
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

    Objecteering/J Libraries User Guide

   Objecteering/Metamodel User Guide

                      Version 5.2.2



Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software.  The software described in this document is
furnished under a license agreement.  The software may be used or copied only in accordance
with the terms of the agreement.  It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.  The purchaser may make one copy of
the software for backup purposes.  No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/001

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group.  Rational
ClearCase is a registered trademark of Rational Software.  CM Synergy is a registered
trademark of Telelogic.  PVCS Version Manager is a registered trademark  of Merant.  Visual
SourceSafe is a registered trademark of Microsoft.  All other company or product names are
trademarks or registered trademarks of their respective owners.



www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

    Objecteering/J Libraries User Guide

                Version 5.2.2



Contents

Chapter 1: Presentation
Overview ........................................................................................................1-3
J library services ............................................................................................1-4
J service syntax conventions .........................................................................1-6

Chapter 2: Modifying a UML model with J
Overview of model transformation.................................................................2-3
Managing the session ....................................................................................2-5
Model transformation primitives.....................................................................2-7

Chapter 3: Diagrams and view elements
Overview of diagrams and view elements .....................................................3-3
Handling diagrams and view elements with J: Principles .............................3-6
First steps.......................................................................................................3-8
"Diagram" class............................................................................................3-12
"Point" class .................................................................................................3-21
"ViewBox" class ...........................................................................................3-23
"ViewElement" class ....................................................................................3-26
"ViewLink" class ...........................................................................................3-30
Editor management services .......................................................................3-32

Chapter 4: System and execution environment services
System and environment ...............................................................................4-3
Objecteering/UML management..................................................................4-10
File system management.............................................................................4-11

Chapter 5: Module management facilities
Module management services.......................................................................5-3
Managing consistency checks .......................................................................5-9
Managing work products .............................................................................5-10
Managing generated files ............................................................................5-18
Editing generated files .................................................................................5-20



Chapter 6: Search services
Overview of search services..........................................................................6-3
Search services .............................................................................................6-5
Examples of searches .................................................................................6-10

Chapter 7: Dynamic dialog boxes
Introduction to dynamic dialog boxes ............................................................7-3
Calls used ......................................................................................................7-5
JUserObject methods ....................................................................................7-7
JSet methods .................................................................................................7-9
JTree and JTreeItem methods ....................................................................7-18
JBox and JNoModalBox methods ...............................................................7-23
User interaction methods.............................................................................7-29
Examples of J box creation..........................................................................7-30

Chapter 8: DOM parser usage services
Introduction to the DOM parser .....................................................................8-3
JDOM_Parser methods .................................................................................8-7
JDOM_Node methods .................................................................................8-11
JDOM_Document methods .........................................................................8-15
JDOM_Element methods.............................................................................8-19
Example .......................................................................................................8-22

Chapter 9: J report window services
Overview of the J report window ...................................................................9-3
Using the J report window .............................................................................9-4
Customizing the J report window.................................................................9-10
J report window example .............................................................................9-12

Chapter 10: Properties editor services
Overview of properties editor services ........................................................10-3
Initializing the properties editor ....................................................................10-6
Displaying the contents of the properties editor ..........................................10-7
Managing field positioning using matrices ................................................10-11
Creating fields ............................................................................................10-13

Chapter 11: Miscellaneous
Scan services...............................................................................................11-3
Stream exchange services ..........................................................................11-4
"Object" class ...............................................................................................11-8
Project management services .....................................................................11-9

Index



Chapter 1: Presentation



Chapter 1: Presentation

Objecteering/J Libraries User Guide 1-3

Overview

Presentation
Welcome to the Objecteering/J Libraries User Guide!
J is a language dedicated to the management of UML modules in
Objecteering/UML.  This language is documented in:

♦= The Objecteering/The J Language user guide, which provides basic J
mechanisms

♦= The Objecteering/MetaModel User Guide, which explains the different
information accessible from J

♦= The Objecteering/UML Profile Builder User Guide, which explains how to enter,
execute, test and package J rules

The Objecteering/J Libraries User Guide completes our extensive range of user
guides and tools, thus providing a full set of utilities, which reinforces still further
the power of J.

