
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

 Objecteering/Metrics User Guide

 Version 5.2.2

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/001

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents
Chapter 1: Introduction

Overview of the Objecteering/Metrics module ..1-3
Glossary ...1-4

Chapter 2: First Steps
Introduction ..2-3
Initializing ...2-4
Metrics generation ...2-10
The "Visualize" command..2-12
Hypertext links..2-14
Modifying thresholds ..2-15

Chapter 3: Functions
Commands...3-3
Metrics on a package...3-7
Metrics on a class ..3-12

Chapter 4: Parameterization
Parameterizing generation...4-3
Parameterizing messages ...4-6

Chapter 5: Specific metrics
Abstraction (A) ...5-3
Class Responsibility (CR) ..5-5
Class Category Relational Cohesion (CCRC)...5-7
Coupling Between Object Classes (CBO)...5-8
Depth of Inheritance Tree (DIT)...5-10
Instability (I)..5-13
Distance from the Main Sequence (DMS)...5-15
Number Of Attributes (NOA)..5-16
Number Of Children (NOC) ...5-17
Number Of Methods (NOM)...5-18
Number of Methods Added (NMA) ..5-19
Number of Methods Inherited (NMI) ..5-20
Number of Methods Overridden (NMO) ..5-21
Number Of Parents (NOP)...5-22
Specialization Index (SIX)..5-23

Index

Chapter 1: Introduction

Chapter 1: Introduction

Objecteering/Metrics User Guide 1-3

Overview of the Objecteering/Metrics module

Welcome to the Objecteering/Metrics user guide!
The aim of the Objecteering/Metrics module is to implement a set of metrics which
are used to evaluate the quality of the models produced. Parameters are
measured on the model according to quality criteria fixed by "users", such as
complexity, testability, cohesion and stability. It is thus possible to see whether or
not the model meets these quality criteria, both globally and at a more detailed
level, and if this is not the case, to correct any related problems.

The Objecteering/Metrics module measures characteristics which are relevant and
easily understandable. In this way, the designer can evaluate the quality of the
work carried out, and possibly compare diverse technical solutions from a quality
standpoint. The project manager and the software quality engineer can thus
evaluate the overall quality of a UML modeling project, get an indication of the
homogeneity of the development of different sub-systems, and observe the
evolution over time of metric values, in order to ensure that the quality of the work
produced throughout the development process is maintained.

The Objecteering/Metrics module is used with UML models. It proposes different
levels of synthesis (UML modeling project, packages, classes and operations),
and uses class and operating models, to which most metrics currently provided for
object oriented applications are dedicated. Due to their importance, particular
interest is shown in those metrics which deal with communication between
classes.
The Objecteering/Metrics module provides two types of metrics:

♦= counting metrics on the modeling structure, which can provide a wealth of
information on structuring, decomposition and complexity

♦= specific metrics (detailed in chapter 5 of this user guide)

Chapter 1: Introduction

1-4 Objecteering/Metrics User Guide

Glossary

Documented item: An item which has a note used to establish documentation.
For example, an item with a "summary" note is a documented item.
Local number of items on a package: Number of items which are defined directly
in the package.
Global number of items on a package: Number of items which are directly defined
in the package, or in sub-packages and sub-classes. Calculation is carried out on
these sub-items.

Chapter 2: First Steps

Chapter 2: First Steps

Objecteering/Metrics User Guide 2-3

Introduction

General remarks
A demonstration UML modeling project will allow you to get to know the functions
of the Objecteering/Metrics module step by step.

Sources
A demonstration UML modeling project named "VendingMachine" is delivered as
standard with the Objecteering/UML Modeler tool.

Chapter 2: First Steps

2-4 Objecteering/Metrics User Guide

Initializing

Steps
Before starting work with the Objecteering/Metrics module in a UML modeling
project, it is first necessary to prepare the environment.
Carry out the following steps:
1 - Create a new UML modeling project (for further details, please refer to chapter

3 of the Objecteering/UML Modeler user guide).
2 - Select and configure the Objecteering/Metrics module (see below).

Chapter 2: First Steps

Objecteering/Metrics User Guide 2-5

Importing a model into the FirstSteps UML modeling project
We are now going to import the "VendingMachine" demonstration UML modeling
project, which will be the basis of our model, into our UML modeling project.
Activate the "Tools/Import..." menu. The "Import" window (as shown in Figure 2-1)
then appears.

Figure 2-1. Importing the "VendingMachine" UML modeling project

Chapter 2: First Steps

2-6 Objecteering/Metrics User Guide

Steps:
1 - Click on the "Tools/Import..." menu. The "Import" window then appears.
2 - Select the "demoVendingMachineCpp" UML modeling project in the "Import'

window.
3 - Click on the "Import" button. A confirmation dialog box then appears,

informing you that if you continue, the imported elements will overwrite the
current contents of your UML modeling project.

4 - Click on "OK" to confirm.

