagged values on a component

The tagged values used to annotate components are presented in the following
table:

The ... tagged value Role SQL

{dbName(database_path)} Indicates the physical path of
the database (Oracle).

The {dbName} tagged value

The {dbName} tagged value is used to reference tables defined in another
database, and to specify the path in the parameter (ORACLE only).

Stereotypes on a component

The ... stereotype is used to...

<<database>> indicate the creation of a database. The
implementation of components is used in the
logical model to model dependencies between
databases, and their deployment. In the physical
model, databases are modeled by <<database>>
packages.

Objecteering/SQL Designer User Guide 6-29

Chapter 6: Annotating the model

Annotating a constraint

Stereotypes on a constraint

The stereotypes used to annotate constraints are presented in the following table:

The ... stereotype is used to... SQL

<<notNull>> indicate that the column must | NOT NULL
have a value.

<<null>> indicate the column may not NULL
have a value.

<<unique>> Indicate that the values taken | UNIQUE
by the attribute must be unique
for the entire table.

<<check>> associate a "check" type CHECK
constraint to an attribute.

<<rule>> associate a "rule" type CREATE RULE
constraint to an attribute
(Sybase).

6-30 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

The <<notNull>> stereotype

The <<notNull>> stereotype is used for constraints on attributes. It indicates that
the attribute must be valued.

The <<null>> stereotype

The <<null>> stereotype is used for constraints on attributes. It indicates that the
column cannot be valued. This stereotype imposes the generation of a "NULL"
constraint in the column corresponding to the attribute. It allows the use of an
"undetermined" when inserting a tuple for which data has not been entered in the
column.

The <<unique>> stereotype

The <<unique>> stereotype is used for constraints on attributes. It indicates that
the values taken by the attribute must be unique for the entire table.

The <<check>> stereotype

The <<check>> stereotype is used for constraints on attributes, and is used to
associate a <<check>> type constraint to an attribute.

The <<check>> constraint allows the specification of a Boolean expression that
will have to be checked, in order for a tuple to be inserted into the table.

This constraint has as its body the logical condition, used as is, for building the
clause's SQL. We recommend that you place this body between inverted commas
for the syntactical analyzer. For example:

{check} ("(attl + att2) between 1 and 12")

Note: Remember in this case that if you wish to incorporate the " character into
the text, you must enter the ~ character before it.

The <<rule>> stereotype

The <<rule>> stereotype is used to associate a "rule" type constraint to an
attribute (Sybase only).

Objecteering/SQL Designer User Guide 6-31

Chapter 6: Annotating the model

Annotating a datatype

Notes on a datatype

The notes used to annotate datatypes are presented in the following table:

The ... note type

is used to...

sqlCode

provide the SQL definition of the datatype (Sybase).

6-32

Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Annotating a generalization

Tagged values on a generalization

The tagged values used to annotate generalizations are presented in the following
table:

The ... tagged value Role SQL

{persistence(the_persistence)} | Indicates whether or not the
generalization is persistent.

The {persistence} tagged value

The {persistence} tagged value is used to indicate whether or not the
generalization is persistent. If the parameter is (persistent), then the
generalization is persistent, whilst the (transient) parameter indicates that the
generalization is not persistent.

Objecteering/SQL Designer User Guide 6-33

Chapter 6: Annotating the model

Annotating a model element

Tagged values on a model element

The tagged values used to annotate model elements are presented in the
following table:

The ... tagged value Role SQL
{sqIName(SQL_Name)} Indicates the model element's
SQL name.

The {sqlName} tagged value

The {sqlName} tagged value is used as follows:

.
*
*

for a class, it indicates the name of the table, the view
for an attribute, it indicates the name of the table column

for an association end, it is the prefix for double foreign key attributes and for
foreign key constraint names

for an association, it indicates the name of the external table

for an operation, it indicates the SQL name of the trigger or of the stored
procedure

for a datatype, it indicates the SQL name of the type or the definition of the type
if no "sq/Code" note is present on the datatype

for a package, it indicates the name of the schema, the database or the
physical model

Note: An element which is annotated {sqIName} must have a name composed of

more than one character.

6-34

Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Annotating an operation

Tagged values on an operation

The tagged values used to annotate operations are presented in the following
table:

The ... tagged value Role SQL

{tglnsert} Indicates that the code for the | (ON) INSERT
operation containing an
"sqlCode" note is a trigger set
off on an "insert" operation.

{tgUpdate} Indicates that the code for the [(ON) UPDATE
operation containing an
"sqlCode" note is a trigger set
off on an "update" operation.

{tgDelete} Indicates that the code for the | (ON) DELETE
operation containing an
"sqlCode" note is a trigger set
off on an "delete" operation.

{tgBefore} Indicates that the trigger BEFORE
operation must be run before
updating the database
(Oracle).

{tgAfter} Indicates that the trigger AFTER
operation must be run after
updating the database
(Oracle).

Objecteering/SQL Designer User Guide 6-35

Chapter 6: Annotating the model

The {tginsert} tagged value

At least one of the {tginsert}, {tgUpdate} and {tgDelete} tagged values must be
present on an operation stereotyped <<trigger>>. They determine when the
trigger is launched.

The {tgUpdate} tagged value

In Oracle, the user can add as parameters the names of the columns which must
be observed for update.

At least one of the {tglnsert}, {tgUpdate} and {tgDelete} tagged values must be
present on an operation stereotyped <<trigger>>. They determine when the
trigger is launched.

The {tgDelete} tagged value

At least one of the {tgInsert}, {tgUpdate} and {tgDelete} tagged values must be
present on an operation stereotyped <<trigger>>. They determine when the
trigger is launched.

The {tgBefore} tagged value

In Oracle, one and only one of the {tgBefore} and {tgAfter} tagged values must be
defined on an operation stereotyped <<trigger>>.

The {tgAfter} tagged value

In Oracle, one and only one of the {tgBefore} and {tgAfter} tagged values must be
defined on an operation stereotyped <<trigger>>.

6-36 Objecteering/SQL Designer User Guide

Chapter 6: Annotating the model

Notes on an operation

The notes used to annotate operations are presented in the following table:

The ... note type is used to...

sqlCode indicate the SQL code of an operation, so as to
allow the entry of the code for a stored procedure or
a trigger.

Stereotypes values on an operation

The stereotypes used to annotate operations are presented in the following table:

The ... stereotype is used to...

<<createView>> indicate that the operation contains SQL code,
placed on an "sq/Code" note, allowing a view to be
created.

<<trigger>> indicate that the operation is a trigger.

<<storedProcedure>> indicate that the operation is a stored procedure.

Objecteering/SQL Designer User Guide 6-37

Chapter 6: Annotating the model

The <<createView>> stereotype

The <<createView>> stereotype indicates that the operation contains SQL code,
placed in an "sqlCode" note, which allows the creation of a view.

This stereotype must be placed on a class stereotyped <<view>>.

The <<trigger>> stereotype

The <<trigger>> stereotype indicates that the operation is a trigger. The SQL
code of the trigger must be contained in an "sqlCode" note.

The operation must be annotated by at least one of the {tginsert}, {tgUpdate} and
{tgDelete} tagged values.

In Oracle, the operation must also have either the {tgBefore} or {tgAfter} tagged
value present.

The <<storedProcedure>> stereotype

The <<storedProcedure>> stereotype indicates that the operation is a stored
procedure and contains SQL code placed in an "sqlCode" note.

6-38 Objecteering/SQL Designer User Guide

Annotating a package

Chapter 6: Annotating the model

Notes on a package

The notes used to annotate packages are presented in the following table:

The ... note type is used to...

sqlBefore define the SQL code which will be added at the
beginning of the .SQL file associated with the
modeled package.

sqlAfter indicate the SQL code which will be added to the

end of the .SQL file associated with the modeled
package.

Stereotypes on a package

The stereotypes used to annotate packages are presented in the following table:

The ... stereotype is used to...
<<schema>> indicate that the package is a schema.
<<database>> indicate that the package is a database.

<<sqlPhysicalModel>>

indicate that the package is a physical model.

Objecteering/SQL Designer User Guide 6-39

Chapter 6: Annotating the model

The <<schema>> stereotype

The <<schema>> stereotype indicates that the package is a schema in which
classes stereotyped <<table>> or <<view>> will be defined.

In a physical model, a <<schema>> can only be found on a package stereotyped
<<sqlPhysicalModel>> or <<database>>.

The <<database>> stereotype
The <<database>> stereotype indicates that the package is a database.

A <<database>> can only be found on a package stereotyped
<<sqlPhysicalModel>>.

The <<sqlPhysicalModel>> stereotype

The <<sglPhysicalModel>> stereotype indicates that the package is a physical
model. It can contain packages stereotyped <<database>> or <<schema>>, or
classes stereotyped <<table>>, <<view>> or <<procedureClass>>.

6-40 Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

Chapter 7: Module configuration

Overview of module configuration

Introduction
The user can himself parameterize the Objecteering/SQL Designer module. This
parameterization is carried out in the "Modifying configuration" dialog box, which is

launched either by clicking on the ‘jﬁ "Modify module parameter configuration"
button (as shown in Figure 7-1), or through the " Tools/Modify configuration" menu.

