
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

 Objecteering/Java Developer User Guide

 Version 5.2.2

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/002

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents
Chapter 1: Introduction

Overview of the Objecteering/Java module ..1-3
Tools used ...1-5
The properties editor for Java..1-6
Code generation ..1-7
Other Objecteering/Java features ...1-8
Presentation of Java Patterns ...1-10
Glossary ...1-12

Chapter 2: Using the Objecteering/Java module
Using the Objecteering/Java module ..2-3
The properties editor and the Java module...2-5

Chapter 3: First Steps - Java
Java First Steps - Introduction ...3-3
Creating a Java generation work product ...3-5
Java generation work product menus ...3-9
Java code generation ..3-13
Compilation ..3-21
Documentation generation ..3-28
Storage...3-30
Running an applet..3-31
Reverse..3-35
Round trip mode ..3-41

Chapter 4: First Steps - Java Patterns
Introduction ..4-3
Remote method invocation ..4-5
Sending events ..4-11
Listening to events ...4-27
Non derivable operation...4-35

Chapter 5: Code generation
Code generation - Overview ..5-3
Code generation - Functions ...5-7
Code generation - Tagged value types ...5-9
Code generation - Note types..5-20
Code generation - Stereotypes..5-22
Java code and modeling correspondence ..5-23

Chapter 6: Compilation
Compilation - Overview..6-3
Compilation - Functions ...6-4
Storage...6-5

Chapter 7: Java documentation generation
Java documentation generation - Overview ..7-3
Java documentation generation - Functions ...7-4
Java documentation generation - Note types..7-5
Java documentation generation - Javadoc @param markers7-7
Java documentation generation - Javadoc @return markers7-10
Java documentation generation - Javadoc @throws markers7-13
Java documentation generation - Javadoc @see markers7-16

Chapter 8: Reverse
Reverse - Overview ...8-3
Reverse - Functions...8-7
Steps involved in the reverse of a model ..8-13

Chapter 9: Choosing the functional mode
Java functioning modes ...9-3
Model driven mode ..9-5
Round trip mode ..9-8
Handy tips ..9-14

Chapter 10: Working with other IDEs
Introduction to working with other IDEs ...10-3
Visual Age/Objecteering integration ..10-4
Visual Age/Objecteering integration - Operating mode...............................10-8
Forte/Objecteering integration ...10-10

Chapter 11: Objecteering/Eclipse
Introduction to Objecteering/Eclipse..11-3
Using Objecteering/Eclipse ...11-5
Objecteering/Eclipse first steps ...11-10
The Objecteering/UML perspective in Eclipse ..11-17
Parameterizing Objecteering/Eclipse ..11-20

Chapter 12: Design Patterns
Design Patterns - Overview ...12-3
Design Patterns - Detailed view ..12-5

Chapter 13: Remote method invocation
Remote method invocation - Overview ...13-3
Applying the pattern ...13-4
Consequences of applying the pattern ..13-7

Chapter 14: Sending events
Sending events - Overview..14-3
Applying the pattern ...14-4
Consequences of applying the pattern ..14-7
Details of the contents of the events package ..14-9
Details of the emitter class transformations ..14-11

Chapter 15: Listening to events
Listening to events - Overview ..15-3
Applying the pattern ...15-4
Consequences of applying the pattern ..15-8

Chapter 16: Non derivable method
Non derivable method - Overview ...16-3
Applying the pattern ...16-4
Methods to implement..16-6
Methods to redefine ...16-9
Primitive class ..16-12
Non-primitive class...16-15

Chapter 17: Customizing Java generation
Customizing Java generation - Overview..17-3
Configuration window ..17-4
Principles of type and accessor generation ..17-27
Overview of type and accessor generation ...17-40
Customizing association accessors ..17-46
Customizing attribute accessors..17-49
Customizing parameter declarations ...17-52
Additional elements for customizing types (Summary)17-53
Code generation document templates ..17-55
Makefile generation document templates ...17-62

Chapter 18: Calling module on-line commands
Calling commands - Overview...18-3
Calling commands ...18-4

Index

Chapter 1: Introduction

Chapter 1: Introduction

Objecteering/Java User Guide 1-3

Overview of the Objecteering/Java module

Introduction
Welcome to the Objecteering/Java user guide!
The Objecteering/Java module allows the generation of a Java application from an
Objecteering/UML model, as well as its compilation and the generation of its
documentation.
Its integrated design patterns are used to automate the designed model.
Furthermore, during the modeling phase, a reverse feature is provided to enable
you to use classes in existing libraries, especially the JDK (Java Development Kit).

Module functions
The Objecteering/Java module groups together five main features:

♦ Java code generation

♦ generated code compilation

♦ Java documentation generation

♦ reversing of the existing libraries

♦ dynamic Java design patterns

Furthermore, powerful means of parameterization are provided using:

♦ the Objecteering/Java module parameters

♦ the generation document template accessible from Objecteering/UML Profile
Builder

♦ the parameterization of the basic types and accessors

Chapter 1: Introduction

1-4 Objecteering/Java User Guide

Adapting to your development environment
The Objecteering/Java module provides two functioning modes, to ensure
consistency at all times between the model built in Objecteering/UML and the
code produced:

♦ The model driven mode generates the entire Java application from the model
and retrieves the code inserted using markers.

♦ The round trip mode combines code generation and reverse operations,
retrieves the freely typed code and creates modeling elements when needed.

Objecteering/UML can be coupled to other integration development environments
(for example, IBM's Visual Age), which can facilitate application development.

Chapter 1: Introduction

Objecteering/Java User Guide 1-5

Tools used

The 2.1 version of the Objecteering/Java module is delivered with versions 1.1,
1.2, 1.3 and 1.4 of the JDK.
For Windows, the cygnus cyg-win 32 tools are also delivered. This is because it is
possible, on this platform, to generate makefiles, either in a format which is
understood by the Microsoft make tool, or in a format which is understood by the
GNU make tool included in the cyg-win 32.
To obtain an Objecteering/UML database containing the entire reversed JDK 1.2,
1.3 or 1.4, please contact the Objecteering/UML technical support team
(support@objecteering.com).

Chapter 1: Introduction

1-6 Objecteering/Java User Guide

The properties editor for Java

The properties editor is essentially a window designed to aid the user in his
modeling, by providing rapid access to various information and services he may
need to use.
The properties editor contains a number of tabs, including a "Java" tab when the
Objecteering/Java module has been selected for the current UML modeling
project. This tab is used to:

♦ enter or modify certain information relevant to Java generation on the element
selected in the explorer, such as notes, tagged values or stereotypes

♦ run generation, visualization and compilation operations
For further general information on the properties editor, please refer to the "The
Properties editor" section in chapter 3 of the Objecteering/UML Modeler user
guide.
For information on the "Java" tab of the properties editor, please refer to the "The
properties editor and the Java module" section in chapter 2 of this user guide.

Chapter 1: Introduction

Objecteering/Java User Guide 1-7

Code generation

General remarks
This operation consists of producing Java files for a model's classes. Before
actually generating, it may be necessary to annotate the model with tagged values
and to fill in notes.

Generating types and accessors
The Java generator suggests a default translation of the types modeled in Java
types. In the same way, it has a default strategy for generating parameter and
attribute declarations, and for generating accessors. It is possible to choose other
translations and other strategies without having to redefine the module, using the
Objecteering/UML Profile Builder tool.

Main topics in this user guide
This user guide will explain:

♦ the correspondence between Java notions and modeling notions

♦ the note and tagged value types the module provides

♦ parameterization of the types of the parameters and attributes generated

♦ parameterization of the generated parameters and attributes declaration

♦ parameterization of the generated attributes accessors

The related Objecteering/Design Patterns for Java module automates the most
important design patterns, in particular those described by E. Gamma.

Chapter 1: Introduction

1-8 Objecteering/Java User Guide

Other Objecteering/Java features

Overview
In addition to code generation, the Objecteering/Java module provides related
functions, which are the compiling of generated files, the production of
documentation with the javadoc tool and a reverse which allows the existing
libraries to be used during the modeling phase.

Compiling
This operation consists of producing the class files from generated java files. For
this, the module suggests generating the makefile files, as well as running them
from the tool.

Analyzing compilation
After a makefile has been run, the compilation analysis feature allows rapid
access to the model elements which caused a compilation error.

Generating documentation
This operation uses the JDK javadoc tool to produce HTML files from the
generated java files. This operation is therefore related to the generated java
files. Special notes, inserted during the modeling phase and taken into account by
the code generation, are then used.

Chapter 1: Introduction

Objecteering/Java User Guide 1-9

Reverse engineering
This operation consists of incorporating classes of existing libraries, especially the
JDK, into a model. This allows you, during the modeling phase, to:

♦ specialize these classes

♦ implement them

♦ create associations towards them

♦ create attributes which have one of these classes as type

♦ create method parameters which have one of these classes as type
This operation also allows you to reverse your developed code into
Objecteering/UML modeling.

Chapter 1: Introduction

1-10 Objecteering/Java User Guide

Presentation of Java Patterns

Presentation
Java Patterns provide solutions to problems which all Java developers have come
across. In addition, the automation they provide also allows the risks of errors or
omissions to be considerably reduced.
The use of patterns allows you to focus on the part of your application that is
specific to your domain, and avoids having to deal with problems for which a
proven generic solution exists, at a lower level.

Remote Method Invocation
Calling methods on distant objects is a powerful service provided by Java. Having
to code not only the concrete class but also the interface requires having to do the
same task twice, and entails further risk of errors.
These risks no longer exist with the RMI pattern. In addition, the RMI pattern is
incremental, i.e. it can be applied each time the concrete class is modified.

Sending events
It often happens in a Java application that the user wants to trigger an event when
the state of an object changes or when it is found in a specific state.
The "Sending events" pattern creates the event class and the interface for the
objects that will listen. It also manages notifications.

Listening to events
It is almost impossible to write a Java application without listening to events, such
as clicking on a button, selecting a text field or moving a gauge.
The "Listening to events" pattern allows you to find out when events will occur
("subscribing" to events), and to create internal classes which will manage the
listening, as well as methods used to answer notifications.

Chapter 1: Introduction

Objecteering/Java User Guide 1-11

Non-derivable method
The optimization problem is common to all developers and therefore common to
all Java developers.
It is sometimes possible to help the virtual Java machine. For example, when a
method is not redefined, it will run faster if it is specified as "final".
It is recommended that you carry out this optimization at the end of the
development phase. However, it would be tiresome to have to go through all the
methods of all the classes to check each time whether a method is redefined or
not in a subclass.
The "Non derivable method" pattern allows the automation of this task without
risks of errors.

Creating methods to be implemented
Launching this pattern on a class has the effect of recursively scanning the
implemented interface classes collecting their methods. These methods are then
created in the class. This process is carried out for each class of the package.
The processing only takes into account the modeled interfaces and not the
{JavaImplements} tagged values.

Creating methods to be redefined
Launching this pattern on a class has the effect of going recursively through the
parent classes collecting their abstract methods. These methods are then created
in the class. This process is carried out for each class of the package.

Transforming a class into a non-primitive class
This pattern is especially useful for reversed classes. The reverse only produces
primitive classes. If a user wishes to make a reversed class non-primitive,
especially to create associations towards this class, he can use this pattern which
will have the effect of transforming the attributes with this type into associations.

Transforming a class into a primitive class
This pattern is the same as the previous operation in the other direction. Its effect
is to transform the associations towards this class into attributes.

Chapter 1: Introduction

1-12 Objecteering/Java User Guide

Glossary

Java generation work product: Object that can be created on a package or a class
and which possesses Objecteering/Java code generation and compilation
features.
Type and accessor generation project: Project that contains information which
allows the mapping of the Objecteering/UML types into Java types, and the
generation of declarations and accessors for attributes, navigable associations
and parameters. The advantage of this technique lies in the fact that the type
package is separate from the generator itself.
External edition: Operation which allows the entry of notes with an editor other
than the Objecteering/UML text editor. The texts entered between the pre-
positioned markers are re-incorporated into the Objecteering/UML repository when
the editing ends.
JDK (Java Development Kit): Library containing Java classes and tools,
distributed by SUN for Java developers.
Properties editor: Tool which facilities the entry and/or modification of information,
as well as code generation, visualization and compilation.

Chapter 2: Using the
Objecteering/Java module

Chapter 2: Using the Objecteering/Java module

Objecteering/Java User Guide 2-3

Using the Objecteering/Java module

Installation prerequisites
The Objecteering/Java module requires a valid license. Furthermore, the JDK 1.2
or later version must have been installed and the tools must be accessible.

Installing the Java module
The Objecteering/Java module is delivered to and installed on your
Objecteering/UML site automatically during the Objecteering/UML installation
procedure. For further information, please refer to chapter 2 of the
Objecteering/Introduction user guide.

Note: The complete module delivery and installation procedure is fully explained
in the "Detailed view of the Configuration menu" in chapter 3 of the
Objecteering/Administrating Objecteering Sites user guide.

Selecting the Java module
The only operation the user has to carry out in order to be able to use the
Objecteering/Java module is the actual selection of the module itself for the
current UML modeling project. This operation is described in the "Selecting
modules in the current project" section in chapter 3 of the
Objecteering/Introduction user guide.
Please note that because installation of the Objecteering/Java module is carried
out automatically during installation of the Objecteering/UML tool itself, module
parameters are standard. To customize these module parameters (for example,
the JDK path), simply edit the "Modify module parameter configuration" window.
For further information on modifying module parameters, please refer to the
"Configuration window" section in chapter 17 of this user guide.

The properties editor for Java
It should be noted that where a version of the Objecteering/Java module which
adds a tab to the properties editor is selected in place of an earlier version of the
module which did not provide this service, you should quit and restart
Objecteering/UML, in order for the properties editor to be correctly displayed.

Chapter 2: Using the Objecteering/Java module

2-4 Objecteering/Java User Guide

Selecting the Java model type
When creating a new UML modeling project, it is possible to select the
"DefaultJava" UML model type in the "UML model type" field. By doing this, the
Objecteering/Java module is automatically selected for use in your new UML
modeling project.

Chapter 2: Using the Objecteering/Java module

Objecteering/Java User Guide 2-5

The properties editor and the Java module

The "Java" tab of the properties editor on a package

Figure 2-1. The "Java" tab of the properties editor on a package

Key:
1 - This gives the name of the package selected in the explorer.
2 - This field is used to add the {JavaNoPackage} tagged value.
3 - This field is used to add the {JavaRoot} tagged value.
4 - The "Generate" button is used to launch code generation on the selected

package.
5 - The "Compile" button is used to launch compilation.
If the package is the root package, or is tagged {JavaRoot}, an additional button,
"Generate documentation", appears. This button is used to launch Javadoc
generation on the package.

Note: For generation and compilation operations, a Java generation work
product must exist for the element on which generation and/or compilation
operations are to be run. If this is not the case when you click on the
"Generate" button in the properties editor, the "Java generation work
product" dialog box appears, allowing you to create a work product there
and then.

Chapter 2: Using the Objecteering/Java module

2-6 Objecteering/Java User Guide

The "Java" tab of the properties editor on a class

Figure 2-2. The "Java" tab of the properties editor on a class

Chapter 2: Using the Objecteering/Java module

Objecteering/Java User Guide 2-7

Key:
1 - This gives the name of the class selected in the explorer.
2 - The "Visibility" radio buttons are used to select the visibility of the class.
3 - The tickboxes which appear here are used to indicate the nature of the class:

♦ "Abstract": This means that the class is abstract.

♦ "Interface": This adds the <<interface>> stereotype to the class.

♦ "Static": This annotates the class using the {JavaStatic} tagged value.

♦ "Main class": This indicates that the class should contain a main
method. When you check this tickbox, a "public static void main
(String[] argu)" is added to the class. The user must define the
contents of this method.

4 - When the "Import" tickbox is checked, you can specify what you wish to import
in the field to the right of the tickbox. If you wish to specify several elements,
separate them using a comma.

5 - The "Javadoc" field is used to enter "Javadoc" type notes for the class in
question.

6 - The "Invariant" field is used to enter invariants for the class in question.
7 - The "Generate" button is used to launch code generation on the selected

class.
8 - The "Compile" button is used to launch compilation.
9 - The "Visualize" button is used to visualize the newly generated code.
10 - The "Edit" button is used to open a code edition window, in which you can

edit your code.
11 - The "Update" button is used to update your generated code.

Note 1:When the selected class is an inner class in the modeling, a tickbox
"InnerBox", figures in the properties editor. If this tickbox is not checked,
the class is generated as a non-public class for its container class.

Note 2:When the "Main class" tickbox is checked, an additional button, "Run
application" appears. This button is used to run the application. When
you click on this button, a dialog box appears, inviting you to enter your
application parameters. Enter and confirm to run the application.

Chapter 2: Using the Objecteering/Java module

2-8 Objecteering/Java User Guide

The "Java" tab of the properties editor on an operation

Figure 2-3. The "Java" tab of the properties editor on an operation

Chapter 2: Using the Objecteering/Java module

Objecteering/Java User Guide 2-9

Key:
1 - This gives the name of the operation selected in the explorer.
2 - The "Visibility" buttons are used to select the visibility of the operation.
3 - The "Operation type" buttons which appear here are used to indicate the

operation type:

♦ "None": This means that the operation has no special type.

♦ "constructor": This adds the <<create>> stereotype to the operation,
and means that it is a constructor of the class. The generator ignores
the modeling name of the operation.

♦ "finalize": This adds the <<destroy>> stereotype to the operation, and
indicates that the name of the operation is "finalize".

4 - The tickboxes which appear here are used to indicate the nature of the
operation:

♦ "Static": This indicates that the operation is "class", in other words,
shared by all its instances.

♦ "Final": This adds the {JavaFinal} tagged value to the operation.

♦ "Abstract": This indicates that the operation is abstract.

♦ "Synchronize": This adds the {JavaSynchronize} tagged value to the
operation.

♦ "Native": This adds the {JavaNative} tagged value to the operation.
5 - The "Throw exception" field is used to add the {JavaThrownException} tagged

value to an operation.
6 - The "Java code" field is used to enter or modify the actual Java code of the

operation.
7 - The "Pre-condition" field is used to enter a constraint stereotyped

<<JavaPreCondition>>.
8 - The "Post-condition" field is used to enter a constraint stereotyped

<<JavaPostCondition>>.
9 - The "Javadoc" field is used to enter "Javadoc" type notes for the operation in

question.

Chapter 2: Using the Objecteering/Java module

2-10 Objecteering/Java User Guide

The "Java" tab of the properties editor on an attribute

Figure 2-4. The "Java" tab of the properties editor on an attribute

Chapter 2: Using the Objecteering/Java module

Objecteering/Java User Guide 2-11

Key:
1 - This gives the name of the attribute selected in the explorer.
2 - These buttons are used to select the visibility of the attribute.
3 - The buttons which appear here are used to indicate the attribute's access

mode.
4 - The "Collection" field is used to add {type(x)}, where x can be one of a group

of strings in a list.
5 - The tickboxes which appear here are used to indicate the nature of the

attribute:

♦ "Static": This indicates that the attribute is static.

♦ "Final": This adds the {JavaFinal} tagged value to the attribute.

♦ "Transient": This adds the {JavaTransient} tagged value to the
attribute.

6 - The "Multiplicity" field is used to enter the attibute's multiplicity, whilst the
"Initial value" field is used to give its initial value.

7 - The "Javadoc" field is used to enter "Javadoc" type notes for the attribute in
question.

Note: When the attribute is of base type, such as real, int, etc, additional, explicit
tickboxes appear.

Chapter 2: Using the Objecteering/Java module

2-12 Objecteering/Java User Guide

The "Java" tab of the properties editor on an association

Figure 2-5. The "Java" tab of the properties editor on an association

Chapter 2: Using the Objecteering/Java module

Objecteering/Java User Guide 2-13

Key:
1 - This gives the name of the association selected in the explorer.
2 - These buttons are used to select the visibility of the association.
3 - The tickboxes which appear here are used to indicate the nature of the

association:

♦ "Static": This adds the {IsClass} tagged value to the association.

♦ "Final": This adds the {JavaFinal} tagged value to the association.

♦ "Transient": This adds the {JavaTransient} tagged value to the
association.

4 - The "Collection" field is used to add {type(x)}, where x can be one of a group
of strings in a list.

5 - The "Min" and "Max" fields are used to enter the association's multiplicity.
6 - The "Initial value" field is used to enter a "JavaInitValue" note for the selected

association.
7 - The "Javadoc" field is used to enter "Javadoc" type notes for the association in

question.

Chapter 2: Using the Objecteering/Java module

2-14 Objecteering/Java User Guide

The "Java" tab of the properties editor on a parameter

Figure 2-6. The "Java" tab of the properties editor on a parameter

Key:
1 - This gives the name of the parameter selected in the explorer.
2 - The "Collection" field is used to add the {type(x)}.
3 - The "Multiplicity" field is used to define the multiplicity of the parameter.

Chapter 3: First Steps - Java

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-3

Java First Steps - Introduction

General remarks
By following an example of a UML modeling project, you are now going to
discover step by step the different features of the Objecteering/Java module.

Sources
This example is a simple bank account application, extracted from Learn Java
Now, by Stephen R.Davis, MicrosoftPress.

Chapter 3: First Steps - Java

3-4 Objecteering/Java User Guide

Getting the example model
The first operation we shall look at is how to retrieve the example model (as
shown in Figure 3-1).

Figure 3-1. Importing the "First Steps" project

Steps:
1 - Run Objecteering/UML Modeler, and click on the root package using the right

mouse-button.
2 - Select the "Java/Import the first steps project" commands from the context

menu which then appears.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-5

Creating a Java generation work product

Overview
In Objecteering/UML, the Java generation work product provides the commands
for generating code, compiling and generating documentation. It can also be used
to administrate the files which have been produced. Thus, if you destroy the
generation work product, you will also destroy the files produced.

Note: In the "Java" tab of the properties editor, code generation and compilation
can be directly launched, by clicking on the relevant buttons. When these
commands are run via the properties editor and a generation work product
does not already exist on the selected element, the "Java generation work
product" dialog box is automatically opened, to facilitate generation work
product creation.

Chapter 3: First Steps - Java

3-6 Objecteering/Java User Guide

Creating a Java generation work product

 Using this example (shown in Figure 3-2), we are going to create a Java
generation work product for the "FirstSteps" package.

Figure 3-2. Creating a Java generation work product

Steps:
1 - Select the package in the explorer.

2 - Click on the "Java generation work product" button in the "Items" tab of
the properties editor.

3 - Enter the necessary information and confirm by clicking on the "OK" button.
The newly created work product will then appear in the "Items" tab of the
properties editor.

Note: Java generation work products can also created for elements other than
the root package. A work product can be created for each class or
package.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-7

The propagation of a generation work product
When a Java generation work product on a package or a class propagates, a
Java code generation work product is created on each package and class which
features at a lower level in the tree structure.
In our example (Figure 3-3), we can make the work product created for the
"FirstSteps" package propagate the "Bank" package and all the classes of this
package.

Figure 3-3. Propagating a generation work product

Chapter 3: First Steps - Java

3-8 Objecteering/Java User Guide

Steps:
1 - Select the generation work product with the right mouse-button.
2 - Choose "Propagate" in the context menu. A message in the console informs

you that propagation has been successfully carried out.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-9

Java generation work product menus

Overview
The Java generation work product provides all the commands used to generate
Java code, to compile and to generate documentation (see Figure 3-4).
The "Java" tab of the properties editor also provides the user with easy access to
certain commands. In this first steps modeling project, code generation,
visualization and compilation operations are going to be run directly from the
"Java" tab of the properties editor. Subsequent operations will then be run from
the context menu on a work product.

Chapter 3: First Steps - Java

3-10 Objecteering/Java User Guide

Java generation work product commands

Figure 3-4. Generation work product services

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-11

All the commands for editing and generating Java are grouped together in the
"Java" menu. These commands are detailed in the following table.

The ... menu is used to ...
Generate generate the Java code for a class (when the work product is

linked to a class) or for a set of classes (when the work
product is linked to a package).

Visualize visualize the generated Java code. This action is only
carried out for work products linked to a class.

Edit edit the generated code. The editor used is the one defined
by the parameter : "Command invoking the external editor" in
the Java generation module. This action is only carried out
for work products linked to a class.

Update incorporate modifications made from outside the tool to the
generated files in the Objecteering/UML repository.

Generate documentation generate an HTML documentation using the "javadoc" tool.

Generate the makefile produce the makefile file which allows the production of
.class files from the generated .java files.

Visualize the makefile visualize the generated makefile file

Compile produce the .class files from the .java files generated since
the last compilation.

Generate and compile generate the Java code and produce the .class files from the
.java files generated since the last compilation.

Recompile all produce the .class files from the generated .java files even if
they have not been re-generated since the last compilation.

Destroy the compiled files destroy the .class files

Analyze the compilation open the window for analyzing the results linked to the last
compilation.

Store build a .jar containing the .class of a package or the .class of
a class as well as the files indicated by the
"JavaBeanResource" tagged values

Visualize the applet visualize the HTML code of the file for launching the applet
defined by the class to which the work product is linked.

Edit the applet edit the HTML code of the file for launching the applet
defined by the class to which the work product is linked.

Launch the applet launch the applet defined by the class to which the work
product is linked.

Chapter 3: First Steps - Java

3-12 Objecteering/Java User Guide

Note: The "Visualize", "Edit" and "Launch the applet" commands have no impact
on a work product that is not linked to a class which generalizes the
"Applet" class.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-13

Java code generation

Launching Java code generation
A .java type file is generated for each class of the model for which the "Generate"
command is run.
However, it is possible to generate code from a package. A .java file is then
generated for each of the package's classes.
No code is generated for elements annotated using the {JavaExtern} tagged value
(as is the case, for example, for an element produced by the reverse of an
Objecteering/Java module) or the {nocode} tagged value. This also applies to
classes annotated using the {JavaNonPublic} tagged value or to inner classes.
The code of these classes is to be incorporated in the .java of the class which
contains them.

Chapter 3: First Steps - Java

3-14 Objecteering/Java User Guide

To generate code, carry out the steps shown in Figure 3-5.

Figure 3-5. Running Java code generation

Steps:
1 - Select the "FirstSteps" package in the explorer.
2 - In the "Java" tab of the properties editor, click on the "Generate" button. In

this case, a Java generation work product already exists for the "FirstSteps"
package. However, if this had not been the case, the "Java generation work
product" dialog box would have been opened automatically, thus allowing you
to easily create the work product.

Note: Exactly the same operation can be carried out by right-clicking on the
"FirstSteps_Java" work product in the "Items" tab of the properties editor,
and then running the "Java/Generate" commands from the context menu
which appears.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-15

You can monitor the progress of the code generation in the console (as shown in
Figure 3-6).

Figure 3-6. Monitoring the progress of code generation in the console

Note: You can go up and down in the console by using the scroll bars.

Chapter 3: First Steps - Java

3-16 Objecteering/Java User Guide

Visualizing the generated Java code
After code generation, you can visualize the generated Java code. This command
can only be launched on a work product to which a .java file is associated, i.e. on
a work product of a class for which the code has been generated.
To visualize generated Java code, carry out the steps shown in Figure 3-7.

Figure 3-7. Running the "Visualize" command.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-17

Steps:
1 - Select the "BankAccount" class in the explorer.
2 - In the "Java" tab of the properties editor, click on the "Visualize" button.

Note: Exactly the same operation can be carried out by right-clicking on the
"BankAccount_Java" work product in the "Items" tab of the properties
editor, and running the "Java/Visualize" commands from the context menu
which then appears.

Chapter 3: First Steps - Java

3-18 Objecteering/Java User Guide

This command opens a window containing the generated Java code (shown in
Figure 3-8). It is not possible to modify the code directly in this window.
It is possible, however, to modify certain elements directly from the model. The
elements you can modify are highlighted in blue. Double-click on the blue text to
open the dialog box of the model element which allows this text to be typed.

Figure 3-8. Window displaying the Java code of the "BankAccount" class

Steps:
1 - Double-click on the blue "Bank" text. The dialog box of the "Bank" package

will open.
2 - Make the necessary modifications.
3 - Confirm by clicking on the "OK" button.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-19

Editing the generated code
It is also possible to edit the generated Java code for a class using the editor
chosen ("Command for invoking the external editor" parameter of the "External
edition" group).
It is possible to modify zones represented between markers. Modifications are
directly incorporated into the model when the editor closes.