Examples
An example is provided in the form of the "J_Examples" UML profiling project.
Commands which execute this example on the test project are defined in the "pop-
up" menus.  J methods are defined in the "default#external#J_Example" UML
profile.



Chapter 1: Presentation

1-4 Objecteering/J Libraries User Guide

J library services

The Objecteering/UML J libraries provide a set of utility services which are used
to:

♦= dynamically modify a model with the session mechanism

♦= create a simplified graphical user interface

♦= build a module, by realizing its own work products and its own initialization
processing, or by using text edition with links on the model, etc.

♦= couple the operating system, by launching processing of files and directories,
etc.

♦= create, modify and automatically position diagrams

♦= realize model exchanges in standardized ASCII form or specific to
Objecteering/UML.



Chapter 1: Presentation

Objecteering/J Libraries User Guide 1-5

The ... library is used to...
Module management services execute J operations during the installation of a

module.

System and environment control system processes, and get information on
the environment.

File management manage the typical services which an
Objecteering/UML system provides on files and
directories.

Scan services facilitate navigation of the metamodel.

Stream exchange services provide model stream exchange in the XMI
standard or in the "Externalization" format specific
to Objecteering/UML.

Work product customize the mechanisms predefined for work
products in Objecteering/UML.

Generated files management and
edition

provide the consistency mechanisms and edition
facilities used to generate files.

J dialog box provide elementary GUI facilities.

J session management provide mechanisms which are used to modify a
model with J.

Handling diagrams with J create, change or lay out UML diagrams with J.

Properties editor provide services to manage the properties editor



Chapter 1: Presentation

1-6 Objecteering/J Libraries User Guide

J service syntax conventions

J language service syntax
J services have the following syntax (Figure 1-1):

Figure 1-1. J service syntax

This indicates that the "message" service can be called on any "ModelElement"
and will return a "void".

For example:

boolean Object:moduleInstall()

The "moduleInstall" service, which is called after a module is installed, can be
called on any "Object" and will return a boolean.



Chapter 2: Modifying a UML model
with J



Chapter 2: Modifying a UML model with J

Objecteering/J Libraries User Guide 2-3

Overview of model transformation

Model transformation
J can be used to access model values for all sorts of applications, and is at its
most powerful when transforming a model.  Starting with an initial model, it is used
to create associations, operations, generalization, links, etc.  The model is
automatically transformed, just as if a designer, seeking to implement an analysis
model, had manually carried out the transformation.  J a particularly high
performance tool for automating the building of design patterns.

"High level" primitives
It is important to note that any modification of the model must be carried out in a
session (please see "Managing the Session" section in chapter 2 of this user
guide for further information).
For most of the metaclasses, metaclass creation or modification services (please
see the "Constructor" rubric for each metaclass) are provided.
High level primitives use information from the metamodel, to create all the
necessary and easily deducible links automatically.  We strongly recommend
using them instead of "low level" primitives.
The advantages of high level primitives are as follows:

♦= easier creation of elements

♦= upward compatibility is guaranteed.  Future developments linked to our model
will be supported by these primitives, something which is not guaranteed for
low level primitives.

For example, each element must be attached to a given set of "parent" elements.
If there are omissions, there will be rejects at the end of a session.  All classes
must, for example, be attached to a package or a class.  This must be
remembered during "low level" creation of a class.



Chapter 2: Modifying a UML model with J

2-4 Objecteering/J Libraries User Guide

"Low level" primitives
In general, J has a model element creation mechanism called "low level".  It is
implemented simply by using the names of classes, roles, attributes, etc.  These
primitives are called "low level", since all necessary links must be defined, and all
necessary intermediary elements created.  We recommend that wherever possible
"high level" primitives be used.  Furthermore, "high level" primitives are stable,
regardless of whether or not the metamodel evolves in future versions.