Chapter 2: First Steps

Objecteering/Metrics User Guide 2-7

Selecting the Metrics module in your UML modeling project
Open your UML modeling project in Objecteering/UML Modeler. Next, click on the

 "UML modeling project modules" icon launches the window used to select
the module (as shown in Figure 2-2).

Figure 2-2. Selecting the Metrics module

Chapter 2: First Steps

2-8 Objecteering/Metrics User Guide

Steps:
1 - Select the Metrics module from the available modules list on the left-hand

side.
2 - Click on the "Add" button. The Metrics module then appears in the right-hand

"Modules used" column.
3 - Click on "OK" to confirm. If the "Keep selection as default" box is checked, the

Objecteering/Metrics module will automatically be available during future
Objecteering/UML sessions.

Chapter 2: First Steps

Objecteering/Metrics User Guide 2-9

Configuring the Metrics module
We will now edit the configuration of the module in the "Edit configuration"
window, and specify the complete editor path, which will be used to visualize files
containing package and class metrics.

The "Modify module parameter configuration" icon or the "Tools/Modify
configuration..." menu is used to open the "Edit configuration" dialog box.
In the example below, we will be using the "Iexplore" editor.

Figure 2-3. Editing the configuration of the Objecteering/Metrics module

Steps:
1 - Select the Metrics generation hierarchy sub-item in the Metrics item.
2 - Provide the complete path for your editor.
3 - Confirm.

Chapter 2: First Steps

2-10 Objecteering/Metrics User Guide

Metrics generation

Generation commands
We are now going to apply the metrics generation command on our UML
modeling project's main package.

Figure 2-4. Running the "Metrics/Generate" command on your UML modeling project's main
package

Steps:
1 - Select the main package in your UML modeling project and right-click to open

the context menu.
2 - Run the "Metrics/Generate" command on this package.

Chapter 2: First Steps

Objecteering/Metrics User Guide 2-11

The Objecteering/UML console displays the progress of the metrics calculation.

Figure 2-5. The metrics calculation in progress

At the end of generation, an HTML editor (defined in the module configuration
window) automatically opens and presents the results.

Chapter 2: First Steps

2-12 Objecteering/Metrics User Guide

The "Visualize" command

Applying the "Visualize" command
The "Metrics/Visualize" command can be applied to a package or a class. For this
example, we are going to run the command on the "Food" class in the
"ElementsDispensed" package.

Figure 2-6. Running the "Metrics/Visualize" command on the "Food" class in the
"ElementsDispensed" package

Steps:
1 - Expand the "ElementsDispensed" package and select the "Food" class, using

the right mouse button to display the context menu.
2 - Run the "Metrics/Visualize" command.
The HTML editor (defined in the module configuration window) is displayed and
shows the results of the metrics calculation on this class.

Chapter 2: First Steps

Objecteering/Metrics User Guide 2-13

Result
A table containing the list of this class' elements is generated.

Figure 2-7. Visualizing metrics on the "Food" class

Note: "Non-standard" values are shown in red.

Chapter 2: First Steps

2-14 Objecteering/Metrics User Guide

Hypertext links

Hypertext links on metrics
The table generated contains a list of UML modeling project elements. A
hypertext link opens to the on-line help page which corresponds to each metric.

Hypertext links on elements
The "Non-standard elements" table generated presents the contents of package
elements. A hypertext link on each element (classes) directs you to the
description of the metric in question.

Chapter 2: First Steps

Objecteering/Metrics User Guide 2-15

Modifying thresholds

The "Non-standard elements" table
We shall take the "Non-standard elements" table generated on the
"ElementsDispensed" package as our example (Figure 2-8).

Figure 2-8. The "Non-standard elements" table on the "ElementsDispensed" package

Key:
1 - Hypertext links directed to the corresponding on-line help page.
2 - Hypertext links directed to the metric which corresponds to the element.
3 - Indication of non-standard values.

Chapter 2: First Steps

2-16 Objecteering/Metrics User Guide

Modifying thresholds
We shall take the "ElementsDispensed::Food" element as our example. The NOP
(Number Of Parents) column shows a cross, indicating an abnormal value (as
shown in Figure 2-8).
Open the module configuration window and select the "Number Of Parents
(NOP)" option (as shown in Figure 2-9).

Figure 2-9. Modifying threshold values for the "Number Of Parents (NOP)" option

Steps:
1 - Select the "Metrics" hierarchy option.
2 - Select the "Number Of Parents" sub-option.
3 - Change the value of the lower threshold from 1 to 0.
4 - Change the value of the upper threshold from 2 to 4.
5 - Confirm.

After these operations, run the "Metrics/Generate" command on the
"ElementsDispensed" package in your project.

Chapter 2: First Steps

Objecteering/Metrics User Guide 2-17

Result
After generating the package, you will see the modification made to the "Non-
standard elements" table.

Figure 2-10. Result of modifying values on the "Number Of Parents" option

The "NOP" column for the "ElementsDispensed:Food" element no longer contains
a cross.