Figure 3-9. Editing the generated code using an external editor

Steps:
1 - Select the generation work product in the "Items" tab of the properties editor,

using the right mouse button.
2 - Run the "Java/Edit" commands from the context menu which then appears.
3 - The code is then edited in the external editor specified at module parameter

configuration level.

Chapter 3: First Steps - Java

3-20 Objecteering/Java User Guide

Updating the model
The Java code associated to a model's class can also be modified completely
outside Objecteering/UML. It will be possible to update the model, in order to
incorporate those modifications made externally.
1 - Modify the "CheckingAccount.java" class outside Objecteering/UML.
2 - Run the "Java/Update" command from the work product of the

"CheckingAccount" class.
3 - Make sure the zone of text has been modified in Objecteering/UML.
In round trip mode, the "Update" mode performs the same functions as in model
driven mode, i.e. the update of the model from the code contained between the
markers. Any modifications carried out outside the marked zones will not be taken
into account by this command. In this case, the "New Reverse" command should
be used after the compilation of the model.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-21

Compilation

Generating the makefile
Generating a makefile from a package's generation work product produces a
makefile which allows the recursive compilation of all the classes of this package.
From the Java generation work product, we can generate the makefile necessary
to compiling a class or a set of classes (Figure 3-10). The console will display the
generation steps.

Figure 3-10. Generating the makefile

Chapter 3: First Steps - Java

3-22 Objecteering/Java User Guide

Steps:
1 - Select the Java generation work product for the "Bank" package in the "Items"

tab of the properties editor, by right-clicking.
2 - Run the "Java/Generate the makefile" command from the context menu which

then appears.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-23

Visualizing the makefile
It is possible to visualize a makefile that has previously been generated (as shown
in Figure 3-11). This command opens a window containing the generated
makefile code.

Figure 3-11. Visualizing the makefile of the "Bank" package

Steps:
1 - Select the generation work product of the "Bank" package in the Items" tab of

the properties editor by right-clicking.
2 - Run the "Java/Visualize the makefile" command from the context menu which

then appears.
3 - The makefile is then displayed.

Chapter 3: First Steps - Java

3-24 Objecteering/Java User Guide

Compilation
The "Compile" command in the context menu of a generation work product is used
to compile all the files of a class or a package using the makefile produced (Figure
3-12). A file containing the compilation results is then produced. This file is used
to analyze the compilation.

Figure 3-12. Running the "Compile" command for the "Bank" package

Steps:
1 - Select the "Bank" package in the explorer.
2 - In the "Java" tab of the properties editor, click on the "Compile" button.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-25

Note: Exactly the same operation can be carried out by right-clicking on the
"Java" work product in the "Items" tab of the properties editor, and then
running the "Java/Compile" commands from the context menu which
appears.

Chapter 3: First Steps - Java

3-26 Objecteering/Java User Guide

Analyzing compilation
Compilation errors can be analyzed directly from the tool (as shown in Figure 3-
13). The "Analyze the compilation" command opens a window containing the
compilation results.
Run the "Java/Analyze the compilation" command from the "Bank" package work
product. This command opens a window containing the results of this compilation.

Figure 3-13. Window displaying the compilation analysis of the "Java" generation work product

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-27

This window is divided into two sections:
1 - The section displaying generated sources which present errors. If you double-

click on the blue text, a dialog box for the generation element used to generate
this zone will open.

2 - The lower section called "Compilation results", displays the errors prefixed by
the icon. The other lines are prefixed with the icon. If you select a line
of errors, the file containing the faulty code will be displayed in the upper
section of the window. If you double-click on this code, the model element that
generated it will be edited.

Chapter 3: First Steps - Java

3-28 Objecteering/Java User Guide

Documentation generation

Generation
The javadoc tool can be launched on a generation work product of a class for
which code has been generated.
This feature uses the Javadoc type notes suggested for the model's classes,
attributes, associations and operations.
You can choose whether a module parameter should process description type
notes in the same way as Javadoc type notes or not.
The produced HTML file is then opened by the editor designated by the
"Command for editing HTML files" parameter.

Figure 3-14. Generating documentation

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-29

Steps:
1 - Select the Java generation work product for the "BankAccount" class in the

"Items" tab of the properties editor, by right-clicking.
2 - Run the "Java/Generate documentation" commands from the context menu

which then appears.
The result is shown in Figure 3-15.

Figure 3-15. File edited by the "Generate documentation" command for the "BankAccount"
class

Chapter 3: First Steps - Java

3-30 Objecteering/Java User Guide

Storage

Introduction
This feature is used to make "jar" format files. The "jar" format is compressed and
can group together a set of ".class" files that will be coherent with associated
resources (sound, pictures, ...).
Using this feature, it is possible, for example, to deliver beans developed using
Objecteering/UML.

Storage
The "Store" command in a Java work product context menu can be used to create
the ".class" in the element's lower hierarchy (package or class), to which the work
product is linked. The resources belonging to the elements (classes and
packages) of this lower hierarchy are added to these files (see the
{JavaBeanResource} tagged value on a class and package).
Run this command, by selecting the "Java/Store" commands from the context
menu on the "Bank" package work product.

Note: This feature uses the makefile and the compiled files. It is, therefore,
necessary to generate the makefile and run the compiling before running
the store command.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-31

Running an applet

Introduction
We are now going to look at how to run an applet from Objecteering/UML. First,
we have to position ourselves in the "Duke" package's "DukeApplet" class in the
"FirstSteps" project. We are going to:
1 - create a Java generation work product
2 - generate the code
3 - generate the makefile
4 - compile

Note: If you are the JDK 1.2 or more recent, you may have to copy the
.java.policy file from the
$OBJING_PATH/modules/JavaModule/2.1.f/FirstSteps into your home
directory. Alternatively, you may have to concatenate its contents with
your .java.policy file, if it already exists.

Chapter 3: First Steps - Java

3-32 Objecteering/Java User Guide

Visualizing the HTML file
The "Visualize the applet" command in the Java work product context menu
displays the current content of the HTML file used to run the applet (Figure 3-16).
This command does not function for a work product that is not linked to a class
which generalizes the "Applet" class.
Run the "Java/Visualize the applet" command on the "DukeApplet" class
generation work product.

Figure 3-16. Window for visualizing the applet of the "DukeApplet" class generation work
product

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-33

Editing the HTML file
The "Edit the applet" command in the Java work product context menu runs an
editor on the HTML file, allowing the applet to be modified (Figure 3-17). This
command does not function for a work product which is not linked to a class which
generalizes the "Applet" class.
Run the "Java/Edit the applet" command on the "DukeApplet" class generation
work product.

Figure 3-17. Window for editing the applet of the "DukeApplet" class generation work product.

Steps:
1 - Include the following line:
For Windows:
<param name="imagesPath"
value="file:/c:/objecteering/modules/JavaModule/2.2.a/FirstSteps/gif
/">

if Objecteering/UML is located in "c:\objecteering"
For Unix:
<param name="imagesPath"
value="file:/usr/objecteering/modules/JavaModule/2.2.a/FirstSteps/gi
f/">

if Objecteering/UML is located in "/usr/objecteering"

Chapter 3: First Steps - Java

3-34 Objecteering/Java User Guide

Running an applet
The "Launch applet" command in the Java work product context menu runs the
applet (Figure 3-18). This command does not function for a work product which is
not linked to a class which generalizes the "Applet" class.
To run the Java applet, you must have the correct rights in the
$JDK_PATH/jre/lib/security/java.policy file. To this end, you may have to add the
following line to the afore-mentioned file, before being able to run the applet
correctly:
grant { permission java.security.AllPermission;};

Now run the "Java/Launch applet" command on the "DukeApplet" class
generation work product.

Figure 3-18. Applet run on "DukeApplet" class work product

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-35

Reverse

Introduction
The reverse allows existing library classes to be used during the modeling phase.
The purpose of this is to allow the generalization of these classes, their
implementation or their use in modeling.
To reverse a class, you must have its .class file, either as such or compressed in a
.zip or .jar file. If you also have the .java source code, a complete reverse of the
code and javadoc comments can be carried out. If this is not the case, only an
interface reverse will be concerned.
We will now reverse the "Applet" class and the "Button" class.
If you do not have the source file for these classes, make sure that the
"ReverseJavaCode" and "ReverseJavaDoc" parameters have not been checked.

Warning
A class created through a reverse will receive an identifier in the same way as an
object created in an explorer or in a graphic editor.
If two people reverse the same class in two different UML modeling projects,
Objecteering/UML will consider them as two different objects.
To avoid losing links to the reversed classes during the reverse, run the reverse
operation in the reference UML modeling project from which all the classes used
are imported.

Chapter 3: First Steps - Java

3-36 Objecteering/Java User Guide

Running the command
The command for running the reverse can be found in any package's context
menu (as shown in figure 3-19).

Figure 3-19. Running the reverse command

Steps:
1 - Select the "FirstSteps" package using the right mouse-button.
2 - Choose the "Java/Reverse" options from the context menus which appear.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-37

When the reverse is launched, a message informs the user that consistency
checks are active and that construction of the model, which may potentially not
conform to the UML modeling rules checked by Objecteering/UML, may be
refused (as shown in Figure 3-20).

Figure 3-20. Message informing the user that consistency checks are active

If the user wishes to deactivate consistency checks, he should simply switch off
the "Remove consistency checks" icon.

Chapter 3: First Steps - Java

3-38 Objecteering/Java User Guide

Selecting the classes to be reversed
The reverse command opens the dialog box used to select the sources, as
represented below in figure 3-21. Remember that the path must be specified in
the "Reverse" set of module parameters, in order to allow Objecteering/UML to
find the classes or the classes in the packages. For further information on
configuring the Objecteering/Java module, please refer to the "Configuration
window" section in chapter 17 of this user guide.

Figure 3-21. Selecting the classes to be reversed.

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-39

Steps:
1 - Select the "java" directory
2 - Select the "applet" directory
3 - Select the "Applet.class" file.
4 - Click on the "Add" button.
5 - Click on ".." to return to the "java" directory.
6 - Select the "awt" directory.
7 - Click on "Button.class".
8 - Click on "Add".
9 - Click on the "Reverse " button.

Chapter 3: First Steps - Java

3-40 Objecteering/Java User Guide

Result
A package named "java" appears in the "FirstSteps" package (see figure 3-22). It
contains the "applet" package which contains the "Applet" class and the "awt"
package containing the "Button" class.
It is now possible to create a class which generalizes "Applet" and which contains
"Button" type attributes.
Other classes have also appeared. "Applet" and "Button" need these classes
either as attributes, or as method parameters.

Figure 3-22. Result of the reverse as seen in the explorer

Chapter 3: First Steps - Java

Objecteering/Java User Guide 3-41

Round trip mode

We shall now look at the round trip functioning mode with regard to reverse
operations.
Select the round trip functioning mode and generate the code for the "Bank"
package. Then, using the editor of your choice, edit the "BankAccount.java" file
and add an attribute declaration, for example, "private int toto;". Now compile the
class.
If you proceed by trying to generate code in Objecteering/UML, a warning
message informs you that the file has been modified outside Objecteering/UML. If
you continue, you will lose the work you have previously carried out. You should,
therefore, choose not to continue, and instead run the "Reverse" command for the
class you have modified. The result of this is that the model changes (for
example, the new attribute is added to the model of the "BankAccount" class).

Chapter 4: First Steps - Java Patterns

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-3

Introduction

General remarks
This First Steps UML modeling project allows you to learn how to use the different
patterns of the Objecteering/Java module.

Chapter 4: First Steps - Java Patterns

4-4 Objecteering/Java User Guide

Initializing the UML modeling project
A First Steps UML modeling project for Java patterns is delivered with the
Objecteering/Java module.
To use it, you have to:
1 - Create a UML modeling project (for example "FirstSteps").
2 - Once this UML modeling project has been opened, select the Java module,

and carry out the steps shown in Figure 4-1.

Figure 4-1. Importing the First Steps UML modeling project

Steps:
1 - Select the "FirstSteps" package by right-clicking.
2 - Run the "Java/Import the Java patterns first steps project" commands from the

context menu which then appears.

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-5

Remote method invocation

Introduction
We are going to work with the "PatternRMI" package. It will allow us to create a
server and customer application that will communicate through "RMI".
The package includes:

♦ a "Server" class containing the server's "main" method

♦ a "Client" class containing the client's "main" method

♦ a "TableEntry" class representing an information atom

♦ a "Table" class containing access methods to the information
The "TableEntry" class represents the couple capital-country. The "Table" class
offers two services, one gives the capital of a given country, the other gives the
country of a given capital.
We will apply the pattern to the "Table" class in order to provide remote access to
its services.
Note:If you are using the JDK 1.2 or more recent, you may have to copy the
.java.policy file from the $OBJING_PATH/modules/JavaModule/2.1.f/FirstSteps
into your home directory. Alternatively, you may have to concatenate its contents
with your .java.policy file, if it already exists.

Model before transformation

Figure 4-2. Initial model

Chapter 4: First Steps - Java Patterns

4-6 Objecteering/Java User Guide

Running the RMI pattern
After having selected the "Table" class in the explorer, activate the pattern (Figure
4-3).

Figure 4-3. Running the pattern

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-7

A dialog box opens, suggesting default names for the class and interface that will
be deduced from the "Table" class. These names can be modified.

Figure 4-4. Entering class and interface names

Confirm by clicking on OK.

Chapter 4: First Steps - Java Patterns

4-8 Objecteering/Java User Guide

Model after transformation

Figure 4-5. Transformed model

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-9

Summary of the transformations
The following modifications were made to the concrete class:

♦ the "Table" class was renamed "TableImpl"

♦ a "TableImpl" generalization towards "UnicastRemoteObject" was added

♦ an import towards "java.rmi.* " on "TableImpl" was added

♦ the {JavaThrownException} tagged value was added to each method, to
indicate that it may run the "RemoteException" exception

♦ an implementation link towards the "Table" interface was added

Furthermore, a "Table" interface was created with:

♦ all the "TableImpl" public methods

♦ a generalization towards "Remote"

♦ an import towards "java.rmi*"

Generating code/Compiling
It is now necessary to generate and compile. Follow the steps below:
1 - Create a Java generation work product on the "PatternRMI" package.
2 - Propagate the work product to the classes.
3 - Generate the code of the package's classes.
4 - Generate a makefile on the "PatternRMI".
5 - Compile.
For further information on these operations, please refer to chapter 3 of this user
guide.

Chapter 4: First Steps - Java Patterns

4-10 Objecteering/Java User Guide

Execution
On the server machine:

♦ add your file compilation directory to your CLASSPATH variable (the last Java
work product field)

♦ launch the rmiregistry executable if it has not already been launched

♦ launch the PatternRMI.Server server application

On the client machine:

♦ launch the PatternRMI.Client application with the server machine name as the
parameter

The following result is displayed in the client console:
The capital of China is Beijing.
The country whose capital is Rome is Italy.

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-11

Sending events

Introduction
We are going to work with the "PatternEventSource" package. We will thus be
able to create events on an attribute and on an association.
The "PatternEventSource" package contains:

♦ a "Source" class containing a "name" attribute and a "data" association to
which we will apply the pattern

♦ a "Data" class, the target of the data association

♦ a "SpyApplet" which generalizes Applet and which will allow us to visualize the
pattern's action

♦ an "InnerSpy" class, internal class of "SpyApplet", which will act as subscriber
to the events that we will have created

In Java, events are grouped into event classes. Therefore in Java you have the
following basic event classes: "Window", "Mouse" and "Key".
The event sending pattern follows the same principle.

Chapter 4: First Steps - Java Patterns

4-12 Objecteering/Java User Guide

Initial model of the Source class

Figure 4-6. Calling the pattern on the "name" attribute

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-13

We are going to run the event creation pattern on the "name" attribute of the
Source class.

Figure 4-7. Creating events on the "name" attribute

Chapter 4: First Steps - Java Patterns

4-14 Objecteering/Java User Guide

A dialog box, used to create new events, opens.
We are going to create a "NameChanged" event to be launched each time the
value of an attribute is modified. We are also going to create an "EmptyName"
event aimed at being launched when the attribute takes an empty string as its
value.
To do this, carry out the following actions:
1 - Enter "Name" in the "Event class" field.
2 - Enter "NameChanged" in the "New event" field.
3 - Click on the "Add" button.
4 - Enter "EmptyName" in the "New event" field.
5 - Click on the "Add" button.
6 - Click on the "OK" button.

Figure 4-8. Dialog box for creating events

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-15

Model of the source class after the first transformation

Figure 4-9. Transformed model

Chapter 4: First Steps - Java Patterns

4-16 Objecteering/Java User Guide

Summary of the elements created during the first transformation
New elements appear in our UML modeling project:

♦ an "event" package in the "PatternEventSource" package

♦ a "NameEvent" class, which generalizes the JDK's "EventObject" class, in the
"event" package. This class represents the "Name" type event class we have
just created. Objects with this type will be created each time a "Name" type
event occurs, in other words, the changing of a name or an empty name.

The class contains ... function ...
a "name" attribute designed to contain the new value of the attribute

after the event has occurred.

a "NAME_CHANGED" constant represents the name change event.

an "EMPTY_NAME" constant represents the empty name event.

two constants, "NAME_FIRST" and
"NAME_LAST"

allows you to enumerate the events of the "Name"
class.

an "id" attribute designed to take the value of one of the constants
representing the events, i.e. "NAME_CHANGED" or
"EMPTY_NAME".

a constructor takes the event's source object, the type of event
and the new value of the "name" attribute as
parameters.

♦ a "NameListener" interface in the "event" package. This interface defines the
methods to be redefined to react to the "Name" type events. It contains a
"nameChanged" method linked to the name change event and an
"emtpyName" method linked to the empty name event.

♦ a "NameAdapter" class in the "event" package. This class implements the
"NameListener" interface and defines the "nameChanged" and "emptyName"
methods that have no effect. A class such as this is defined each time an
event class contains at least two events. Indeed, the subscription is carried out
through an event class and not through one event after the other. However,
sometimes we are not interested in all the events of an event class. In this
way, instead of implementing the interface, a listener can generalize this class
and only define the methods corresponding to the events to which it wants to
react.

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-17

Furthermore, the "Source" class has been enriched with the following elements:

♦ an instance association towards the "NameListener" interface described
above. It will allow an instance of the "Source" class to find out which objects
have subscribed to the "Name" type events it produces

♦ a "getName" accessor which allows the recovery of the current value of the
"name" attribute

♦ a "setName" mutator which allows the modification of the value of the "name"
attribute and the notification of the subscribers to the events of the "Name"
class on the current instance

♦ a {JavaNoAccessor} tagged value on the "name" attribute indicating to the
generator that it should not generate accessors. Indeed, the pattern created
them

♦ a "notifyNameChanged" method that tells the subscribers to the "Name" type
events of the current instance that the name has changed

♦ a "notifyEmptyName" method that tells the subscribers to the "Name" type
events of the current instance that the name is emtpy

♦ a "addNameListener" method which allows an object to subscribe to "Name"
type events on the current instance

♦ a "removeNameListener" method which allows an object to be removed from
the list of subscribers to the "Name" type events of the current instance

Chapter 4: First Steps - Java Patterns

4-18 Objecteering/Java User Guide

Modifying the mutator
We are going to look at the "setName" method of the "Source" class. The method
created by the pattern must be modified.
Indeed, the pattern does not know the semantics of the events. Thus, we can see
that the "setName" method systematically notifies the name change event, which
is correct but also gives the empty name event, which is not correct.
Therefore a test needs to be added.

Figure 4-10. Modifying the "setName" method

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-19

Calling the pattern on the "data" association
We are going to run the event creation pattern on the "data" association of the
"Source" class.

Figure 4-11. Creating events on the "data" association

Chapter 4: First Steps - Java Patterns

4-20 Objecteering/Java User Guide

Creating events on the "data" association
A dialog box opens which allows the creation of new events.
We are going to create a "DataChanged" event that will be launched each time
data are added or removed.
To do this, carry out the following actions:
1 - Enter "Data" in the "Class of events" field.
2 - Enter " DataChanged" in the "New event" field.
3 - Click on the "Add" button.
4 - Click on the "OK" button.

Model of the source class following the second transformation

Figure 4-12. Transformed model

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-21

Summary of the elements created during the second
transformation

New elements appear in our UML modeling project:

♦ a "DataEvent" class, which specializes the JDK's "EventObject" class, in the
"event" package. This class represents the "Data" type event class we have
just created. Objects with this type will be created each time a "Data" type
event occurs.

The class contains ... which ...
a "data" association with the same
cardinality as the one of the Source class

contains the image of the object's
association after the event has occurred

a "DATA_CHANGED" constant represents the name change event

two constants "DATA_FIRST" and
"DATA_LAST"

enumerates the events of the "Name" class

♦ an "id" attribute designed to take the value of one of the constants representing
the events, i.e. "DATA_CHANGED" only

♦ a constructor that takes the event's source object, the type of event and the
new value of the "data" association as its parameters

♦ a "DataListener" interface in the "event" package. This interface defines the
methods to be redefined to react to "Data" type events. It contains a
"dataChanged" method linked to the association's modification event.

Chapter 4: First Steps - Java Patterns

4-22 Objecteering/Java User Guide

Furthermore, the Source class has been enriched with the following elements:

♦ an instance association towards the "DataListener" interface described above.
It will allow an instance of the "Source" class to find out which objects have
subscribed to the "Data" type events it produces

♦ a "getData" accessor allowing the recovery of the Data type object which has
the "data" association data rank

♦ a "cardData" accessor allowing the recovery of the current multiplicity of the
"data" association

♦ a "setData" mutator allowing you to modificy the value of the Data type object
with the "data" association data rank and to notify the subscribers to the "Data"
class events on the current instance

♦ an "appendData" mutator allowing the addition of a Data type object to the
"data" association and the notification of the subscribers to the "Data" class
events on the current instance

♦ an "eraseData" mutator allowing the deletion of a Data type object from the
"data" association and the notification of the subscribers to the "Data" class
events on the current instance

♦ an "eraseData" mutator allowing the deletion of a Data type object from the
"data" association data rank and the notification of the subscribers to the
"Data" class events on the current instance

♦ a {JavaNoAccessor} tagged value on the "data" association indicating to the
generator that it should not generate accessors. Indeed, the pattern created
them

♦ a "notifyDataChanged" method that tells the subscribers to the "Data" type
events of the current instance that the name has changed

♦ a "addDataListener" method allowing an object to subscribe to "Data" type
events on the current instance

♦ a "removeDataListener" method allowing an object to be removed from the list
of subscribers to the "Data" type events of the current instance

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-23

Subscription to the "InnerSpy" class
It is first necessary to create an implementation link from the "InnerSpy" class
towards the "NameListener" interface and another towards the "DataListener"
interface. The pattern for creating methods to be implemented on the "InnerSpy"
class is then applied.

Figure 4-13. Creating methods to react to events

Chapter 4: First Steps - Java Patterns

4-24 Objecteering/Java User Guide

The "nameChanged", "emptyName" and "dataChanged" methods have been
created in "InnerSpy". You now have to enter the code of these methods. In the
example, we are simply going to display traces in the applet's text zone.
"nameChanged" method:
getConsole().append ("The new name is " + evt.getName() +
"\n");
"emptyName" method:
getConsole().append ("Warning ! Non identified element !\n"
);

"dataChanged" method:
getConsole().append ("The current data is :\n");
for (int i = 0 ; i < evt.cardData() ; i++)
{

getConsole().append (" - " +
evt.getData(i).getContent() + "\n");
}

Generating code/Compiling
You now have to generate and compile. Follow the steps below:
1 - Create a Java generation work product on the "PatternEventSource" package
2 - Propagate the work product to the classes of the "PatternEventSource"

package
3 - Generate the code of the "PatternEventSource" package's classes
4 - Generate a makefile on the "PatternEventSource" package
5 - Compile the "PatternEventSource" package
For further information on these operations, see the "First Steps" chapter in this
user guide.

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-25

Execution
We are now going to be able to launch the applet. You simply have to activate the
menu for launching the applet on the Java work product of the "SpyApplet" class.

Figure 4-14. Executing the applet

Chapter 4: First Steps - Java Patterns

4-26 Objecteering/Java User Guide

The applet runs a scenario that creates a "Source" class object, subscribes to its
"Name" and "Data" type events and modifies the "name" attribute and the "data"
association of this object. The result is as follows:

Figure 4-15. Result of the applet execution

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-27

Listening to events

Introduction
We are going to work with the "PatternEventListener" package, which will allow us
to listen to events generated by one of its attributes.
The "PatternEventListener" package contains a "TestApplet" class which
generalizes the JDK's Applet class and which contains a "Button" type attribute
(which is a JDK class), to which we will apply the pattern, as well as a text field
that will be used to visualize the events we will listen to.

Initial model

Figure 4-16. Initial model

Chapter 4: First Steps - Java Patterns

4-28 Objecteering/Java User Guide

Calling the pattern
We are going to run the pattern on the "button" attribute of the "TestApplet" class
(Figure 4-17).

Figure 4-17. Running the pattern

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-29

Selecting events
When the dialog box opens, carry out the following steps:
1 - Select the "focusGained" event in the list of available events.
2 - Click on the "Add" button.
3 - Select the "focusLost" event in the list of available events.
4 - Click on the "Add" button.
5 - Select the "keyPressed" event in the list of available events.
6 - Click on the "Add" button.
7 - Select the "keyReleased" event in the list of available events.
8 - Click on the "Add" button.
9 - Click on the "OK" button.

Figure 4-18. Dialog box for selecting events to listen to

Chapter 4: First Steps - Java Patterns

4-30 Objecteering/Java User Guide

Model after transformation

Figure 4-19. Transformed model

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-31

Summary of the elements created during the transformation
Application of the pattern created:

♦ an inner class, "ButtonKeyListener", which generalizes the JDK "KeyAdapter"
class, to react to "keyPressed" and "keyReleased" events

♦ an inner class, "ButtonFocusListener", which generalizes the JDK
"FocusAdapter" class, to react to the "focusGained" and "focusLost"" events

Entering methods of reaction to events
The bodies of the methods reacting to events remain to be entered. We will simply
display here the traces in the applet's text field.
"focusGained" method of the "ButtonFocusListener" class:
getText().setText ("The button has the focus");

"focusLost" method of the "ButtonFocusListener" class:
getText().setText ("The button has lost the focus");

"keyPressed" method of the "ButtonKeyListener" class:
getText().setText ("A key has been pressed");

"keyReleased" method of the "ButtonKeyListener" class:
getText().setText ("The key has been released");

Chapter 4: First Steps - Java Patterns

4-32 Objecteering/Java User Guide

Generating code/Compiling
You now have to generate and compile. Follow the steps below :

♦ create a Java generation work product on the "PatternEventListener" package

♦ propagate the work product to the classes of the "PatternEventListener"
package

♦ generate the code of the "PatternEventListener" package's classes

♦ generate a makefile on the "PatternEventListener" package

♦ compile the "PatternEventListener" package
For further details on these operations, see the "First Steps" chapter in this user
guide.

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-33

Execution
We are now able to launch the applet. To do this, simply activate the menu for
launching the applet on the Java work product of the "TestApplet" class.

Figure 4-20. Executing the applet

Chapter 4: First Steps - Java Patterns

4-34 Objecteering/Java User Guide

The applet is now activated.

Figure 4-21. Result of the applet execution

1 - Click on the "Test" button. The text field now displays "The button has the
focus".

2 - Click on the text field. The text field now displays "The button has lost the
focus".

3 - Click on the "Test" button. The text field now displays "The button has the
focus".

4 - Press a key and hold it down. The text field now displays "A key has been
pressed".

5 - Release the key. The text field now displays "The key has been released".

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-35

Non derivable operation

Introduction
We are going to work with the "PatternFinalize" package. It will allow the
positioning of the "Cannot be specialized" field of certain operations.
The "PatternFinalize" package includes:

♦ a "ParentClass" class containing three operations

♦ a "ChildClass1" class, which is a child of "ParentClass", containing two
operations, one of which redefines one of the "ParentClass" operations

♦ a "ChildClass2" class, which is a child of "ParentClass", containing a operation
that redefines one of the "ParentClass" operations

Model before transformation

Figure 4-22. Initial model

Chapter 4: First Steps - Java Patterns

4-36 Objecteering/Java User Guide

Calling the pattern

Figure 4-23. Calling the pattern

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-37

Model after its transformation

Figure 4-24. Transformed model

Summary of the modifications made to the model
The field of the "ParentClass" "NotRedefinedMethod" operation that is not
redefined in any child class is selected.
The field of the "ChildClass1" "NotRedefinedMethod" operation that is not
redefined in any child class is selected.
The field of the "RedefinedMethod1" operation of the "ChildClass1" class that
redefines the operation with the same name of the "ParentClass" class is selected
since the operation is not redefined itself.
The field of the "RedefinedMethod2" operation of the "ChildClass2" class that
redefines the operation with the same name of the "ParentClass" class is selected
since the operation is not redefined itself.