Example of usage
In the example below, a "print" method will be created on the current class.  Low
level primitives are used here, but more convenient high level primitives should be
used instead.

Note: The "add a "print" operation" command on a class is used to execute this
program on classes.

Class:addPrint()
{
Operation M ;
sessionBegin ("addPrintOperationExample", true) ;

// beginning of the "persistent" session
M = Operation.new ();

// creation of a method
M.setName ("print") ;

// Assignment of the Name attribute
this.appendPart(M) ;

// the current class is attached to the method
sessionEnd ();

// end of the session,
// the current class has an attached method
//after execution of Objecteering/UML's consistency
//check

}



Chapter 2: Modifying a UML model with J

Objecteering/J Libraries User Guide 2-5

Managing the session

Overview
Model transformation is carried out within a session which has the following
characteristics:

♦= It can be interrupted during processing ("sessionAbort").

♦= It must end with a consistency check, since any transformation must be
consistent, otherwise it is refused.  If removable consistency checks have been
deactivated, the check will not be applied.

♦= Sessions must not be embedded.

♦= The final user can do "undo" for a session.

♦= It is the final user who makes a definite backup of a session, except when the
transformation mode is performed with objingcl.  In this case, if the consistency
check is sound, a back-up is made.

Starting a session
sessionBegin (in String sessionName, in boolean
isPersistant);

This starts a session.  The name of the session (chosen by the programmer) is
fixed as a parameter.  The "isPersistent" parameter determines whether the user
model should be modified (isPersistent = true) or whether transformation should
be ignored at the end of a session.



Chapter 2: Modifying a UML model with J

2-6 Objecteering/J Libraries User Guide

Ending a session
sessionAbort ();

This cancels the current session.  All modifications are ignored.

sessionEnd ();

This ends the current session.  If the session is persistent, then consistency
checks are run.  If the model is consistent, Objecteering/UML informs each of the
updated "clients" (graphic editors, explorers).  If the session is transient, it ends
with no impact on the user model and the editors.  This is not the case for
removable consistency checks.

Note: any ending of a J program that does not use these primitives (end of the
program, or "exit" primitive) corresponds to an "Abort".

State of a session
The following methods give the information related to the current session.
boolean sessionHasBegun()

This determines whether a session is in progress.

String get_sessionName()

This returns the name of the current session, or "" (empty) if there is no active
session.

Managing consistency
If removable consistency checks are active, the consistency check function is
activated automatically at the end of a persistent session.  It can be launched by a
program using the following method:
boolean sessionCheck()

which returns true if the model is consistent.



Chapter 2: Modifying a UML model with J

Objecteering/J Libraries User Guide 2-7

Model transformation primitives

Overview
Model transformation primitives are used to:

♦= create a metaclass instance

♦= change attribute values

♦= add a link

♦= destroy an element

♦= delete a link

♦= sort part of the model (for example, the attributes of a class)
It is possible, for example, to create a class, name it and add methods with
parameters, using Objecteering/UML Profile Builder.



Chapter 2: Modifying a UML model with J

2-8 Objecteering/J Libraries User Guide

Low level primitives
The primitive ... is used to ... example ...

new create an element ... creation of a class (*)

Class C;

C = Class.new;

set<AttributeName> assign the value of an
attribute.

C.setName("client");

C.setVisibility(Public);

append<RoleName> create a link in the
metamodel

M :Operation ;...

C.appendPart(M);

...add an operation to a class

delete destroy an element. Its
links are updated and its
components are destroyed

C.delete;

...destruction of C and its
components (therefore M)

erase<RoleName> destroy a link C.erasePart(M);

...deletes the link between the C
class and the M operation

(note : M is not destroyed)

sortSemanticAssociation
(in String
pSortedRoleName, in
boolean
pAscendingSort)

sort elements accessible
from the current object,
through the
pSortedRoleName role.
Elements are sorted
according to their names.
Elements with no name
are not handled.