@Dhiecteering!UML Modeler - First5tepsProject
File Edit “iew Graph Tool: Windows 2

FirstStepsProject a Class diagram - PACKAGE

E| Library [s
P p-E Media =

Figure 7-1. Launching the "Modifying configuration" dialog box

Objecteering/SQL Designer User Guide 7-3

Chapter 7: Module configuration

Module parameter sets

In the SQL parameter category, six different sets of parameters are available:
+ General
Physical generation

Diagram generation on physical model

.
.
+ SQL generation
+ SQL generation filters
.

External edition

7-4 Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

General

[r—_‘J Modifying configuration

Modules General
B- 50L Designer ;I [Dizplay mapped elements on phpsical elements properties page

el

3 ene ™ Dizplay physical options in lagical modsl
- Physical generation Datsbase
- Diagram generation on phyzical model
- SEL generation | Oracle j
o S0L generation filkers
L Extemmal edition -

| Ok Cancel | Help |

Figure 7-2. Editing the configuration of the Objecteering/SQL Designer module - the "General"
sub-section

Configuration options are identical for Oracle, Sybase and SQL Server.

The ... option is used to ...

Display mapped elements on display on a physical model element properties editor

physical elements properties the element from which it was generated.

page

Display physical options in logical | display on the properties editor, in a logical model,

model options that would normally only be displayed in the
physical model.

Database specify the target RDBMS.

Objecteering/SQL Designer User Guide 7-5

Chapter 7: Module configuration

Physical generation

[(—_‘_1 Modifying configuration
Modules — Physical generation

E- UL Modeler [Generate compositions

Wizard:/Toals 1.2 [Show associations in the physical mods!
Analpsis Wizard V1.2 Default class attribute specific table name

B 50L Designer 1.1 | itableMama?_class_attb
- ' Diefault zhring colurmn size

| 255

[Generates filker column on tables generated with “one table" pattern

- Diagram generation on physical model
- S[L generation
- S0L genen_at.lon Filkers [SOL upper case
- External edition . .

¥ Generate class-association table name from the association name

| Ok Cancel | Help |

Figure 7-3. Editing the configuration of the Objecteering/SQL Designer module - the "Physical
generation" sub-section

7-6 Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

The ... option

is used to ...

Generate compositions

activate specific generation of compositions. If
deactivated, compositions are handled as simple
associations.

Show associations in the physical
model

display associations in the physical model.

Default class attributes specific
table name

determine the class attribute table name for each class
which has attributes which are not annotated
{globalTag}. %tableName% is replaced by the table
name generated from the class.

Default string column size

determine the size of string columns where the "Type
constraint" has not been defined on the source
attribute.

Generates filter column on tables
generated with "one table" pattern

generate a filter column on tables generated using the
"one table" pattern.

SQL upper case

generate in upper case. This feature allows you to
select the generation of all relational unit names in
capital letters. If none is specified, the symbols

correspond to those entered in Objecteering/UML.

Generate class-association table
name from the association name

indicate that the name of the table generated from a
class association is the name of the association. If the
tickbox is not checked, the name of the table generated
from a class association is the name of the class
association.

Objecteering/SQL Designer User Guide

7-7

Chapter 7: Module configuration

Diagram generation on physical model

[r—_‘J Modifying configuration

Modules

ML Modeler
‘whizards/Tools W11
Analpsiz Wizard W11
Docurmentation V4.4
B-5 OL Desigrer 1.1

b General
Phyzical generation

SOL generation filkers
----- Extemal edition

— Diagram generation on physical model
[Generates diagram with physical model

[Show tagged values in diagram
[Calar keys in graph

Primary key color

0153235

Foreign key color
| 01500

Foreign primary key color
| 0.0,255

Element fant

| Tirmes New Foman

=]

Cancel | Help |

Figure 7-4. Editing the configuration of the Objecteering/SQL Designer module - the "Diagram
generation on physical model" sub-section

7-8

Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

The ... option

is used to ...

Generate diagram with physical
model

automatically generate a class diagram on the physical
model.

Show tagged values in diagram

display tagged values in the physical model class
diagram.

Color keys in diagram

color attributes in the generated diagram to highlight
primary and foreign keys.

Primary key color

determine the color of the primary key attribute. The
color must have "red, green, blue" syntax, where red,
green and blue are numbers included between 0 (for
black) and 255 (full red, green and blue).

Foreign key color

determine the color of the foreign key attribute. The
color must have "red, green, blue" syntax, where red,
green and blue are numbers included between 0 (for
black) and 255 (full red, green and blue).

Foreign primary key color

determine the color of the foreign primary key attribute.
The color must have "red, green, blue" syntax, where
red, green and blue are numbers included between 0
(for black) and 255 (full red, green and blue).

Element font

determine the font used in the diagram. Use the
"Resources" button in the tool box and customize one
of the element fonts, and then copy and paste the
"font" field from the "Resources" dialog box to the
module parameter.

Objecteering/SQL Designer User Guide 7-9

Chapter 7: Module configuration

SQL generation

[r—_‘J Modifying configuration

Modules

— SOL generation

- UL Modeler

‘wizards/Tools 1.2

Analysiz Wizard V1.2
Documentation V4.6

- S0L Designer 1.1

eneral

hyzical generation

i External edition

iagram generation on physical model |

Default generation path
| ${GenRoot]hsql

Default SOL files suffix
| zql

Uszer custom types package name

[Show types package trace messages
D atabase user

Databaze uzer password

Custam SOL interpreter

| L

Custom server

-

]

Cancel | Help |

Figure 7-5. Editing the configuration of the Objecteering/SQL Designer module - the "SQL

generation" sub-section

The ... option

is used to ...

Default generation path

specify the directory for the generation of SQL files.

Default SQL files suffix

specify the default suffix used for SQL files.

User custom types package
name

specify the user customized type mapping project
name. This parameter is optional and is left undefined
by default.

Database user

indicate the name of the user of the database.

Database user password

indicate the password for the database user indicated.

Custom SQL interpretor

indicate the name and the path of the SQL interpretor.

Custom server

indicate the name and the path of the server.

7-10

Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

SQL generation filters

™ Modifying configuration

Modules S0OL generation filters
- ML Modeler [Creation file
-Wizards/Toolz V1.1 [Destruction file
';::ﬂ i;:t:;:‘\\ﬂ; ™ Keep old deletion file
=N S0L Desigrer V1.1 [T Execute old deletion file befare creation file
i General [~ User SOL code

Physical generation

. . . [T OhjecteeringUML comments
Diagram generation on physical model

™ Cornit
[~ Primary key
™ Indexes and other keys

[T Integrity constraints
™ Triggers

‘ OF. | Cancel | Help |

Figure 7-6. Editing the configuration of the Objecteering/SQL Designer module - the "SQL
generation filters" sub-section

Objecteering/SQL Designer User Guide 7-11

Chapter 7: Module configuration

The ... option

is used to ...

Creation file

generate a creation file. This feature allows the
generation of creation orders corresponding to the
model's mapping.

Destruction file

generate a deletion file. This feature allows the
generation of deletion orders corresponding to the
model's mapping.

Keep old deletion file

keep a backup of the old delete file before each
generation. It can be executed to cancel the old
creation file.

Execute old deletion file before
creation file

execute the backup delete file before the new creation
file, which cancels the old creation file effect.

User SQL code

take into account the user SQL code.

Objecteering/lUML comments

take into account Objecteering/lUML comments. This
is used to generate comments built by
Objecteering/UML, in order to provide improved
legibility of the SQL source produced.

Commit

generate "commit" orders. This generates a "commit"
after each creation (or deletion) batch, in order to allow
the RDBMS to record orders, without waiting for the
interpretation of all the SQL orders to be completed.

SQL upper case

generate in upper case. This feature allows you to
select the generation of all relational unit names in
capital letters. If none is specified, the symbols

correspond to those entered in Objecteering/UML.

Primary key

generate the primary key associated to the tables
corresponding to the operation's model, if they are
present.

Indexes and other keys

take into account secondary keys and indexes. This
feature is used to generate the secondary keys and
indexes associated to the tables corresponding to the
operation's model, if they are present.

Integrity constraints

generate constraints deduced from associations. This
feature selects those integrity constraints associated
with the operation's units, if they are present.

Triggers

generate triggers.

7-12

Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

External edition

[(_‘_1 Modifying configuration

todules External edition
E- S0L Designer || [T Generate identifiers
; Command for invoking extemnal editor

| N

S[L generation filkers
sternal edition

| 0K | Cancel | Help |

Figure 7-7. Editing the configuration of the Objecteering/SQL Designer module - the "External
edition" sub-section

The ... option is used to ...

Generate identifiers This parameter has no use in Objecteering/SQL Designer.

External editor invocation | This parameter has no use in Objecteering/SQL Designer.
command

Objecteering/SQL Designer User Guide 7-13

Chapter 7: Module configuration

Parameterizing by redefining J methods in a profile

To use this kind of parameterization, a license for the Objecteering/UML Profile
Builder module is required.

7-14 Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

Parameterizing the package unit

Parameterization

A parameterization method is used to define the default name used for the
database.

Method

The signature of the parameterization method is as follows:
Schema:SetDefaultDbName () return String

Default

Its value is located by default in the following UML profile:
default#external#Code#RDB

SetDefaultDbName ()
return String

return "Default";

Objecteering/SQL Designer User Guide 7-15

Chapter 7: Module configuration

Parameterizing the class unit

Parameterization methods

The ... method defines ...
SetTableName the name of the table corresponding to the association
SetPrimaryKeyName the name of the primary key declared in BD
Signatures
The signatures of the parameterization methods are as follows:
SetTableName () return String
SetPrimaryKeyName () return String

SetTableName method

// Default value
default#external#Code#RDB

SetTableName () return String
{

}

return Name;

SetPrimaryKeyName method

// Default value
default#external#Code#RDB
SetPrimaryKeyName ()
return String

String ret = SetTableName () ;
return.concat ("_PK") ;
return ret;

7-16 Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

Parameterizing the association unit

Parameterization methods

The ... method defines ...