Chapter 3: Functions

Chapter 3: Functions

Objecteering/Metrics User Guide 3-3

Commands

Overview
Module commands are available on packages and classes.
Running a command on a package automatically runs the command on all the
packages and classes contained therein. The result of the package is then
displayed in HTML format.
Running a command on a class automatically runs the command on all the
classes contained therein. The result of the class is then displayed in HTML
format.
Calculations are carried out on every operation, even if the model has not
changed since the last calculation.

Figure 3-1. The "Metrics" command menu

Chapter 3: Functions

3-4 Objecteering/Metrics User Guide

The "Generate" command
The "Generate" command is used to calculate metrics on the model element
selected and on those elements contained therein (packages or classes).
This command is run over two stages:

♦= the actual calculation of the metrics of the package or the class in question

♦= the organization of the metrics and the generation of an HTML document

Figure 3-2. Result of the "Generate" command in the Objecteering/UML console

Chapter 3: Functions

Objecteering/Metrics User Guide 3-5

The "Visualize" command
The "Visualize" command opens the file associated to the selected package or
class, which was generated by the "Generate" command. Since files are
generated in HTML format, any HTML editor can be used to visualize this file.
The location of the HTML editor used must be defined in the module configuration.

Chapter 3: Functions

3-6 Objecteering/Metrics User Guide

Figure 3-3. Result of the "Visualize" command

Chapter 3: Functions

Objecteering/Metrics User Guide 3-7

Metrics on a package

Overview
Metrics calculated on a package are used to obtain:

♦= local counting of the package's items: Only items defined directly on the
package are counted

♦= global counting of the package's items: All the package's items are counted, by
dealing recursively with sub-items

♦= elaborated metrics

♦= the list of non-standard items

Chapter 3: Functions

3-8 Objecteering/Metrics User Guide

Counting items
These metrics are used to calculate:

♦= the number of modeling units (NameSpace)

♦= the number of packages

♦= the number of classes

♦= the number of actors

♦= the number of use cases

♦= the number of nodes

♦= the number of components

♦= the number of types

♦= the number of signals

♦= the number of enumerations

♦= the number of parent packages (NOP)

♦= the number of child packages (NOC)

♦= the number of packages used

♦= the number of packages which use this package

Chapter 3: Functions

Objecteering/Metrics User Guide 3-9

Figure 3-4. Metrics on a package - Overview

Chapter 3: Functions

3-10 Objecteering/Metrics User Guide

Elaborated metrics
These metrics are used to calculate:

♦= the average number of attributes per class (NOA)

♦= the average number of operations per class (NOM)

♦= the degree of responsibility (CR)

♦= instability (I)

♦= abstraction (A)

♦= the balance between abstraction and instability (DMS)

♦= the cohesion between classes in the package (CCRC)

♦= the coupling between the package's classes (CBO)

Figure 3-5. Metrics on a package - Elaborated metrics

Chapter 3: Functions

Objecteering/Metrics User Guide 3-11

Non-standard items
According to the values defined for each specific metric during configuration of the
Objecteering/Metrics module, a table resumes the set of items which do not satisfy
the quality criteria defined by the user. For each item, a cross is used to
symbolize those metrics which render the item "non-standard".
For each item, a hypertext link is used to rapidly open the file containing the set of
its metrics. Another hypertext link allows you to access the on-line help with the
description of the metric in question.

Figure 3-6. Metrics on a package - Non-standard elements

Chapter 3: Functions

3-12 Objecteering/Metrics User Guide

Metrics on a class

Overview
Metrics calculated on a class are used to obtain:

♦= the counting of the class' items (associations, attributes, operations)

♦= information on links with other items

♦= information on operations

♦= the counting of parameters on each operation

Counting items
These metrics are used to calculate the number of associations, attributes and
operations which are:

♦= public

♦= protected

♦= private

♦= class

♦= abstract

♦= documented

♦= total

Figure 3-7. Metrics on a class - Overview

Chapter 3: Functions

Objecteering/Metrics User Guide 3-13

Operations
These metrics are used to calculate:

♦= the percentage of inherited operations (NMI)

♦= the number of operations added (NMA)

♦= the number of operations overridden (NMO)

♦= the average number of parameters per operation

♦= the degree of responsibility (CR)

♦= the degree of specialization (SIX)

Figure 3-8. Metrics on an class - Operations

Chapter 3: Functions

3-14 Objecteering/Metrics User Guide

Dependencies
These metrics are used to calculate:

♦= the number of classes used (all the elements are used by dependency links,
generalization and associations, and by links defined by the type of operation
parameters concerned)

♦= the number of parent classes (NOP)

♦= the number of child classes (NOC)

♦= the depth of inheritance (DIT)

Figure 3-9.Metrics on a class - Dependencies

Chapter 3: Functions

Objecteering/Metrics User Guide 3-15

Description of an operation
The complete signature of the operation is displayed.
For every operation, metrics allow you to calculate the number of:

♦= in parameters

♦= out parameters

♦= in/out parameters

♦= primitive parameters

♦= non-primitive parameters

♦= parameters of different types

♦= total parameters

Figure 3-10. Metrics on a class - Operations description

Chapter 4: Parameterization

Chapter 4: Parameterization

Objecteering/Metrics User Guide 4-3

Parameterizing generation

General parameterization

The … parameter represents …
Documenting notes the name of the notes which are used to find out which items are

documented.