Chapter 4: First Steps - Java Patterns

4-38 Objecteering/Java User Guide

Creating operations to implement
Here we will be working with the "PatternsToImplement" package, which will allow
us to automatically create the operations that a class must redefine according to
its implementation links.
The "PatternsToImplement" package contains:

♦ an "Appliance" class interface containing the "switchOn" and "switchOff"
operations

♦ a "Screen" class interface specializing "Appliance" and containing the
"displayTest", "getCurser" and "setCurser" operations

♦ a "GraphicTool" class interface containing the "drawRectangle" and
"drawCircle" operations

♦ a "MyGraphicDisplay" class which implements the "Screen" and "GraphicTool"
interfaces

We will apply the pattern to the "MyGraphicDisplay" class.

Initial model

Figure 4-25. The initial model

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-39

Calling the pattern

Figure 4-26. Calling the pattern

Chapter 4: First Steps - Java Patterns

4-40 Objecteering/Java User Guide

Final model

Figure 4-27. The model after transformation

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-41

Summary of the modifications made to the model
The "MyGraphicTool" class has been enriched with the following operations:

♦ "displayTest" which redefines the operation of the same name of the "Screen"
class

♦ "getCursor" which redefines the operation of the same name of the "Screen"
class

♦ "setCursor" which redefines the operation of the same name of the "Screen"
class

♦ "switchOn" which redefines the operation of the same name of the "Appliance"
class

♦ "switchOff" which redefines the operation of the same name of the "Appliance"
class

♦ "drawRectangle" which redefines the operation of the same name of the
GraphicTool" class

♦ "drawCircle" which redefines the operation of the same name of the
"GraphicTool" class

Chapter 4: First Steps - Java Patterns

4-42 Objecteering/Java User Guide

Creating operations to be redefined
Here we will be working with the "PatternToRedefine" package, which will allow us
to automatically create operations which a class must redefine according to its
generalization links.
The "PatternsToRedefine" package contains:

♦ an "Animal" abstract class containing the "eat" abstract operation

♦ a "Bird" abstract class which specializes "Animal" and which contains the "sing"
abstract operation and the "fly" non-abstract operation

♦ a "crow" class which specializes "Bird"
We will apply the pattern to the "Bird" class.

Initial model

Figure 4-28. The initial model

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-43

Calling the pattern

Figure 4-29. Calling the pattern

Chapter 4: First Steps - Java Patterns

4-44 Objecteering/Java User Guide

Final model

Figure 4-30. The model after transformation

Summary of the modifications made to the model
The "Crow" class has been enriched with the following operations:

♦ "eat" which redefines the operation of the same name of the "Animal" class

♦ "sing" which redefines the operation of the same name of the "Bird" class
However, the non-abstract "fly" operation has not been redefined.

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-45

Transforming a non-primitive class into a primitive class
Here we will be working with the "PatternToPrimitive" package, which will allow us
to transform a non-primitive class into a primitive class, and parallel to this, to
transform associations directed towards this class into attributes.
The "PatternToPrimitive" package contains:

♦ a "Button" non-primitive class

♦ a "Window" class with an association directed towards the "Button" class
We will apply the pattern to the "Button" class.

Initial model

Figure 4-31. The initial model

Chapter 4: First Steps - Java Patterns

4-46 Objecteering/Java User Guide

Calling the pattern

Figure 4-32. Calling the pattern

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-47

Final model

Figure 4-33. The model after transformation

Summary of the modifications made to the model
The "Button" class is now primitive. Furthermore, the "Window" class association
has disappeared and been replaced by an attribute. The attribute takes the name
of the erstwhile association role as its name, and the visibility of the association.
The size of the attribute corresponds to the maximum multiplicity which the
association had.

Chapter 4: First Steps - Java Patterns

4-48 Objecteering/Java User Guide

Transforming a primitive class into a non-primitive class
Here we will be working with the "PatternToNonPrimitive" package, which will
allow us to transform a primitive class into a non-primitive class, and parallel to
this to transform attributes which have this class as type into associations directed
towards this class.
The "PatternToNonPrimitive" package contains:

♦ an "Employer" primitive class

♦ a "Company" class containing an "Employee" type attribute
We are going to apply the pattern to the "Employee" class.

Initial model

Figure 4-34. The initial model

Chapter 4: First Steps - Java Patterns

Objecteering/Java User Guide 4-49

Calling the pattern

Figure 4-35. Calling the pattern

Chapter 4: First Steps - Java Patterns

4-50 Objecteering/Java User Guide

Final model

Figure 4-36. The model after transformation

Summary of the modifications made to the model
The "Employee" class is no longer primitive. Furthermore, the "Employee" type
attribute of the "Company" class has disappeared and been replaced by a
navigable association directed towards "Employee". The name of the role is the
name which the attribute had, and the visibility of the navigable association link is
the same as that of the erstwhile attribute. The minimum multiplicity of the
association is 0. Its maximum multiplicity corresponds to the size the attribute
had.

Chapter 5: Code generation

Chapter 5: Code generation

Objecteering/Java User Guide 5-3

Code generation - Overview

Generating types and accessors
The mapping of types and the generation of accessors is possible using a special
package called "JavaTypes". It is added to the "predefinedTypes" project during
installation of the Objecteering/Java module.
A user may therefore modify the mapping of types and the generation of
accessors, without having to re-define the standard module:

♦ either by modifying the "JavaTypes" package

♦ or by creating a similar package and by modifying the "Types translation
package" parameter, presented in the "module configuration" dialog box. This
parameter designates the package to be used (we recommend this solution)

For further details on the structure of the package and the way it is used by the
generator, please refer to the "Principles of type and accessor generation "
section in chapter 17, "Customizing Java generation", of this user guide.
The generation of Java code is based on a UML model, extended by notes and
tagged values specific to Java, in order to generate all the code for Java classes.
This generation can be parameterized to a high level, using the following
mechanisms:

♦ Java generation parameters provide general generation options

♦ the "JavaTypes" package allows you to set parameters used to generate types
of base, accessors, etc

♦ the Java "Generation template" allows the integral redefinition of the generation
through the Objecteering/UML Profile Builder tool

Chapter 5: Code generation

5-4 Objecteering/Java User Guide

Code generation and model consistency checks
Code may be generated from the UML model regardless of whether consistency
checks are active or inactive. However, when generation is launched, a message
informs the user that he is in the process of generating code on a model which
may potentially not conform to the UML modeling rules checked by
Objecteering/UML (as shown in Figure 5-1).

Figure 5-1. Message informing the user that consistency checks have been removed

Note: It should be noted that code generation in command line mode (please
see objingcl) is assured, whatever the state of the consistency checks at
the time of code generation.

Chapter 5: Code generation

Objecteering/Java User Guide 5-5

The generation work product

 Before generating Java code, it is necessary to create a Java generation
work product (see Figure 5-2). This object can be created for:

♦ packages

♦ classes

Figure 5-2. Dialog box for a Java generation work product

Key:

♦ "Name": This field is used to enter the name of the work product.

♦ "Generation path": This field is used to enter the root directory for the
generation of .java files.

♦ "Compilation path": This field is used to enter the root directory for the
generation of .class files

Chapter 5: Code generation

5-6 Objecteering/Java User Guide

Note: Code generation can be launched for a package or a class directly through
the "Java" tab of the properties editor, simply by clicking on the "Generate"
button. If a Java generation work product already exists, code generation
is carried out as normal. However, if no generation work product exists on
the selected element, the "Java generation work product" dialog box is
automatically opened, thus allowing you to easily create the work product.
For further details on the properties editor and the Objecteering/Java
module, please refer to the "The properties editor and the Java module"
section in chapter 2 of this user guide.

Chapter 5: Code generation

Objecteering/Java User Guide 5-7

Code generation - Functions

Java generation work product commands
Objecteering/Java generation offers several features related to generation. These
features are available via the context menu of a Java generation work product
(see Figure 5-3).

Note: Code generation and compilation on a package can be directly launched
via the "Java" tab of the properties, whilst for a class, code generation,
visualization and compilation operations can be launched in the way.

Chapter 5: Code generation

5-8 Objecteering/Java User Guide

Figure 5-3. Commands available from a Java generation work product

These commands are detailed in chapter 3 of this user guide.

Chapter 5: Code generation

Objecteering/Java User Guide 5-9

Code generation - Tagged value types

Overview
The tagged values provided by Objecteering/UML allow you to adapt Java
semantics to a UML model, in order to generate all Java notions accurately. For
example, the notion of native method in Java does not exist in UML. A
{JavaNative} tagged value on a UML operation allows you to specify this on a
model.

Note: Certain tagged values can be added to certain model elements directly
through the "Java" tab of the properties editor. For further information,
please refer to the "The properties editor and the Java module" section in
chapter 2 of this user guide.

Chapter 5: Code generation

5-10 Objecteering/Java User Guide

Tagged values on a class
Name ... Parameters ... Role ...

JavaStatic N/A Used to declare the embedded class
as being static.

JavaExtends name of the mother class Inherits non-modeled classes

JavaImplements names of implemented
interfaces

Implementation of non modeled
interfaces

JavaImport names of the imported
classes and packages

Imports non-modeled packages and
classes

JavaName the class's Java name During the generation phase, the
parameter of this tagged value takes
precedence over the modeling name.

JavaNonPublic N/A Indicates a non public class. This
tagged value is only taken into
account for a class contained within a
class.

JavaExtern N/A Indicates a class for which code must
not be generated.

JavaBean N/A Indicates a class as being a bean.
This information is used for storage.

JavaBeanResource resource file indicates a resource to be stored at
the same time as the class.

JavaNoAccessor N/A Non generation of the accessors on
the class attributes and associations.

Chapter 5: Code generation

Objecteering/Java User Guide 5-11

Tagged values on a package
Name ... Parameters ... Role ...

JavaRoot N/A Causes the generation of the
package structure to begin from the
annotated package.

JavaNoPackage N/A Causes the generation of the
package structure to ignore the
annotated package.

JavaImport names of the imported
classes and packages

Imports non-modeled packages and
classes.

JavaName the package's Java name during the generation phase, the
parameter of this tagged value takes
precedence over the modeling name.

This is particularly useful when
developing packages, since it is used
to develop a sub-branch of a larger
modeling project.

JavaExtern N/A Indicates a package for which code
must not be generated from its
classes.

JavaBeanResource resource file Indicates a resource to be stored at
the same time as the package's
classes.

Chapter 5: Code generation

5-12 Objecteering/Java User Guide

Tagged values on an operation
Name ... Parameters ... Role ...

JavaStrict N/A Causes the representation of the
Java keyword "strictfp" for the
generated operation.

JavaName the operation's Java
name

During the generation phase, the
parameter of this tagged value takes
precedence over the modeling name.

JavaSynchronized N/A Representation of the Java keyword :
"synchronized" meant for the multi-
threading.

JavaNative N/A Representation of the "native" Java
keyword for the methods written in
languages other than Java.

JavaThrownException name of the exceptions
that may be called

Lists the exceptions the operation can
generate.

JavaNoInvariant N/A Means that the invariant method is
not called for this operation.

JavaParentConditions N/A Allows the generation in the operation
of the conditions (pre and/or post) of
the redefined operation on the parent
class.

Chapter 5: Code generation

Objecteering/Java User Guide 5-13

Tagged values on an attribute
Name ... Parameters ... Role ...

JavaPublic N/A Generates the visibility of access
methods as being public.

JavaWrapper N/A Uses the Wrapper class as base type
(for example, Integer for int).

JavaName the attribute's Java
name

During the generation phase, the
parameter of this tagged value takes
precedence over the modeling name.

JavaLong N/A Carries out modifications in the case
of an integer type attribute. This can
also be applied

JavaShort N/A Carries out modifications in the case
of an integer type attribute.

JavaByte N/A carries out modifications in the case of
an integer type attribute.

type name of the class of
the types mapping
and accessor
generation package
to be used for the
attribute.*

Indicates a class other than the
default class for the generations
related to the attribute.

JavaTypeExpr text for specifying the
attribute's Java type

Generation of the types that cannot be
represented in Objecteering/UML (ex :
int [] []).

JavaNoAccessor N/A Non-generation of the accessors.

JavaFilterAccessor name of an accessor
that must not be
generated.

No generation of accessors given as
parameters.

JavaGenerateAccessor name of an accessor
not generated by
default and that
should be generated

Generation only of accessors given as
parameters.

Chapter 5: Code generation

5-14 Objecteering/Java User Guide

Name ... Parameters ... Role ...
JavaFinal N/A Representation of the Java keyword

"final".

JavaVolatile N/A Representation of the Java keyword
"volatile".

JavaTransient N/A Representation of the Java keyword
"transient".

JavaNoInvariant N/A Means that no invariants will be
generated for the attribute in question.

The Attribute section of the table in the "Type and Accessor Generation - Project
Overview" section of chapter 14 of this user guide resumes the values authorized
as parameters for a {type} tagged value on an attribute.

Simple
attribute ...

Finite multiple
attribute ...

infinite multiple
attribute ...

vector N/A X X (default)

array N/A X X

hashtable N/A X X

stack N/A X X

hashSet N/A X X

set N/A X X

collection N/A X X

linkedList N/A X X

list N/A X X

map N/A X X

hashMap N/A X X

Chapter 5: Code generation

Objecteering/Java User Guide 5-15

These values correspond to the possibilities for the "JavaTypes" package. In the
case of a simple attribute, the class used is the class named <parameter
value>SimpleAttribute.
For a finite multiple attribute, the class used is the class named <parameter
value>FiniteAttribute.
Where an infinite multiple attribute is concerned, the class used is the class
named <parameter value>MultipleAttribute.
A user wishing to enrich the "JavaTypes" package or to write his package must,
therefore, respect these naming rules.

Chapter 5: Code generation

5-16 Objecteering/Java User Guide

Tagged values on a navigable association
Name ... Parameters ... Role ...

type name of the class of the types
mapping and accessor
generation package which is to
be used for the association *

Indicates a class other than
the default class for the
generations related to the
association.

JavaNoAccessor N/A Non-generation of the
accessors

JavaFilterAccessor name of an accessor that must
not be generated.

No generation of accessors
given as parameters.

JavaGenerateAccessor name of an accessor not
generated by default and that
should be generated

Generation only of accessors
given as parameters.

JavaFinal N/A Representation of the Java
keyword : "final".

JavaVolatile N/A Representation of the Java
keyword : "volatile"

JavaName the association's Java name during the generation phase,
the parameter of this tagged
value takes precedence over
the modeling name.

JavaPublic N/A Generates the visibility of
access methods as being
public.

JavaTransient N/A Representation of the Java
keyword : "transient".

JavaTypeExpr text for specifying the
attribute's Java type

Generation of the types that
cannot be represented in
Objecteering/UML (ex : int []
[]).

JavaNoInvariant N/A Means that no invariants will
be generated for the
association in question.

Chapter 5: Code generation

Objecteering/Java User Guide 5-17

The Association table in the "Type and Accessor Generation - Project Overview"
section of chapter 14 of this user guide resumes the values authorized as
parameters for a {type} tagged value on an association.

Simple
attribute ...

Finite multiple
attribute ...

infinite multiple
attribute ...

vector N/A X X (default)

array N/A X X

hashtable N/A X X

stack N/A X X

hashSet N/A X X

set N/A X X

collection N/A X X

linkedList N/A X X

list N/A X X

map N/A X X

hashMap N/A X X

These values correspond to the possibilities for the "JavaTypes" package. In the
case of a simple association, the class used is the class named <parameter
value>SimpleAssociation.
For a finite multiple association, the class used is the class named <parameter
value>FiniteAssociation.
Where an infinite multiple association is concerned, the class used is the class
named <parameter value>MultipleAssociation.
A user wishing to enrich the "JavaTypes" package or to write his package must,
therefore, respect these naming rules.

Chapter 5: Code generation

5-18 Objecteering/Java User Guide

Tagged values on a parameter
Name ... Parameters ... Role ...

JavaWrapper N/A Uses Wrapper as its base type (for
example, Integer for int).

JavaByte N/A Carries out modifications for an integer
type parameter.

JavaShort N/A Carries out modifications of an integer
type parameter.

JavaLong N/A Carries out modifications for an integer
type parameter.

JavaTypeExpr text for specifying the
parameter's Java type

Generation of the types that cannot be
represented in Objecteering/UML (ex :
int [] []).

type name of the class for
generating the parameter
declaration *

Indicates a class other than the default
class to generate a parameter
declaration.

The Parameter table in the "Type and Accessor Generation - Project Overview"
section of chapter 14 of this user guide resumes the values authorized as
parameters for a {type} tagged value on a parameter.

Simple
attribute ...

Finite multiple
attribute ...

infinite multiple
attribute ...

vector N/A X X

array N/A X (default) X (default)

hashtable N/A X X

stack N/A X X

hashSet N/A X X

set N/A X X

collection N/A X X

linkedList N/A X X

list N/A X X

map N/A X X

hashMap N/A X X

Chapter 5: Code generation

Objecteering/Java User Guide 5-19

These values correspond to the possibilities for the "JavaTypes" package. In the
case of an in parameter (or an out parameter), the class used is the class named
<parameter value>IOParameter.
For a return parameter, the class used is the class named <parameter
value>ReturnParameter.
A user wishing to enrich the "JavaTypes" package or to write his package must,
therefore, respect these naming rules.

Tagged values on an assocation end
Name ... Parameters ... Role ...

JavaPublic N/A Generates the visibility of access
methods as being public.

JavaName the association's Java name During the generation phase, the
parameter of this tagged value takes
precedence over the modeling name.

Tagged values on a data type
Name ... Parameters ... Role ...

JavaName the data type's Java name During the generation phase, the
parameter of this tagged value takes
precedence over the modeling name.

Chapter 5: Code generation

5-20 Objecteering/Java User Guide

Code generation - Note types

Overview
Objecteering/UML notes are used to complete the UML model with texts
expressed in Java syntax. Usually, the internal processing of a UML method is
entered in Java in a "JavaCode" type note associated to a method's
implementation.

Note: Certain notes can be added to certain model elements directly through the
"Java" tab of the properties editor. For further information, please refer to
the "The properties editor and the Java module" section in chapter 2 of this
user guide.

Type of notes on a class
The ... type of note is used to ...

JavaHeader insert a text before declaring the class

JavaMembers insert a text in the class body

JavaBottom insert a text after declaring the class

JavaDoc add a comment to be used by javadoc

JavaCode insert Java code used for the class invariant

JavaImport generate and bring back imports in JavaImport notes, if the
"Use Java import notes to generate imports" tickbox is
checked, or if the {JavaNoImport} tagged value is present on
the class in question. This can only be used in model-driven
mode, and not in round-trip mode.

Chapter 5: Code generation

Objecteering/Java User Guide 5-21

Type of notes on an operation
The ... type of note is used to ...

JavaDoc add a comment which will be used by javadoc.

JavaCode provide Java code for implementing the operation.

JavaSuper insert Java code before the pre-condition (especially for calling
the builder of the parent class).

JavaReturned insert Java code after the post-condition (especially for
instructing the method return).

Type of notes on an attribute
The ... type of note is used to ...

JavaDoc add a comment to be used by javadoc

Type of notes on a navigable association
The ... type of note is used to ...

JavaDoc add a comment to be used by javadoc

JavaInitValue set initialization for the association

Chapter 5: Code generation

5-22 Objecteering/Java User Guide

Code generation - Stereotypes

Overview
Objecteering/UML defines stereotypes which allow you to designate certain
objects as being concerned by the generation of Java code. In this way, a
constraint concerning an operation will be used as a pre-condition if it carries the
<<JavaPreConditions>> stereotype.

Note: Certain stereotypes can be added to certain model elements directly
through the "Java" tab of the properties editor. For further information,
please refer to the "The properties editor and the Java module" section in
chapter 2 of this user guide.

Stereotypes on a constraint
Name is used to ...

JavaDocInvariant designate a constraint as being an invariant expressed in
JavaDoc. Such a constraint is only taken into account if it
concerns a class.

Invariant When the "description note processed as Javadoc" parameter
is selected, the constraint is taken into accoutn in JavaDoc as
for <<JavaDocInvariant>>.

JavaInvariant designate a constraint as being an invariant expressed in Java.
Such a constraint is only taken into account if it concerns a
class.

JavaPreCondition designate a constraint as being a pre-condition expressed in
Java. Such a constraint is only taken into account if it concerns
an operation.

JavaPostCondition designate a constraint as being a post-condition expressed in
Java. Such a constraint is only taken into account if it concerns
an operation.

Chapter 5: Code generation

Objecteering/Java User Guide 5-23

Java code and modeling correspondence

Introduction
Listed below are the usual concepts for Java development, together with the way
in which they can be expressed in Objecteering/UML.

Notions on a package
Java notion ... UML model mapping ...

generating a sub-package
from a larger modeling project,
without having the entire
package hierarchy

the {JavaName} tagged value with the parameter
containing the complete name on the package in question

Notions on a class
Java notion ... UML model mapping ...

interface «interface» stereotype on a class

abstract class "Abstract" field of a class

final class "Leaf" field of a class.

generalization class generalization,

or {JavaExtends} tagged value

interface implementation implementation link,

or {JavaImplements} tagged value

imports classes use and reference links of its package,

or {JavaImport} tagged value on the class and its package

class invariant constraint on class, stereotyped «JavaInvariant»

inner class JavaMembers type of note, or contained class not
carrying the {JavaNonPublic} tagged value

non public class JavaBottom note type, or contained class carrying the
{JavaNonPublic} tagged value

Chapter 5: Code generation

5-24 Objecteering/Java User Guide

Notions on an operation
Java notion ... mapping in the model ...

public visibility Public value of the Visibility field on an operation.

protected visibility Protected value of the Visibility field on an operation.

private visibility Private value of the Visibility field on an operation.

friendly visibility None value of the Visibility field on an operation.

constructor «create» stereotype on an operation

finalize() method «destroy» stereotype on an operation

abstract "Abstract" operation field.

static "Class" operation field.

final "Cannot be specialized" operation field.

synchronized {JavaSynchronized} tagged value

native {JavaNative} tagged value

exceptions generated by an
operation

{JavaThrownException} tagged value. You can model the
throwing of exceptions through a dependency link towards
a class which derives from java.lang.Exception or towards
a signal stereotyped <<Exception>>.

Notions on an attribute
Java notion ... mapping in the model ...

visibility same mapping process as for the methods.

static Class field of an attribute.

final {JavaFinal} tagged value

Chapter 5: Code generation

Objecteering/Java User Guide 5-25

Code generation for an attribute or association
For an attribute or association in a class, a variable declaration and a number of
access methods to this variable are generated. There are two groups of access
methods, one for reading ("getX()","cardX()") and the other for modification
("setX()", "appendX()","eraseX()" and so on). In order to simplify presentation in
the following table, "get()" refers to the read group of access methods, whilst
"set()" indicates the modification group of access methods.
Code generation for an attribute takes into account the UML modeling of
"Visibility", "Access Mode" and the {public} tagged value on the attribute, and is
summarized in the following table.

Chapter 5: Code generation

5-26 Objecteering/Java User Guide

For an association, there is no "Access Mode" in Objecteering/UML. Code
generation is the same as the R/W column in the table.

No access Read Write R/W
+ +declare +get()

#declare

+set()

#declare

+get()

+set()

#declare

{JavaPublic}
and +

+declare +get()

+declare

+set()

+declare

+get()

+set()

+declare

#declare #get()

-declare

#set()

-declare

#get()

#set()

-declare

{JavaPublic}
and #

#declare +get()

-declare

+set()

-declare

+get()

+set()

-declare

- -declare -get()

-declare

-set()

-declare

-get()

-set()

-declare

{JavaPublic}
and -

-declare +get()

-declare

+set()

-declare

+get()

+set()

-declare

Package -declare get()

-declare

set()

-declare

get()

set()

-declare

{JavaPublic}
and Package

declare +get()

declare

+set()

declare

+get()

+set()

declare

Chapter 5: Code generation

Objecteering/Java User Guide 5-27

Code generation for an enumeration
Since there is no "enum" in Java, a special class is generated for a UML
enumeration.
For example, if a Color "Enumeration" with a number of "EnumerationLiterals"
(red, green, blue) is defined, the code generated is as follows:
public class Color

{
private int value;
public static final Color red = new Color(0);
public static final Color green = new Color(1);
public static final Color blue = new Color(2);
private Color(int code) {

value = code;
}

}

An Enumeration of Package is generated as a Class in the package, and an
Enumeration of Class is generated as a non public class in the file of its owned
class.

Note: If you choose to select the "Compatible 432" option, an Enumeration of
Package generates no code, and an Enumeration of Class is generated as
an Interface which is implemented by its owned class.

For example, for an Enumeration Color in the class C, the generated code is as
follows:
public class C implements Color
{
}

interface Color
{

static int red = 0;
static int green = 1;
static int blue = 2;

}

Chapter 5: Code generation

5-28 Objecteering/Java User Guide

public java.lang.String toString ()

This returns the value of the enumeration.

Public int toInt ()

This returns the integer associated with the enumeration.

Public static Color fromString (String str)

This returns an enumeration from its string.

Chapter 6: Compilation

Chapter 6: Compilation

Objecteering/Java User Guide 6-3

Compilation - Overview

Introduction
The compilation of a Java generation work product consists of producing the
.class files from the .java files previously generated on this work product. The
method used is to produce a makefile file.
Compilation can be run:

♦ directly from the "Java" tab of the properties editor on packages and classes

♦ from the context menu available on Java generation work products on classes
and packages

For a package, the makefile produced recursively compiles all the package's
classes and sub-packages.
For a class, the makefile produced compiles the class.

Chapter 6: Compilation

6-4 Objecteering/Java User Guide

Compilation - Functions

Compilation services
Objecteering/Java generation provides several functions related to compilation, as
detailed in the following table:

The ... command is used to ...
Generate a makefile generate a makefile file to compile .java files into .class

files.

Visualize the makefile visualize a generated makefile.

Compile generate the class files from the .java files generated
since the last compilation.

Generate and compile generate a makefile file and compile.

Recompile all force the generation of all the .class, even if the .java
hasn't been regenerated.

Destroy the compiled files destroy the .class files

Analyze the compilation open a window with the compilation errors and offering
direct access to the faulty modeling elements.

Access
These functions are available from the context menu of a Java generation work
product detailed in chapter 3 in this manual.

Chapter 6: Compilation

Objecteering/Java User Guide 6-5

Storage

Objecteering/Java provides a storage command, "Store", available in the context
menu on Java generation work products and used to make ".jar" format archive
files.
Where the application to be stored contains one main class (a class for which the
"Main class" tickbox has been checked in the "Java" tab of the properties editor, or
for which the "Main" tickbox has been checked in the class' dialog box), this class
is generated in the manifest file of the .jar file in the following form:

Main-Class : name of main class

The same is true for applications containing more than one main class, except that
the Objecteering/Java tool will manage this, by asking you to select the class you
wish to be the main class (as shown in Figure 6-1 below).

Figure 6-1. Managing main classes when running the "Store" command

Chapter 6: Compilation

6-6 Objecteering/Java User Guide

Steps:
1 - Right-click on the Java generation work product for which generation and

compilation has just been run.
2 - Run the "Store" command from the context menu which then appears.
3 - In the list of main classes, select the one you are interested in, and confirm by

clicking on the "OK" button.

Chapter 7: Java documentation
generation

Chapter 7: Java documentation generation

Objecteering/Java User Guide 7-3

Java documentation generation - Overview

Introduction
Java documentation generation consists of producing HTML files from the
generated .java files. The JDK javadoc tool is used for this purpose. The
produced documentation can be visualized using an HTML explorer.

Java documentation generation work product
The Java documentation generation work product is the same work product as the
one used to launch code generation. It also has features related to
documentation generation.
A work product can be created for a package or a class.

For ... the documentation generation command ...
a package generates documentation for all the package's classes

a class generates documentation for the class only

Chapter 7: Java documentation generation

7-4 Objecteering/Java User Guide

Java documentation generation - Functions

Launching documentation generation
The Objecteering/Java module offers a command which allows you to launch
documentation generation.
If the documentation exists, the HTML explorer is launched directly. Otherwise,
documentation should be generated before opening the explorer .