This primitive requires a
persistent J session.

currentPackage.sortSemantic
Association ("OwnedNameSpace",
true)

...sorts the accessible objects by
name through the
"OwnedNameSpace" role from the
"currentPackage" package.

(*): it is necessary to attach this class to a UML modeling project, so that the
creation be definite.



Chapter 2: Modifying a UML model with J

Objecteering/J Libraries User Guide 2-9

Example
We are going to create accessors with "set<AttributeName>" and
"get<AttributeName>" for each class attribute.

Note: The "addAccessor" command on a class is used to execute the program
below.

Class#addAccessor
{

Operation M;
Parameter P;
Class C;
sessionBegin ("addAccessor", true);

C = this;
PartAttribute
{

M = Operation.new;
M.setName("set_" + Name);
C.appendPart(M);
P=Parameter.new;
P.setName("AttValue");
M.appendIO(P);
M = Operation.new;
M.setName("get_" + Name);
C.appendPart(M);
P = Parameter.new;
P.setName("R");
M.appendReturn(P);

}
sessionEnd();



Chapter 3: Diagrams and view
elements



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-3

Overview of diagrams and view elements

Presentation
Objecteering/UML grants access to the diagram and ViewElement metamodel,
thus allowing you to handle diagrams and layout using the J language.  Therefore,
it is possible to automatically layout, animate and create diagrams with J, and to
provide any kind of automated service related to UML diagrams.
This chapter will describe how to handle diagrams and ViewElements, by
describing the principle, providing examples, and describing the metamodel.



Chapter 3: Diagrams and view elements

3-4 Objecteering/J Libraries User Guide

Metamodel synthesis
A Diagram is made up of ViewElements that can be either Boxes (ViewBox) or
Links (ViewLink).  Boxes and Links are defined with one or several geometrical
Points, and have various graphical resources that can be managed through J.  A
ViewElement is generally a representation of an Element, defined in the UML
metamodel.  Most elements can be represented by an unlimited number of
ViewElements, depending on presentation needs.  For example, a Package can
have a related Class diagram, that will contain several ViewBoxes representing
classes that belong to the Package, and ViewLinks representing dependencies,
Associations, Generalizations, etc.

Figure 3-1. Diagram metamodel

Several Elements can have associated Diagrams, that will contain a set of
ViewElements.  This is typically the case of NameSpaces.



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-5

Diagrams and view elements model metaclasses
♦= Diagram: Graphic representation of a model.

♦= Point: Graphic point in a diagram.

♦= ViewBox: Graphic Boxes.

♦= ViewElement: Graphic representation of a ModelElement.

♦= ViewLink: Graphic link.



Chapter 3: Diagrams and view elements

3-6 Objecteering/J Libraries User Guide

Handling diagrams and view elements with J: Principles

Model and representation
Objecteering/UML, in accordance with the UML standard, separates the model (its
semantics) from its representation.  The set of metaclasses presented up until
now corresponded to the model (Package, Class, Operation, etc.).
Representation allows the construction of graphical views associated to the
model.
The ViewElement metaclass is a representation of a model element.  A model
element can be associated with several ViewElements.  For example, a Class can
be represented in several different Diagrams in several forms (with its attributes)
which present its tagged values, in color, etc.).  A Class will, therefore, have
several ViewElements which represent it within several Diagrams (Figure 3-2).

Figure 3-2. Different representations (ViewElement) of a class (Model)

In UML, this distinction reflects the separation of ModelElement and ViewElement.