Example: "description;summary"

Pre-condition
stereotypes

the name of the stereotypes which are used to find out which
operations have pre-conditions.

Example: "C++PreCondition;JavaPreCondition

Post-condition
stereotypes

the name of the stereotypes which are used to find out which
operations have post-conditions.

Example: "C++PostCondition;JavaPostCondition

HTML editor the complete name of the HTML editor used to visualize the files
containing the metrics for packages and classes.

Example: "C:\Program Files\Plus!\Microsoft Internet\Iexplore.exe"

Help directory the location of the on-line help for the Objecteering/Metrics
module. This directory is used during generation. In the results,
metrics and hypertext links towards the on-line help are generated.

Example: "D:\Program Files\Objecteering\help\25"

Messages file the mapping file for messages generated. This parameter is used
to parameterize messages generated in the final result, according
to your requirements (for further details, please refer to the
"Parameterizing generated messages" section in the current
chapter of this user guide).

Example: "metrics.us"

Generation path the generation path where files containing metrics will be
generated.

Example: "D:\Program Files\Metrics"

Chapter 4: Parameterization

4-4 Objecteering/Metrics User Guide

Parameterizing specific metrics

Figure 4-1. The set of module parameters

Chapter 4: Parameterization

Objecteering/Metrics User Guide 4-5

The upper and lower limits of parameterizable metrics are used to define non-
standard items which will be displayed in the package, and to underline the value
of these metrics where they exceed the limits set.
The metrics which can be parameterized are as follows:

♦= Class Responsibility (CR)

♦= Class Category Relational Cohesion (CCRC)

♦= Coupling Between Object classes (CBO)

♦= Depth of Inheritance Tree (DIT)

♦= Distance from the Main Sequence (DMS)

♦= Number Of Attributes (NOA)

♦= Number Of Children (NOC)

♦= Number Of Methods (NOM)

♦= Number of Methods Added (NMA)

♦= Number of Methods Inherited (NMI)

♦= Number of Methods Overridden (NMO)

♦= Number Of Parents (NOP)

♦= Specialization Index (SIX)

Chapter 4: Parameterization

4-6 Objecteering/Metrics User Guide

Parameterizing messages

Simple parameterization
All messages generated in HTML files which contain metrics declarations can be
parameterized. These messages are in a file which is defined in the configuration
of the module.

Note: It is essential that a messages file be defined, in order to generate the
metrics. The module is delivered with two messages files, which are used
to generate documents in English or in French.

In the message file, a message must have the following syntax:
Identifier:
This is the translation of the message.
end Identifier

Example:
Overview:
Overview
end Overview

Chapter 4: Parameterization

Objecteering/Metrics User Guide 4-7

Parameterizing on-line help
All messages generated in HTML files which contain metrics can have a hypertext
link to the on-line help for the metric. To define a hypertext link, two parameters
are necessary:

♦= the file opened by the hypertext link

♦= the text which defines the place
The name of the target file which corresponds to the "Label'" message is defined
in the "Label_Help" message. The on-line help directory in the configuration of the
module is added to this file name.
The text which defines the hypertext link must be surrounded by the "@" character
in the "label" message.
Example:
To define the "Specialization index (SIX)", the hypertext link is directed towards
D:\Program Files\Objecteering\Help\25\Six.html.

SpecializationIndex:
Specialization index (@Six@)
end SpecializationIndex
SpecializationIndex_Help
six.html
end SpecializationIndex_Help

Chapter 5: Specific metrics

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-3

Abstraction (A)

Overview
The Abstraction metric measures a package's abstraction rate. The package's
abstraction level corresponds to its stability level.
Calculations are carried out on classes defined directly in the package, but also on
classes defined in sub-packages or sub-classes. For a UML modeling project, the
metric is, therefore, calculated on all the UML modeling project's classes.
The Abstraction metric provides a percentage (between 0% and 100%), where the
package contains at least one class and at least one operation in an abstract
class.

Computation

The ... variable represents the …
Nma number of abstract operations in all the package's classes

Nmca number of operations (abstract or not) in the package's abstract classes

Nca number of abstract classes

Nc number of classes (abstract or not) of the package

Nominal range
Nominal values cannot be given, since abstraction depends on what the package
does (please refer to the "Analysis" theme in this section).

Chapter 5: Specific metrics

5-4 Objecteering/Metrics User Guide

Analysis
According to how prone the package is to modification during the application's life
cycle, it must be abstract to a greater or lesser extent. The more stable a package
must be, the more abstract it must be, if it is to be extensible. Abstract packages
which are extensible provide greater model flexibility.
Thus, abstraction and instability must be jointly interpreted. This is synthesized by
the Abstraction/Instability balancing metric, "Distance from the Main Sequence"
(DMS).