Access
This feature is available in the Java generation work product context menu.

Chapter 7: Java documentation generation

Objecteering/Java User Guide 7-5

Java documentation generation - Note types

Overview
Javadoc notes are used in Objecteering/UML to enter information which will be
included in Java documentation, at class, attribute, operation, operation
parameter, operation return parameter and navigable association level. Javadoc
notes can also be created on links stereotyped <<throw>>. A parameter allows
the use of "description" type notes, as well as "Javadoc" type notes

In Objecteering/UML, a Javadoc note
on...

produces Java documentation ...

a class for the deduced class.

an attribute for the attribute and its accessors.

an operation for the deduced operation.

an operation parameter or return parameter for the deduced parameter or return
parameter, concatenated with the
operation's documentation.

Documentation generation options at
module configuration leve are used to
specify whether or not you wish to
generate this information in your
application's source code. If you check
the tickboxes at module parameter level,
the corresponding @param and @return
markers will be generated in the Javadoc
zone of the operation.

a navigable association for the attribute and its accessors.

a link stereotyped <<throw>> for the link. Documentation generation
options are used to specify whether or
not you wish to generate this information
in your application's source code. If you
check the tickbox, the corresponding
@throws marker will be generated in the
Javadoc zone of the operation.

Chapter 7: Java documentation generation

7-6 Objecteering/Java User Guide

Note 1:For classes, operations, attributes, associations, parameters and return
parameters, javadoc type notes can be entered directly in the "Java" tab of
the properties editor, simply by entering them in the "Javadoc" field. For
further information on the properties editor, please refer to the "The
properties editor and the Java module" section in chapter 2 of this user
guide.

Note 2:For further information on @param, @return, @throws and @see markers,
please refer to the related Javadoc documentation provided by Sun.

Chapter 7: Java documentation generation

Objecteering/Java User Guide 7-7

Java documentation generation - Javadoc @param
markers

Customizing Javadoc documentation
Javadoc @param markers are used in the generation of Java documentation for
parameters which have Javadoc notes. If you want the information contained in
Javadoc notes on parameters to appear in the generated Java documentation,
you must specify this at module parameter level (as shown in Figure 7-1 below).

Figure 7-1. Parameterizing generation of Javadoc notes on parameters in Java documentation

Steps:
1 - Select the "Documentation" set of Java module parameters.
2 - Check the "Generate Javadoc notes for parameters" tickbox.
Javadoc notes entered for parameters will now be generated in Java
documentation.

Chapter 7: Java documentation generation

7-8 Objecteering/Java User Guide

Entering Javadoc notes on parameters
To enter Javadoc notes on parameters, the "Javadoc" field in the "Java" tab of the
properties editor is used (as shown in Figure 7-2).

Figure 7-2. Entering a Javadoc note for a parameter

Chapter 7: Java documentation generation

Objecteering/Java User Guide 7-9

Steps:
1 - In the explorer, select the parameter for which you wish to enter a Javadoc

note.
2 - Click on the "Java" tab of the properties editor.
3 - In the "Javadoc" field, enter the contents of the Javadoc note.

The result of the operations shown in Figures 7-1 and 7-2 is shown in Figure 7-3
below.

Figure 7-3. Extracts from generated Javadoc documentation and the generated source file

The information you entered in the Javadoc note zone of the properties editor is
presented in the generated Java documentation. It is introduced by the
"Parameters" title, followed by the name of the parameter and then its description.
The same information is present in the generated source file, preceded by first the
@param marker and then the name of the parameter.

Chapter 7: Java documentation generation

7-10 Objecteering/Java User Guide

Java documentation generation - Javadoc @return
markers

Customizing Javadoc documentation
Javadoc @return markers are used in the generation of Java documentation for
return parameters which have Javadoc notes. If you want the information
contained in Javadoc notes on return parameters to appear in the generated Java
documentation, you must specify this at module parameter level (as shown in
Figure 7-4 below).

Figure 7-4. Parameterizing generation of Javadoc notes on return parameters in Java
documentation

Steps:
1 - Select the "Documentation" set of Java module parameters.
2 - Check the "Generate Javadoc notes for return parameters" tickbox.

Javadoc notes entered for return parameters will now be generated in Java
documentation.

Chapter 7: Java documentation generation

Objecteering/Java User Guide 7-11

Entering Javadoc notes on return parameters
To enter Javadoc notes on return parameters, the "Javadoc" field in the "Java" tab
of the properties editor is used (as shown in Figure 7-5).

Figure 7-5. Entering a Javadoc note for a return parameter

Chapter 7: Java documentation generation

7-12 Objecteering/Java User Guide

Steps:
1 - In the explorer, select the return parameter for which you wish to enter a

Javadoc note.
2 - Click on the "Java" tab of the properties editor.
3 - In the "Javadoc" field, enter the contents of the Javadoc note.

The result of the operations shown in Figures 7-4 and 7-5 is shown in Figure 7-6
below.

Figure 7-6. Extracts from generated Javadoc documentation and the generated source file

The information you entered in the Javadoc note zone of the properties editor is
presented in the generated documentation. It is introduced by the "Returns" title,
followed by the description of the return parameter.
The same information is present in the generated source file, preceded by the
@return marker.

Chapter 7: Java documentation generation

Objecteering/Java User Guide 7-13

Java documentation generation - Javadoc @throws
markers

Customizing Javadoc documentation
Javadoc @throws markers are used in the generation of Java documentation for
exceptions which have Javadoc notes. If you want the information contained in
Javadoc notes on exceptions to appear in the generated Java documentation, you
must specify this at module parameter level (as shown in Figure 7-7 below).

Figure 7-7. Parameterizing generation of Javadoc notes on exceptions in Java documentation

Steps:
1 - Select the "Documentation" set of Java module parameters.
2 - Check the "Generate Javadoc notes for "throws" statements" tickbox.
Javadoc notes entered for thrown exceptions will now be generated in Java
documentation.

Chapter 7: Java documentation generation

7-14 Objecteering/Java User Guide

Entering Javadoc notes on exceptions
To enter Javadoc notes on exceptions, the "Notes" tab of the thrown exception's
dialog box is used (as shown in Figure 7-8).

Figure 7-8. Entering a Javadoc note for a thrown exception

Steps:
1 - After opening the thrown exception's dialog by double-clicking, click on the

"Notes" tab.
2 - Click on the "Add" button to create a new note.
3 - Select the "Javadoc" type of note.
4 - Enter the contents of the Javadoc note.
5 - Confirm by clicking on "OK".

Chapter 7: Java documentation generation

Objecteering/Java User Guide 7-15

The result of the operations shown in Figures 7-7 and 7-8 is shown in Figure 7-9
below.

Figure 7-9. Extracts from generated Javadoc documentation and the generated source file

The information you entered in the Javadoc note is presented in the generated
Java documentation. It is introduced by the "Throws" title, followed first by the
elements involved in the thrown exception and then by its description.
The same information is present in the generated source file, preceded by the
@throws marker.

Chapter 7: Java documentation generation

7-16 Objecteering/Java User Guide

Java documentation generation - Javadoc @see markers

Customizing Javadoc generation
Javadoc @see markers are used in the generation of "See also" links in Java
documentation. If you want "See also" statements to appear in Javadoc notes
and therefore in the generated Java documentation, you must specify this at
module parameter level (as shown in Figure 7-10 below).

Figure 7-10. Parameterizing generation of "See also" statements in Javadoc notes

Steps:
1 - Select the "Documentation" set of Java module parameters.
2 - Check the "Generate "See also" statements in Javadoc notes " tickbox.

Chapter 7: Java documentation generation

Objecteering/Java User Guide 7-17

Modeling see also links
Javadoc @see markers are used to create "See also" links in the documentation
created by Javadoc. Using Objecteering/Java, these links are modeled through a
dialog box which can be accessed via the context menu available on classes and
operations.
By using the drag and drop feature, you can link a class or an operation to a
package, class, operation, attribute or association. For every linked element, it is
possible to add a description text.
Where operations are concerned, you can choose to display the type of the link.
Possible types are:

♦ "Generate the object name": this is used to generate only the name of the
operation.

♦ "Generate the object name with argument types": this is used to generate the
name of the operation and the list of types of the parameters.

♦ "Generate the object name with argument types and names": this generates
the name of the operation and the list of types and names of the parameters.

The "Add", "Apply" and "Remove" buttons are used to add a new "See also" link,
modify an existing "See also" link or delete an existing "See also" link.

Chapter 7: Java documentation generation

7-18 Objecteering/Java User Guide

Figure 7-11 below shows an example of the creation of a new see also link.

Figure 7-11. Creating a new "See also" link

Steps:
1 - Select the class or operation for which you want to create a see also link by

right-clicking, and run the "Links for Javadoc generation" command.
2 - From the explorer, drag and drop the element you wish to link the selected

class or operation to.
3 - Enter a description of the new see also link.
4 - Select the link type. By default, this is set to "Generate the object name".
5 - Click on "Add" to confirm your creation and add the new link to the left hand

"@see links" column.
6 - Confirm by clicking on "OK".

Chapter 7: Java documentation generation

Objecteering/Java User Guide 7-19

The result of this operation is shown in Figure 7-12 below.

Figure 7-12. Extracts from generated Javadoc documentation and the generated source file

The information you entered in the "Enter the link text" zone of the "@see links for
Javadoc" window is presented in the generated Java documentation. It is
introduced by the "See Also" title, followed by the text entered.
The same information is present in the generated source file, preceded by first the
@see and then by the linked elements.

Chapter 8: Reverse

Chapter 8: Reverse

Objecteering/Java User Guide 8-3

Reverse - Overview

Introduction
Java class libraries are essential elements in Java programming. The reverse tool
allows the integration of these basic libraries into Objecteering/UML, by recreating
Objecteering/UML classes from Java files.
During this operation, classes and packages modeled are rebuilt from the sources
available in the class libraries. In this way, the user can use library elements
within his own application.

Reversable sources
The Objecteering/UML Java reverse uses .class files to build class structure.
.class files can either exist independently or can be compressed in .zip files or .jar
files. If you are using a JDK 1.1, you can reverse only .class files which are
independent or compressed in .zip files. However, where a JDK 1.2 or 1.3 is
being used, you can also reverse .class files which are compressed in .jar files.

Configuring reverse operations
Java reverse operations are based on certain module parameters, defined and

configured through the ("Modify module parameter configuration") icon. For
further information on these parameters, please refer to the "Configuration
window" section in chapter 17 of this user guide, which contains a paragraph
detailing the "Reverse" group of parameters.

Chapter 8: Reverse

8-4 Objecteering/Java User Guide

Using reversed classes
Integrating these software components into the repository allows:

♦ the visualization of the reversed classes (structure of the packages, attributes,
associations, operations)

♦ the specialization of the reversed classes and the redefinition of their methods

♦ the visualization of documentation and code associated with the reversed
elements, if they are accessible

♦ the continuation of the development of your UML modeling project in
Objecteering/UML

Status of reversed classes
Whether or not the reversed class is taken into account depends on the
{JavaExtern} tagged value associated with the class. Reverse levels are decided
by the "ReverseJavaCode" and "ReverseJavaDoc" parameters and the available
java source file.

♦ If the java source file is available, the java code is reversed when the
"ReverseJavaCode" parameter is selected. If this is not the case, the reversed
class is set with the {JavaExtern} tagged value. In any case, parameter
names, as well as attribute and association initializations, are created correctly.

♦ If the java source file is not available, the reversed class is set with the
{JavaExtern} tagged value. The reverse can only take place when the
"ReverseJavaCode" parameter has not been selected. In this case,
information on the name of the operation parameters is not available in the
repository. The operation parameters are named p followed by the number of
their location in the parameter declaration. The first operation parameter will,
therefore, be called p0.

♦ Java documentation information is reversed only when the "ReverseJavaDoc"
parameter is selected and the java source file is available.

Chapter 8: Reverse

Objecteering/Java User Guide 8-5

Code reverse and model consistency checks
A model can be reversed from files external to Objecteering/UML regardless of
whether consistency checks are active or inactive. We recommend, however, that
removable consistency checks be deactivated, since if they are left active, the
reverse operation may fail before a model is produced.
When the reverse is launched, a message informs the user that consistency
checks are active and that construction of the model, which may potentially not
conform to the UML modeling rules checked by Objecteering/UML, may be
refused (as shown in Figure 8-1).

Figure 8-1. Message informing the user that consistency checks are active

If the user wishes to deactivate consistency checks, he should simply check the
"Remove consistency checks" box.
After the reverse, we advise that you reactivate all consistency checks, by clicking

on the ("Switch on/Switch off consistency checks") icon, and correct any
problems in consistency.

Note: It should be noted that code reversal in command line mode (please see
objingcl) is assured, whatever the state of the consistency checks when
the reverse command is run.

Chapter 8: Reverse

8-6 Objecteering/Java User Guide

Warning
A class created through reverse receives an identifier just like an object created in
an explorer or in a graphic editor.
If two people reverse the same class in two different UML modeling projects,
Objecteering/UML will consider there to be two different objects.
To avoid losing the links towards the reversed classes during the import, it is
necessary to run the reverse in a reference modeling project from which everyone
imports the used classes.

Chapter 8: Reverse

Objecteering/Java User Guide 8-7

Reverse - Functions

Reverse features
The Objecteering/Java module offers several features related to the reverse.

♦ the reverse itself on a package

♦ re-launching the reverse on a class already reversed (with different options)

♦ re-launching the reverse on a package which has already reversed classes
(with different options)

♦ visualizing the documentation on a reversed class

♦ visualizing the code on a reversed class

Chapter 8: Reverse

8-8 Objecteering/Java User Guide

Launching reverse operations
The reverse command can be run from any package, as shown in figure 8-2
below.

Figure 8-2. Running the reverse command on a package

Steps:
1 - Select the package on which code generation is to be run in the explorer, by

right-clicking.
2 - Run the "Java/Reverse" commands from the context menu which then

appears.

Chapter 8: Reverse

Objecteering/Java User Guide 8-9

Selecting classes to be reversed
A selection window then appears, in which the user selects those classes he
wishes to reverse (as shown in Figure 8-3).

Figure 8-3. Window used to select those classes which are to be reversed

Steps:
1 - Select the "java" directory
2 - Select the "applet" directory
3 - Select the "Applet.class" file.
4 - Click on the "Add" button.

Chapter 8: Reverse

8-10 Objecteering/Java User Guide

Note 1:The user can browse packages and select those classes to be reversed,
using the "Add" and "Add all" buttons. Classes belonging to different
packages may be selected.

Note 2:Clicking on the "Reverse" button triggers the reverse of the selected
classes.

Re-running the reverse operation
If a package has already been reversed and you wish to update the model (after
further developing the Java files, for example), you should simply run the "New
reverse on the package's classes" command on the package in question. This
command (illustrated in Figure 8-4) directly triggers the reverse operation on the
package's classes, without displaying the selection window shown in Figure 8-3.

Figure 8-4. The "New Reverse on the package's classes" command

Chapter 8: Reverse

Objecteering/Java User Guide 8-11

Visualizing information related to a class
There are two commands available in a class context menu (as shown in Figure
8-5).

Figure 8-5. Visualizing the documentation of the "Applet" class

Chapter 8: Reverse

8-12 Objecteering/Java User Guide

The ... command opens ...
Visualize documentation an HTML editor containing the original HTML

documentation related to the current class.

Visualize the code a dialog box containing the Java code corresponding
to the current class.

Chapter 8: Reverse

Objecteering/Java User Guide 8-13

Steps involved in the reverse of a model

Operating mode
From any package, select the "Java/Reverse" commands from the context menu.
After choosing to window then appears.

♦ The list of source directories indicates the directories from which the user can
select the classes to be reversed. This list is filled by the configuration
parameter, whose name is "Class files paths".

♦ The user can browse these directories. However, only directories containing
classes that can be selected are displayed in the explorer. Only the files with
the .class extension appear.

♦ Clicking on a class selects it in the file explorer. Clicking on "Add" adds it to
the list of selected classes. Multiple selection is possible.

♦ Clicking on the paths of the source directories automatically positions the
current path on the selected path.

♦ Selecting the "Reverse" button launches the import of the selected classes.

Classes used
A reversed class can have attributes, associations or operation parameters,
whose type corresponds to the non-reversed class. If so, these classes are
created empty in Objecteering/UML, and can be reversed later.

Chapter 8: Reverse

8-14 Objecteering/Java User Guide

Java/Objecteering correspondence
Certain relationships between Java and Objecteering/UML are direct, others
require the creation of tagged values, shown in the list below.

Metaclass ... Java modifier ... tagged value ...
Attribute, AssociationEnd final JavaFinal

N/A transient JavaTransient

N/A volatile JavaVolatile

Method synchronized JavaSynchronized

N/A native JavaNative

The constructors of a Java class, which have the name of this class in Java, are
created with the <<create>> stereotype in Objecteering/UML.
As the passing mode of the parameters in Java is through reference, all the
parameters of an operation, except the return parameter, have the In/Out type. A
java class may contain fields. Their type decides the reversed field which will be
created as an attribute or an association. When the type is primitive java type or
string, the field corresponds to an attribute. Otherwise, it is an association.

Correspondence with the Java primitive types
When you import an attribute or a parameter with a primitive Java type (there are
eight of them), correspondence is established with Objecteering/UML's predefined
types. Certain Java type characteristics require the addition of a tagged value.

Primitive Java type ... type in the repository ... tagged value ...
boolean boolean N/A

char char N/A

int integer N/A

short integer JavaShort

long integer JavaLong

byte integer JavaByte

float real N/A

double real JavaLong

Chapter 8: Reverse

Objecteering/Java User Guide 8-15

Restrictions
When a type declaration cannot be expressed in Objecteering/UML, it is
encapsulated in a {JavaTypeExpr} tagged value and the attribute, association or
parameter type gets the undefined value. This {JavaTypeExpr} tagged value is
not included in the signature of a method. Therefore, if an "m1" method is defined
containing the only parameter which has a type that cannot be expressed (a
JavaTypeExpr), the creation of a second "m1" method with only one
JavaTypeExpr parameter will not be accepted by Objecteering/UML. This
situation, however, is very rare.

Automatic diagram creation
If you check the "Automatically create diagrams on reverse" tickbox, the reverse
operation will automatically create, at package level, diagrams of generalizations,
associations, actors, use cases and package relations. Each time you run the
"New reverse on the package's classes" command, new diagrams will be created
after every round trip cycle, with the old diagrams being renamed using the "old"
suffix.

Chapter 9: Choosing the functional
mode

Chapter 9: Choosing the functional mode

Objecteering/Java User Guide 9-3

Java functioning modes

Introduction
Two functioning modes are available with the Objecteering/Java module:

♦ Model driven, which is based on the total generation of declarative code from
the model itself. Application code (in other words, the programming of
operations) is modeling by notes, or typing in marked zones. This mode does
not concern reverse engineering.

♦ Round trip, which combines reverse engineering and code generation. Code is
generated in exactly the same way as with the model driven mode. The user
can freely modify the code nearby in the generated code or work in his favorite
IDE. The model is updated by running the "Reverse" command.

Chapter 9: Choosing the functional mode

9-4 Objecteering/Java User Guide

Configuring the functioning mode
The Java functioning mode is configured through the standard Objecteering/UML
configuration interface, which is launched either by selecting the "File/Edit

Configuration/Modify Configuration" menu or by clicking on the "Modifies the
configuration of module parameters" icon. The generation mode is selected
through the definition of the "Generation mode" field (as shown in Figure 9-1).

Figure 9-1. Configuring the generation mode

Chapter 9: Choosing the functional mode

Objecteering/Java User Guide 9-5

Model driven mode

Principles of model driven engineering
Model driven engineering is the default Objecteering/UML functioning mode and is
based on complete generation of declarative code from the UML model.
Marked zones are carefully inserted into the generated Java code, with each of
these zones corresponding to a note which can be added to the model (see
Figure 9-2). Application code (virtually reduced to the programming of operations)
is written in these marked zones (using with the aid of an external editor or an
IDE).
Once the zones have been completed, their contents can be transferred back into
the model in the form of corresponding notes. This operation can be carried out
as many times as possible.
The model driven engineering mode does not, therefore, involve reverse
engineering. All "declarative" modifications, such as, for example, the addition of
a new attribute, are in fact model modifications and as such must be carried out
within Objecteering/UML, before subsequently regenerating the code.
Certain mechanisms exist to guarantee that the regenerated code does not write
over any modifications made outside Objecteering/UML.
Thus, the entire application can be fine-tuned outside Objecteering/UML, as long
as the model itself is not modified.

Chapter 9: Choosing the functional mode

9-6 Objecteering/Java User Guide

Figure 9-2. Principles of model driven engineering

Chapter 9: Choosing the functional mode

Objecteering/Java User Guide 9-7

Advantages of the model driven engineering mode
The main advantage of this mode is that the code always corresponds to the
model. In fact, it is only possible to modify declarations by modifying the model
itself.
Other advantages are:

♦ A relatively small modification to the model can lead to significant modifications
at declarative code level. These code modifications are automatically taken
into account by the code generator.

♦ Total model/code consistency leads to up-to-date documentation, as well as
other generation work products (metrics, SQL, …), which are consistent with
the code at no additional cost.

Drawbacks of the model driven engineering mode
The obvious drawback of the model driven engineering mode is that the user is
obliged to come back to Objecteering/UML after every modification made to the
model, in order to regenerate the code.

Chapter 9: Choosing the functional mode

9-8 Objecteering/Java User Guide

Round trip mode

Principles of round trip engineering
Round trip engineering is a functioning mode which combines code generation
and reverse engineering. Code is generated in exactly the same way as with
model driven engineering. Markers, which are used during the reverse
engineering phase to differentiate between code written by the user and code
generated by Objecteering/UML, are also generated.
Application code (virtually reduced to programming operations if the model is
complete) is written in these marked zones (with the aid of an external editor or an
IDE).
Unlike the model driven mode, the round trip mode allows the model to be directly
modified at code level. The code is then fully reversed, in order to update the
model.
In the example shown in Figure 9-3, the String type attribute appears in the model.

Figure 9-3. Principles of round trip engineering

Chapter 9: Choosing the functional mode

Objecteering/Java User Guide 9-9

Advantages of the round trip engineering mode
The principal advantage of the round trip mode is that modifications can be carried
out within the code itself, with the model only being updated periodically.

Drawbacks of the round trip engineering mode
The fundamental disadvantage is:

♦ either that the code will very rapidly differ from the model

♦ or that the model returned will be physical and will lose its "overview"

♦ or a mix of the two previously described disadvantages

Chapter 9: Choosing the functional mode

9-10 Objecteering/Java User Guide

Frequently encountered problems: N-ary associations

Figure 9-4. The problem of n-ary associations

Starting with a 0..* association called "theBars" from the "Foo" class to the "Bar"
class, after the round trip we have a 1..1 association, still called "theBars" but
going from the "Foo" class to the "Vector" class. The semantics of this association
have, therefore, been lost. The model has regressed from its logical level to its
physical level.
Certain mechanisms exist to get round these problems. Thus, if the "theBars"
association has a "public Bar getTheBars (int idx) ;" form accessor, which is
normally the case where you have requested that Objecteering/UML automatically
generate accessors, the reverse engineering tool will find the correct association
again.

Chapter 9: Choosing the functional mode

Objecteering/Java User Guide 9-11

Frequently encountered problems: Renaming a class

Figure 9-5. The problem of renaming a class

We start with a 1..1 association called "theBar" going from the "Foo" class to the
"Bar" class. After carrying out a round trip operation and renaming the "Foo" class
"Foo2", we have a 1..1 association going from the "Foo2" class to the "Vector"
class, but at the same time the "Foo" class with its association has been retained.
In this case, the model is no longer valid. It differs from the code.

Chapter 9: Choosing the functional mode

9-12 Objecteering/Java User Guide

Frequently encountered problems: Divergence in generation

Figure 9-6. The problem of generation divergence

Chapter 9: Choosing the functional mode

Objecteering/Java User Guide 9-13

Starting with a 1..1 association called "theBar" from the "Foo" class to the "Bar"
class, default generation creates a Vector. If this Vector is changed into another
collection type in the Java code, two case scenarios are possible:

♦ Reverse engineering recognizes the new type and transfers it in the form of the
{type=…} tagged value. During the next generation, if the generator
recognizes the type, all is well.

♦ Reverse engineering does not recognize the new type (as illustrated in Figure
9-6). Generation is stopped and the round trip cycle is interrupted.

To avoid this problem, try to choose a type known to our generator (for details on
the list of types known to the Objecteering Java generator, please refer to the
"Code generation - Tagged value types" section in chapter 5 of this user guide).

Chapter 9: Choosing the functional mode

9-14 Objecteering/Java User Guide

Handy tips

Reverse
Before all reverse operations, make sure that the classes you wish to reverse are
properly compiled and can be accessed through the ClassPath specified in the
reverse configuration. The reverse command uses .java and .class files to carry
out its operations.

Multiple multiplicity associations and attributes
For multiple multiplicity associations and attributes created in Java,
Objecteering/UML can, in round trip mode, recreate the correct association or
attribute through an accessor of C getXXX() form.
In this case, if C is a non-primitive class, an association towards C, with XXX as its
role, is created.
If C is a type or a primitive class, a C type attribute called XXX is created.
Visibility is that of the accessor.

Generation markers
Even in round trip mode, the code generator generates "user" code between the
"//START OF MODIFIABLE ZONE …" and "//END OF MODIFIABLE ZONE …"
markers, in order to be able to differentiate between the code generated by
Objecteering/UML (invariants, pre and post-conditions, amongst other things) and
the code written by the user.
During the reverse operation, these markers are deleted. For methods, as well as
markers, the code before the start marker and after the end marker is deleted, in
order not to generate invariants, pre-conditions and post-conditions several times.

Chapter 9: Choosing the functional mode

Objecteering/Java User Guide 9-15

Managing imports
During the reverse, imports are transformed (where possible, in other words,
where the imported element is modeled) into a use link in the model.
Thus, an "import P1.P2.C1;" line in the reversed Java source for the "C" class is
translated in the model by a use link from the "C1" class to the "C" class, if the
"C1" class exists in the model and is contained in the "P2" package, which is itself
contained in the "P1" package.

Collections
If you are adding a collection type attribute to your Java code, remember to create
a "standardized" accessor, so that reverse engineering will be properly carried out.
For example, do not write:
class Company {
public Vector Addresses ;
}

but instead:

class Company {
private Vector Addresses ;
public Address getAddresses (int idx) { return
Addresses.elementAt(idx) ; }
}

In this way, reverse engineering will detect a 0..* association from the "Address"
class to the "Vector" class.
Only types which can be handled by the Java generator should be used (for
details on the list of types known to the Objecteering/Java generator, please refer
to the "Code generation - Tagged value types" section in chapter 5 of this user
guide).

Chapter 9: Choosing the functional mode

9-16 Objecteering/Java User Guide

Filtering accessors
Generate your accessors through Objecteering/UML and do not modify them.
Check the "Filter Accessors on Reverse" tickbox, so that they will not be
transferred into your model when reverse engineering is run.
If you wish to write your accessors yourself, do not check the "Filter Accessors on
Reverse" tickbox. All the accessors will then be transferred as methods into the
classes. In certain cases, this can provoke errors, for example, "Several methods
have the same signature".

Figure 9-7. Filtering accessors

Chapter 10: Working with other IDEs

Chapter 10: Working with other IDEs

Objecteering/Java User Guide 10-3

Introduction to working with other IDEs

The Objecteering/Java module provides a means of working with other IDEs,
which allows you to import developments carried out in other IDEs into the
Objecteering/UML model, or to export the code generated into your favorite IDE.
Imports and exports are implicitly carried out using the "Generate", "Reverse" or
"Reverse again" commands.

Chapter 10: Working with other IDEs

10-4 Objecteering/Java User Guide

Visual Age/Objecteering integration

Introduction
The module available for the integration of Visual Age and Objecteering/UML
allows the user to model his Java applications in Objecteering/UML and then,
using the standard Objecteering/UML Java generation commands, to generate the
corresponding Java code and to import it into Visual Age.
It can also be used to reverse code coming from Visual Age (still using the
standard Objecteering/UML commands), by automatically exporting Visual Age
sources and classes, before running the "normal" reverse.
These operations can be carried out in both model driven and round trip modes.