SetTableName the name of the table corresponding to the association

SetPrimaryKeyName | the name of the primary key declared in BD

SetColumnPrefix the prefixes of the column names. These are added before the
name of the corresponding attribute.

Signatures

The signatures of the parameterization methods are as follows:

AssociationEnd:SetTableName (
ComposedClassName : in String) return String

AssociationEnd:SetPrimaryKeyName (
ComposedClassName : in String) return String

AssociationEnd:SetColumnPrefix (

OriginPrefix : inout String,
DestPrefix : inout String) return String
UML profile

These methods are declared in the following UML profile:
default#external#Code#RDB

Objecteering/SQL Designer User Guide 7-17

Chapter 7: Module configuration

SetTableName method

// Default value

AssociationEnd: default#external#Code#RDB#SetTableName
(in String ComposedClassName)
return String

ret.concat (destR, " of ", ComposedClassName) ;

SetPrimaryKeyName method

// Default value

AssociationEnd: default#external#Code#RDB#SetPrimaryKeyName
(in String ComposedClassName)
return String

ret.concat ("_PK");
return ret;

SetColumnPrefix method

// Default value

AssociationEnd: default#external#Code#RDB#SetColumnPrefix
(inout String OriginPrefix,
inout String DestPrefix)

{

OriginPrefix = destRole() ; OriginPrefix.concat (" ")
DestPrefix = originRole() ; DestPrefix.concat(" ") ;

}

The OriginPrefix and DestPrefix strings are used as prefixes to the columns
deduced from associations. Their purpose is to avoid repetition of column names
within the same table, especially in the case of included associations, reflexive
associations, or even in the case of classes with an association towards attributes
of the same name.

7-18 Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

Parameterizing attribute units

Parameterization methods

The ... method defines ...
SetColumnName the name of the column corresponding to the attribute.
SetlsNullVarName the name of the attribute generated when the attribute may be null

in the database (the case of the @not_null non specified
attributes).

Note: The "Type conversion" paragraph explains how to use methods to
parameterize types.

J method

The signatures of the parameterization methods are as follows:

Attribute:SetColumnName () return String

Attribute:SetIsNullVarName () return String

UML profile

These methods are declared in the following UML profile:
default#external#Code#RDB

Objecteering/SQL Designer User Guide 7-19

Chapter 7: Module configuration

SetColumnName method

// Default value
SetColumnName ()
return String

}

return Name;

SetlsNullVarName method

Default wvalue
SetIsNullVarName ()
return String

ret.concat ("IsNull") ;
return ret;

Y7/

7-20 Objecteering/SQL Designer User Guide

Chapter 7: Module configuration

Parameterizing by adding notes predefined by the
generation

Free SQL sections: sqlAfter and sqlBefore

The user has the possibility of defining notes such as sqlafter or sqlbefore within
packages or classes, according to whether he wishes to insert SQL at the
beginning or at the end of generation on the current unit.

This feature is especially useful for specifying in pure SQL, at invariant and pre-
and post-condition level, integrity constraints which are not deduced from the
model.

Example

text : sqglAfter

insert into graphic object values (10,11);
insert into graphic_object values (50,100);
grant select on table graphic object to public;

Notes defined on a package

The ... note type is inserted ...

sqlBefore at the beginning of the file containing the SQL instructions
generated for the package.

sqlAfter at the end of the file containing the SQL instructions generated
for the package.

Notes defined on a class

The ... note type is inserted ...

sqlBefore at the beginning of the SQL instructions related to the class

sqlAfter at the end of the SQL instructions related to the class

Note: These text zones can be created through Objecteering/UML Profile Builder
in order to automate the generation of model context information.

Objecteering/SQL Designer User Guide 7-21

Chapter 8: Oracle Annex

Chapter 8: Oracle Annex

Introduction

Overview

The object of this annex is to present the method used to adapt generation to the
Oracle V8 RDBMS. The annex is divided into the following model units: class,
association and attribute. For each unit, explanations are related to generation
carried out and optional annotations. The last section deals with the
characteristics of the application part.

Generation deals especially with the mapping of constraints and types.

Annotations specific to Oracle allow RDBMS features to be used in a simple way
(cluster, optimization, additional constraints).

Environment variables

To be able to run SQL scripts to create tables, a user name and a password must
exist. Objecteering/lUML uses the O_SQL_USER environment variable that
indicates them: name/password/serverName.

Objecteering/SQL Designer User Guide 8-3

Chapter 8: Oracle Annex

Class - Generation specific to Oracle

Primary key
The primary key is directly implanted after use of the instructions of the SQL89
norm: CONSTRAINT ... PRIMARY KEY.
For example:

ALTER TABLE class ADD (

CONSTRAINT class_PK PRIMARY KEY (attributel, attribute2)
)

Objecteering/SQL Designer User Guide

Chapter 8: Oracle Annex

Class annotations

Tagged values

The tagged values available at class level are presented in the following table:

The ... tagged is used to ... Oracle
value
{key} define "unique" constraints. UNIQUE
{check} define a "check" constraint. CHECK
{cluster} link the table to a predefined cluster. CLUSTER
{initrans} change the characteristics of the table. INITTRANS
{maxtrans} as above. MAXTRANS
{pctfree} as above. PCTFREE
{pctused} as above. PCTUSED
{storage} as above. STORAGE
{noDDL} delete the generation of the definition
language.
{tablespace} specify the logical storage unit of the data. TABLESPACE
{indexSpace} specify the tablespace for the index. TABLESPACE
{indexStorage} _spdecify the STORAGE class for creating the STORAGE
index.

Objecteering/SQL Designer User Guide

8-5

Chapter 8: Oracle Annex

The {check} tagged value

This tagged value's unique parameter is the logical condition, used as is, for
building the clause's SQL. We recommend that you place this parameter between
inverted commas for the syntactical analyzer.

Example:
{check} (" (attl + att2)between 1 and 12")

The {cluster} tagged value

This tagged value is used to link the table to a pre-existing cluster (for example
created within a "sqlbefore" item).

The descriptor of the tagged value gives the cluster's name, whereas the
parameters correspond to the list of columns associated to the cluster.

The {key} tagged value

This {key} tagged value allows the definition of uniqueness constraints associated
with the generated table. The descriptor gives the name, whilst the parameters
provide the necessary columns.

Example:

ALTER TABLE <table name> ADD CONSTRAINT (<constraint name>
UNIQUE (<attribute names))

The {initrans}, {maxtrans}, {pctfree}, {pctused} and {storage}
tagged values

These tagged values have as unique parameter the value of the Oracle
parameter, with the same name as will be generated in this case. They must not
be used together with a cluster (please see Oracle SQL 4-210).

The {tablespace} tagged value

This tagged value is used to specify the logical storage unit of the data. Classes
not annotated with {fablespace} are stored in the SYSTEM tablespace.

8-6 Objecteering/SQL Designer User Guide

Chapter 8: Oracle Annex
The {indexSpace} tagged value

This tagged value allows the specification of the "tablespace" where the class
index will be created.

The {indexStorage} tagged value

This tagged value is used to specify the "STORAGE" Oracle clause for indexes.

The parameter of this tagged value must contain, between inverted commas, the
different Oracle parameters associated to a parameter's value.

Example:
"INITIAL 1024 NEXT 2048"

Objecteering/SQL Designer User Guide 8-7

Chapter 8: Oracle Annex

Association - Generation specific to Oracle

Referential constraints

Referential constraints are mapped by the following instructions:
SQL89 CONSTRAINT ... FOREIGN KEY ... REFERENCES.

Parameterization

Referential constraint names can be parameterized using the
SetForeignKeysNames J method which simply has to be redefined under a UML
Profile. The method’s parameters are as follows:

The ... parameter represents ...
ComposedClassName the name of the composed class
fkDest the destination "foreign key"
fkOrigin the origin "foreign key"

8-8 Objecteering/SQL Designer User Guide

Chapter 8: Oracle Annex

SetForeign-KeysNames method

// Default value for Oracle.
AssociationEnd:default#external#Code#RDB#DDL#Oracle#

SetForeignKeysNames
(in String ComposedClassName,
inout String fkOrigin,
inout String fkDest)

String fkO;
String fkD;

fkO = SetTableName (
fkD SetTableName (
fkO.concat (" _OFK") ;
fkD.concat (" _DFK") ;
fkOrigin = fkO;
fkDest = fKkD;

ComposedClassName) ;
ComposedClassName) ;

// method SetForeignKeysNames

Objecteering/SQL Designer User Guide 8-9

Chapter 8: Oracle Annex

Multiplicity constraints

The generation of tables for Oracle V8 uses triggers to map multiplicity constraints
in associations.

Multiplicity constraints are checked after insertion by a trigger named TI_name of
the table. However, Oracle cannot be used to generate an AFTER DELETE type
trigger, able to manage minimum multiplicities during a deletion.

We will generate a multiplicity test through association orientation if the
association is mutual with m-n multiplicity.