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-5

Class Responsibility (CR)

Overview
The Class Responsibility metric provides the degree of responsibility of a class or
a package.
For a class (and respectively for a package), it gives the percentage of operations
which include pre or post-conditions, with regard to the number of operations
which the class (and respectively the package) has.

Computation

The ... variable represents the …
PCC number of operations which implement pre-condition contracts

POC number of operations which implement post-condition contracts

NOM number of operations

Nominal range
Between 20 % and 75 %

Chapter 5: Specific metrics

5-6 Objecteering/Metrics User Guide

Analysis
The application is more robust if classes check the conditions of use for their
services and their returned results. However, too many checks can introduce a
certain encumbrance which is not necessarily needed.
The fewer pre and post-conditions there are on the operations of a class, the more
the class will be similar to a group of functions, rather than a consistent set of
operations.
The robustness and the re-use of components which use pre and post-conditions
will be increased.
Certain operations which only read attributes will not have pre and post-
conditions. This explains why the upper limit of 100% is very rarely reached.
A value of less than 20% is more alarming than a value greater than 75%.

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-7

Class Category Relational Cohesion (CCRC)

Overview
The Class Category Relational Cohesion metric measures the rate of cohesion
between a package's classes.
The grouping of classes in a package must be justified by the links which exist
between its classes. The relevance of a package can be questioned, if its classes
have relatively few links between themselves.

Computation

The ... variable represents the…
NumberOfLinks number of links (associations, generalizations, use links) between a

package's classes with multiple counting if a class uses another class
in several different ways.

NumberOfClasses number of classes of the package, by recursively processing sub-
packages and classes. For the UML modeling project, this variable
represents, therefore, the total number of classes for the UML
modeling project.

Nominal range
Between 150% and 350%.

Analysis
Architecture is that much more consistent if the number of internal links in each
package is relatively large. However, these links must remain within certain limits
(less than 350%) for reasons of complexity.

Chapter 5: Specific metrics

5-8 Objecteering/Metrics User Guide

Coupling Between Object Classes (CBO)

Overview
Use links between classes define the detailed architecture of the application, just
as use links between packages define the highest level architecture. These use
links play a determining role in design quality, notably in development and
maintenance facilities.

Computation
For a package, this metric provides the average number of classes used per class
in the package.

The ... variable represents the …
NumberOfLinks number of classes used (associations, use links) for all the package's

classes. A class used several times by another class is only counted
once.

NumberOfClasses number of classes of the package, by recursively processing sub-
packages and classes. For the UML modeling project, this variable
represents, therefore, the total number of classes of the UML
modeling project.

Nominal range
Between 1 and 4.

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-9

Analysis
A value of 0 indicates that a class has no relationship to any other class in the
system, and therefore should not be part of the system. A value between 1 and 4
is good, since it indicates that the class is loosely coupled. A number higher than
this may indicate that the class if too tightly coupled with other classes in the
model, which would complicate testing and modification, and limit the possibilities
of re-use. Consider de-coupling this class from the classes to which this class is
coupled, and build the class so that it is more independent by providing a more
complete set of operations.

Chapter 5: Specific metrics

5-10 Objecteering/Metrics User Guide

Depth of Inheritance Tree (DIT)

Overview
Inheritance, otherwise referred to as generalization, is a key concept in the object
model and must be carefully used. A class situated too deeply in the inheritance
tree will be relatively complex to develop, test and maintain. It is useful, therefore,
to know and regulate this depth.
This metric provides the position of the class in the inheritance tree.

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-11

Computation
For multiple inheritance, this metric provides the maximum length path.
DIT (C0) = 0
DIT (C0’) = 0
DIT (C1) = 1
DIT (C2) = 2
DIT (C3) = 3
DIT (C4) = 4

Figure 5-1. Illustration of depth of inheritance computation for a class

Chapter 5: Specific metrics

5-12 Objecteering/Metrics User Guide

Nominal range
Between 0 and 4.

Analysis
A compromise between the high performance power provided by inheritance and
the complexity which increases with the depth must be found. A value of between
0 and 4 respects this compromise.
A value greater than 4 would compromise encapsulation and increase complexity.

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-13

Instability (I)

Overview
The Instability metric measures the rate of instability of a package. A package is
unstable if it depends more on other packages than they depend on it.

Computation

The ... variable represents the ...
AfferentCoupling number of links (associations, generalizations, use links) towards

classes defined in other packages

EfferentCoupling number of links (associations, generalizations, use links) coming
from classes defined in other packages

Nominal range
Nominal values cannot be given, since instability depends on what the package
does. Certain packages must be unstable whilst others must not be unstable.

Chapter 5: Specific metrics

5-14 Objecteering/Metrics User Guide

Analysis
A package is that much more unstable if it depends more on other packages than
they depend on it. It is likely to change if these other packages change. Each
value calculated for a given package must be compared to the values of the other
packages.
Not all packages must be stable, since it must be possible for the application to
evolve.
If the user wishes the package to be stable, it must depend less on the other
packages than they depend on it.