Chapter 10: Working with other IDEs

Objecteering/Java User Guide 10-5

Installation
To be operational, the two tools must be activated in the correct environment
selected by the user on the same machine.
Objecteering/UML servlet class files provided in the
<objecteeringDir>/modules/JavaModule/bin/VAServlets.jar jar file must be
extracted in the <vadir>/ide/tools/com-ibm-ivj-toolserver/servlets/ directory, using
winzip or an MSDOS command.
In order for this modification to be taken into account, Visual Age must be
launched after the installation of these files.
Before all code generation operations, the user must first create a Visual Age
project within Visual Age itself and then activate the "Remote Access to Tool API"
window (through the Windows/Options menus). Access can be automatically
initialized when Visual Age is started, by checking the "Start remote access to
Tool API on Visual Age startup" and "Use system generated port" tickboxes in the
Visual Age Window/Options/remote access to Tool API menu.

Figure 10-1. Configuring remote access to the tool API

Chapter 10: Working with other IDEs

10-6 Objecteering/Java User Guide

Configuration
To configure Objecteering/Visual Age integration, simply activate the "Edit

configuration" window by clicking on the "Modifies the configuration of
module parameters" icon. Objecteering/Visual Age integration is configured in the
"General" sub-set of Java module parameters.

Figure 10-2. Configuring the choice of integrated development environment in the "General"
subset of Java module parameters

♦ Integrated Development Environment (IDE): This field is used to indicate the
choice of development environment which is to be used. In order to use Visual
Age, select the Visual Age value from the scrolling list.

Chapter 10: Working with other IDEs

Objecteering/Java User Guide 10-7

Figure 10-3. Configuring the Visual Age project in the "Visual Age" subset of Java module
parameters

♦ Visual Age Project: During initial code generation or Reverse Engineering
operations, the name of the Visual Age project is requested. This name is then
systematically reused. This name is memorized as a Java module parameter
(Visual Age section). In order to modify the Visual Age project, the user must
simply modify this name or leave it blank, in order to make an interactive
selection during the next code generation or reverse engineering operations.

♦ Visual Age Installation Directory: This indicates the Visual Age installation
directory. This directory is memorized as a Java module parameter (Visual
Age section, as shown in Figure 10-3).

♦ Compare to Visual Age content before generation: Before regenerating code in
Objecteering/UML, this field is used to check whether or not the corresponding
code has been modified in Visual Age. This mode is memorized as a Java
module parameter (Visual Age section).

Chapter 10: Working with other IDEs

10-8 Objecteering/Java User Guide

Visual Age/Objecteering integration - Operating mode

Introduction
There are no particular commands necessary regarding the operating mode
selected. The processing described in the following paragraphs is integrated at
Java code generation and Java reverse levels.

Generating Java code
For processing operations common to both the model driven and round trip
modes, a request for the import of Java files is automatically triggered after the
files are generated from Objecteering/UML.
In order to optimize performances, import processing in Visual Age is carried out
only once on all generated files.
Certain preliminary processing differs according to the operating mode. Before
code generation, if the "Compare to Visual Age content before generation" tickbox
is checked, a request for the export of files from Visual Age is run in an
intermediary directory. Those files exported are compared with those present in
the Objecteering/UML generation directories.

♦ Model driven mode: if the files are different, they are copied in order to allow
the automatic reintegration of modifications within the Objecteering/UML
markers.

♦ Round trip mode: if the files are different, a message warns the user that
information could be lost (modifications in the two environments). He can then
choose whether or not to continue with code generation. No code retrieval is
carried out. The user can then run the "Reverse again" command in order to
update the model.

Note: In certain cases (non-compilable sources, for example), Visual Age
refuses to import or export its files. If this is the case, an error is displayed
in the Objecteering/UML console. Objecteering/UML continues with the
operation in progress where this error is recoverable.

Chapter 10: Working with other IDEs

Objecteering/Java User Guide 10-9

Reverse
Before all reverse operations, a request for the export of Java source files and
compiled files is sent to Visual Age, in order to make all the information necessary
to reverse operations available.

The "Update" command
Before all "update" operations, a request for the export of Java source files is sent
to Visual Age, in order to make all the information necessary to the update
available.

Note: In round trip mode, the "Update" command retains the same functions as
in model driven mode, in other words, model update from the code
contained between the markers. Any modifications carried out outside
these marked zones will not be taken into account by this command. If
this is the case, then the "New Reverse" command should be used.

Compiling and archiving
The Objecteering/Java module compilation and archiving commands must not be
used in Visual Age mode. Visual Age internal commands should be used instead.

Chapter 10: Working with other IDEs

10-10 Objecteering/Java User Guide

Forte/Objecteering integration

Forte markers
It is possible to activate the generation of Forte markers. In Forte, these markers
prevent the modification of code zones generated by the Java module.

This function is activated at module parameter level (as shown in Figure 10-4).

Figure 10-4. Activating the generation of Forte markers

Simply select the "Forte" parameter sub-set, and check the "Generate lock
markers" tickbox.

Note: You must also select "Forte" as the "Integrated Development Environment
(IDE)" parameter in the "General" sub-set of Java parameters (for further
information, please see the "Configuration window" section in chapter 16
of this user guide).

Chapter 11: Objecteering/Eclipse

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-3

Introduction to Objecteering/Eclipse

Overview
Objecteering/Eclipse is a plug-in for Eclipse, used to incorporate
Objecteering/UML into your Eclipse workspace. It gives you the possibility of
synchronizing your UML model and the code in your Eclipse project and simplifies
the writing of Java code.
Objecteering/Eclipse is a fully functional version of Objecteering/UML, with an
extended version of the Objecteering/Java module which supports better
integration in Eclipse.

From Objecteering/UML to Eclipse
The Objecteering/Java module used with Objecteering/Eclipse has a certain
number of features to help its integration into Eclipse.

♦ Every modification of the model regenerates impacted Java files, and all views
of these files in Eclipse are updated.

♦ When a file is added to the Eclipse project directory by a generation operation,
Eclipse is notified and adds the file concerned to its project.

From Eclipse to Objecteering/UML
Eclipse can also notify Objecteering/UML of modifications made to the code,
which can impact the model.

♦ When a Java file is saved, Objecteering/UML is notified to retrieve
modifications and insert them into its UML model.

♦ When a class is created by Eclipse, Objecteering/UML is notified to add it to
the model.

To retrieve information about the model, Objecteering/UML extracts data from the
compiled class file and from source files. If your Java file is incorrect when you
save it, an error appears in the Objecteering/UML console and your modifications
cannot be added to your model. To update your model, you should correct your
code.

Chapter 11: Objecteering/Eclipse

11-4 Objecteering/Java User Guide

Functions
Using Objecteering/Eclipse, it is possible to:

♦ generate your Java code from your model

♦ edit your code in Eclipse

♦ synchronize your code and your UML model

Parameterization
Furthermore, Objecteering/UML provides powerful means of parameterization,
through the following:

♦ Objecteering/Eclipse module parameters

♦ generation and document templates, accessible from Objecteering/UML Profile
Builder

These parameterization capabilities allow you to adapt and enrich modeling
elements or even to redefine generation rules, in order to adapt generated code to
your style of programming.

Objecteering/Eclipse glossary
♦ Eclipse: Open source Java IDE which can be extended by a plug-in system.

Objecteering/Eclipse is a plug-in for Eclipse.

♦ WSAD: Websphere Studio Application Developer. A special version of Eclipse
by IBM.

♦ Perspective: A set of editors in Eclipse for a task. For example, a Java
perspective or a J2EE perspective.

♦ View: A window opened in a perspective.

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-5

Using Objecteering/Eclipse

Prerequisites
In order to use Objecteering/Eclipse, the following prerequisites must be
respected:

♦ Objecteering/UML must already be installed

♦ the Objecteering/Java module must already be installed

♦ the Eclipse framework must already be installed

Creating a UML modeling project
For information on how to create a new UML modeling project, please refer to the
"Creating a new UML modeling project" section in chapter 3 of the
Objecteering/Introduction user guide.

Installing Objecteering/Eclipse
To install Objecteering/Eclipse, simply double-click on the associated .prof file.
Objecteering/Eclipse will then be installed on your site and will be available for
selection in your UML modeling project.

Selecting Objecteering/Eclipse in a UML modeling project
This operation is detailed in the "Selecting modules in the current UML modeling
project" section in chapter 3 of the Objecteering/Introduction user guide.

Chapter 11: Objecteering/Eclipse

11-6 Objecteering/Java User Guide

Creating an Eclipse project
The model creation wizard is integrated into project creation wizards. Use the
"File/New/Project" menu to open the project type selection box, choose "New
Objecteering project", and click on the "Next" button to access project options.

Figure 11-1. Creating an Eclipse project

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-7

Eclipse Java project creation
The screen shown in Figure 11-2 is used to define where your Java files will be
generated.

Figure 11-2. Eclipse Java project creation - defining where your Java files will be generated

Chapter 11: Objecteering/Eclipse

11-8 Objecteering/Java User Guide

Figure 11-3 presents advanced options.

Figure 11-3. Eclipse Java project creation - advanced options

For further information, please refer to the Eclipse documentation.

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-9

Objecteering/UML basic options
The screen shown in Figure 11-4 is used to define basic Objecteering/UML
options:

♦ the location where .ofp files should be created

♦ the name of the project file

♦ the name of the root package

Figure 11-4. Objecteering/UML basic options

Chapter 11: Objecteering/Eclipse

11-10 Objecteering/Java User Guide

Objecteering/Eclipse first steps

Introduction
Objecteering/Eclipse first steps present a demonstration project, designed to help
you discover the different features of Objecteering/Eclipse, step by step.
We recommend that before starting every user carry out the general
Objecteering/UML first steps in the Objecteering/Introduction user guide.
The Objecteering/Eclipse first steps will demonstrate:

♦ how to initialize the First Steps project

♦ how to generate Java code

♦ how to edit generated Java code

♦ how to compile

♦ how to synchronize your code and your model

Sources
This example is a simple bank account application, extracted from Learn Java
Now, by Stephen R.Davis, MicrosoftPress.

Preparing the Eclipse working environment
Before starting work with Objecteering/Eclipse, you must first prepare the working
environment.
1 - Launch the Eclipse environment.
2 - Open the Objecteering/UML perspective, by selecting Objecteering/UML in the

"Window/Open perspective/Other" menu.
3 - Create an Objecteering/UML project in Eclipse, by choosing "New

Objecteering project" in the "File/New/Project" menu.
4 - Name your Eclipse project "FirstSteps", and leave the other default values.

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-11

Importing a model into the Eclipse FirstSteps project
We are now going to import the "Bank" demonstration project, which will be our
model, into our project. This is done by running the "Import the first steps project"
command (as shown in Figure 11-5).

Figure 11-5. Importing the first steps project

Chapter 11: Objecteering/Eclipse

11-12 Objecteering/Java User Guide

Generating Java code
When the "Generate" command is run on the bank package, a set of Java files is
created.

Figure 11-6. Creating a Java generation work product

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-13

After the generation, all the files generated appear in the Eclipse navigator.

Figure 11-7. The Eclipse navigator

Note: Double-clicking on the generation work product executes the "Generate"
command for the selected work product.

Chapter 11: Objecteering/Eclipse

11-14 Objecteering/Java User Guide

Editing generated code
The Java code generated for the element in question can be edited using the
"Edit" button in the properties editor. This command will open a new window in
Eclipse with the code of the class.

Figure 11-8. Editing generated Java code

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-15

Now, you can edit the file you have just opened, for example, by adding a method:

/**
* This is a sample method
*/

public void sampleMethod () {
System.out.println ("This is a sample");
}

When you save your file, if the Java file is correct, your model is automatically
updated with the addition of this new method.

Figure 11-9. The updated model

Chapter 11: Objecteering/Eclipse

11-16 Objecteering/Java User Guide

You can also modify the model in Objecteering/UML. After every model
modification, impacted files are automatically re-generated. If you add an integer
parameter to your sampleMethod, it appears in the source file opened in Eclipse.

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-17

The Objecteering/UML perspective in Eclipse

Launch the perspective
To open the perspective, use the "Window/Open perspective/Other" menu, and
select the Objecteering/UML perspective. In the perspective shown in Figure 11-
10, there are two views:

♦ Objecteering/UML

♦ the Objecteering/UML console.
To open these views, use the "Window/Show view/Other" menu.

Figure 11-10. Showing views

Chapter 11: Objecteering/Eclipse

11-18 Objecteering/Java User Guide

Figure 11-11. The Objecteering/UML perspective

This is the Objecteering/UML perspective, divided into three views:
1 - the Objecteering/UML view
2 - the Objecteering/UML console
3 - the editor view

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-19

The Objecteering/UML view
The Objecteering/UML view displays the UML browser, the properties editor and
an opened diagram. This is the traditional Objecteering/UML interface.
On the right of this view's title bar, there are a number of buttons. The window
management button is used to close opened windows and navigate between
Objecteering/UML windows.
Other buttons can be added by modules, such as the "Macros" module, as shown
in Figure 11-12 above.

Note: For further information on the Objecteering/UML interface, please refer to
the Objecteering/UML Modeler user guide.

Note: For further information on the Java options of the properties editor, please
refer to the Objecteering/Java user guide.

The button on the right of the title bar contains a pull-down menu to navigate
between Objecteering/UML views (diagrams and browsers), and to close them.

The Objecteering/UML console
On the bottom right, the Objecteering/UML console displays information provided
by Objecteering/UML. It is an Eclipse view, so you can dock it anywhere in
Eclipse.

The editor view
On the bottom left is the Java editor from Eclipse, opened by Objecteering/UML.
You can use every editing function of Eclipse in this window, such as coloring or
coding wizards.

Chapter 11: Objecteering/Eclipse

11-20 Objecteering/Java User Guide

Parameterizing Objecteering/Eclipse

Introduction
The configuration of Objecteering/Eclipse is split between the Objecteering/Java
module in Objecteering/UML, and the Objecteering/UML perspective in Eclipse.

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-21

Parameterization in Objecteering/Java
Parameters in the Objecteering/Java module have an impact in
Objecteering/Eclipse.

Figure 11-12. The "General" module parameter sub-set

In the "General" Java module parameter sub-set, the generation mode must be
selected. For more information, please refer to chapter 9, "Choosing the
functional mode", of this user guide. Objecteering/Eclipse can work in two modes.
Your IDE must also be selected. By default, this is Eclipse.

Chapter 11: Objecteering/Eclipse

11-22 Objecteering/Java User Guide

Figure 11-13. The "Code generation" module parameter sub-set

In the "Code generation" Java module parameter sub-set, the "Code generation
root" option must be the root of your Eclipse project, and we recommend the use
of the "Automatically generate" tickbox.

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-23

Figure 11-14. The "External edition" module parameter sub-set

In the "External edition" Java module parameter sub-set, there are options
regarding external edition. In Objecteering/Eclipse, we recommend that you do
not specify an external editor (the Eclipse editor is automatically used). We also
recommend that you activate markers in model-driven mode, and deactivate them
in round-trip mode.

Chapter 11: Objecteering/Eclipse

11-24 Objecteering/Java User Guide

Figure 11-15. The "Compilation" module parameter sub-set

In the "Compilation" Java module parameter sub-set, the "Compiled files root"
must be set to the "build output folder" directory of your Eclipse project.

Chapter 11: Objecteering/Eclipse

Objecteering/Java User Guide 11-25

Figure 11-16. The "Eclipse" module parameter sub-set

The "Name of the Eclipse project" parameter is the name of your Java project in
Eclipse.

For further information on Objecteering/Java parameters, please refer to the
"Configuration window" section in chapter 17 of this user guide.

Chapter 11: Objecteering/Eclipse

11-26 Objecteering/Java User Guide

Parameterization in Eclipse
Options of the Objecteering/UML plug-in are accessible through the
"Window/Preference" menu in Eclipse.

Figure 11-17. The "Preferences" window in Eclipse

In the "Preferences" window, you must declare the name of the module used to
generate in Objecteering/UML. By default, this is set to the Objecteering/Java
module.

Chapter 12: Design Patterns

Chapter 12: Design Patterns

Objecteering/Java User Guide 12-3

Design Patterns - Overview

General remarks
The Objecteering/Java module is delivered with design patterns and programming
patterns that the Java designer will find very useful. These patterns result in the
modification of a model by creating objects or by modifying existing objects.
The patterns delivered with the Objecteering/Java module are:

♦ the creation of methods to be implemented

♦ the creation of methods to be redefined

♦ the transformation of a primitive class into a non-primitive class

♦ the transformation of a non-primitive class into a primitive class

♦ RMI

♦ event source

♦ event listener

♦ non-derivable method

Chapter 12: Design Patterns

12-4 Objecteering/Java User Guide

Access
These patterns are available in the context menu of a class, a package, an
attribute or an association end.

Figure 12-1. Menu for launching patterns

Chapter 12: Design Patterns

Objecteering/Java User Guide 12-5

Design Patterns - Detailed view

Remote Method Invocation
Calling methods on remote objects is a powerful service provided by Java.
Having to code not only the concrete class but also the interface requires having
to do the same task twice, and entails further risks of errors.
These risks no longer exist with the RMI pattern. Furthermore, it is incremental, in
other words, it can be applied each time the concrete class is modified.

Sending events
It often happens in a Java application that the user wants to trigger an event when
the state of an object changes or when it is found in a specific state.
The "Sending events" pattern creates the event class and the interface for the
objects that will listen. It also manages notifications.

Listening to events
It is almost impossible to write a Java application without having to listen to
events, such as clicking on a button, selecting a text field or moving a gauge.
The "Listening to events " pattern allows you to find out when the events will occur
("subscribing" to the events), by creating internal classes that will manage the
listening as well as the methods for answering the notifications.

Non-derivable method
The optimization problem is common to all developers and therefore common to
all Java developers.
It is sometimes possible to help the virtual Java machine. For example, when a
method is not redefined, it will run faster if it is specified as "final".
We recommend that you carry out this optimization at the end of the development
phase. However, it would be tiresome to have to go through all the methods of all
the classes to check each time whether a method is redefined or not in a
subclass.
The "Non derivable method" pattern allows the automation of this task without
risks of errors.

Chapter 12: Design Patterns

12-6 Objecteering/Java User Guide

Creating the methods to be implemented
Launching this pattern on a class has the effect of recursively scanning the
implemented interface classes collecting their methods. These methods are then
created in the class. This process is carried out for each of package's classes.
Processing only takes into account the modeled interfaces and not the
{JavaImplements} tagged values.

Creating the methods to be redefined
Launching this pattern on a class has the effect of going recursively through the
parent classes and collecting their abstract methods. These methods are then
created in the class. This process is carried out for each of the package's
classes.

Transforming a class into a non-primitive class
This pattern is especially useful for reversed classes. The reverse only produces
primitive classes. If a user wishes to make a reversed class non-primitive,
especially to create associations towards this class, he can use this pattern which
will have the effect of transforming attributes with this type into associations.

Transforming a class into a primitive class
This pattern is the opposite of the previous operation. Its effect is to transform
associations towards this class into attributes.

Chapter 13: Remote method
invocation

Chapter 13: Remote method invocation

Objecteering/Java User Guide 13-3

Remote method invocation - Overview

General remarks
Calling methods on distant objects is a powerful service offered by Java. Having
to code not only the concrete class but also the interface requires having to do the
same task twice, and thus entails further risk of errors.
These risks no longer exist with the RMI pattern. In addition, it is incremental, in
other words, it can be applied each time the concrete class is modified.

Aim of the pattern
The use of the RMI pattern aims at producing an interface from a class, designed
to provide the services on this class which may be invoked from a distance.
These services are composed of the class' public methods.

Prerequisite
The pattern applies to a class. Applying this pattern will, amongst other things,
add to this class a generalization towards the JDK's "UnicastRemoteObject" class.
The class must not, therefore, own any generalizations. If it does, the generation
cannot be run.

Chapter 13: Remote method invocation

13-4 Objecteering/Java User Guide

Applying the pattern

Model before use of the pattern
The initial class is a class containing a certain number of services.

Figure 13-1. Initial model

Chapter 13: Remote method invocation

Objecteering/Java User Guide 13-5

Operating mode
The pattern is run from the class context menu.

Figure 13-2. Calling the pattern

Chapter 13: Remote method invocation

13-6 Objecteering/Java User Guide

A dialog box opens suggesting default names for the class and interface that will
be deduced from the initial class. It is possible to modify these names.

Figure 13-3. Dialog box for entering class and interface names

Once you have made your modifications, confirm them by clicking on "OK".

Chapter 13: Remote method invocation

Objecteering/Java User Guide 13-7

Consequences of applying the pattern

Model after use of the pattern

Figure 13-4. Transformed model

Chapter 13: Remote method invocation

13-8 Objecteering/Java User Guide

Summary of the transformations
The following modifications were made to the concrete class:

♦ the class was renamed with the name that was entered in the dialog box

♦ a generalization was added towards "UnicastRemoteObject"

♦ adding of an import towards java.rmi*

♦ the {JavaThrownException} tagged value was added on each public method to
indicate that it may run the "RemoteException" exception

♦ an implementation link was added towards the interface

Furthermore, an interface was created with:

♦ the name given in the dialog box

♦ all the public methods of the initial class

♦ a generalization towards "Remote"

♦ an import towards "java.rmi*"

Furthermore, it is possible to re-apply the pattern later, either on the class, or on
the interface. It is necessary to give the correct names of the class and interface
in the dialog box if you have not kept the default names. The interface is then
updated taking into account the modifications made to the class.

Chapter 14: Sending events

Chapter 14: Sending events

Objecteering/Java User Guide 14-3

Sending events - Overview

General remarks
It often happens in a Java application that the user wants to trigger an event when
the state of an object changes or when it is found in a specific state.
The "Sending events" pattern creates the events class, which is the interface for
the objects that will want to listen and manage notifications.
In Java, events are grouped into event classes. Therefore in Java you have the
following basic event classes: "Window", "Mouse" and "Key".
The sending events pattern follows the same principle.

Aim of the pattern
The use of the "Sending events" pattern allows you to generate events when an
attribute or a simple association changes value, or when an attribute or a multiple
association has elements added to it or removed from it.

Prerequisite
The "Sending events" pattern can be applied to any attribute or association.

Chapter 14: Sending events

14-4 Objecteering/Java User Guide

Applying the pattern

Model before use of the pattern
As the pattern is applied to attributes and associations, an example of a class with
both is presented here.

Figure 14-1. Initial model

Chapter 14: Sending events

Objecteering/Java User Guide 14-5

Operating mode
The "Sending events" pattern can be run on an attribute or an association.

Figure 14-2. Calling the pattern

Chapter 14: Sending events

14-6 Objecteering/Java User Guide

A dialog box used to create new events then appears.

Figure 14-3. Dialog box for selecting events to create.

The ... field or button is used to ...
New event enter a new event for the given class

Events list display the events added to the given class

Add enter a new event for the given class

Remove remove the selected event from the list of events

OK run the pattern

Cancel stop the processing

Chapter 14: Sending events

Objecteering/Java User Guide 14-7

Consequences of applying the pattern

Model after use of the pattern
The result below is obtained through the creation of the "Name" class of events on
the "name" attribute, with the "NameChanged" and "EmptyName" events on the
"data" association of the "Data" event class, with the "DataChanged" event.

Figure 14-4. Transformed model

Chapter 14: Sending events

14-8 Objecteering/Java User Guide

Summary of transformations
The execution of the pattern results in the creation or the update of an "events"
package in the package of the class which owns the attribute or the association,
from which the pattern was launched.
In this package, the following elements are created or updated:

♦ an event class

♦ an interface which is complemented by classes used to listen to the type of
events above

♦ an adapter class to be redefined, which would be an alternative to the interface
above, to listen to the type of events above

Furthermore, the class which contains the attribute or association on which the
pattern was launched is enriched with methods and associations.

Chapter 14: Sending events

Objecteering/Java User Guide 14-9

Details of the contents of the events package

The "events" package
An "events" package is created (if it does not already exist) in the package of the
class which owns the attribute or the association, on which the pattern was
launched. It is designed to contain a class representing each created class of
events, as well as the interfaces and the adapters to be implemented or to be
redefined, in order to listen to the events of these event classes.

The "Event" class
A class of events; which specializes the JDK's "EventObject" class, is created in
the "events" package. This class represents the event class previously entered.
Its name is obtained by concatenating the entered event class, (the first letter is
converted to upper case if needed), with the "Event" string. Objects of this class
will be created each time an event, which has the type it represents, occurs. This
class contains:

♦ an attribute or an association, with the same name as the element on which the
pattern has been run, aimed at containing the new value of the attribute or
association after the event has occurred.

♦ a constant for each event of the event class. The name of the constant is
obtained from the event's name by adding "_" characters in front of the upper
case letters, except for the first letter, and when putting the result in upper
case.

♦ two constants giving the interval in which the constants of the event class are
defined, and which allow you to enumerate these events. Their names are
made up of the name of the event class put in upper case, and concatenated
with "_FIRST" and "_LAST" respectively.

♦ an "id" attribute designed to take the value of one of the constants representing
the events, in other words, the type of event which occurred.

♦ a constructor that takes the event's source object, the type of event and the
new value of the attribute or association as parameters.

Chapter 14: Sending events

14-10 Objecteering/Java User Guide

Interface
An interface which defines the methods to be redefined to react to the events of
the event class is created in the package. The name of this interface is made up
of the event class name, the first letter of which is put into upper case if
necessary, and concatenated with the "Listener" string. This interface contains
one method per event. The names of these methods are made up of an event
name. The first letter is put in lower case if necessary.

Adapter
An adapter class implements the interface above and defines each method with
an empty body. A class such as this is defined each time an event class contains
at least two events. Indeed, the subscription is carried out through an event class
and not through one event after the other. However, sometimes we are not
interested in all the events of an event class. In this way, instead of implementing
the interface, a listener can specialize this class and can only define the methods
corresponding to the events to which it wants to react.

Chapter 14: Sending events

Objecteering/Java User Guide 14-11

Details of the emitter class transformations

Transformation of the emitter class
The following elements are added to the emitter class:

♦ an instance association towards the interface described above. This will allow
an instance of the class to find out which objects have subscribed to the events
produced by the modifications of the attribute or association value.

♦ the attribute's or association's mutators and accessors. It is important to note
that compared to what a standard generation would have produced, mutators
are enriched by the notification of an event that can be produced by an
association or an attribute. The user may have to modify the body of these
mutators to add conditions to the calling of these notifications.

♦ a {JavaNoAccessor} tagged value on the attribute or association notifying the
generator that it should not generate accessors, since the pattern has already
created them.

♦ a method of notification by event that notifies all the subscribers to the events
with this type and belonging to the current instance that an event occurred.
The method's name is obtained by concatenating the "notify" string with the
name of the event, the first letter of which is put into upper case if required.

♦ a method which allows an object to subscribe to the events with the
corresponding type on the current instance. The method's name is obtained by
concatenating the "add" string with the name of the event class, the first letter
of which is put into upper case if required, and with the "Listener" string"

♦ a method which allows an object to be removed from the list of subscribers to
the events with the corresponding type of the current instance. The method's
name is obtained by concatenating the "remove" string with the event class
name, the first letter of which is put in upper case if required, and with the
"Listener" string".

Chapter 15: Listening to events

Chapter 15: Listening to events

Objecteering/Java User Guide 15-3

Listening to events - Overview

General remarks
It is almost impossible to write a Java application without having to listen to
events, such as clicking on a button, selecting a text field or moving a gauge for
example.

Aim of the pattern
The "Listening to events" pattern allows you to subscribe to events, and to create
the internal classes that will manage the listening, as well as the methods for
answering the notifications.

Prerequisite
The "Listening to events" pattern can be applied to any simple association or
attribute, provided the events exist on the attribute's class or the association's
target class.
The classes for which events exist are the classes of the JDK's AWT or SWING
components, as well as the classes on the attributes or associations to which you
have applied the event sending pattern described above.

Chapter 15: Listening to events

15-4 Objecteering/Java User Guide

Applying the pattern

Model before applying the pattern
Here we have the case of an applet with graphic components.

Figure 15-1. Initial model

Chapter 15: Listening to events

Objecteering/Java User Guide 15-5

Operating mode
The pattern can be run from an attribute or an association.

Figure 15-2. Calling the pattern

Chapter 15: Listening to events

15-6 Objecteering/Java User Guide

Selecting events
A dialog box appears listing the events available on the attribute's or association's
class. You may select those which interest you.