Example of multiplicity constraints

DDL generated for an association with the 0-5 multiplicity:
CREATE TRIGGER TI_role2_of_ class
BEFORE INSERT
ON role2 of class
FOR EACH ROW
DECLARE
dummy INTEGER;
BEGIN
SELECT COUNT (*)
INTO dummy
FROM role2_of class
WHERE clef = :new.clef;
IF NOT (dummy < 5)
THEN raise_application_error(-20501,
'role2_of class : May not insert
element') ;
END IF;
END ;

8-10 Objecteering/SQL Designer User Guide

Chapter 8: Oracle Annex

Association annotations

Tagged values

The tagged values available at association level are presented in the following
table.

The ... tagged value allows ... Oracle
{check} as for class CHECK
{cluster} as for class CLUSTER
{initrans} as for class INITRANS
{maxtrans} as for class MAXTRANS
{onDeleteCascade} the addition of the "ON DELETE ON DELETE

CASCADE" option to the constraints CASCADE
deduced from the model's associations
{pctfree} as for class PCTFREE
{pctused} as for class PCTUSED
{storage} as for class STORAGE
{tablespace} as for class TABLESPACE

It is necessary to specify the tagged values other than {onDeleteCascade} on
each orientation of the association in the case of a mutual association.

{onDeleteCascade}

This tagged value offers the possibility of deleting foreign keys which reference a
primary key when the primary key is deleted.

Objecteering/SQL Designer User Guide 8-11

Chapter 8: Oracle Annex

Attribute - Generation specific to Oracle

Mapping types

The correspondence between the types of the different "spaces" is presented in
the table below.

Model ORACLE Data Type
integer INTEGER
{short integer} INTEGER

{long integer} INTEGER
{unsigned integer} INTEGER
{boolean} INTEGER
{real} FLOAT

{long real} FLOAT
string(n) VARCHAR2(n)
char CHAR (1)

set {array} (n) of char VARCHAR2 (n)

Note: The types called Oracle Data Type here correspond to the internal type
described in the Programmer's Guide to the Oracle Precompilers.

8-12 Objecteering/SQL Designer User Guide

Chapter 8: Oracle Annex

Attribute annotations

Tagged values

The tagged values available at attribute level are presented in the following table:

The ... tagged | is used to ... Oracle

value

{check} declare a "check" type constraint in the column CHECK
associated to the attribute in question.

{default} give the default value in the column DEFAULT

{null} specify that the column is NULL type NULL

{unique} declare that the column as unique UNIQUE

The {check} tagged value

The {check} tagged value allows the specification of a Boolean expression in a
column, which will have to be checked so that a tuple is inserted in the table.

See the {check} tagged value on classes for further details.

The {null} tagged value

This tagged value imposes the generation of a "NULL" constraint in the column
corresponding to the attribute.

This constraint allows the use of an "undetermined" when inserting a tuple, for
which data has not been entered in the column.

Objecteering/SQL Designer User Guide 8-13

Chapter 8: Oracle Annex

Distributed databases

Overview

During a transaction, it is possible to reference several remote tables, in addition
to local tables. Generation takes into account these functions, by adding the
name of the feature to the handling language, after the table's complete name.
This notation interpreted by Oracle allows "transparent" access to distant data.

Tagged values

The ... tagged is used to ... Oracle

value

{dbName} specify the name of the service and the @
name of the facade package.

Example: Annotation of the "Employee" class with the {dbname}(hq,objecteering,
com) tagged value. A request in the relational table resulting from the
"Employee" class will take the following form:

SELECT * FROM Employee@hg.objecteering.com;

Consequences for generation

The definition language related to the classes annotated with the {dbName}
tagged value is separate from the rest of the code generated for local classes. A
file is generated for each annotated class. The file name is the concatenation of
the class name, with the "Of" character string, and with the first parameter passed
to the {dbName} tagged value.

Example of file name: EmployeeOfhq.

Restrictions

The generation checks that there is no association between classes annotated
with a different database name.

8-14 Objecteering/SQL Designer User Guide

Chapter 8: Oracle Annex

Remarks

To reach a distant database, the service named (DNS) must be operational. If this
is not the case, a link towards the distant database must be created in the
following way:

CREATE DATABASE LINK hg.objecteering.com USING
'service_name';

The service name should correspond to the data entered in the "tnsnames.ora"
file. (please refer to the SQL*Net Administrator's guide).

Objecteering/SQL Designer User Guide 8-15

Chapter 8: Oracle Annex

Parameterizing generation - Specificity

Overview

Oracle allows the use of specific types, such as LONG, RAW, LONG RAW, LONG
VARCHAR, etc. Furthermore, Objecteering/SQL Designer has attribute
parameterization, which allows you to use these types.

Available types

The available types are as follows:

number, long, date, longraw, raw, rowid, clob, blob, bfile
and nclob.

Parameterization

Parameters can be provided by defining the "Type constraint" field for the
attribute. These specific types are parameterized using the {type} (<specific
type>) tagged value set on an attribute.

Example
{type} (number), {type} (long),

8-16 Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex

Chapter 9: Sybase Annex

Introduction

Overview

The object of this annex is to present the method used to adapt generation to the
Sybase V11 RDBMS. The annex is divided into the following model units :class,
association and attribute. For each unit, explanations are related to the
generation carried out and the optional annotations. The last section deals with
the characteristics of the application part.

The generation deals especially with the mapping of constraints and types.

Annotations specific to Sybase allow RDBMS features to be used in a simple way
(optimization, additional constraints).

Environment variables

The compilation of applications for the Sybase RDBMS requires the presence of
the following environment variables:

+ SYBASE must contain the Sybase root directory path
¢ PATH must contain $SYBASE/bin

+ LANG must not be positioned to us

The execution of applications produced for the Sybase RDBMS requires the
presence of the following environment variables:

¢ O _SQL_USER must contain the name of the Sybase RDBMS known
password, which will be used to create relational tables. The format of this
variable is as follows: name/passwd.

¢ LANG must not be positioned to us.

End of the SQL command

Each Transact-SQL statement must end with the "go" command (this can be
renamed). This command replaces the traditional ';" in SQL.

Objecteering/SQL Designer User Guide 9-3

Chapter 9: Sybase Annex

Identifiers

The size of Sybase identifiers is limited to 30 characters. The first character
should be alphabetical.

Case sensitivity

Sybase standard installation makes the SQL server "case sensitive". This has the
effect of requiring that SQL generation conform with the case of the UML model
classes or attributes. The "SQL upper case" parameter must not be selected in
this case.

However, it is possible to make identifiers case-sensitive, by reconfiguring the
"sort" order" of the SQL server (see Sybase SQL Server, Ref Manual Vol 1 page
5-41).

You will then be free to specify the desired case option when generating the SQL.

9-4 Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex

Package annotations

Tagged values

The tagged values specific to Sybase at package level are presented in the
following table:

The ...tagged | T | is used to ... Sybase

value

genCascade S | take into account the CREATE TRIGGER ...
{onDeleteCascade} tagged value in
SQL generation

The {genCascade} tagged value

See the {onDeleteCascade} tagged value in the "Association annotations" section.

The {schemaBD} tagged value

The {schemaBD} tagged value has no impact on the Sybase coupling.

Objecteering/SQL Designer User Guide 9-5

Chapter 9: Sybase Annex

Class - Generation specific to Sybase

Primary key

The primary key (tagged value {primaryKey}) is directly inserted after use of
instructions of the SQL89 norm: CONSTRAINT ... PRIMARY KEY.

For example:

ALTER TABLE class ADD
CONSTRAINT class_PK PRIMARY KEY (attributel,
attribute2)

Note: Only one primary key can be specified by the ALTER TABLE command.

Its deletion (drop) is carried out using the DROP CONSTRAINT clause of the
ALTER TABLE command.

For example:

ALTER TABLE class
DROP CONSTRAINT class_PK

Note: Only one primary key can be deleted by the ALTER TABLE command.

9-6

Objecteering/SQL Designer User Guide

Class annotations

Chapter 9: Sybase Annex

Tagged values

The tagged values specific to Sybase possible at class level are presented in the

following table:

number of tuples per page

The ... tagged value | is used to ... Sybase

{primaryKey} define the primary key of the | PRIMARY KEY
class and create an index
with direct access.

{key} declare a key on a UNIQUE
combination of attributes.

{index} specify an index on a CREATE INDEX
combination of attributes.

{check} declare a "check" type CHECK
constraint on a combination
of attributes.

{fillfactor} specify the percentage of WITH FILLFACTOR
pages filled by the index

{tablespace} specify the name of the ON
segment in which the table
will be allocated.

{partition} specify the number of pages | PARTITION
chained together in the table.

{maxRowsPerPage} specify the maximum WITH

MAX_ROWS_PER_PAGE

Objecteering/SQL Designer User Guide

9-7

Chapter 9: Sybase Annex
The {key} tagged value

This {key} tagged value is used to define uniqueness constraints associated with
the generated table. The descriptor gives the name, whilst the parameters
provide the necessary columns.

The {check} tagged value

The {check} tagged value allows the specification of a Boolean expression in a
combination of columns of the table, that will have to be checked so that a tuple
be inserted in the table.

This tagged value has for unique parameter the logical condition, used as is, for
building the clause's SQL. We recommend that you place this parameter between
inverted commas for the syntactical analyzer.