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-7

Graphic management
The graphic model is very general, and only presents the ViewBox and ViewLink
generic classes.
The order of creation for a graphic element in J must always indicate the
associated semantic element.  Objecteering/UML, knowing the context of the
diagram and of the presented model element, will then create the correct graphic
form. For example, the introduction:
aBox = adiagram.createAddAndMoveViewBox

(aClass1, 300,30,70,75);

will create in the "aDiagram" diagram a representation of the "aClass1" class, in
the attached coordinates (see the "Point" class for the description of the system of
coordinated graphics).
The three important notions to be dealt with are, therefore, the Diagram, the model
element (Element) and the representation of the elements (ViewElement).
When a ViewElement is created, it is possible to modify its graphic resources in J
(color, width, coordinates), by modifying the attributes provided by the
ViewElement, Point, ViewBox and ViewLink classes.
For example, the instruction below will present the "aBox" box, with a red contour
and a green background :
aBox.bgGreen=255;
aBox.fgRed=255;



Chapter 3: Diagrams and view elements

3-8 Objecteering/J Libraries User Guide

First steps

Overview
We are now going to create a J method for a Package, which will automatically
create a class diagram showing all the package's classes with their links
(generalizations, associations etc).
Diagram handling services are used to create graphic elements.  The layout
service is then called, thus avoiding tedious calculation of coordinates in J.

Figure 3-3. Diagram created automatically



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-9

Steps:
1 -  Select the package in the explorer.

2 -  Click on the  "Create a class diagram" icon in the "Items" tab of the
properties editor.  The class diagram is then automatically opened.

3 -  Click on the  "Show contents" button.  The contents of the package  (the
Class1, Class2, Class3 classes) then appear.

To make the links (associations, generalizations, etc) visible, select the classes
using the right-mouse button, and choose the "Show links" option from the context
menu which appears.



Chapter 3: Diagrams and view elements

3-10 Objecteering/J Libraries User Guide

Entering and executing
Edit the "MetaExample" example UML profiling project.
In the model explorer, run the "create Class Diagram" command on a package
which owns classes with some links (associations, etc).  You will then see the
diagram appear.
The "createClassDiagram" J method can be modified to adapt graphical behavior
(for example by displaying classes in red).

Package:createClassDiagram()
{

StaticClassDiagram aDiagram;
sessionBegin("Generate diagram",true);

// create the diagram :
aDiagram = StaticClassDiagram.new ;
aDiagram.setName("generatedClassDiagram") ;
appendproduct(aDiagram) ;

// show package's components in the diagram :
// open a graphic session
aDiagram.open() ;

// show classes and package :
OwnedElementNameSpace
{

aDiagram.createAndAddViewBox(this) ;
// show generalizations of the current class

package:
ParentGeneralization
{

aDiagram.createAndAddViewLink(this) ;
}

// show uses :
DestinationUse
{

aDiagram.createAndAddViewLink(this) ;
}



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-11

// show associations :
if (ClassOf.Name=="Class")
PartAssociationEnd
{

aDiagram.createAndAddViewLink(this) ;
}

}

// layout :
aDiagram.layoutViewElements

(aDiagram.ViewComponentViewBox,
aDiagram.ViewComponentViewLink) ;

// close the graphic session :
aDiagram.close() ;
sessionEnd () ;

}



Chapter 3: Diagrams and view elements

3-12 Objecteering/J Libraries User Guide

"Diagram" class

Diagram overview
class Diagram extends InternalProduct;

Graphical representation of a model.  A Diagram is a kind of product that is
attached to a ModelElement.  It contains ViewElements that constitute the
representation of a model.  For example, a Package can be attached to Class
Diagrams, that will be made up of ViewElements representing some of the
elements of the Package, their Links, properties, etc.
The subclasses of Diagram represent each kind of diagram specified by UML and
supported by Objecteering/UML.



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-13

Figure 3-4. Detailed class diagram : Diagram

See also: ModelElement, ViewBox, ViewLink.