Figure 15-3. Dialog box for selecting events to listen to

Chapter 15: Listening to events

Objecteering/Java User Guide 15-7

The ... field or button is used to ...
Available events give the list of events available on the attribute's or

association's class.

Selected events display the list of events currently selected.

Add add the overscored elements in the list of available events
in the list of selected events.

Remove delete the overscored events from the list of selected
events.

OK run the application of the pattern with the selected events.

Cancel stop the processing.

Note: The events proposed are those which correspond to the event classes
present in the model. They have either been reversed, imported or
created, for example, using the sending events pattern.

Chapter 15: Listening to events

15-8 Objecteering/Java User Guide

Consequences of applying the pattern

Model after applying the pattern

Figure 15-4. Transformed model

Chapter 15: Listening to events

Objecteering/Java User Guide 15-9

Summary of elements created during the transformation
By applying the pattern, the following elements have been created:

♦ an internal class for each class of events in which an event has been selected.
The name of this class is the concatenation of the name of the attribute's or
association's class on which the pattern has been run, with the name of the
attribute or the name of the association's role, whose first letter is put in upper
case if required, with the name of the event class, whose first letter is put in
upper case if required, and with the "Listener" string.

♦ on the internal classes described above, an implementation link towards the
interface of the listeners of the event class, if this class contains only one
event, otherwise a generalization towards the adapter of the listeners of the
event class.

♦ on the internal classes described below, the methods for reacting to the
selected events.

The user should now simply enter the body of those methods which react to the
events.

Chapter 16: Non derivable method

Chapter 16: Non derivable method

Objecteering/Java User Guide 16-3

Non derivable method - Overview

General remarks
The optimization problem is common to all developers, and therefore common to
all Java developers.
It is sometimes possible to help the virtual Java machine. For example, when a
method is not redefined, it will run faster if it is specified as "final".
It is recommended that you carry out this optimization at the end of the
development phase. However, it would be a tiresome task to have to go through
all the methods of all the classes to check each time whether a method is
redefined or not in a subclass.
The "Non derivable method" pattern is used to automate this task without the risk
of errors.

Prerequisite
The "Non derivable method" pattern can be applied to any model class or
package.

Chapter 16: Non derivable method

16-4 Objecteering/Java User Guide

Applying the pattern

Model before transformation

Figure 16-1. Initial model

Chapter 16: Non derivable method

Objecteering/Java User Guide 16-5

Calling the pattern

Figure 16-2. Calling the pattern

Chapter 16: Non derivable method

16-6 Objecteering/Java User Guide

Methods to implement

Overview
Implementing an interface in Java necessitates the redefinition of all its methods.
This detailed task, which can lead to signature copying errors, can be entirely
automated.

Prerequisites
The "Methods to implement" pattern applies to every model class when the class
implements an interface.

Applying the pattern
The model before transformation is as follows:

Figure 16-3. The model before transformation

Chapter 16: Non derivable method

Objecteering/Java User Guide 16-7

Calling the pattern

Figure 16-4. Calling the pattern

Chapter 16: Non derivable method

16-8 Objecteering/Java User Guide

Consequence of applying the pattern
The model after transformation is as follows:

Figure 16-5. The model after transformation

Summary of modifications made to the model
The class to which the pattern is applied is enriched with further operations, which
redefine those of the interfaces which it implements.

Chapter 16: Non derivable method

Objecteering/Java User Guide 16-9

Methods to redefine

Overview
In Java, for a non abstract class, specializing an abstract class necessitates the
redefinition of all its abstract methods. This detailed task, which can lead to
signature copying errors, can be entirely automated.

Prerequisites
The "Methods to redefine" pattern applies to every non abstract model class when
the class has a generalization.

Applying the pattern
The model before transformation is as follows:

Figure 16-6. The model before transformation

Chapter 16: Non derivable method

16-10 Objecteering/Java User Guide

Calling the pattern

Figure 16-7. Calling the pattern

Chapter 16: Non derivable method

Objecteering/Java User Guide 16-11

Consequence of applying the pattern
The model after transformation is as follows:

Figure 16-8. Model after transformation

Summary of modifications made to the model
The class to which the pattern is applied is enriched with further operations which
redefine the abstract operations of its generalization graph.

Chapter 16: Non derivable method

16-12 Objecteering/Java User Guide

Primitive class

Overview
Objecteering/UML is used to provide a semantic nuance between primitive
classes, usually intended to be used as a type for attributes, and non-primitive
classes, generally used as association destinations.
In the first phase of modeling, this is a distinction which we need not pay attention
to.
The present pattern is used in a unique command to transform a non-primitive
class into a primitive class, and parallel to this, to transform associations which are
directed towards it into attributes.

Prerequisites
This pattern is applied to every non-primitive model class.

Applying the pattern
The model before transformation is as follows:

Figure 16-9. The model before transformation

Chapter 16: Non derivable method

Objecteering/Java User Guide 16-13

Calling the pattern

Figure 16-10. Calling the pattern

Chapter 16: Non derivable method

16-14 Objecteering/Java User Guide

Consequence of applying the pattern
The model after transformation is as follows:

Figure 16-11. The model after transformation

Summary of modifications made to the model
The class to which the pattern is applied is transformed into a primitive class.
Parallel to this, navigable associations directed towards this class are transformed
into attributes which have this class as its type.
The attribute takes the same name and the same visibility as the association role.
Tagged values and notes are carried over, inasmuch as their types exist on two
types of object. Stereotypes are carried over inasmuch as they exist on two types
of object.

Chapter 16: Non derivable method

Objecteering/Java User Guide 16-15

Non-primitive class

Overview
Objecteering/UML is used to provide a semantic nuance between primitive
classes, usually intended to be used as a type for attributes, and non-primitive
classes, generally used as association destinations.
In the first phase of modeling, this is a distinction which we need not pay attention
to.
The present pattern is used in a unique command to transform a primitive class
into a non-primitive class, and parallel to this, to transform attributes with this type
into associations.

Prerequisites
This pattern is applied to every primitive model class.

Applying the pattern
The model before transformation is as follows:

Figure 16-12. The model before transformation

Chapter 16: Non derivable method

16-16 Objecteering/Java User Guide

Calling the pattern

Figure 16-13. Calling the pattern

Chapter 16: Non derivable method

Objecteering/Java User Guide 16-17

Consequence of applying the pattern
The model after transformation is as follows:

Figure 16-14. The model after transformation

Summary of modifications made to the model
The class to which the pattern is applied is transformed into a non-primitive class.
Parallel to this, attributes which have this class as type are transformed into
navigable associations directed towards this class.
The navigable link takes as its role name the same name as the attribute, as well
as taking the same visibility as the attribute. Its minimum multiplicity is set to 0,
with the maximum multiplicity being the size of the attribute. Tagged values and
notes are carried over, inasmuch as their types exist on two types of object.
Stereotypes are carried over inasmuch as they exist on two types of object.

Chapter 17: Customizing Java
generation

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-3

Customizing Java generation - Overview

Overview
Objecteering/Java provides several modes of customization, addressed to
different categories of users. The very complete Java generation customization
allows the user to generate the exact programming form desired, by adapting the
Objecteering/Java module. For example, it is possible to change the mapping of
types and the generation of accessors used by default, to create specific
generations or to respect forms of imposed programming, and so on.

The customization modes
Depending on the level of detail of the desired parameterization, the user may:

♦ modify configuration parameters and simply change the general options of the
Objecteering/Java module.

♦ configure the mapping of types and the generation of accessors. The choice
of basic types and the way of using them in code generation is then adapted to
all generations.

♦ parameterize the generation document template. This is the most detailed level
of parameterization. Code generation can be completely customized, by
adapting the structure of a generated Java source, as well as its content.

Chapter 17: Customizing Java generation

17-4 Objecteering/Java User Guide

Configuration window

Overview
The Java module configuration window can be used to modify the behavior of the
generator regarding the following elements:

♦ generation directories

♦ generation options

♦ project used to map types and to generate accessors

♦ generation document templates (code and makefile)

♦ UML profiles which contain the J rules

♦ visibility parameters

Note: The names and internal names of each parameter are detailed below.
The internal name is only useful for the "J" designer and is used to call the
getCurrentModuleParameterValue method.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-5

The "General" group

Figure 17-1. The "General" sub-set of "Java" module parameters

Chapter 17: Customizing Java generation

17-6 Objecteering/Java User Guide

The ... parameter internal name ... indicates ...
JDK version JDKVersion the version of the JDK which is used.

JDK (JDKPath) JDKPath the root directory of the JDK.

Integrated Development
Environment (IDE)

IDE the integrated development
environment which is to be used during
generation.

Generation Mode GenerationMode the mode selected for generation
(model driven or round trip).

Accessible classes
(CLASSPATH)

AccessibleClasses the paths for searching for imports. The
separator is ";" for Windows and ":" for
UNIX

Note1: For further information on the model driven generation mode and the
round trip generation mode, please refer to chapter 9 of this user guide.

Note 2:For further information on integrated development environments, please
refer to chapter 10 of this user guide.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-7

The "Code generation" group

Figure 17-2. The "Code generation" sub-set of "Java" module parameters

Chapter 17: Customizing Java generation

17-8 Objecteering/Java User Guide

The ... parameter internal name ... indicates ...
Code generation
compatible with version
2.1

Compatible whether or not to generate the same code
for Enumerations as earlier versions, the
visibility of attributes and associations, and
their access methods.

Automatically generate autoGenerate whether or not generation should be run
automatically.

Code generation root GenerationPath the root in which .java files are generated.

Use Java naming rules UseJavaNaming that during generation, the names of
packages, classes, methods, attributes and
parameters will be generated, whilst
respecting Java recommendations
concerning the case (upper or lower) of the
first letter.

Generating pre/post-
conditions

PrePostGeneration whether the pre and post conditions should
be generated on the methods.

Generate invariants generateInvariant whether not not invariants should be
generated.

Invariants name invariantsName the names of the generated invariants
methods.

Pre/Post condition and
invariant behavior

errorType whether a throw exception or an assertion
should be generated.

Type of exception for
pre/post-conditions

PrePostExceptionClass the exception class used in the generated
code for the pre and post conditions.

Generating accessors AccessorsGeneration the global running of accessor generation.

"Description" notes
processed as
"Javadoc"

DescriptionAsJavadoc the processing of the "description" type
notes as well as the "Javadoc" type notes.

Invariants processed
as JavaDocInvariant

generateInvariantAsJavaD
ocInvariant

that the invariant is generated as if it were
in a constraint stereotyped
JavaDocInvariant.

In parameters
generated as "final"

FinalForln the generation of the "final" keyword for the
"in" parameters.

Consistency checks ConsistencyControl if the specific Java consistency controls
should be executed during a generation.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-9

The ... parameter internal name ... indicates ...
Types translation
package

TypesTranslationPackage the name of the project used for translation
types and the generation of accessors.

Generating code profile JavaProfile UML profile used to generate Java code.

Generating code
template for Class

JavaTemplate Java code generation template used for
Classes.

Generating code
template for DataType

dataTypeTemplate Java code generation template used for
DataTypes.

Generating code
template for
Enumeration

EnumTemplate Java code generation template used for
Enumerations.

Use "JavaImport" notes
to generate imports

useJavaImportNotes that "JavaImport" note contents should be
used in generation, if the note is present.

Optimize "import"
statements

ImportOptimization whether or not the necessary imports
should be generated by simply calculating
on classes and not packages. By
optimizing Java imports, only the import of
necessary classes is generated in the list
of java file imports. In this mode, use links
between packages are generated in the
form of complete package imports. The
dependencies of the class indicated by the
user or calculated are browsed, and an
import is generated for each class which
participates in the dependency.

Strong encapsulation
for access methods
(modifier)

ModifierEncapsulation whether or not to raise visibility one level to
modify access methods of attributes and
associations.

Generator behavior if
generated file present
but not managed

manageMode generator behavior in the case where the
generated file is present but is not
managed. Choose from "Ask", "Continue"
or "Cancel".

Chapter 17: Customizing Java generation

17-10 Objecteering/Java User Guide

Please note that the last four parameters described do not appear in Figure 17-2.
Please also note that generation options are taken into account during reverses.

Note 1:For more information on consistency checks, please refer to the "Code
generation - Overview" section in chapter 5 of this user guide. A definition
of accessors is provided in the "Glossary" section in chapter 1. For details
on notes, please refer to the "Java documentation generation - Note types"
section in chapter 7.

Note 2:To find out more about the types translation package, please refer to the
"Principles of type and accessor generation " section in chapter 17 of this
user guide. In the same chapter, the "Code generation document
templates" section provides details on code generation templates.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-11

The "External edition" group

Figure 17-3. The "External edition" sub-set of "Java" module parameters

The ... parameter internal name ... indicates ...
Generate markers for
documentation zones

DocIdGenerated whether or not markers should be
generated for documentation zones.

Generate markers for
code zones

IdGenerated whether or not markers should be
generated for code zones.

Command for invoking
external editor

ExtEditorCommandLine the command used to launch an editor to
modify the generated code.

Chapter 17: Customizing Java generation

17-12 Objecteering/Java User Guide

The "Declaration visibility for attributes and associations" group

Figure 17-4. The "Declaration visibility for attributes and associations" sub-set of "Java" module
parameters

The ... parameter internal name ... is used to ...
Elements with "public"
visibility

publicDataMemberVisibility declare the visibility of the Java
instance variable generated for
public attributes.

Elements with
"protected" visibility

protectedDataMemberVisibility declare the visibility of the Java
instance variable generated for
protected attributes.

Elements with "private"
visibility

privateDataMemberVisibility declare the visibility of the Java
instance variable generated for
private attributes.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-13

The "Visibility for accessors" group

Figure 17-5. The "Visibility for accessors" sub-set of "Java" module parameters

Chapter 17: Customizing Java generation

17-14 Objecteering/Java User Guide

The ... parameter internal name ... is used to ...
Accessors for "public"
elements

publicAccessorVisibility declare the visibility of "get" type
accessors for all public attributes.

Modifier for "public"
elements

publicModifierVisibility declare the visibility of "set" type
accessors for all public attributes.

Accessors for
"protected" elements

protectedAccessorVisibility declare the visibility of "get" type
accessors for all protected attributes.

Modifier for "protected"
elements

protectedModifierVisibility declare the visibility of "set" type
accessors for all protected attributes.

Accessors for "private"
elements

privateAccessorVisibility declare the visibility of "get" type
accessors for all private attributes.

Modifier for "private"
elements

privateModifierVisibility declare the visibility of "set" type
accessors for all private attributes.

Note: The {JavaPublic} tagged value still takes priority in visibility management
with regard to module parameters.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-15

The "Forte" group

Figure 17-6. The "Forte" sub-set of "Java" module parameters

The ... parameter internal name ... is used to ...
Generate lock markers genForteMarker activate generation of Forte lock

markers, which prevent the
modification, in Forte, of code zones
generated by the Java module.

Chapter 17: Customizing Java generation

17-16 Objecteering/Java User Guide

The "Compilation" group

Figure 17-7. The "Compilation " sub-set of "Java" module parameters

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-17

The ... parameter internal name ... indicates ...
Compiled files root CompilationPath the root in which .class files are

generated.

Compilation options CompilationOptions the compilation options (aimed at
Java).

Command for launching the
makefiles

MakeCommand the command used to activate
makefile files.

Compiler JavaCompiler the Java compiler.

Use the GNU Make tool UseGNUMake that the GNU make tool should be
used for compilation, which has an
impact on the makefile generation.
This option does not function in
UNIX. When this option is selected,
it is necessary to give the correct
path for the make tool in the
corresponding parameter of the
"External edition" group. Where this
tickbox is checked, the value of the
"Command for launching the
makefiles" parameter must be in
"make -f" form.

Locate the GNU shell GNUShell path of the sh.exe program. This is
located in the bin directory of the
cyg-win32 directory, and is only
taken into account if the previous
one has been selected. For
example : if cygnus tools have been
installed in the c:\cygnus directory,
the value of the parameter must be
in "c:\cygnus\bin\sh.exe" form.

Generating makefile profile MakeProfile the UML profile used to generate the
Java compilation makefile.

Class makefile template ClassMakefile the document template which guides
makefile generation for a class.

Enumeration makefile
template

EnumMakefile the document template which guides
makefile generation for an
enumeration.

Package makefile template PackageMakefile the document template which guides
makefile generation for a package.

Chapter 17: Customizing Java generation

17-18 Objecteering/Java User Guide

Note 1:Where CYGNUS is concerned, Objecteering/UML stores the CYGNUS
package in the "$OBJING_PATH\bin" sub-directory. This package can be
extracted using "usertools.exe" or "cdk.exe".

Note 2:For further information on makefile generation document templates, please
refer to the "Makefile generation document templates" section in chapter
17 of this user guide.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-19

The "Applet" group

Figure 17-8. The "Applet" sub-set of "Java" module parameters

The ... parameter internal name ... indicates ...
Applet visualizer AppletVisualizer the command used to launch an

applet.

Chapter 17: Customizing Java generation

17-20 Objecteering/Java User Guide

The "Documentation" group

Figure 17-9. The "Documentation" sub-set of "Java" module parameters

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-21

The ... parameter internal name ... indicates ...
Generation directory GenDocPath the directory in which HTML files

are produced by Java
documentation generation.

Generation options JavaDocOptions options to transmit to the javadoc
JDK tool for the generation of Java
documentation.

Command for editing the
HTML files

HTMLCommandEditor the command used to visualize the
generated Java documentation

Generate Javadoc notes
for parameters

paramJavadoc whether or not Javadoc notes on
parameters should be generated in
your application's source code.

Generate Javadoc notes
for return parameters

returnJavadoc whether or not Javadoc notes on
return parameters should be
generated in your application's
source code.

Generate Javadoc notes
for "throws" statements

throwsJavadoc whether or not Javadoc notes on
links stereotyped <<throws>>
should be generated in your
application's source code.

Generate "See also"
statements in Javadoc
notes

seeJavadoc whether or not "See also"
statements, used to add "See also"
links to the documentation
generated by Javadoc, should be
generated.

Note: For further details on documentation generation, please refer to chapter 7
of this user guide.

Chapter 17: Customizing Java generation

17-22 Objecteering/Java User Guide

The "Reverse" Group

Figure 17-10. The "Reverse" sub-set of "Java" module parameters

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-23

The ... command internal name ... has the role of ...
Paths for the.class files CompiledFilesPath containing the .class file root paths to

be reversed. This string is made up of
a list of paths separated by ":" for UNIX
versions and ";" for Windows versions.
These paths can be .zip files, .jar files
or directories which have CLASSPATH
semantics. They cannot, however,
contain directories which correspond to
Java packages.

If you enter the current directory
followed by "*", all the directories, .zip
files and .jar files contained in the
current directory are displayed.

Paths for the.java files SourceFilesPath containing the java files root paths. It
is also used to visualize the Java code
corresponding to a class.

This string is made of a list of paths
separated by ":" for UNIX versions, and
";" for Windows versions.

They cannot, however, contain
directories which correspond to Java
packages.

Paths for the.html files HTMLFilesPath containing the html file paths
corresponding to the classes imported
into the repository for visualizing their
documentation.

This string is made up of a list of paths
separated by ":" for the UNIX versions,
and ";" for the Windows versions.

They cannot, however, contain
directories which correspond to Java
packages.

Verbose mode VerboseMode choosing to display an exhaustive
trace of object creation operations
during a reverse operation.

Reverse Java code ReverseJavaCode choosing to reverse operations' code.

Chapter 17: Customizing Java generation

17-24 Objecteering/Java User Guide

The ... command internal name ... has the role of ...
Reverse Java doc ReverseJavaDoc choosing to reverse documentation

data (class documentation is extracted
from .html files and put into the model
in the form of JavaDoc notes).

Filter Accessors on
Reverse

AccessorFilter filtering accessors when a reverse
operation is carried out. "Canonical"
access operations (getXXX, setXXX)
can be filtered during the reverse.
Visibility is, however, retained.

In round trip mode, this mode must be
used systematically, except in certain
particular cases.

Automatically create
diagrams on initial reverse

DiagramCreationOn
Reverse

indicating whether or not diagrams
should be automatically created when
the initial reverse operation is carried
out. Diagrams can also be created on
subsequent request using the "Create
Diagrams" command on packages.

Add {JavaPublic} tagged
value when public

AddJavaPublicTagW
henPublic

automatically adding the {JavaPublic}
tagged value, where the element is
public.

Note 1:The reverse tool searches for the java source file in the directories
indicated by the "Paths for the .java files" parameter. When more than one
source file of the same name exists in these paths, the first file found is
taken into account.

Note 2: .class file paths can be .zip files, .jar files or directories which have
CLASSPATH semantics. For example, if you want to reverse class "C" of
package "P", the C.class file is located in "...\class\P\C.class". However,
CLASSPATH semantics are simply "...\class", and this is what should be
defined for this parameter, instead of the full "...\class\P" path.

Note 3:For further information on reverse operations, please refer to the chapter 8
of this user guide.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-25

The "Patterns" group

Figure 17-11. The "Patterns" sub-set of "Java" module parameters

The ... parameter internal name ... indicates ...
Verbose mode VerboseMode the activation of traces during the

running of the patterns.

Reverse if necessary DoReverse whether or not a reverse operation
should be run, where necessary.

The "Visual Age" group
For details on the "Visual Age" module parameter sub-set, please refer to the
"Visual Age/Objecteering integration" section in chapter 10 of this user guide.

Chapter 17: Customizing Java generation

17-26 Objecteering/Java User Guide

The "Run" group

Figure 17-12. The "Run" sub-set of "Java" module parameters

The ... parameter internal name ... indicates ...
Application's
parameters

runParameters the default parameters for the application
to be run.

The "Eclipse" group
For details on the "Eclipse" module parameter sub-set, please refer to the
"Parameterizing Objecteering/Eclipse " section in chapter 11 of this user guide.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-27

Principles of type and accessor generation

General remarks
The Objecteering/Java module is delivered with the "JavaTypes" package. This
package is an example of a type mapping and accessor generation package, and
can be modified. It is also possible to create another type mapping and accessor
generation package.

Role of the JavaTypes package
This kind of package supports:

♦ the mapping of Java attribute types generated from the attributes of the model
classes

♦ the mapping of the Java attribute types generated from the associations
between the model classes

♦ the mapping of the operation parameter types

♦ the generation of the Java attribute declarations generated from the attributes
of the model classes

♦ the mapping of the Java attribute declarations generated from the relations
between the model classes

♦ the generation of the operation parameter declarations

♦ the generation of the Java attribute accessors generated from the attributes of
the model classes

♦ the mapping of the Java attribute accessors generated from the associations
between the model classes

Chapter 17: Customizing Java generation

17-28 Objecteering/Java User Guide

Structure of the JavaPredType project
A type mapping and accessor generation package must reference the
"TypesEditor" module.
This project contains:

♦ a type's package, named "BaseTypes", for mapping basic types

♦ a package named "DefaultTranslations", which defines the generation of
default accessors

♦ a package named "TranslationClasses" which contains all accessor generation
classes

Mapping types
The "BaseTypes" package supports this mapping. The mapping of a given type is
represented by an Objecteering/UML type.
This package is used as the mapping for the standard Objecteering/UML types
declared in the "_predefinedTypes" project, for example integer and string. As it is
not possible to create a type which has exactly the same name as a type of the
"_predefinedTypes" project, a "_" is added. For example, the mapping of the
integer type is carried out by the _integer type.
This package can also be used as the mapping for any other type, represented by
a class, a type or an enumerate in an Objecteering/UML model. In this case, it is
necessary to create a type with the same name as the class, the type or the
enumerate in the "BaseTypes" package.
If the generation does not find either a T1 type or a _T1 in this package, then the
name T1 is used in the Java file. Thus, it is generally not necessary to create a
type for each class, type or enumerate of a model before launching Java code
generation.
If the type which is searched for exists, a targetType note is then looked for. If this
text does not carry the {Jeval} tagged value, the Java type is then contained in the
note itself. If it carries this tagged value, the Java type is the J evaluation of the
text content. The text is evaluated in the context of the "GeneralClass" (metaclass
name, representing classes or types) representing the type to map. A
communication protocole then exists with the generator. The JavaElement
variable represents the element (attribute, association or parameter link) which
bears the type to be mapped. The Java type must be placed in the JavaReturn
variable with the "String" J type.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-29

Examples of mapping for the string and integer types
The rule for mapping a string in Java is given by the _string type. Its targetType
text does not carry the {Jeval} tagged value. The Java type is, therefore, the
content of the text itself, in other words, String.
The rule for mapping an integer in Java is given by the _integer type. Its
targetType note carries the {Jeval} tagged value. The Java type is therefore
provided by the J evaluation of this note.
For example, if the object (attribute or parameter) with this type carries the
{JavaLong} tagged value, JavaReturn gets the "long" value. If the object with this
type carries the {JavaShort} tagged value, JavaReturn gets the "short" value. If
the object with this type carries the {JavaByte} tagged value, JavaReturn gets the
"byte" value. If the object does not carry any of these tagged values, JavaReturn
gets the "int" value. If the multiplicity is multiple, Long, Short, Byte or Integer will
be used to allow insertion in the lists.

Chapter 17: Customizing Java generation

17-30 Objecteering/Java User Guide

Generating the declarations and accessors
The project's classes support the generation of accessors and declarations.
When the generator has to process the case of an attribute, association end, or
parameter, it first determines the class that will be the support. If the object
(attribute, association end or parameter) carries a {type} tagged value, the class
that is used is the one whose name corresponds to its parameter. Otherwise, the
class used is the one referenced by the package that corresponds to the case of
the object.
In the case of a parameter, only the method with the declare predefined name is
taken into consideration.
In the case of an attribute or association end, methods which are not annotated
with the {notDefault} tagged value are taken into account. Added to these are the
ones whose names correspond to the parameter of a Java tagged value
{JavaGenerateAccessor} annotating the object. We then delete those classes
whose names correspond to the parameter of a {JavaFilterAccessor} tagged
value carried by the object. If the object carries the tagged value
{JavaNoAccessor}, only the method named declare is taken into account.
For the method named declare, Objecteering/Java simply evaluates the J note of
its body in J.
For the other selected methods, Objecteering/UML calculates the accessor as
follows:

J evaluation of provides information about...
the operation's JModifiers note the accessor's modifiers.

return parameter J note the accessor's type of return.

the operation's JName note the accessor's name.

the operation's JExceptions note the exceptions sent back by the accessor.

J text of each parameter an accessor's parameter.

some operation body's J note the accessor's body.

Each evaluation must inform the variable named JavaReturn with the J "String"
type.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-31

Two tagged values are available for the definition of accessor types:

The ... type tagged value designates a ... accessor
{access} read-only

{modify} read-write

Note: The accessor which calculates the multiplicity of an association must be
called "card".

Chapter 17: Customizing Java generation

17-32 Objecteering/Java User Guide

Useful attributes
The following table presents those attributes which can be useful when
personalizing a types package.

Metaclass Type Name is ...
Object int Val_indent a J variable used by the Java

generator to memorize the current
indentation (please see the Indent
method below)

AssociationEnd String MultiplicityMin an attribute containing the
minimum multiplicity for the
association

AssociationEnd String MultiplicityMax an attribute containing the
maximum multiplicity for the
association

Attribute String Multiplicity an attribute containing the
attribute's multiplicity

Attribute boolean IsSet an attribute indicating whether the
attribute has simple or multiple
multiplicity

Parameter String Multiplicity an attribute containing the
parameter's multiplicity

Parameter boolean IsSet an attribute indicating whether the
parameter has simple or multiple
multiplicity

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-33

Useful methods
The following table presents those methods which can be useful when
personalizing a types package, either to redefine them or simply to use them.

Metaclass Name Role Default implementation
Object String firstLetterToLower

(in String str)
Puts the first
letter of a given
string in lower
case

Returns a string identical to
that used as a parameter,
with the possible exception of
the first letter, which is in
lower case

Object String Indent (in int nb) Calculates the
indentation

Returns a string containing a
number of spaces equal to
the parameter (please see the
Val_indent attribute above)

ModelElement boolean isTaggedValue
(in String type)

Predicate
indicating
whether an
object carries a
tagged value or
a given type

Searches the receiving object
for a tagged value which has
a TagType whose Name
attribute has the value of the
parameter

Feature String FieldModifiers() Calculates the
corresponding
Java attribute
modifiers

Returns the "public static
final" if the container is an
interface, a string aggregating
visibility (please see the
getJavaVisibility method) and,
optionally, the "static" (please
see the StaticModifier
method), "final" (if the object
carries the {JavaFinal} tagged
value), "volatile" (if the object
carries the {JavaVolatile}
tagged value) and "transient"
(if the object carries the
{JavaTransient} tagged value)
keywords.