Example:
{check} (" (attl + att2) between 1 and 12")

Note: Remember in this case that if you wish to incorporate the " character in a
tagged value's parameter, it is necessary to enter the ~ character before it.

The {fillfactor} tagged value
This tagged value specifies the fill factor of each index page.
The f{fillfactor} must be between 1 and 100.
If the {fillfactor} is not specified, the default value is 0.
A 0 {fillfactor} creates indexes clustered with full pages and indexes not clustered
by full page sheets.

Note: (please refer to Sybase SQL Server Reference Manual Vol 1 pages 3-79).

9-8 Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex
The {partition} tagged value

This tagged value specifies the number of chain pages in the table. It allows the
SQL to execute insertions at the same time on the last page of each chain.

The partition must be greater than or equal to 2.

By default, there is only one chain of pages per table.

Note: (please refer to Sybase SQL Server Reference Manual Vol 1 pages 3-15).

The {maxRowsPerPage} tagged value

This tagged value allows the specification of the maximum number of tuples per
page in the table.

{maxRowsPerPage} must be between 0 and 256.

If the {maxRowsPerPage} is not specified, the default value is 0.

A 0 value for {maxRowsPerPage} creates indexes that are clustered with full
pages and indexes not clustered by full page sheets.

Note: (please refer to Sybase SQL Server Reference Manual Vol 1 pages 3-80).

The {tablespace} tagged value

This tagged value specifies a specific segment of allocation of the table's pages.

The segment will have to have been created first by the administrator using the
sp_addsegment procedure.

The {schemaBD} tagged value

The {schemaBD} tagged value has no impact on the Sybase coupling.

Objecteering/SQL Designer User Guide 9-9

Chapter 9: Sybase Annex

Association - Generation specific to Sybase

Referential constraints

Referential constraints are mapped by SQL instructions:

FOREIGN KEY ...

Note: only one referenti
"alter table" comm

REFERENCES.

al constraint can be specified using the Transact SQL
and.

Example of referential constraint

SQL generated to specify

the referential constraints of an Association:

ALTER TABLE role of tablel

ADD FOREIGN KEY
REFERENCES tab

(attl of role of tablel)
lel (attl)

ALTER TABLE role of tablel

ADD FOREIGN KEY
REFERENCES tabl

Parameterization

Referential constraint
SetForeignKeysNames J

(att2_of role of tablel)
e2 (att2)

names can be parameterized using the
method that simply has to be redefined under a UML

profile. The method’s parameters are as follows:

The ...parameter

represents ...

ComposedClassName

the name of the composed class

fkDest

the destination "foreign key"

fkOrigin

the origin "foreign key"

Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex

SetForeignKeysNames method

// Default value for Sybase
AssociationEnd:default#external#Code#RDB#DDL#Sybase#

SetForeignKeysNames
(in String ComposedClassName,
inout String fkOrigin,
inout String fkDest)

String fkO;
String fkD;

fkO = SetTableName (
fkD SetTableName (
fkO.concat (" _OFK") ;
fkD.concat (" _DFK") ;
fkOrigin = fkO;
fkDest = fkD;

ComposedClassName) ;
ComposedClassName) ;

// method SetForeignKeysNames

Objecteering/SQL Designer User Guide 9-11

Chapter 9: Sybase Annex

Multiplicity constraints

The generation of tables for Sybase V11 uses triggers to map multiplicity
constraints in associations.

Multiplicity constraints are checked after insertion by a trigger named TI_name of
the table and after deletion by a trigger named TD_name of the table.

We will generate a multiplicity test through association navigation if the
association is mutual with the m-n multiplicity.

Example of multiplicity constraint

SQL generated for an association with 0-5 multiplicity:

CREATE TRIGGER TI_role2 of class
ON role2 of class
FOR INSERT AS
IF NOT ((SELECT COUNT (*)
FROM role2 of class, inserted
WHERE role2 of class.key = inserted.clef) <= 5)
BEGIN
ROLLBACK TRANSACTION
RAISERROR 99999 "role2 of class : May not insert
element,
cardinality constraint violation"
END

Note: In this case, there is no generation of the FOR DELETE trigger to check
minimum multiplicity, as it is 0.

9-12 Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex

{onDeleteCascade}
SQL generated for a tuple deletion in the table C1 or C2.

Let us suppose that the role_of C1 is the table which implements an association
between C1 and C2, when a tuple of C1 or C2 is deleted, and that we also want to
delete from the table which makes up the association between C1 and C2 all
tuples which have the key of the deleted tuple as foreign key.

We will generate a trigger for each class concerned by the association:

CREATE TRIGGER TDCAS C1

ON C1

FOR DELETE AS

DELETE role of C1

FROM role of Cl, deleted

WHERE role of Cl.clefCl = deleted.clefCl
and

CREATE TRIGGER TDCAS_ C2
ON C2
FOR DELETE AS
DELETE role of C1
FROM role of Cl, deleted
WHERE role of Cl.clefC2 = deleted.clefC2

Objecteering/SQL Designer User Guide 9-13

Chapter 9: Sybase Annex

Association annotations

Tagged values

The tagged values specific to Sybase and which are available at association level
are presented in the following table:

The .. tagged | is usedto... Sybase

value

{fillfactor} as for class WITH FILLFACTOR

{tablespace} as for class ON

{partition} as for class PARTITION

{maxRowsPerPage} as for class WITH

MAX_ROWS_PER_PAGE

{onDeleteCascade} maintain referential integrity CREATE TRIGGER ...

constraints on associations.

In the case of a mutual association, it is necessary to specify the tagged values
other than {onDeleteCascade} on each orientation of the association.

9-14 Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex

{onDeleteCascade}

This tagged value offers the possibility of deleting the foreign keys that reference
a primary key when this key is deleted.

Indeed, when we delete a tuple with a primary key, we also want to delete tuples
with a corresponding foreign key in the dependent tables. This is especially true if
the table is concerned by an association.

As far as the implementation of this tagged value is concerned, Sybase does not
provide the ON DELETE CASCADE (standard SQL92) clause on the referential
integrity constraints.

Furthermore, it is not possible to use the triggers which come with the referential
integrity constraints in a simple way, since these are checked before the launching
of the triggers.

The Sybase coupling suggests two ways of interpreting the {onDeleteCascade}
tagged value:

+ The first is to ignore this tagged value and to let the application delete
associations between instances before deleting the instances themselves.
This option is chosen by default.

+ The second is to implement this property in the SQL, using the triggers. In this
case, you must also simulate the referential integrity constraints which use
triggers on the insertion.

+ In relation to this, the {gen cascade} tagged value indicates that the
{fonDeleteCascade} tagged value should provoke the generation of the triggers
necessary in the SQL.

¢ The drawback in this is that it makes the FOREIGN KEY referential integrity
constraints disappear from the produced SQL. REFERENCES ordinarily used
on tables which materialize associations.

+ This choice should be avoided if you wish to reverse engineer the produced
SQL, as the associations between the tables no longer clearly appear.

Objecteering/SQL Designer User Guide 9-15

Chapter 9: Sybase Annex

Attribute - Generation specific to Sybase

Mapping types
The correspondence between the types of the different "spaces" is presented in
the table below:

Model Sybase Data Type
integer INTEGER
{short integer} SMALLINT
{long integer} INTEGER
{unsigned integer} INTEGER
boolean BIT

real REAL

{long real} FLOAT (p)
string(n) VARCHAR (n)
char CHAR (1)
{unsigned char} TINYINT

set {array}(n) of char CHAR (n)

Note 1: Types called here under Sybase Data Type correspond to the SQL
Server Datatype, described in the Open Client Embedded SQL/C
Programmer's Manual, pages 4-16 and 4-17.

Note 2: The SQL VARCHAR type is a character type in which the blanks at the
end have been removed.

Note 3: The Objecteering/lUML string(*) and string() types do not have an
equivalent type in Sybase. Indeed, it is compulsory to specify the size of
a string, the size of the VARCHAR of Sybase having been limited to 255
characters.

9-16 Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex

Attribute annotations

Tagged values

The tagged values specific to Sybase available at attribute level are presented in

the following table:

The ... tagged is used to ... Sybase

value

{default} give the default value in the column DEFAULT

{check} declare a "check" type constraint in the CHECK
column associated to the attribute in question.

{null} specify that the column is NULL type NULL

{unique} declare the column as unique UNIQUE

Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex
The {check} tagged value

The {check} tagged value allows the specification of a Boolean expression in a
column, that will have to be checked in order that a tuple be inserted in the table.

The name of the column in question must appear in the expression and must be
the only one.

See the {check} tagged value on the classes for further details.

The {null} tagged value

This tagged value imposes the generation of a "NULL" constraint in the column
corresponding to the attribute.

This constraint allows the use of an "undetermined" when inserting a tuple for
which data has not been entered in the column.

The {unique} tagged value

This tagged value is used to specify that all the values of the column are unique.

9-18 Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex

Specific SQL errors

SQL errors

The SQL generated for Sybase RDB can, in certain cases, provoke errors which
are then transferred to the application.

These errors are as follows:
¢ 20501 Tablename : May not insert element, cardinality constraint violation

This error is launched when the upper limit of the association's multiplicity is
surpassed. In this case, a rollback of the transaction is automatically launched.

¢ 20502 Tablename : May not delete element, cardinality constraint violation

This error is launched when the lower limit of the association's multiplicity is
surpassed. In this case, a rollback of the transaction is automatically launched.