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-15

Distance from the Main Sequence (DMS)

Overview
The Distance from the Main Sequence metric measures the balance between the
abstraction and instability rates of the package.
According to what function a package has to perform, it must be able to be
unstable, in other words, often significantly or abstractly modified. It must be
sufficiently general to be adaptable to widely diverse situations, either without
being modified or with only minimal modifications. It is preferable to have a
balance between these contradictory criteria.

Computation
For a package, the balance between abstraction and instability is obtained
through the following expression:

Nominal range
Between 50 % and 100 %.

Analysis
A value of 100 % gives optimal balance between abstraction and instability. In
practice, this optimum is never attained, and the user can be satisfied with a value
greater than or equal to 50 %.

Chapter 5: Specific metrics

5-16 Objecteering/Metrics User Guide

Number Of Attributes (NOA)

Overview
The Number Of Attributes metric is used to count the average number of attributes
for a class in the model. This information is useful in identifying the following
potential problems:

♦= A class with too many attributes may indicate the presence of coincidental
cohesion and require further decomposition, in order to better manage the
complexity of the model.

♦= If there are no attributes, then serious attention must be paid to the semantics
of the class, if indeed there are any. This may be a class utility rather than a
class.

Computation
For a class, this is a simple count of the number of attributes.
For a package, this is a count of the average number of attributes per class of the
package.

Nominal range
Between 2 and 5.

Analysis
A high number of attributes (> 10) probably indicates poor design, notably
insufficient decomposition, especially if this is associated with an equally high
number of methods. Classes without attributes are particular cases, which are not
necessarily anomalies. These can be interface classes, for example, which must
be checked.

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-17

Number Of Children (NOC)

Overview
Inheritance, otherwise called generalization, is one of the fundamental concepts of
object models, and must be used advisedly. Non-abusive use is a sign of quality
and a good understanding of the concept. A class from which several classes
inherit is a sensitive class, to which the user must pay great attention. It should,
therefore, be limited, notably for reasons of simplicity.

Computation
For a class, this is the number of child classes.
For a package, this is the number of child packages.

Nominal range
Between 1 and 4.

Analysis
The upper and lower limits of 1 and 3 correspond to a desirable average. This will
not stop certain particular classes being the kind of utility classes which provide
services to significantly more classes than 3.

Chapter 5: Specific metrics

5-18 Objecteering/Metrics User Guide

Number Of Methods (NOM)

Overview
The Number Of Methods metric is used to calculate the average count of all class
operations per class. A class must have some, but not an excessive number of
operations.
This information is useful when identifying a lack of primitiveness in class
operations (inhibiting re-use), and in classes which are little more than data types.

Computation
For a class, this is a simple count of the number of operations.
For a package, this is the average number of operations per class of the package.

Nominal range
Between 3 and 7.

Analysis
This value should remain between 3 and 7. This would indicate that a class has
operations, but not too many. A value greater than 7 may indicate the need for
further object-oriented decomposition, or that the class does not have a coherent
purpose. A value of 2 or less indicates that this is not truly a class, but merely a
data construction.

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-19

Number of Methods Added (NMA)

Overview
The number of operations added plays a role in the specialization of the class and
must be maintained in a proportion which continues to justify inheritance,
otherwise known as generalization.
Too many added operations signify too big a difference with the parent class. The
inheritance would then make less sense.

Computation
For a class, this is the count of the number of operations added to the inheritance.

Nominal range
Between 0 and 4.

Analysis
The more added operations there are, the more the class must be redeveloped,
and the less the inheritance is justified.

Chapter 5: Specific metrics

5-20 Objecteering/Metrics User Guide

Number of Methods Inherited (NMI)

Overview
Amongst the operations inherited by a class, the number of those which are not
redefined must be relatively greater than that of those which are redefined.

Computation
For a class, this metric gives the percentage of the number of non-redefined
operations with regard to the number of operations inherited.

The ... variable represents the ...
NOHO number of non-redefined inherited operations

HOP number of inherited operations

Nominal range
Between 50 % and 100 %

Analysis
The percentage of operations inherited should be high. This is the opposite of the
Number Of Methods Overridden (NMO) threshold. A low percentage of inherited
operations indicates poor sub-classing.
The maximum of 100 % is ideal, but is never attained, given the fact that we often
need to adapt inherited services.

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-21

Number of Methods Overridden (NMO)

Overview
The number of redefined operations plays a role in the specialization of the class
and must be maintained in a proportion which continues to justify inheritance.
Too many redefined operations implies too big a difference with the parent class
and inheritance then makes less sense.

Computation
For a class, this is the count of the number of inherited operations which are
redefined by the class.

Nominal range
Between 0 and 5.

Analysis
A class which inherits services must use them with a minimum of modifications. If
this is not the case, the inheritance loses all meaning and becomes a source of
confusion.

Chapter 5: Specific metrics

5-22 Objecteering/Metrics User Guide

Number Of Parents (NOP)

Overview
Inheritance, also known as generalization, is one of the fundamental concepts of
object models and must be used advisedly. Non-abusive use is a sign of quality
and of the solid understanding of the concept.

Computation
For a class, this is the number of parent classes.
For a package, this is the number of parent packages.