Feature String StaticModifier() Manages the
"static" keyword

Returns the "static" string if
the object is "class", and an
empty string if this is not the
case

Chapter 17: Customizing Java generation

17-34 Objecteering/Java User Guide

Metaclass Name Role Default implementation
Feature String getJavaVisibility() Manages the

Java visibility of
Java attributes
generated

If the object has public
visibility, returns the "public"
string, if the accessors are
generated for the generated
attribute using the object and
if this object does not carry
the {JavaPublic} tagged value.

If the object has protected or
private visibility, call the
getVisibility method

Feature String getVisibility() Maps UML
visibility to Java
visibility

Public � public

Protected � protected

Private � private

Undefined � friendly, i.e.
empty string

Feature String
getAccessModifiers()

Manages the
modifiers of
accessors in
read-only mode

Concatenation of the returns
of the getAccessVisibility and
StaticModifier methods

Feature String
getAccessVisibility()

Manages the
visibility of
accessors in
read-only mode

Returns the "public" string.

Feature String
getModifyModifiers()

Manages the
modifiers of
accessors in
read-write mode

Concatenation of the returns
of the getModifyVisibility and
StaticModifier methods

Feature String
getModifyVisibility()

Manages the
visibility of
accessors in
read-write mode

Calls the getVisibility method

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-35

Metaclass Name Role Default implementation
Feature String MemberName() Handling string

of the
corresponding
Java attribute

If the object is "class", the
owner class is concatenated
and the object name is
separated by ".".

If this is not the case, this is
concatenated and the name
of the object is separated by
".".

Feature String
SimpleMemberName()

Name to be used
to declare the
Java attribute
and the
calculation of
accessor names

Name of the object with the
first letter in lower case, if the
"Use Java naming rules"
parameter of the "Code
generation" group is checked

AssociationEnd Class
getTranslateClass()

Calculation of
the class being
used to support
the generation of
the Java
attribute
declaration and
its accessors

The class is searched for in
the package of the
"_predefinedTypes" project,
whose name is given by the
"Type translation package"
parameter of the "Code
generation" group.

The class returned depends
on the parameter of the {type}
tagged value, if the
association carries one. If
this is not the case, it is the
default class (please refer to
the "Overview of type and
accessor generation" section
in chapter 17 of this user
guide)

AssociationEnd String
AssociationEndType()

Management of
the Java type to
generate for the
corresponding
Java attribute

Returns the parameter of the
{JavaTypeExpr} tagged value
or the destination class

Chapter 17: Customizing Java generation

17-36 Objecteering/Java User Guide

Metaclass Name Role Default
implementation

AssociationEnd String
AssociationEndInitValue ()

Management of
the initial value
of the
corresponding
Java attribute

If the association carries a
{JavaInitValue} tagged
value, returns the
concatenation of the "="
string and the value of the
tagged value.

If this is not the case, an
empty string is returned

Attribute boolean useWrapper() Predicate
indicating
whether or not
a scalar type
(ex : int) or the
equivalent
class
(ex : Integer)
should be
generated

By default, this
method is used
in the
BaseTypes
package of the
types package

Returns true in two cases:

The IsSet attribute is true
and the isArray method
gives false

The attribute carries the
{JavaWrapper} tagged
value

Attribute boolean isArray() Predicate
indicating
whether or not
the attribute
has a table type

Returns true if the class
returned by the
getTranslateClass method
has a name which begins
by "array".

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-37

Metaclass Name Role Default
implementation

Attribute Class getTranslateClass() Calculation of
the class used
as generation
support of the
Java attribute
declaration and
of its accessors

The class is searched for in
the package of the
"_predefinedTypes" project,
whose name is given by the
"Type translation package"
parameter of the "Code
generation" group.

The class returned depends
on the parameter of the
{type} tagged value, if the
attribute carries one. If this
is not the case, it is the
default class (please refer
to the "Overview of type
and accessor generation"
section in chapter 17 of this
user guide)

Attribute String AttributeType() Management of
the Java type to
generate for the
corresponding
Java attribute

Returns the parameter of
the {JavaTypeExpr} tagged
value

Attribute String AttributeInitValue() Management of
the initial value
of the
corresponding
Java attribute

If the attribute has a non-
empty initial value, the
concatenation of the "="
string and this value is
returned.

Chapter 17: Customizing Java generation

17-38 Objecteering/Java User Guide

Metaclass Name Role Default
implementation

Parameter Class getTranslateClass() Calculation of
the class used
as generation
support of the
Java parameter
declaration

The class is searched for in
the package of the
"_predefinedTypes" project,
whose name is given by the
"Type translation package"
parameter of the "Code
generation" group.

The class returned depends
on the parameter of the
{type} tagged value if the
parameter carries one. If
this is not the case, it is the
default class (please refer
to the "Overview of type
and accessor generation"
section in chapter 17 of this
user guide)

Parameter boolean useWrapper() Predicate
indicating
whether or not
a scalar type
(ex : int) or the
equivalent
class
(ex : Integer)
should be
generated

Returns true if the
parameter carries the
{JavaWrapper} tagged
value

Parameter boolean isArray() Predicate
indicating
whether or not
the parameter
has a table type

Returns true if the class
returned by the
getTranslateClass method
has a name starting with
"array".

Parameter String ParameterModifiers() Calculation of
the
corresponding
Java parameter
modifiers

Returns "final" if the
passing mode of the
parameter is "in" and the "In
parameters generated as
final" parameter of the
"Code generation" group is
checked.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-39

Metaclass Name Role Default
implementation

Parameter String ParameterType() Management of
the Java type to
generate for the
corresponding
Java parameter

Returns the parameter of
the {JavaTypeExpr} tagged
value or the parameter
type.

Parameter String ParameterName() Name to be
used for the
declaration of
the Java
parameter

Name of the object with the
first letter in lower case if
the "Use Java naming
rules" parameter of the
"Code generation" group is
checked

Induced imports
The class can carry one or more {import} tagged values, which designate the
classes to be imported, after implementation of the declarations and accessors.

Chapter 17: Customizing Java generation

17-40 Objecteering/Java User Guide

Overview of type and accessor generation

Generation of default accessors
The {type} tagged value can be used in a model, attribute, association end or
parameter to designate the class to use for generating the declaration and/or
accessors.
To avoid having to create a tagged value for each attribute, association end or
parameter, the generator is informed of default generations by packages with
defined names. These reference the class to be used in the absence of the {type}
tagged value. These packages are found in the "JavaTypes" package's
"DefaultTranslations" package.

The ... package name generates by default ...
SimpleAttribute the declaration and the accessors for an attribute sized 1.

MultipleAttribute the declaration and the accessors for an attribute sized *.

FiniteAttribute the declaration and the accessors for an attribute with the
size n>1.

OptionalSimpleAssociation the declaration and the accessors for an 0-1 association.

MandatorySimpleAssociation the declaration and the accessors for a 1-1 association.

OptionalMultipleAssociation the declaration and accessors for a 0-* association.

MandatoryMultipleAssociation the declaration and accessors for a 1-* association.

FiniteAssociation the declaration and the accessors for a relation n-m,
where m>1.

SimpleIOParameter the declaration for a parameter sized 1.

MultipleIOParameter the declaration for a parameter sized *.

FinitelOParameter the declaration for a parameter sized n>1.

SimpleReturnParameter the declaration for a return parameter sized 1.

MultipleReturnParameter the declaration for a return parameter sized *.

FiniteReturnParameter the declaration for a return parameter sized n>1.

Each of these packages references the class which is used by default in the case
dealt with by the package. Modifying this referencing is a simple means of
modifying the default behavior of the generator.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-41

Classes which customize types and accessors in the JavaTypes
package

The ... class is used to ...
simpleAssociation generate the declaration and accessors for an association

with a simple multiplicity.

VectorMultipleAssociation generate the declaration and accessors on the Vector class
basis for an association with multiple multiplicity.

VectorFiniteAssociation generate the declaration and accessors on the Vector class
basis for an association with finite multiplicity.

ArrayMultipleAssociation generate the declaration and accessors on the basis of a
table for an association with mutliple multiplicity.

ArrayFiniteAssociation generate the declaration and accessors on the basis of a
table for an association with finite multiplicity.

StackMultipleAssociation generate the declaration and accessors on the Stack class
basis for an association with multiple multiplicity.

StackFiniteAssociation generate the declaration and accessors on the Stack class
basis for an association with finite multiplicity.

HashtableMultipleAssociation generate the declaration and accessors on the Hashtable
class basis for an association with multiple multiplicity.

HashtableFiniteAssociation generate the declaration and accessors on the Hashtable
class basis for an association with finite multiplicity.

ListMultipleAssociation generate the declaration and accessors on the List class
basis for an association with multiple multiplicity.

ListFiniteAssociation generate the declaration and accessors on the List class
basis for an association with finite multiplicity.

LinkedListMultipleAssociation generate the declaration and accessors on the LinkedList
class basis for an association with multiple multiplicity.

LinkedListFiniteAssociation generate the declaration and accessors on the LinkedList
class basis for an association with finite multiplicity.

CollectionMultipleAssociation generate the declaration and accessors on the Collection
class basis for an association with multiple multiplicity.

CollectionFiniteAssociation generate the declaration and accessors on the Collection
class basis for an association with finite multiplicity.

SetMultipleAssociation generate the declaration and accessors on the Set class
basis for an association with multiple multiplicity.

SetFiniteAssociation generate the declaration and accessors on the Set class

Chapter 17: Customizing Java generation

17-42 Objecteering/Java User Guide

The ... class is used to ...
basis for an association with finite multiplicity.

HashSetMultipleAssociation generate the declaration and accessors on the hashSet
class basis for an association with multiple multiplicity.

HashSetFiniteAssociation generate the declaration and accessors on the hashSet
class basis for an association with finite multiplicity.

MapMultipleAssociation generate the declaration and accessors on the Map class
basis for an association with multiple multiplicity.

MapFiniteAssociation generate the declaration and accessors on the Map class
basis for an association with finite multiplicity.

HashMapMultipleAssociation generate the declaration and accessors on the HashMap
class basis for an association with multiple multiplicity.

HashMapFiniteAssociation generate the declaration and accessors on the HashMap
class basis for an association with finite multiplicity.

SimpleAttribute generate the declaration and accessors for an attribute
with a simple multiplicity.

VectorMultipleAttribute generate the declaration and accessors on the Vector
class basis for an attribute with multiple multiplicity.

VectorFiniteAttribute generate the declaration and accessors on the Vector
class basis for an attribute with finite multiplicity.

ArrayMultipleAttribute generate the declaration and accessors on the basis of a
table for an attribute with multiple multiplicity.

ArrayFiniteAttribute generate the declaration and accessors on the basis of a
table for an attribute with finite multiplicity.

StackMultipleAttribute generate the declaration and accessors on the Stack class
basis for an attribute with multiple multiplicity.

StackFiniteAttribute generate the declaration and accessors on the Stack class
basis for an attribute with finite multiplicity.

HashtableMultipleAttribute generate the declaration and accessors on the Hashtable
class basis for an attribute with multiple multiplicity.

HashtableFiniteAttribute generate the declaration and accessors on the Hashtable
class basis for an attribute with finite multiplicity.

ListMultipleAttribute generate the declaration and accessors on the List class
basis for an attribute with multiple multiplicity.

ListFiniteAttribute generate the declaration and accessors on the List class
basis for an attribute with finite multiplicity.

LinkedListMultipleAttribute generate the declaration and accessors on the LinkedList
class basis for an attribute with multiple multiplicity.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-43

The ... class is used to ...
LinkedListFiniteAttribute generate the declaration and accessors on the LinkedList

class basis for an attribute with finite multiplicity.

CollectionMultipleAttribute generate the declaration and accessors on the Collection
class basis for an attribute with multiple multiplicity.

CollectionFiniteAttribute generate the declaration and accessors on the Collection
class basis for an attribute with finite multiplicity.

SetMultipleAttribute generate the declaration and accessors on the Set class
basis for an attribute with multiple multiplicity.

SetFiniteAttribute generate the declaration and accessors on the Set class
basis for an attribute with finite multiplicity.

HashSetMultipleAttribute generate the declaration and accessors on the hashSet
class basis for an attribute with multiple multiplicity.

HashSetFiniteAttribute generate the declaration and accessors on the hashSet
class basis for an attribute with finite multiplicity.

MapMultipleAttribute generate the declaration and accessors on the Map class
basis for an attribute with multiple multiplicity.

MapFiniteAttribute generate the declaration and accessors on the Map class
basis for an attribute with finite multiplicity.

HashMapMultipleAttribute generate the declaration and accessors on the HashMap
class basis for an attribute with multiple multiplicity.

HashMapFiniteAttribute generate the declaration and accessors on the HashMap
class basis for an attribute with finite multiplicity.

SimpleIOParameter generate the declaration of a parameter with simple
multiplicity.

VectorIOParameter generate the declaration on the Vector class basis for a
parameter with finite or multiple multiplicity.

ArrayIOParameter generate the declaration on the basis of a table for a
parameter with finite or multiple multiplicity.

StackIOParameter generate the declaration on the Stack class basis for a
parameter with finite or multiple multiplicity.

HashtableIOParameter generate the declaration on the Hashtable class basis for a
parameter with finite or multiple multiplicity.

ListIOParameter generate the declaration on the List class basis for a
parameter with finite or multiple multiplicity.

LinkedListIOParameter generate the declaration on the LinkedList class basis for a
parameter with finite or multiple multiplicity.

CollectionIOParameter generate the declaration on the Collection class basis for a

Chapter 17: Customizing Java generation

17-44 Objecteering/Java User Guide

The ... class is used to ...
parameter with finite or multiple multiplicity.

SetIOParameter generate the declaration on the Set class basis for a
parameter with finite or multiple multiplicity.

HashSetIOParameter generate the declaration on the HashSet class basis for a
parameter with finite or multiple multiplicity.

MapIOParameter generate the declaration on the Map class basis for a
parameter with finite or multiple multiplicity.

HashMapIOParameter generate the declaration on the HashMap class basis for a
parameter with finite or multiple multiplicity.

SimpleReturnParameter generate the declaration of a return parameter with simple
multiplicity.

VectorReturnParameter generate the declaration on the Vector class basis for a
return parameter with finite or multiple multiplicity.

ArrayReturnParameter generate the declaration on the Array class basis for a
return parameter with finite or multiple multiplicity.

StackReturnParameter generate the declaration on the Stack class basis for a
return parameter with finite or multiple multiplicity.

HashtableReturnParameter generate the declaration on the Hashtable class basis for a
return parameter with finite or multiple multiplicity.

ListReturnParameter generate the declaration on the List class basis for a return
parameter with finite or multiple multiplicity.

LinkedListReturnParameter generate the declaration on the LinkedList class basis for a
return parameter with finite or multiple multiplicity.

CollectionReturnParameter generate the declaration on the Collection class basis for a
return parameter with finite or multiple multiplicity.

SetReturnParameter generate the declaration on the Set class basis for a return
parameter with finite or multiple multiplicity.

HashSetReturnParameter generate the declaration on the HashSet class basis for a
return parameter with finite or multiple multiplicity.

MapReturnParameter generate the declaration on the Map class basis for a
return parameter with finite or multiple multiplicity.

HashMapReturnParameter generate the declaration on the HashMap class basis for a
return parameter with finite or multiple multiplicity.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-45

We will deal later with simple multiplicity for the 0-1 or 1-1 type multiplicities,
multiple multiplicity for the n-* type multiplicity and finite multiplicity for the n-m and
m>1 type multiplicities.

Chapter 17: Customizing Java generation

17-46 Objecteering/Java User Guide

Customizing association accessors

Introduction
Each class which parameterizes the accessors for an association must contain an
operation named "declare", used to generate the declaration of the corresponding
Java attribute.
The other operations are used to generate attribute or association accessors
according to the access mode of their attribute or association.
For associations, one of them must generate an accessor named "card" returning
an integer containing the association's current multiplicity.

Customizing the methods of the simpleAssociation class
The ... method is used to customize ...

declare the declaration of the Java attribute.

get the access to the Java attribute.

set the modification of the Java attribute.

card the calculation of the number of elements.

Customizing the methods of the vectorMutipleAssociation class
The ... method is used to customize ...

declare the declaration of the Java attribute.

get the access to an element with a given index.

set the substitution of the element with a given index.

append the addition of an element.

erase_by_element the deletion of a given element.

erase_by_index the deletion of an element with a given index.

card the calculation of the number of elements.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-47

Customizing the methods of the vectorFiniteAssociation class
The ... method is used to customize ...

declare the declaration of the Java attribute.

get the access to an element with the given index.

set the substitution of the element with a given index.

append the addition of an element.

erase_by_element the deletion of a given element.

erase_by_index the deletion of an element with a given index.

card the calculation of the number of elements.

Customizing the methods of the arrayFiniteAssociation class
The ... method is used to customize ...

declare the declaration of the Java attribute.

get the access to an element with a given index.

get_all the access to all the elements.

set the modification of the element with the given index.

set_all the modification of all the elements.

card the calculation of the number of elements.

Customizing the methods of the stackMultipleAssociation class
The ... method is used to customize ...

declare the declaration of the Java attribute.

get the access to the element on top of the stack.

append the addition of an element.

erase the deletion of an element on top of the stack.

card the calculation of the number of elements.

Chapter 17: Customizing Java generation

17-48 Objecteering/Java User Guide

Customizing the methods of the stackFiniteAssociation class
The ... method is used to customize ...

declare the declaration of the Java attribute.

get the access of the element on top of the stack.

append the addition of an element.

erase the deletion of an element on top of the stack.

card the calculation of the number of elements.

Customizing the methods of the hashtableMultipleAssociation
class

The ... method is used to customize ...
declare the declaration of the attribute.

get the access to an element from its key.

append the adding of an element with its key.

erase_by_key the deletion of an element from its key.

card the calculation of the number of elements.

Customizing the methods of the hashtableMultipleAssociation
class

The ... method is used to customize ...
declare the declaration of the attribute.

get the access to an element from its key.

append the addition of an element with its key.

erase_by_key the deletion of an element from its key.

card the calculation of the number of elements.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-49

Customizing attribute accessors

Introduction
Each class which parameterizes accessors for a class must contain a method
named "declare", used to generate the declaration of the corresponding Java
attribute. The methods are used to generate accessors in access or modify mode.
For finite or multiple attributes, one of them must generate an accessor named
"card", which returns an integer containing the attribute's current multiplicity.

Customizing the attributes of the defaultSimpleAttribute class
The ... attribute is used to customize ...

declare the declaration of the Java attribute.

get the access to the Java attribute.

set the modification of the Java attribute.

Customizing the attributes of the vectorMultipleAttribute class
The ... attribute is used to customize ...

declare the declaration of the Java attribute.

get the access to an element with the given index.

set the substitution of the element with a given index.

append the addition of an element.

erase_by_element the deletion of a given element.

erase_by_index the deletion of the element with the given index.

card the calculation of the number of elements.

Chapter 17: Customizing Java generation

17-50 Objecteering/Java User Guide

Customizing the attributes of the vectorFiniteAttribute class
The ... attribute is used to customize ...

get the access to an element with the given index.

set the substitution of the element with a given index.

append the addition of an element.

erase_by_element the deletion of a given element.

erase_by_index the deletion of the element with the given index.

card the calculation of the number of elements.

Customizing the attributes of the arrayFiniteAttribute class
The ... attribute is used to customize ...

declare the declaration of the attribute.

get the access to an element with the given index.

get_all the access to all the elements.

set the modification of the element with the given index.

set_all the modification of all the elements.

Customizing the attributes of the stackMultipleAttribute class
The ... attribute is used to customize ...

declare the declaration of the attribute.

get the access to the element on top of the stack.

append the addition of an element.

erase the deletion of an element on top of the stack.

card the calculation of the number of elements.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-51

Customizing the attributes of the stackFiniteAttribute class
The ... attribute is used to customize ...

declare the declaration of the attribute.

get the access to the element on top of the stack.

append the addition of an element.

erase the deletion of an element on top of the stack.

card the calculation of the number of elements.

Customizing the attributes of the hashtableMultipleAttribute class
The ... attribute is used to customize ...

declare the declaration of the attribute.

get the access to an element from its key.

append the addition of an element with its key.

erase_by_key the deletion of an element from its key.

card the calculation of the number of elements.

Chapter 17: Customizing Java generation

17-52 Objecteering/Java User Guide

Customizing parameter declarations

Introduction
The classes which parameterize the declaration of the parameters have a unique
method named "declare", used to generate the declaration of the parameter.

Customizing the declarations of the class parameters

The "declare" method for the ...
class

is used to customize ...

simpleIOParameter the declaration of the parameter

vectorIOParameter the declaration of the parameter

stackIOParameter the declaration of the parameter

hashtableIOParameter the declaration of the parameter

simpleReturnParameter the declaration of the parameter

vectorReturnParameter the declaration of the parameter

arrayReturnParameter the declaration of the parameter

stackReturnParameter the declaration of the parameter

hashtableReturnParameter the declaration of the parameter

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-53

Additional elements for customizing types (Summary)

Summary of the types of notes and tagged values
The types of notes and tagged values necessary for defining a UML modeling
project for translating the types and accessor generation are defined in the
TypesEditor module.

Name ... Types ... Metaclass ... has the role of ...
import tagged value Class indicating the packages necessary for

the implementation of the accessors.

notDefault tagged value Operation indicating an accessor that must not
be generated by default.

Jeval tagged value Note indicating an expression to evaluate in
J.

targetType note DataType the translation of a type.

J note Operation evaluating the J code to calculate a
declaration or an accessor.

J note Parameter evaluating the J code to calculate a
parameter or a return parameter of an
accessor.

JName note Operation calculating the name of an accessor.

JModifiers note Operation calculating the modifiers of an
accessor.

JExceptions note Operation the exceptions sent back by the
accessor.

Chapter 17: Customizing Java generation

17-54 Objecteering/Java User Guide

Summary of J variables
Global variables must be defined for the passing of parameters to the evaluated J
expressions, or the retrieval of the results after evaluation.

Name ... Type... has the role of ...
JavaReturn String the return of a declaration or accessor calculation

method

JavaElement Object the name of the object for translating the type

Summary of J methods
For information on all J methods available, please refer to the "Principles of type
and accessor generation" section in chapter 17 of this user guide.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-55

Code generation document templates

Overview
To use this generation feature, you must have a valid Objecteering/UML Profile
Builder license. Document templates are used to visualize the structure of
generated Java source and to easily modify the Java code produced. The
document template editors provided are detailed in the Objecteering/UML Profile
Builder and Objecteering/Documentation user guides.

Figure 17-13. Java generation document template

Each document template element is loaded with a file zone to generate. The roles
are summed up in the table below.

Chapter 17: Customizing Java generation

17-56 Objecteering/Java User Guide

The ... document template
element

is used to generate ...

ClassDoc the Javadoc type documentation relative to
the class

PackageName the name of the package in which the class
is defined.

Import the processing of the imported classes and
packages.

UtilVector the import of the package when an attribute,
an association or a method parameter has
the Vector, Stack or Hashtable type.

StandardImport the processing use links between packages
translated by a package import used for all
the classes of the user package.

ImportWithTaggedValue the processing of the JavaImport tagged
values present on the class or the package
to which the class belongs.

HeaderText the JavaHeader type texts.

ClassHeader the class header.

ClassModifiers the abstract, final, visibility.

ClassName the name of the class.

Extends the processing of the generalizations.

Standard the generalization for a generalization link on
a model.

ExtendsWithTaggedValue the translation of the {JavaExtends} tagged
values.

Implements the processing of the interface
implementations.

StandardImplements the implementation for an implementation
link on the model.

ImplementsWithTaggedValue the translation of the {JavaImplements}
tagged values.

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-57

The ... document template
element

is used to generate ...

ImplementsWithEnumerations the implementations which correspond to the
enumerations used in the class.

ClassBody the class body (see below).

DataTypes the generation into non-public classes of
types defined in the class.

Enumerations the generation in the form of interfaces of
enumerations defined in the class.

NonPublicClasses the generation of non-public classes.

BottomText the JavaBottom type texts.

Chapter 17: Customizing Java generation

17-58 Objecteering/Java User Guide

Detail of the ClassBody item (part 1)

Figure 17-14. Detail of a class body

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-59

The ... item represents ...
ClassBody the class body

StaticField the static fields

NonStaticField the non static fields

PublicField the public visibility fields

ProtectedField the protected visibility fields

FriendlyField the friendly visibility fields

PrivateField the private visibility fields

Attribute the attributes

AttributeDoc the Javadoc text for an attribute

AttributeDeclaration the declaration of an attribute

AttributeAccessors the accessors and the modifiers on an attribute

AssociationEnd the associations

AssociationDoc the Javadoc text for an association

AssociationDeclaration the declaration of the attribute corresponding to an
association

AssociationAccessors the accessors and the modifiers on the attribute
corresponding to an association

InnerClasses the internal classes

Constructors the constructors

Destructor the finalize method

PublicMethod the public methods

ProtectedMethod the protected methods

FriendlyMethod the friendly methods

PrivateMethod the private methods

MainMethod The main method

Invariant the invariant() method

MembersText the JavaMembers notes

Chapter 17: Customizing Java generation

17-60 Objecteering/Java User Guide

Detail of the ClassBody item (Part 2)

Figure 17-15. Decomposition of the method content

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-61

The ... item represents ...
Constructors the constructors

Constructor a constructor

Destructor the destructor

DestructorHeader the declaration of the finalizer

PublicMethod a class's public methods

Method a method

MethodDoc the generation of a javadoc text for a method

MethodModifiers the visibility, static, final, abstract, synchronized, native

NoReturnParameter the type of return (void)

ReturnParameter the type of return parameter

MethodName the method's name

NoParameters the section related to the parameters of a method when it doesn't
have any

Parameters the section related to the parameters of a method when it has
some

ListOfParameters the parameters

Parameter a parameter

Exceptions the declarations of exception launching

MethodBody the method's body

BodyHeader the JavaSuper type texts

PreConditions the pre-conditions of the Javacode type model

Body the method's implementation, generation of a JavaCode type
model implementation

PostConditions the generation of the post-conditions of the JavaCode type model

BodyBottom the generation of a JavaReturned text type

Chapter 17: Customizing Java generation

17-62 Objecteering/Java User Guide

Makefile generation document templates

Overview
The technique used for code generation is also used for the generation of the
compilation makefiles.
Three document templates have been developed for this purpose. The first is
used to compile the classes in a package and the second to compile only a class.

Structure of the package makefile document template

Figure 17-16. Document template for generating the makefile for a package

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-63

The ... item generates ...
Shell Declaration of the Shell variable (GNU make on Windows only).

Compiler the definition of the compiler.

RemoveCommand the definition of the command to delete the files.

GenDirectory the definition of the .java source files root directory.

CompDirectory the definition of the root directory for the compilation results.

CompOptions the definition of the compiler options.

ClassPaths the definition of the paths that search the Java classes used.

CompiledFiles the definition of the list of .class files to produce.

JarFile the declaration of the storage file name.

AllTarget the compilation's global target.

CleanTarget the target of the class files destruction.

ForceTarget the target of the forced re-generation of all the .class files.

ArchiveTarget the main target for producing file storage.

CompilationTargets the targets for producing compiled files.

JarTarget the target that runs the jar command for producing the storage file.

ForcedTarget the target used to force the running of the commands of a target on
which the target is dependent.

Chapter 17: Customizing Java generation

17-64 Objecteering/Java User Guide

Contents of the CompiledFiles item

Figure 17-17. Document template for generating the makefile for a package - the
"CompiledFiles" item

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-65

The ... item generates ...
CompiledFilesToCompile the definition of the list of .class files to produce

CompiledClasses the files compiled for a class

StandardCompiledFiles the .class file compiled for a class

RMICompiledFiles the stub and skeleton for a class

CompiledPackages the files compiled for the classes of a package
recursively

CompiledFilesToClean the definition of the list of .class files to be produced
(format of the GNU make tool on PC).