¢ 20503 Tablename : May not insert element, primary key of TableName
unknown

This error is triggered when you try to create an association towards an instance
that is not yet in the database. This error can only be launched if the
{gen_cascade} tagged value is present on the association's package. Otherwise,
the FOREIGN KEY REFERENCES referential integrity constraint will be violated.

¢ 20504 Tablename : May not update element

This error is set to prevent you from updating tables which materialize
associations. Indeed, in these tables you may only insert or delete tuples, but you
may never update them. This error can only be launched through external access
to the generated code by coupling the Sybase RDB.

Objecteering/SQL Designer User Guide 9-19

Chapter 9: Sybase Annex

Parameterizing generation - Specificity

Overview
Sybase allows the use of specific types, such as NUMERIC, DATETIME, IMAGE,
etc. Furthermore, Objecteering/SQL Designer possesses attribute

parameterization which allows you to use these types.

Available types

The types available are as follows:

numeric, decimal, double, smallmoney, money, smalldatetime,
datetime, text, binary, varbinary and image

Parameterization
Parameters can be provided by defining the " Type constraint" field of the attribute.

These specific types are parameterized using the {type} (<specific type>) tagged
value set on an attribute.

Example
{type} (numeric), {type} (money),

9-20 Objecteering/SQL Designer User Guide

Chapter 9: Sybase Annex

Restrictions

Generated SQL upper or lower case

A bug in the Sybase Transact SQL interpreter, which does not recognize the
predefined "inserted" and "deleted" tables when they appear in upper case in the
SQL, makes it impossible to position the "SQL Upper Case" parameter.

Objecteering/SQL Designer User Guide 9-21

Chapter 10: SQL Server Annex

Chapter 10: SQL Server Annex

Introduction

Overview

The object of this annex is to present the method used to adapt generation to the
SQL Server RDBMS. The necessary information is included in chapter 9 of this
user guide, and for each section, the user is referred to the relevant section of
chapter 9.

The annex is divided into the following model units: class, association and
attribute. For each unit, explanations are related to the generation carried out and
the optional annotations. The last section deals with the characteristics of the
application part.

The generation deals especially with the mapping of constraints and types.

Annotations specific to SQL Server allow RDBMS features to be used in a simple
way (optimization, additional constraints).

Objecteering/SQL Designer User Guide 10-3

Chapter 10: SQL Server Annex

Package annotations

For information on package annotations, please refer to the "Package
annotations" section of chapter 9 of this user guide.

10-4 Objecteering/SQL Designer User Guide

Chapter 10: SQL Server Annex

Class - Generation specific to SQL Server

For information on the generation specific to SQL Server concerning classes,
please refer to the "Class - Generation specific to Sybase " section of chapter 9 of
this user guide.

Objecteering/SQL Designer User Guide 10-5

Chapter 10: SQL Server Annex

Class annotations

For information on class annotations, please refer to the "Class annotations"
section of chapter 9 of this user guide.

10-6 Objecteering/SQL Designer User Guide

Chapter 10: SQL Server Annex

Association - Generation specific to SQL Server

For information on the generation specific to SQL Server concerning classes,
please refer to the "Association - Generation specific to Sybase" section of
chapter 9 of this user guide.

Objecteering/SQL Designer User Guide 10-7

Chapter 10: SQL Server Annex

Association annotations

For information on association annotations, please refer to the "Association
annotations" section of chapter 9 of this user guide.

10-8 Objecteering/SQL Designer User Guide

Chapter 10: SQL Server Annex

Attribute - Generation specific to SQL Server

For information on the generation specific to SQL Server concerning attributes,
please refer to the "Attribute - Generation specific to SQL server" section of
chapter 9 of this user guide.

Objecteering/SQL Designer User Guide 10-9

Chapter 10: SQL Server Annex

Attribute annotations

For information on attribute annotations, please refer to the "Attribute annotations"
section of chapter 9 of this user guide.

10-10 Objecteering/SQL Designer User Guide

Chapter 10: SQL Server Annex

Specific SQL errors

For information on specific SQL errors, please refer to the "Specific SQL errors"
section of chapter 9 of this user guide.

Objecteering/SQL Designer User Guide 10-11

Chapter 10: SQL Server Annex

Parameterizing generation - Specificity

For information on the specificity of generation parameterization, please refer to
the "Parameterizing generation - Specificity" section of chapter 9 of this user
guide.

10-12 Objecteering/SQL Designer User Guide

Chapter 10: SQL Server Annex

Restrictions

For information on restrictions, please refer to the "Restrictions" section of chapter
9 of this user guide.

Objecteering/SQL Designer User Guide 10-13

Chapter 11: Calling on-line module
commands

Chapter 11: Calling on-line module commands

Calling on-line commands

Syntax

An on-line command is called using an instruction, as shown below:
objingcl -db <base namex>

-prj <project namex>

-mdl SQLModule

-cmd <command Name>

<metaclass>::*::<object_name>

Commands which can be invoked

The ... command on the ... metaclass runs ...
generateDDL DDLProduct DDL code generation
editDDL DDLProduct Visualization
execDDL DDLProduct Execution

For example:

objingcl db DemoSQL -prj testRDB -mdl SQLModule -cmd
generateDDL

DDLproduct: :*::basicRDB_DDL

Objecteering/SQL Designer User Guide

Index

"Not null" attributes 4-53
"sqlAfter" note 6-7, 6-28, 6-39, 7-21

"sqlBefore" note 6-7, 6-28, 6-39, 7-
21

"sqlCode" note 5-16, 6-7, 6-32, 6-34,
6-37

- association pattern 4-39

{alterTable} tagged value 6-4, 6-20

{check} tagged value 8-5

{classAttributesTableName} tagged
value 4-19, 6-5, 6-25

{cluster} tagged value 6-3, 6-13, 6-
,8-5

{compositeKey} tagged value 6-4, 6-
20

{dbName} tagged value 6-6, 6-29, 8-
14

Consequences for generation 8-
14

{external} tagged value 4-26, 5-15,
6-3, 6-13

{fillfactor} tagged value 6-3, 6-14, 6-
23

{foreignKey} tagged value 4-25, 6-4,
6-19

{gen_cascade} tagged value 9-15
{globalTable} tagged value 4-17, 6-
4,

{index} tagged value 4-3
{indexKey} tagged value 4-57, 6-4,
6-19

{indexName} tagged value 4-57, 6-5,

6-27

{indexSpace} tagged value 6-5, 6-
24,8-5

{indexStorage} tagged value 6-5, 6-
25, 8-5

{initrans} tagged value 6-3, 6-13, 6-

{key} tagged value 8-5

{keyName} tagged value 4-57, 6-5,
6-26

{maxRowsPerPage} tagged value 6-
3, 6-14, 6-23

{maxtrans} tagged value 6-3, 6-14,
6-24, 8-5

{noDDL} tagged value 6-5, 8-5

{not_null} tagged value 4-26

{oid} tagged value 6-5, 6-26

{onDeleteCascade} tagged value 4-
48, 6-16, 9-5, 9-13

{onDeleteCascase} tagged value 6-3

{oneTable} tagged value 4-8, 5-11,
6-5, 6-25

{oneTablePerClass} tagged value 4-
8, 5-11, 6-5, 6-25

{oneTablePerConcreteClass} tagged
value 4-8, 5-11, 6-5, 6-25

{partition} tagged value 6-3, 6-13, 6-
26

{pctfree} tagged value 6-3, 6-13, 6-
,8-5

{pctused} tagged value 6-3, 6-13, 6-
24,8-5

{persistence} tagged value 4-7, 4-
24, 4-40, 4-55, 5-11, 6-4, 6-20, 6-27,
6-33

{primaryKey} tagged value 4-3, 4-21,
4-24,4-37, 4-54, 5-15, 6-3, 6-16, 6-
19

{schemaBD} tagged value 9-5

{sqlDefault} tagged value 4-20, 5-13,

-4,6-19

{sqlDoNotUpdate} tagged value 4-

37, 5-9, 5-19

{sqIName} tagged value 4-26, 5-7, 6-
6,

{sqlOptimized} tagged value 4-40, 5-
15, 6-3, 6-16

{sqlType} tagged value 4-20, 4-33,
5-13, 6-4, 6-20

{storage} tagged value 6-3, 6-14, 6-
24,8-5
{tablespace} tagged value 6-3, 6-13,
-5

{tgAfter} tagged value 6-6, 6-36
{tgBefore} tagged value 6-6, 6-36
{tgDelete} tagged value 6-6, 6-36
{tglnsert} tagged value 6-6, 6-36
{tgUpdate} tagged value 6-6, 6-36
{type} tagged value 8-16, 9-20
<<check>> stereotype 6-9, 6-31

<<createView>> stereotype 6-10, 6-
38

<<database>> stereotype 4-46, 5-
10, 6-10, 6-29, 6-40

<<notNull>> constraint 5-13

<<notNull>> stereotype 4-25, 6-9, 6-
31

<<null>> stereotype 6-9, 6-31

<<procedureClass>> stereotype 5-
11, 6-9, 6-28

<<rule>> constraint 5-13, 5-16, 5-18
<<rule>> stereotype 6-9, 6-31

<<schema>> stereotype 4-46, 5-7,
6-10, 6-40

<<sqlPhysicalModel>> stereotype 6-
10, 6-40

<<sqlPhysicalName>> stereotype 5-
7

<<sqlView>> stereotype 5-11, 6-9,
6-28

<<storedProcedure>> stereotype 4-
32, 6-10, 6-38

<<table>> stereotype 4-37, 4-38, 6-
9, 6-28

<<trigger>> stereotype 6-10, 6-38
<<unique>> constraint 5-13
<<unique>> stereotype 6-9, 6-31
Abstract classes 4-5