Nominal range
Between 1 and 2.

Analysis
The value 1 corresponds to a simple inheritance. Any value greater than 2 is a
sign of abusive use of inheritance, unfavorable to increased simplicity.

Chapter 5: Specific metrics

Objecteering/Metrics User Guide 5-23

Specialization Index (SIX)

Overview
Redefinition and overload are undesirable because of development complexity
and increased maintenance, together with the fact that they are presented at a
fairly deep level in the inheritance hierarchy. To express this fact, the NMO
overloading metric is multiplied by the DIT depth of inheritance. This is all related
back to the total number of operations, for comparison purposes.
The metric provides a percentage, where the class contains at least one
operation. For a root class, the specialization indicator is zero.

Computation
For a class, the specialization indicator is obtained through the following equation:

The ... variable represents the …
DIT depth of inheritance

NMA the number of operations added to the inheritance

NMI the number of inherited operations

NMO the number of overloaded operations

Nominal range
Between 0 % and 120 %.

Chapter 5: Specific metrics

5-24 Objecteering/Metrics User Guide

Analysis
It is better to carry out operation redefinition as early as possible, before going
more deeply into the class' inheritance graph. The more deeply we go into the
inheritance, the more difficult it becomes to understand the relationship which
exists between the current class and the inheritance's origin classes. Thus,
redefined operations in lower levels are more difficult to develop and maintain.
The upper limit of 120 % corresponds to a number of operation re-definitions, as
well as nominal operation additions to a nominal inheritance, which is NMO =3,
NMA =4 and DIT =4. As for the number of non-redefined inherited operations
(NMI), this is parameterized in terms of the rate with regard to the total number of
inherited operations. In our case, the minimal limit for this rate is fixed at 50 %,
which corresponds to a value equal to that of NMO (since NMI+NMO=100 % of
inherited operations).
This is represented as follows:

Index

Abstraction 3-10, 5-15
Abstraction (A)

Analysis 5-4
Computation 5-3
Nominal range 5-3
Overview 5-3

Actor 3-8
Association 3-12
Attribute 3-12, 5-16
Class 3-3, 3-8, 5-5, 5-7, 5-8, 5-10, 5-

16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-
22

Class Category Relational Cohesion
3-10, 4-5

Class Category Relational Cohesion
(CCRC)
Analysis 5-7
Computation 5-7
Nominal range 5-7
Overview 5-7

Class Responsibility 3-10, 3-13, 4-5
Class Responsibility (CR)

Analysis 5-6
Computation 5-5
Nominal range 5-5
Overview 5-5

Coincidental cohesion 5-16
Commands

Overview 3-3
The "Generate" command 3-4
The "Visualize" command 3-5

Component 3-8
Configuration of the module 4-6
Console 2-11
Counting items

Calculating the number of actors
3-8

Calculating the number of child
packages 3-8

Calculating the number of classes
3-8

Calculating the number of
components 3-8

Calculating the number of
enumerations 3-8

Calculating the number of modeling
units 3-8

Calculating the number of nodes
3-8

Calculating the number of packages
3-8

Calculating the number of packages
used 3-8

Calculating the number of packages
which use this package 3-8

Calculating the number of parent
packages 3-8

Calculating the number of signals
3-8

Calculating the number of types 3-
8

Calculating the number of use
cases 3-8

Coupling Between Object Classes 3-
10, 4-5

Coupling Between Object classes
(CBO)
Analysis 5-9
Computation 5-8
Nominal range 5-8
Overview 5-8

Data type 5-18
Dependencies

Calculating the degree of
specialization 3-14

Calculating the depth of inheritance
3-14

Calculating the number of child
classes 3-14

Calculating the number of parent
classes 3-14

Depth of Inheritance Tree 3-14, 4-5,
5-23

Depth of Inheritance Tree (DIT)
Analysis 5-12
Computation 5-11
Nominal range 5-12
Overview 5-10

Description of an operation
Calculating in parameters 3-15
Calculating in/out parameters 3-15
Calculating non-primitive

parameters 3-15
Calculating out parameters 3-15
Calculating parameters of different

types 3-15
Calculating primitive parameters

3-15
Calculating total parameters 3-15

Distance from the Main Sequence 3-
10, 4-5

Distance from the Main Sequence
(DMS) 5-4
Analysis 5-15
Computation 5-15
Nominal range 5-15
Overview 5-15

Documented item 1-4
Elaborated metrics

Calculating abstraction 3-10
Calculating instability 3-10

Calculating the average number of
attributes per class 3-10

Calculating the average number of
operations per class 3-10

Calculating the balance between
abstraction and instability 3-10

Calculating the cohesion between
classes of the package 3-10

Calculating the coupling between
the package's classes 3-10

Calculating the degree of
responsibility 3-10

Enumeration 3-8
Evaluating the quality of models

produced 1-3
First Steps

Configuring the Metrics module 2-
9

General remarks 2-3
Generation commands 2-10
Hypertext links on elements 2-14
Hypertext links on metrics 2-14
Importing a model into the