Chapter 3: Diagrams and view elements

3-14 Objecteering/J Libraries User Guide

Diagram properties
The Diagram class has the following associations:

♦= ViewComponent:ViewElement: Link to the graphical elements that constitute
the Diagram.  This link is only valid after the open operation has been called.

♦= interaction:Interaction: Link allowing diagrams associated with an interaction to
be retrieved.  This link is only valid for sequence diagrams.

It has the following attributes:

♦= LayoutSpaceX: integer

♦= LayoutSpaceY: integer
X and Y spacing between boxes is taken into account, particularly for automatic
positioning.

♦= detailedDisplay: boolean.  The detailedDisplay attribute is used to indicate the
level of detail shown in the diagram.

♦= taggedVisible: boolean.  The taggedVisible attribute indicates whether or not
tagged values are visible when elements are created (default values depend
on general parameterization, which is carried out through the Formalism
section of UML Modeler parameterization).

♦= stereotypeDisplay: This can use one of the following values:

♦= NoneStereotypeDisplayMode: Stereotypes are not displayed.

♦= IconStereotypeDisplayMode: Stereotypes are displayed using an icon.

♦= LabelStereotypeDisplayMode: Stereotypes are displayed using a label.

♦= showSystemBoundary: boolean.  The showSystemBoundary attribute indicates
whether or not the boundaries of use cases (in other words, their oval
encirclement) in use case diagrams are to be visible.



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-15

Diagram consistency rules
Not every type of diagram can be created for every type of element.  The following
table resumes what it is possible to create on different elements.

Model element ... possible associated diagram ...
Package, Sub-system, Class Class Diagram

Package, Sub-system Use Case Diagram

Package, Sub-system, Class,
Collaboration, UseCase

Sequence Diagram

Package, Sub-system, Class Object Diagram

Collaboration Collaboration Diagram

ActivityGraph Activity Diagram

StateMachine State Diagram

Package, Sub-system Deployment Diagram

Package, Sub-system Deployment Instance Diagram



Chapter 3: Diagrams and view elements

3-16 Objecteering/J Libraries User Guide

Diagram constructors
Diagram ModelElement:createUseCaseDiagram

(in String pName)
This operation creates a UseCaseDiagram whose name is given.

Diagram ModelElement:createAndAddUseCaseDiagram (in
String pName)
This operation creates and adds to the current element a UseCaseDiagram
whose name is given.
Example:
UseCaseDiagram MyDiag
=MyPackage.<createAndAddUseCaseDiagram

("MyUseCaseDiag");

Diagram ModelElement:createClassDiagram
(in String pName)

This operation creates a ClassDiagram whose name is given.
Example:
ClassDiagram MyDiagram =createClassDiagram

("MyDiagram");

ModelElement:addDiagram (in Diagram pDiagram)
This operation adds a Diagram to the current Element.
Example:
MyPackage.<addDiagram (MyDiagram);



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-17

Diagram ModelElement:createAndAddClassDiagram
(in String pName)

This operation creates and adds to the current element a ClassDiagram whose
name is given.
Example:
ClassDiagram MyDiag MyPackage.<createAndAddClassDiagram

("MyClassDiag");

ModelElement:createAndAddObjectDiagram (String Name);

ModelElement:createAndAddCollaborationDiagram
(String Name);

ModelElement:createAndAddSequenceDiagram (String Name);

ModelElement:createAndAddDeploymentDiagram
(String Name);

ModelElement:createAndAddInstanceDeploymentDiagram
(String Name);



Chapter 3: Diagrams and view elements

3-18 Objecteering/J Libraries User Guide

Operation:createAndAddStateDiagram (String Name);
NameSpace:createAndAddStateDiagram (String Name);

Operation:createAndAddActivityDiagram (String Name);
NameSpace:createAndAddActivityDiagram (String Name);

These methods create a Diagram related to ModelElement, that will have the
Name Name, and the kind related to the name of the method.  This should be
carried out only for authorized ModelElements (see table below).
Every ModelElement that can have diagrams (Class, Package, UseCase,
StateMachine, Collaboration, and so on) provides the following service:
private Diagram[] getDiagrams();

This is the most thorough way of getting existing diagrams.