Add a composite key 5-5

Add anindex 5-5

Adding constraints 1-4

Adding triggers 1-4

Additional constraints 8-3
Adjusting tables 1-7

Analysis model 1-3

Annotating the model 5-3
Association annotations for Oracle

{onDeleteCascade} tagged value
8-11

Tagged values 8-11
Association annotations to Sybase

{onDeleteCascade} tagged value
9-15
Tagged values 9-14
Association unit
Parameterization methods 7-17
Signatures 7-17
UML profile 7-17
Association unit method
SetColumnPrefix 7-18
SetPrimaryKeyName 7-18
SetTableName 7-18
Associations
"all" multiplicity 4-27
Aggregations 4-25
Cyclic associations 4-27
Managing instances 4-27
Associations for Oracle
Multiplicity constraints 8-10

Atomic attributes 4-16
Attribute annotations for Oracle
{check} tagged value 8-13
{null} tagged value 8-13
Tagged values 8-13
Attribute annotations for Sybase
{check} tagged value 9-18
{null} tagged value 9-18
{unique} tagged value 9-18
Tagged values 9-17
Attribute unit method
SetColumnName 7-20
SetlsNullVarName 7-20
Attribute units
Parameterization methods 7-19
UML profile 7-19
Attribute visibility 4-17
Attributes
Access restriction 4-17
Atomic attributes 4-16
Class attributes 4-17
Attributes for Oracle
Mapping types 8-12
Attributes for Sybase
Mapping types 9-16

Avoiding the update of the physical
model 5-19

Basic types 4-16
Building a persistent schema 3-3
Calling on-line commands

Commands which can be invoked
11-3
Syntax 11-3
Class annotation for Sybase
{primaryKey} tagged value 9-6
Class annotations for Oracle

{check} tagged value 8-6
{cluster} tagged value 8-6
{indexSpace} tagged value 8-7
{indexStorage} tagged value 8-7
{initrans} tagged value 8-6
{key} tagged value 8-6
{maxtrans} tagged value 8-6
{pctfree} tagged value 8-6
{pctused} tagged value 8-6
{storage} tagged value 8-6
{tablespace} tagged value 8-6
Tagged values 8-5

Class annotations for Sybase
{check} tagged value 9-8
{fillfactor} tagged value 9-8
{key} tagged value 9-8
{maxRowsPerPage} tagged value

9-9

{partition} tagged value 9-9
{schemaBD} tagged value 9-9
{tablespace} tagged value 9-9
Tagged values 9-7

Class association patterns 4-40

Class attributes 4-17
Transformation 4-17

Class unit
Parameterization methods 7-16
Signatures 7-16

Class unit method
SetPrimaryKeyName 7-16
SetTableName 7-16

Classes
Notes 7-21

Clusters 4-3, 8-3

Composite keys 5-5

Compositions

Application domain 4-36
Generated tables 4-35
Model and relational 4-34
Configuring the module 7-3
Configuring UML modeling projects
5-3
Constraints 1-3, 1-4
<<notNull>> constraint 5-13
<<rule>> constraint 5-13, 5-18
<<unique>> constraint 5-13

Creating a working environment for
developing DDL scripts 2-4

Creating an SQL generation work
product 3-9

Creating tables in a database 1-8

Creation scripts 1-7

Cyclic associations 4-27

Data Definition Language 1-3, 1-9,
3-11

Data mapping 1-8

Database diagram 1-8, 3-11, 4-14,
4-46, 5-3

DDL 1-9, 3-11

DDL scripts 1-3

Defining a SQL generation work
product 3-10

Defining keys 1-6
Defining specific SQL generation
characteristics 1-3

Defining tables 1-6
Designing a package 1-6
Destruction scripts 1-7
Developing applications
Clarifying tables 1-6
Creating tables 1-6
Designing a package 1-6
Generating the physical model 1-6
Dialog boxes 5-3

Distributed databases 4-46
{dbname} tagged value 8-14
Enterprise Edition 1-5
Environment variables 2-3

LANG 9-3

O_SQL_USER 2-3, 3-12, 8-3, 9-3
OBJING_PATH 2-3

PATH 9-3

SYBASE 9-3

Example of tables created in a
database 5-27

Executing SQL 3-14
Executing the SQL

Procedure 5-26

Explorer 2-5

First steps

Building the database schema 3-
14

Creating an SQL generation work
product 3-9

Defining a SQL generation work
product 3-10

Generating the physical model 3-6

Generating the SQL file 3-11

Importing the first steps package
3-4

Objective 3-3

System to be modeled 3-3

Visualizing the generated SQL 3-
13

Free SQL sections
sqlAfter 7-21
sqlBefore 7-21

Generalization
Abstract class 4-15
Integrity 4-15
Mapping 4-5

Multiple generalization 4-15

Generalization and associations 4-
42

Generalization and constraints 4-49
Generalization and the primary key
4-23
Generalization modes
One table per class 4-49
One table per concrete class 4-49
Generalization tree 4-5, 4-14

Generalizing associations with "One
table per class" pattern 4-44

Generalizing associations with "One
table per concrete class" pattern
4-43

Generalizing associations with "One
table per generalization tree" pattern
4-45

Generalizing persistence 4-7
Example 4-7

Generalizing the generation mode 4-
11

Generate physical model 5-4
Generate SQL files 5-4
Generated SQL
Visualizing 5-23
Generated SQL files 5-20
Generated SQL upper or lower case
9-21
Generating a class attribute in a
specific table 4-20

Generating a physical model from a
logical model 5-3

Generating creation scripts 1-7
Generating SQL code 1-7

Generating SQL corresponding to the
physical model 5-3

Generating the physical model 1-6,
3-6

Different ways of generating the
physical model 5-19

Generating triggers 4-28
Generation for Oracle
Environment variables 8-3
Generation for Sybase
Case sensitivity 9-4
End of the SQL command 9-3
Environment variables 9-3
Identifiers 9-4
Generation principles 1-8
Generation specific to Oracle
Primary key 8-4
Generation specific to Sybase
Parameterization 9-10
Referential constraints 9-10

Generation work product 1-9, 3-11,
3-15, 5-22, 5-27, 5-29

Grouping class attributes into tables
4-17
Grouping tables into clusters 1-4

Implementing a global table for class
attributes 4-18

Import first steps 5-4
Indexes 4-57, 5-5
Integrity

Tagged values 4-53
Integrity checks 1-8
Integrity constraints
Consequences 4-48
not null attributes 4-53
Referential integrity 4-47
Uniqueness constraints 4-47
Interactive interface

Menus 5-4

Outlook 5-3

UML modeling project configuration
5-3
Interpreting SQL 5-3
J methods 7-19
SetForeignKeysName 9-11
SetForeignKeysNames 9-10
J methods for Oracle
Parameterization 8-8
SetForeign-KeysNames 8-9
SetForeignKeysNames 8-8
Keeping a generated SQL script 5-6
License 2-3
Logical model 1-3, 1-9
Man/Machine interface approach 1-8
Mapping 1-4, 1-9
{oneTable} tagged value 4-8
{oneTablePerClass} tagged value
4-8
{oneTablePerConcreteClass}
tagged value 4-8

Choosing the right mapping
technique 4-5

Example of {oneTable} 4-13

Example of {oneTablePerClass} 4-
12

Example of
{oneTablePerConcreteClass} 4-
9

Examples 4-6
Mapping attributes in columns 4-16
Mapping class persistence 1-3
Mapping compositions 4-34
Mapping constraints 8-3, 9-3, 10-3

Mapping object model notions in
relational database tables 4-3

Mapping rules 1-8, 4-3
Mapping rules for Oracle 4-16
Mapping techniques 4-5

All classes in a generalization tree
mapped in a single table 4-5

Copying generalized attributes into
all tables 4-5

The basic class has its own
database table 4-5

Mapping types 8-3, 9-3, 10-3
Modeling 0..1-* relationships 4-24
Modeling a 0..1-* aggregation 4-25

Modeling a 0..1-* composition with an
intermediary table 4-26

Modeling a 1-* association 4-26

Modeling a class attribute for the
generation of a specific table 4-19

Modeling two class attributes 4-18
Module configuration 1-8

Module information 2-3

Module parameter sets 7-4
Multiplicity constraints 9-12
Naming conflicts 4-27

n-ary association pattern 4-38
Normal forms 4-16, 4-54

INF 4-54
2NF 4-54
3NF 4-54
NF2 4-21

Note types on a class 6-7

Note types on a datatype 6-7
Note types on a package 6-8
Note types on an operation 6-7
Notes 2-5, 7-21

"sqlAfter" note 6-7, 6-28, 6-39, 7-
21

"sqlBefore" note 6-7, 6-28, 6-39,
7-21

"sqlCode" note 5-16, 6-7, 6-32, 6-
34, 6-37

Notes on aclass 6-28

Notes on a datatype 6-32
Notes on a package 6-39
Notes on an operation 6-37
n-tuple 4-47

Object structure model 1-8

Objecteering/Administrating
Objecteering Sites 1-5

Objecteering/Introduction 2-4
Objecteering/UML console 3-11
Objecteering/UML environment 1-5
Objecteering/UML Modeler 1-5, 2-5