CompiledClassesToClean the files compiled for a class (format of the destruction
library)

StandardCompiledFilesToClean the .class file compiled for a class (format of the
destruction library)

RMICompiledFilesToClean the stub and skeleton for a class (format of the
destruction library)

CompiledPackagesToClean the files compiled for the classes of a leaf package
(format of the destruction library)

Chapter 17: Customizing Java generation

17-66 Objecteering/Java User Guide

Contents of the CompilationTargets item

Figure 17-18. Document template for generating the makefile for a package - "Compilation
Targets" item

The ... item generates ...
PackagesTargets the compilation targets of the sub-packages of a package

ClassesTargets the compilation targets of a package's classes

CompilationTarget the compilation target for compiling a .java in .class

RmicTarget the target for producing the stub and skeleton

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-67

Structure of the class makefile document template

Figure 17-19. Document template for generating the makefile for a class

Chapter 17: Customizing Java generation

17-68 Objecteering/Java User Guide

The ... item generates ...
Shell declaration of the Shell variable (GNU make on

Windows only)

Compiler the definition of the compiler

RemoveCommand the definition of the command to delete the file

GenDirectory the definition of the generation root directory

CompDirectory the definition of the directory put together for the
compilation results

CompOptions the definition of the compiler options

ClassPaths the definition of the paths used to search for the used
java classes

CompiledFiles the definition of the list of .class files to be produced

CompiledFilesToCompile the definition of the list of .class files to be produced

StandardCompiledFiles the file compiled for a class

RMICompiledFiles the stub and skeleton for a class

CompiledFilesToClean the definition of the list of .class files to be produced
(format of the destruction binary).

StandardCompiledFilesToClean the file compiled for a class (format of the destruction
binary)

RMICompiledFilesToClean the stub and skeleton for a class (format of the
destruction binary)

JarFile the declaration of the name of the storage file

AllTarget the target of the .class files destruction

ForceTarget the target of the forced re-generation of all the .class
files

ArchiveTarget the main target for producing file storage

CompilationTargets the targets of the .class generation

CompilationTarget the target used to produce the stub and skeleton

Chapter 17: Customizing Java generation

Objecteering/Java User Guide 17-69

The ... item generates ...
RmicTarget the target used to produce the stub and skeleton

JarTarget the target that runs the .jar command used to produce
the storage file.

ForcedTarget the target used to to force the running of the
commands of a target on which the target is
dependent.

Chapter 18: Calling module on-line
commands

Chapter 18: Calling module on-line commands

Objecteering/Java User Guide 18-3

Calling commands - Overview

Module commands which do not require an interface can be launched on a
command line using the objingcl delivered with Objecteering/UML.

Chapter 18: Calling module on-line commands

18-4 Objecteering/Java User Guide

Calling commands

Syntax
An online command is called using an instruction as follows:
objingcl -prj <UML modeling project_name>

-mdl JavaModule
-cmd <command_Name>
<metaclass>:<object_name>
-db <base_name>

Chapter 18: Calling module on-line commands

Objecteering/Java User Guide 18-5

Commands that can be invoked

Command ... Metaclass ... Action ...
generate Java code generation

javaDoc Java documentation Generation

generateMakefile Java makefile generation

compile Java compilation of the .java into .class

forceCompile Java destruction of the .class then compilation

cleanCompile Java destruction of the .class

archive Java production of the storage file

operationsToImplement Class creation of the methods of the
implemented interfaces

operationsToImplement Package creation of the methods of the
implemented interfaces for all the
package's classes

operationsToRedefine Class creation of all the abstract methods of the
parent classes

operationsToRedefine Package creation of all the abstract methods of the
parent classes for all the classes of a
package

toNonPrimitive Class the transformation of a primitive class into
a non-primitive class

toPrimitive Class the transformation of a non-primitive class
into a primitive class

finalize operations Class the positioning of the "non derivable" field
on non-redefined class operations

toPrimitive Package the positioning of the "non derivable" field
non-redefined operations of classes of a
package and its sub-packages

Index

"Event" class 14-9
"events" package 14-9
. class files 9-14
. java files 9-14
.class classes 17-66
.class files 5-5, 6-3, 6-4, 8-3, 8-13,

17-17, 17-23, 17-24, 17-65, 17-68
.jar command 17-69
.jar files 6-5, 8-3, 17-23, 17-24
.java classes 17-66
.java files 5-5, 6-3, 6-4, 17-8, 17-23
.prof file 11-5
.zip files 8-3, 17-23, 17-24
@param 7-5
@param markers 7-7
@return 7-5
@return markers 7-10
@see 7-17
@see markers 7-16, 7-17
@throws 7-5
@throws marker 7-15
@throws markers 7-13
{access} tagged value 17-31
{import} tagged value 17-39
{IsClass} tagged value 2-13
{JavaBean} tagged value 5-10
{JavaBeanResource} tagged value

3-30, 5-10, 5-11
{JavaByte} tagged value 5-13, 5-18,

8-14, 17-29
{JavaExtends} tagged value 5-10, 5-

23, 17-56
{JavaExtern} tagged value 3-13, 5-

10, 5-11, 8-4
{JavaFilterAccessor} tagged value 5-

13, 5-16, 17-30

{JavaFinal} tagged value 2-9, 5-14,
5-16, 5-24, 8-14, 17-33

{JavaGenerateAccessor} tagged value
5-13, 5-16, 17-30

{JavaImplements} tagged value 1-
11, 5-10, 5-23, 12-6, 17-56

{JavaImport} tagged value 5-10, 5-
11, 5-23

{JavaInitValue} tagged value 17-36
{JavaInvariant} tagged value 5-12
{JavaLong} tagged value 5-13, 5-18,

8-14, 17-29
{JavaName} tagged value 5-10, 5-

11, 5-12, 5-13, 5-16, 5-19, 5-23
{JavaNative} tagged value 2-9, 5-9,

5-12, 5-16, 5-24, 8-14
{JavaNoAccessor} tagged value 4-

17, 4-22, 5-10, 5-13, 5-16, 14-11,
17-30

{JavaNonPublic} tagged value 3-13,
5-10, 5-23

{JavaNoPackage} tagged value 2-5,
5-11

{JavaParentConditions} tagged value
5-12

{JavaPublic} tagged value 5-13, 5-
16, 5-19, 17-34

{JavaRoot} tagged value 2-5, 5-11
{JavaShort} tagged value 5-13, 5-18,

8-14
{JavaStatic} tagged value 2-7
{JavaStrict} tagged value 5-12
{JavaSynchronize} tagged value 2-9
{JavaSynchronized} tagged value 5-

12, 5-24, 8-14
{JavaThrownException} tagged value

2-9, 4-9, 5-12, 5-24, 13-8
{JavaTransient} tagged value 2-11,

5-14, 5-16, 8-14, 17-33

{JavaTypeExpr} tagged value 5-13,
5-16, 5-18, 8-15, 17-35, 17-39

{JavaVolatile} tagged value 5-14, 5-
16, 8-14, 17-33

{JavaWrapper} tagged value 5-13,
5-18, 17-36, 17-38

{Jeval} tagged value 17-28
{modify} tagged value 17-31
{nocode} tagged value 3-13
{notDefault} tagged value 17-30
{type} tagged value 5-13, 5-18, 17-

30, 17-38, 17-40
<<create>> stereotype 2-9, 8-14
<<destroy>> stereotype 2-9
<<interface>> stereotype 2-7
<<Invariant>> 5-22
<<JavaDocInvariant>> 5-22
<<JavaInvariant>> 5-22
<<JavaPostCondition>> 5-22
<<JavaPostCondition>> stereotype

2-9
<<JavaPreCondition>> 5-22
<<JavaPreCondition>> stereotype

2-9
<<throw>> links 7-5
Accessors 1-7, 1-12, 9-10

Classes which customize types and
accessors 17-41

Filtering accessors 9-16
Generating default accessors 17-

40
Adapter class 14-10
Adapting to your development

environment: 1-4
Analyzing compilation 1-8
Application code 9-3, 9-5, 9-8
Archive files 6-5
Association end

Tagged values 5-19
Attribute

Java notions 5-24
Tagged values 5-13
Type of notes 5-21

Attribute declarations 1-7
Automatic diagram creation 8-15
AWT component 15-3
Build output folder 11-24
Calling commands

Commands that can be invoked
18-5

objingcl executable 18-3
Syntax 18-4

Class
Java notions 5-23
Tagged values 5-10
Type of notes 5-20

Code generation
Document templates 17-55
Generating types and accessors

1-7
Code generation for an attribute or

association 5-25
Code generation for an enumeration

5-27
Collections 2-11, 9-15
Command line mode 8-5
Compilation 2-5, 3-24

Accessing compilation commands
6-4

Compilation services 6-4
Compiling 3-30, 3-31, 4-24, 4-31

Recursive compilation 3-21
Compiling Java 1-3
Configuring reverse operations 8-3

Configuring the functioning mode 9-
4

Configuring the Objecteering/Java
module 8-3, 9-4

Consistency checks 3-37, 5-4, 8-5
Console 3-8, 11-3, 11-17
Constructor 2-9
Context menu 6-4, 7-4
Correspondence between Java

notions and modeling notions 1-7
Creating a Java generation work

product 3-31, 4-24, 4-31
Creating a UML modeling project 11-

5
Creating a work product 4-9
Creating an Eclipse project 11-6
Customization modes 17-3
Customizing attributes

arrayFiniteAttribute class 17-50
defaultSimpleAttribute class 17-49
hashtableMultipleAttribute class

17-51
stackFiniteAttribute class 17-51
vectorFiniteAttribute class 17-50
vectorMultipleAttribute class 17-49

Customizing methods
arrayFiniteAssociation class 17-47
hashtableMultipleAssociation class

17-48
simpleAssociation class 17-46
stackFiniteAssociation class 17-48
stackMultipleAssociation class 17-

47
vectorFiniteAssociation Class 17-

47
VectorMultipleAssociation class

17-46
Customizing the attributes

stackMultipleAttribute Class 17-50
CYGNUS 17-18
Cygnus cyg-win 32 tools 1-5
Data type

Tagged values 5-19
Declarations 1-12
Declarative code 9-3, 9-5, 9-7
Default model types 2-4
Design patterns 1-3, 1-7, 12-3

Accessing design patterns 12-4
Creating the methods to be

implemented 12-3, 12-6
Creating the methods to be

redefined 12-3
Creating the methods to be

redefined 12-6
Listening to events 12-3, 12-5
Non-derivable method 12-3, 12-5
Remote method invocation 12-3,

12-5
RMI 12-5
Sending events 12-3, 12-5
Transforming a class into a non-

primitive class 12-3, 12-6
Transforming a class into a primitive

class 12-6
Transforming a non-primitive class

into a primitive class 12-3
Document template item

Class body item 17-58, 17-60
Document template items

CompilationTargets item 17-66
CompiledFiles item 17-64

Document templates 11-4, 17-62
Class makefile document template

17-67
Package makefile document

template 17-62

Documentation work product 7-3
Dynamic Java design patterns 1-3
Eclipse first steps

Editing generated code 11-14
Generating Java code 11-12
Importing a model into the Eclipse

FirstSteps project 11-11
Preparing the Eclipse working

environment 11-10
Eclipse Java project creation 11-7
Eclipse navigator 11-13
Eclipse preferences 11-26
Eclipse project 11-3, 11-6
Eclipse to Objecteering/UML 11-3
Editing code in Eclipse 11-4
Editing generated code 11-14
Editor view 11-19
Entering Javadoc notes on

parameters 7-8, 7-14
Entering Javadoc notes on return

parameters 7-11
Error messages 10-8
Exceptions 7-13
Explorer 1-6, 3-6, 3-35, 7-4, 8-6
External edition 1-12
Filtering accessors 9-16
First steps 11-10
First steps project

Initialization 4-4
Forte markers 10-10
Generating a makefile 4-9, 4-24, 4-

31
Generating accessors 17-3
Generating code 4-9, 4-24, 4-31
Generating code in Eclipse 11-4
Generating documentation 1-8, 3-28

Generating Java attribute accessors
17-27

Generating Java attribute declarations
17-27

Generating Java code 1-3, 3-31, 11-
12
Editing generated Java code 3-19
Launching Java code generation

3-13
Visualizing generated Java code

3-16
Generating Javadoc notes for

parameters 7-7
Generating Javadoc notes for return

parameters 7-10
Generating Javadoc notes for throws

statements 7-13
Generating makefile 3-30
Generating makefiles 1-5
Generating operation parameter

declarations 17-27
Generating see also statements in

Javadoc notes 7-16
Generating the makefile 1-8, 3-21, 3-

31
Generating types and accessors 1-7
Generation 2-5
Generation document template 1-3,

17-3
Generation markers 9-14
Generation rules 11-4
Generation templates 11-4
Generation work product 1-12
Generation work products 9-7
Getting the example model 3-4
Graphic editor 8-6
Graphic editors 3-35
HTML file

Editing 3-33

Visualizing 3-32
IBM 11-4
IDE 9-3, 9-5, 9-8, 10-3

Importing developments made in
other IDEs 10-3

Identifier 8-6
Identifiers 3-35
Importing a model into the Eclipse

FirstSteps project 11-11
Importing developments made in other

IDEs 10-3
Importing the first steps project 3-4
Induced imports 17-39
Installing Objecteering/Eclipse 11-5
Installing the Objecteering/Java

module 2-3
Integrated development environment

(IDE) 17-6
Integration development environments

1-4
Interface class 14-10
Invariants 9-14
J methods

Summary 17-54
J rules 17-4
J variables

Summary 17-54
J2EE perspective 11-4
Java class libraries 8-3
Java code generation 1-8, 1-12

Consistency checks 5-4
Generating types and accessors

5-3
Updating a model 3-20

Java commands 3-5, 3-9
Analyze the compilation 3-11
Compile 3-11
Destroy the compiled files 3-11

Edit 3-11
Edit the applet 3-11
Generate 3-11
Generate and compile 3-11
Generate documentation 3-11
Generate the makefile 3-11
Launch the applet 3-11
Recompile all 3-11
Store 3-11, 6-5
Update 3-11
Visualize 3-11
Visualize the applet 3-11
Visualize the makefile 3-11

Java compilation 1-8, 1-12
Java configuration window

Applet group 17-19
Code generation group 17-7
Compilation group 17-16
Declaration visibility for attributes

and associations group 17-12
Documentation group 17-20
Eclipse group 17-26
External edition group 17-11
Forte group 17-15
General group 17-5
Generation directories 17-4
Generation document templates

17-4
Generation options 17-4
Overview 17-4
Patterns group 17-25
Project used to generate accessors

17-4
Project used to map types 17-4
Reverse group 17-22
Run group 17-26
UML profiles 17-4

Visibility for accessors 17-13
Visual Age group 17-25

Java context menu 3-4
Java Development Kit 1-12
Java documentation 8-4
Java documentation generation 7-3

Documentation generation work
product 7-3

Launching documentation
generation 7-4

Java features
Reverse engineering 1-9

Java generation commands 10-4
Java generation parameters 5-3
Java generation work product 1-12,

2-5, 3-5, 3-9, 3-21, 3-28, 4-9, 4-24,
4-31, 5-5, 6-3, 7-4
Creating a Java generation work

product 3-6
Propagation 3-7

Java generation work product
commands 5-7

Java module
Aim of the module 1-3
Module functions 1-3

Java module functioning modes 9-3
Java note types 1-7
Java notes 1-7, 1-8, 5-3

Description 7-5
Description notes 3-28
JavaBottom 5-20, 17-57
Javacode 5-20
JavaDoc 5-20, 7-5, 17-8, 17-24,

17-59, 17-61
Javadoc type notes 3-28
JavaHeader 5-20
JavaInitValue 5-21
JavaMembers 5-20, 17-59

JavaReturned 5-21, 17-61
JavaSuper 5-21, 17-61
targetType 17-28

Java patterns
Creating methods to be redefined

1-11
Transforming a class 1-11

Java patterns
Creating methods to be

implemented 1-11
Listening to events 1-10
Non-derivable method 1-11
Presentation 1-10
Remote method invocation (RMI)

1-10
RMI 1-10
Sending events 1-10

Java perspective 11-4
Java primitive types 8-14
Java properties editor

Association 2-12
Attribute 2-10
Class 2-6
Operation 2-8
Package 2-5
Parameter 2-14

Java reverse 1-3
Java source file 8-4
Java tagged value types 1-7
Java tagged values 1-7
Java types 1-7, 1-12
Java/Objecteering correspondence

8-14
Javadoc @see markers 7-16
Javadoc notes 2-7, 2-13, 7-5
javadoc tool 1-8, 3-28
JavaInitValue note 2-13

JavaPredType project
Structure 17-28

JavaPredTypes project
Generating declarations and

accessors 17-30
JavaPredTypes project

Mapping types 17-28
JavaTypes package 17-27

Roles 17-27
JDK 1-3, 1-5, 1-8, 1-9, 1-12, 4-5, 4-

16, 14-9, 15-3, 17-6, 17-21
AWT component 15-3
SWING component 15-3

JDK 1.2 2-3
JDK javadoc tool 7-3
Launching the perspective 11-17
License 2-3
Listening to events

Calling the pattern 4-28
Elements created during

transformation 4-31
Generating code and compiling 4-

31
Introduction 4-27
Selecting events 4-29

Listening to events pattern 15-3
Aim of the pattern 15-3
Elements created during

transformation 15-9
Initial model 15-4
Model after pattern application 15-

8
Operating mode 15-5
Selecting events 15-6

Main class ambiguity 6-5
Main classes 6-5
Makefile 6-3

Analyzing compilation 3-26
Generating the makefile 3-21

Makefile generation
Document templates 17-62

Managing imports 9-14
Mapping Java attribute accessors

17-27
Mapping Java attribute declarations

17-27
Mapping Java attribute types 17-27
Mapping Objecteering/UML types 1-

12
Mapping operation parameter types

17-27
Mapping types 17-3
Marked zones 9-5, 10-9
Markers 1-4, 1-12, 3-19, 3-20, 9-8,

10-9
Methods to implement

Calling the pattern 16-7
Methods to implement pattern

Initial model 16-6
Model after pattern application 16-

8
Modifications made to the model

16-8
Overview 16-6

Methods to redefine
Calling the pattern 16-10
Initial model 16-9
Model after pattern application 16-

11
Modifications made to the model

16-11
Overview 16-9

Metrics 9-7
Model creation wizard 11-6
Model driven engineering 9-3, 9-8

Advantages 9-7
Drawbacks 9-7
Principles 9-5

Model driven mode 1-4, 3-20, 9-3, 9-
5, 9-8, 10-4, 10-8, 17-6
Advantages 9-7
Drawbacks 9-7

Model/code consistency 9-7
Model-driven mode 11-23
Modeling see also links 7-17
Modifying configuration parameters

17-3
Modifying the configuration of module

parameters 2-3
Module parameter configuration 3-

19
Multiple multiplicity associations and

attributes 9-14
N-ary associations 9-10
Navigable association

Tagged values 5-16
Type of notes 5-21

Non derivable method
Calling the pattern 4-35
Creating methods to be redefined

4-41
Creating operations to implement

4-37
Introduction 4-34

Non derivable method pattern
Calling the pattern 16-5
Initial model 16-4
Use 16-3

Non-compilable sources 10-8
Non-primitive class pattern

Calling the pattern 16-16
Initial model 16-15

Model after pattern application 16-
17

Modifications made to the model
16-17

Overview 16-15
Non-primitive classes 9-14, 16-15
Notes 1-6, 1-12, 5-20, 9-5, 16-14,

16-17
JavaBottom 5-23
JavaMembers 5-23
Types 17-53

Objecteering/Documentation 17-55
Objecteering/Eclipse 11-3
Objecteering/Eclipse functions 11-4
Objecteering/Eclipse glossary 11-4
Objecteering/Introduction 11-5, 11-

10
Objecteering/UML basic options 11-

9
Objecteering/UML console 3-21, 10-

8, 11-19
Objecteering/UML Modeler 1-6
Objecteering/UML Profile Builder 1-

3, 1-7, 5-3, 11-4, 17-55
Objecteering/UML repository 1-12
Objecteering/UML to Eclipse 11-3
Objecteering/UML view 11-19
objingcl 18-3
Operation

Java notions 5-24
Tagged values 5-12
Type of notes 5-21

Optimization 1-11
Package

Java notions 5-23
Tagged values 5-11

Parameter
Tagged values 5-18

Parameter declarations 1-7
Customization 17-52

Parameter passing mode 8-14
Parameter types

In/Out 8-14
Parameterization 11-4

Generation document template 1-
3

Module parameters 1-3
Parameterization in Eclipse 11-26
Parameterization in Objecteering/Java

11-21
Parameterization of basic types and

accessors 1-3
Parameterizing attribute accessors

1-7
Parameterizing attribute declaration

1-7
Parameterizing attribute types 1-7
Parameterizing parameter declaration

1-7
Parameterizing parameter types 1-7
Parameters and Javadoc @param

markers 7-7
Parameters and Javadoc @throws

markers 7-13
Perspective 11-4, 11-10, 11-17
Post-conditions 9-14
Pre-conditions 9-14
Predefined types 8-14
Preparing the Eclipse working

environment 11-10
Prerequisites to using

Objecteering/Eclipse 11-5
Primitive class pattern

Calling the pattern 16-13
Initial model 16-12

Model after pattern application 16-
14

Modifications made to the model
16-14

Overview 16-12
Primitive classes 9-14, 16-15
Producing Java files 1-7
Programming patterns 12-3
Project type selection box 11-6
Propagating a Java generation work

product 4-24, 4-31
Propagating a work product 4-9
Properties editor 1-12, 3-5, 3-6

Adding notes 1-6
Adding stereotypes 1-6
Adding tagged values 1-6
Compilation 1-6
Generation 1-6
Java tab 3-5, 3-9, 7-6, 7-9, 7-12
Javadoc notes 7-8, 7-11
Overview 1-6
Tabs 1-6
Visualization 1-6

Redefining reversed class methods
8-3

Remote method invocation
Introduction 4-5
Model after transformation 4-8
Model before transformation 4-5
Overview 13-3

Removable consistency checks 5-4,
8-5

Return parameters and Javadoc
@return markers 7-10

Reversable sources 8-3
Reverse

Classes used 8-13

Command 3-36
Consistency checks 8-5
Introduction 3-35
Launching reverse operations 8-8
Operating mode 8-13
Re-running the reverse operation

8-10
Selecting classes to be reversed

3-38
Selecting classes to reverse 8-9
Visualizing information related to a

class 8-11
Warning 3-35

Reverse engineering 9-3, 9-8, 9-14
Creating associations towards

classes 1-9
Creating attributes 1-9
Creating method parameters 1-9
Implementing classes 1-9
Specializing classes 1-9

Reverse features 8-7
Launching the reverse on a

package 8-7
Relaunching the reverse on a

package which has already
reversed classes 8-7

Relaunching the reverse on an
already reversed class 8-7

Visualizing code a reversed class
8-7

Visualizing documentation on a
reversed class 8-7

Reverse of existing libraries 1-3
Reverse operations 10-9
Reversed classes 1-11

Status 8-4
Using reversed classes 8-3

Reversing 1-8

RMI pattern
Running 4-6
Transformations 13-8
Use 13-3

RMI Pattern
Operating mode 13-5

Root package 11-9
Round trip engineering

Advantages 9-9
Drawbacks 9-9
Principles 9-8

Round trip mode 1-4, 3-20, 3-41, 9-
3, 9-14, 10-4, 10-8, 10-9, 17-6, 17-
24
Advantages 9-9
Drawbacks 9-9
Frequently encountered problems -

Divergence in generation 9-12
Frequently encountered problems -

N-ary associations 9-10
Frequently encountered problems -

Renaming a class 9-11
Round-trip mode 11-23
Running an applet

Command 3-34
Introduction 3-31

See also links 7-16, 7-17
Selecting classes to be reversed 8-9
Selecting Objecteering/Eclipse 11-5
Selecting the Java default model type

2-4
Selecting the Objecteering/Java

module 2-3
Sending events

Data association 4-19
Elements created during first

transformation 4-16

Elements created during second
transformation 4-21

Introduction 4-11
Modifying the mutator 4-18

Sending events pattern
Aim 14-3
Operating mode 14-5
Transformation of the model 14-8

Sending events pattern
Initial model 14-4
Model after pattern application 14-

7
Use 14-3

Site 11-5
Skeleton 17-65, 17-69
Specializing reversed classes 8-3
SQL 9-7
Standardized accessor 9-15
Stereotypes 1-6, 8-14, 16-14, 16-17

<<create>> stereotype 8-14
<<throw>> 7-5

Stereotypes on a constraint 5-22
<<Invariant>> 5-22
<<JavaDocInvariant>> 5-22
<<JavaInvariant>> 5-22
<<JavaPostCondition>> 5-22
<<JavaPreCondition>> 5-22

Storage 3-30, 6-5
Stub 17-65, 17-69
SWING component 15-3
Tagged values 1-6, 5-3, 5-9, 8-14,

16-14, 16-17
{access} tagged value 17-31
{import} tagged value 17-39
{JavaBean} tagged value 5-10
{JavaBeanResource} tagged value

5-10, 5-11

{JavaByte} tagged value 5-13, 5-
18, 8-14, 17-29

{JavaExtends} tagged value 5-10,
5-23, 17-56

{JavaExtern} tagged value 5-10,
5-11, 8-4

{JavaFilter} tagged value 5-13
{JavaFilterAccessor} tagged value

5-16, 17-30
{JavaFinal} tagged value 5-14, 5-

16, 5-24, 8-14, 17-33
{JavaGenerateAccessor} tagged

value 5-13, 5-16, 17-30
{JavaImplements} tagged value 5-

10, 5-23, 12-6, 17-56
{JavaImport} tagged value 5-10, 5-

11, 5-23
{JavaInitValue} tagged value 17-

36
{JavaLong} tagged value 5-13, 5-

18, 8-14, 17-29
{JavaName tagged value 5-13
{JavaName} tagged value 5-10, 5-

11, 5-12, 5-16, 5-19, 5-23
{JavaNative} tagged value 5-9, 5-

12, 5-24, 8-14
{JavaNoAccessor} tagged value

4-17, 4-22, 5-10, 5-13, 5-16, 14-
11, 17-30

{JavaNoInvariant} tagged value 5-
12

{JavaNonPublic} tagged value 5-
10, 5-23

{JavaNoPackage} tagged value 5-
11

{JavaParentConditions} tagged
value 5-12

{JavaPublic} tagged value 5-13, 5-
16, 5-19, 17-34

{JavaRoot} tagged value 5-11

{JavaShort} tagged value 5-13, 5-
18, 8-14

{JavaStatic} tagged value 5-10
{JavaStrict} tagged value 5-12
{JavaSynchronized} tagged value

5-12, 5-24, 8-14
{JavaThrownException} tagged

value 4-9, 5-12, 13-8
{JavaTransient} tagged value 5-

14, 5-16, 8-14, 17-33
{JavaTrownException} tagged value

5-24
{JavaTypeExpr} tagged value 5-

13, 5-16, 5-18, 8-15, 17-35, 17-39
{JavaVolatile} tagged value 5-14,

5-16, 8-14, 17-33
{JavaWrapper} tagged value 5-13,

5-18, 17-36, 17-38
{Jeval} tagged value 17-28, 17-29
{modify} tagged value 17-31
{notDefault} tagged value 17-30
{type} tagged value 5-13, 5-16, 5-

18, 17-30, 17-38, 17-40
Association end 5-19
Attribute 5-13
Class 5-10
Data type 5-19
Navigable association 5-16
Operation 5-12
Package 5-11
Parameter 5-18
Types 17-53

The properties editor for Java 2-3
Thrown exceptions 7-13
Transforming a class into a non-

primitive class 1-11
Transforming a class into a primitive

class 1-11

Transforming a non-primitive class into
a primitive class 4-44

Transforming a primitive class into a
non-primitive class 4-47

Type and accessor generation project
1-12

Type mapping and accessor
generation packages 17-27

TypesEditor module 17-53
UML model types 2-4
UML modeling rules 3-37
UML Profile Builder 11-4
UML profiles 17-4
Updating a model 3-20
Using the Objecteering/Java module

Installing the module 2-3
Selecting the module 2-3

View 11-4, 11-17
Visual Age 1-4, 10-8

Internal commands 10-9
Visual Age/Objecteering 10-4

Compiling and archiving 10-9
Configuring Visual Age 10-6
Exporting Visual Age sources 10-4
Generating Java code 10-8
Installing Visual Age 10-5
Operating mode 10-8
Reverse operations 10-9
The "Update" command 10-9

Visualizing documentation on
reversed elements 8-3

Visualizing reversed classes 8-3
Visualizing the makefile 3-23
Warning messages 3-41
Websphere Studio Application

Developer 11-4
Work products

Java generation work product 5-5 WSAD 11-4