FirstSteps UML modeling project
2-5

Modifying thresholds 2-15
Selecting the Metrics module in your

UML modeling project 2-7
Sources 2-3

First Steps preparation
Selecting and configuring the

module 2-4
General parameterization

Documenting notes 4-3
Generation path 4-3
Help directory 4-3
HTML editor 4-3
Messages file 4-3
Post-condition stereotypes 4-3

Pre-condition stereotypes 4-3
Generalization 5-10, 5-17, 5-19
Generation command 2-10
Global number of items on a package

1-4
Hypertext links 2-15, 4-7
Hypertext links on elements 2-14
Hypertext links on metrics 2-14
Information on structuring,

decomposition and complexity 1-3
Inheritance 5-10, 5-17, 5-19, 5-21, 5-

22
Instability 3-10, 5-15
Instability (I)

Analysis 5-14
Computation 5-13
Nominal range 5-13
Overview 5-13

Interface class 5-16
Link 3-12, 5-7, 5-8, 5-13
Local number of items on a package

1-4
Metrics

Counting metrics 1-3
Specific metrics 1-3
Two types of metric 1-3

Metrics on a class
Counting items 3-12
Dependencies 3-14
Description of an operation 3-15
Obtaining information on links with

other items 3-12
Obtaining information on operations

3-12
Obtaining the counting of

parameters on each operation
3-12

Obtaining the counting of the class'
items 3-12

Operations 3-13
Overview 3-12

Metrics on a package
Counting items 3-8
Elaborated metrics 3-10
Non-standard items 3-11
Obtaining elaborated metrics 3-7
Obtaining global counting of the

package's items 3-7
Obtaining local counting of the

package's items 3-7
Obtaining the list of non-standard

items 3-7
Overview 3-7

Modifying thresholds
The non-standard elements table

2-15
Multiple inheritance 5-11
NameSpace 3-8
Node 3-8
Non-standard items 3-11, 4-5
Number Of Attributes 3-10, 4-5
Number of Attributes (NOA)

Analysis 5-16
Computation 5-16
Nominal range 5-16
Overview 5-16

Number Of Children 3-8, 3-14, 4-5
Number of Children (NOC)

Analysis 5-17
Computation 5-17
Nominal range 5-17

Number of Method Overridden (NMO)
Analysis 5-21
Computation 5-21

Nominal range 5-21
Overview 5-21

Number Of Methods 3-10, 4-5
Number of Methods (NOM)

Analysis 5-18
Computation 5-18
Nominal range 5-18
Overview 5-18

Number of Methods Added 3-13, 4-
5, 5-24

Number of Methods Added (NMA)
Analysis 5-19
Computation 5-19
Nominal range 5-19
Overview 5-19

Number of Methods Inherited 3-13,
4-5, 5-24

Number of Methods Inherited (NMI)
Analysis 5-20
Computation 5-20
Nominal range 5-20
Overview 5-20

Number of Methods Overridden 3-
13, 4-5, 5-20, 5-23

Number Of Parents 2-16, 3-8, 3-14,
4-5

Number of Parents (NOP)
Analysis 5-22
Computation 5-22
Nominal range 5-22
Overview 5-22

Objecteering/UML Modeler 2-3, 2-4
Operation 3-12, 5-5, 5-18, 5-19, 5-

20, 5-21, 5-23
Operations

Calculating the average number of
parameters per operation 3-13

Calculating the degree of
responsibility 3-13

Calculating the degree of
specialization 3-13

Calculating the number of
operations added 3-13

Calculating the number of
operations overridden 3-13

Calculating the percentage of
inherited operations 3-13

Overview 5-17
Package 1-4, 3-3, 3-8, 5-5, 5-7, 5-8,

5-13, 5-16, 5-17, 5-18, 5-22
Parameterizing generation

Class Category Relational Cohesion
(CCRC) 4-5

Class Responsibility (CR) 4-5
Coupling between object classes

(CBO) 4-5
Depth of inheritance tree (DIT) 4-5
Distance from the main sequence

(DMS) 4-5
General parameterization 4-3
Number of attributes (NOA) 4-5
Number of children (NOC) 4-5
Number of methods (NOM) 4-5
Number of methods added (NMA)

4-5
Number of methods inherited (NMI)

4-5
Number of methods overridden

(NMO) 4-5
Number of parents (NOP) 4-5
Specialization index (SIX) 4-5
Specific metrics 4-4

Parameterizing messages
Simple parameterization 4-6

Parameterizing on-line help 4-7
Post-condition 5-5

Pre-condition 5-5
Quality criteria 1-3

Cohesion 1-3
Complexity 1-3
Stability 1-3
Testability 1-3

Running metrics on a class 3-3
Running metrics on a package 3-3
Running the Metrics/Generation

command 2-10
Signal 3-8

Specialization Index 3-13, 4-5
Specialization Index (SIX)

Analysis 5-24
Computation 5-23
Nominal range 5-23
Overview 5-23

Summary note 1-4
Type 3-8
Use case 3-8
Use link 5-8