Objecteering/UML Profile Builder 7-
14, 7-21

On delete cascade 4-53

One table per class 4-44, 4-51

One table per concrete class 4-43,
4-49

One table per generalization tree 4-
45

Optimization 8-3

Optimizing a class association 4-41

Oracle 1-3

Oracle mapping rules 4-16

Oracle model units
Association 8-3
Attribute 8-3
Class 8-3

Oracle types
Available types 8-16
Parameterization 8-16

Outside keys 4-47

Package 4-46
Designing a package 1-6

Package annotations for Sybase
{genCascade} tagged value 9-5
{schemaBD} tagged value 9-5
Tagged values 9-5

Package unit

Parameterization method 7-15
Packages

Notes 7-21
Parameter sets

Diagram generation on physical
model 7-8

External edition 7-13
General 7-5

Physical generation 7-6
SQL generation 7-10

SQL generation filters 7-11
Parameterization method
Signature 7-15
Parameterizing Sybase generation
Available types 9-20
Parameterizing the module 1-8

Pattern for taking into account
associations of 1-1 type 4-37

Patterns for transforming 0..1-*
associations 4-24

Persistence characteristics 1-3, 4-7
Persistent classes 1-3, 1-6, 4-15
Physical model 1-3, 1-9
Polymorphic reading 4-5
Predefined primitive classes 4-16

Primary key 1-9, 4-21, 4-35, 4-47, 4-
54, 5-5, 8-11, 9-15

Generation specific to Oracle 8-4
Uniqueness 4-23
Primary key definition 4-21
Professional Edition 1-5
Propagation 3-12, 5-22
Properties editor 3-7, 3-12, 5-3, 5-23
Adding notes 2-5
Adding stereotypes 2-5
Adding tagged values 2-5

Generating SQL 2-5

ltems tab 3-12, 5-22, 5-24

Overview 2-5

Running SQL 2-5

SQL tab 1-6, 3-7, 5-19

Tabs 2-5

Visualizing generated SQL 2-5
Properties editor for SQL

Onaclass 5-11

On a datatype 5-16

On a logical model package 5-7

On a package inside a physical

model 5-10

On a physical model attribute or a
table column 5-18

On a physical model class or a class
stereotyped <<table>> 5-17

On a physical model package 5-8
On an association 5-14
On an attribute 5-12

RDBMS 1-9

Relational database 1-3, 4-3, 4-54,
5-3

Relational database generation
General principles 4-3

Relational diagram 4-46

Relational table 1-9

Remote tables 8-14

Running scripts 1-7

Schema
Standardization 4-54

Scripts 2-4, 3-10

Secondary composite keys 4-57

Specific features of the RDBMS target
1-4

SQL
Execution 3-14

Generation procedure 3-11
Visualizing generated SQL 3-13
SQL database schema creation 1-9

SQL Designer commands 5-4
Add a composite key 5-5

Add anindex 5-5
Composite keys 5-5
Execute alter table file 5-29

Execute SQL creation file 3-15, 5-
27

Generate physical model 3-6, 5-4,
5-19

Generate SQL files 3-12, 5-4, 5-20
Import first steps 3-4, 5-4
Indexes 5-5
Primary key 5-5
Update from logical model 5-5
Visualize creation file 3-13, 5-24

SQL Designer commands on a class
5-5

SQL Designer commands on a
package 5-4

SQL errors 9-19

SQL file 3-13

SQL generated for Sybase RDB
SQL errors 9-19

SQL generation
{onDeleteCascade} tagged value

9-13

SQL generation work product 3-9
Dialog box 3-10

SQL instructions 9-10

SQL script 4-16, 4-27

SQL scripts 5-6, 8-3

SQL Server 1-3

SQL Server model units
Association 10-3

Attribute 10-3
Class 10-3
Stereotypes 2-5

<<check>> stereotype 6-9, 6-31

<<createView>> stereotype 6-10,
6-38

<<database>> stereotype 4-46, 5-
10, 6-10, 6-29, 6-40

<<notNull>> stereotype 4-25, 6-9,
6-31
<<null>> stereotype 6-9, 6-31

<<procedureClass>> stereotype
5-11, 6-9, 6-28

<<rule>> stereotype 6-9, 6-31

<<schema>> stereotype 4-46, 5-7,

6-10, 6-40

<<sqlPhysicalModel>> stereotype
6-10, 6-40

<<sqlPhysicalName>> stereotype
5-7

<<sqlView>> stereotype 5-11, 6-9,
6-28

<<storedProcedure>> stereotype
4-32, 6-10, 6-38

<<table>> stereotype 3-8, 4-37, 4-
38, 6-9, 6-28

<<trigger>> stereotype 6-10, 6-38
<<unique>> stereotype 6-9, 6-31
Stereotypes on a class 6-9, 6-28

Stereotypes on a component 6-10,
6-29

Stereotypes on a constraint 6-9, 6-
30

Stereotypes on a package 6-10, 6-
39

Stereotypes on an operation 6-10

Stereotypes values on an operation
6-37

Stored procedure parameter types
4-33
Stored procedures 4-32
Structure 4-3
Sybase 1-3
Sybase generation
Parameterization 9-20
Sybase model units
Association 9-3
Attribute 9-3
Class 9-3
Tables 1-3, 1-4
Adjusting 1-7
Tagged values 1-3, 1-4, 1-6, 2-5, 4-3
{alterTable} tagged value 5-20, 5-

{check} tagged value 8-5, 8-11, 8-
13, 9-7,9-17

{classAttributesTableName} tagged
value 4-19, 6-25

{cluster} tagged value 6-13, 6-23,
8-5, 8-11

{compositeKey} tagged value 6-20

{dbName} tagged value 6-29

{default} tagged value 8-13, 9-17

{external} tagged value 4-26, 5-15,
6-13

{fillfactor} tagged value 6-14, 6-23,
9-7,9-14

{foreignKey} tagged value 4-25, 6-
19

{genCascade} tagged value 9-5
{globalTable} tagged value 4-17,
6-19

{index} tagged value 4-3, 9-7
{indexKey} tagged value 4-57, 6-
19

{indexName} tagged value 4-57,
6-27

{indexspace} tagged value 6-24,
8-5

{indexStorage} tagged value 6-25,
8-5

{initrans} tagged value 6-13, 6-23,
8-5, 8-11

{key} tagged value 8-5, 9-7
{keyName} tagged value 4-57, 6-
26

{maxRowsPerPage} tagged value
6-14, 6-23, 9-7, 9-14

{maxtrans} tagged value 6-14, 6-
24, 8-5, 8-11

{noDDL} tagged value 8-5
{not_null} tagged value 4-26
{null} tagged value 8-13, 9-17
{oid} tagged value 6-26

{onDeleteCascade} tagged value
4-48, 6-16, 8-11, 9-14
{oneTable} tagged value 4-8, 5-
, 6-25

{oneTablePerClass} tagged value
4-8, 5-11

{oneTablePerConcreteClass}
tagged value 4-8, 5-11, 6-25

{partition} tagged value 6-13, 6-26,
9-7,9-14

{pctfree} tagged value 6-13, 6-24,
8-5, 8-11

{pctused} tagged value 6-13, 6-24,

{persistence} tagged value 4-7, 4-
24, 4-40, 4-55, 5-11, 6-20, 6-27,
6-33

{primaryKey} tagged value 4-3, 4-
21, 4-24, 4-37, 4-54, 5-15, 6-16,
6-19, 9-7

{sqlDefault} tagged value 4-20, 5-
13,

{sqlDoNotUpdate} tagged value 4-
37, 5-9, 5-19

{sqIName} tagged value 4-26, 5-7,
6-34

{sqlOptimized} tagged value 4-37,
4-40, 5-15, 6-16

{sqlType} tagged value 4-20, 4-33,
5-13, 6-20

{storage} tagged value 6-14, 6-24,
8-5, 8-11

{tablespace} tagged value 6-13, 6-
26, 8-5, 8-11, 9-7, 9-14

{tgAfter} tagged value 6-36
{tgBefore} tagged value 6-36
{tgDelete} tagged value 6-36
{tginsert} tagged value 6-36
{tgUpdate} tagged value 6-36
{unique} tagged value 8-13, 9-17

Tagged values on a class 6-5, 6-21
Tagged values on a component 6-6,

6-29

Tagged values on a generalization

6-6, 6-33

Tagged values on a model element

6-6, 6-34

Tagged values on an association 6-

3, 6-11

Tagged values on an association end

6-3, 6-15

Tagged values on an attribute 6-4,

6-17

Tagged values on an operation 6-6,

6-35

Transforming 1-1 associations 4-37
Triggers 1-3, 1-4, 4-28, 8-10, 9-12

TD_name of the table 9-12
Tl_name 8-10

Tl_name of the table 9-12
Type mapping 4-16
Type project 1-9
UML profiles 4-42, 5-3, 9-10
Uniqueness constraint 4-21
Uniqueness constraints 4-47
Update from logical model 5-5
Updating a physical model 5-19
Different ways of updating a
physical model 5-19

Updating a physical model from a
modified logical model 5-3

Usage precautions 5-6
Using tagged values 4-3

Using the Objecteering/SQL Designer
module 1-3

Visualizing produced scripts 1-7
Visualizing SQL 1-8, 5-3