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-19

Diagram methods
String kind()
Returns the kind of diagram which can be: Activity, Class, Collaboration,
ComponentDeployment, InstanceDeployment, Object, Sequence, State,
UseCase.

boolean dump (in String format, inout String fileName)
Generates a diagram in a file.  The format can be: "gif", "ps", or "emf".  "gif" is the
correct format for HTML, "emf" is the windows metafile format, and "ps" is
PostScript.

Object:setDiagramDumpPath (in String path)
Sets the directory used by the documentation generation for the diagrams
(dump()).

open();
This is an essential operation, used to handle the diagram's ViewElements.

close();
This closes a diagram.



Chapter 3: Diagrams and view elements

3-20 Objecteering/J Libraries User Guide

layoutViewElements (inoutViewBox [] boxes,
inoutViewLink [] links);

A method which ensures the automatic positioning of links and boxes in a diagram
through parameterization.
Example:
layoutViewElements (myDiagram .<ViewComponentViewBox,

myDiagram .<ViewComponentViewLink);
This command guarantees the automatic positioning of the entire "MyDiagram"
diagram.
A diagram must always be open for its representation elements to be modified.
When the modification session is complete, the close instruction allows the
modifications to be taken into account, and the diagram to be refreshed.

Note: An active editor is only taken into account once the execution of the J
program has been completed.



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-21

"Point" class

Point overview
class Point;

Graphical Point in a diagram.  A Point is defined through its x and y coordinates.

Figure 3-5. Detailed class diagram: Point

See also:Diagram, ViewElement .

Point properties
The Point class has the following attributes:

♦= x: Value of the x coordinate of the point.

♦= y: Value of the y coordinate of the point.



Chapter 3: Diagrams and view elements

3-22 Objecteering/J Libraries User Guide

Point coordinate system

Figure 3-6. Coordinate system in a Diagram

Objecteering/UML uses a classic system of coordinates: the origin is in the top left
corner of the diagram, and the coordinate unit is the pixel.

Note: Boxes can overlap other boxes and links (for example, packages which
overlap classes and packages, composed states, etc).  In this case, the
origin of an overlapped element is the top left corner of the embedding
box.

Point constructor
ViewLink:addPoint (in integer x, in integer y);

Adds an intermediary point to a link.  We then have a "broken" link.
The points are generally implicitly created by ViewElements.  They may be added
explicitly on links.



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-23

"ViewBox" class

ViewBox overview
class ViewBox extends ViewElement;

Graphical Boxes.  A ViewBox represents nodes in a graphic representation.  For
example, a Class is represented by a box.  A box is graphically characterized by
its center Point, its width and its height.
ViewBox can also be embedded.  For example, an Attribute in a Class is
represented by a ViewBox representing the Attribute in a ViewBox which
represents the class.

Figure 3-7. Detailed class diagram : ViewBox

See also:ViewLink, Diagram.



Chapter 3: Diagrams and view elements

3-24 Objecteering/J Libraries User Guide

ViewBox properties
The ViewBox class has the following associations:

♦= ViewComponent:ViewBox: ViewBox contained in the owner ViewBox.

♦= Position:Point: Point being the center of the ViewBox.

The ViewBox class has the following attributes:

♦= w: Value of the width of the ViewBox., defined in pixel.

♦= h: Height of the ViewBox, defined in pixel.

♦= stereotypeDisplay: This can use one of the following values:

♦= NoneStereotypeDisplayMode

♦= IconStereotypeDisplayMode

♦= LabelStereotypeDisplayMode



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-25

ViewBox constructor
ViewBox Diagram:createAddAndMoveViewBox

(in Element model,
in integer x,
in integer y,
in integer w,
in integer h)

This adds a box representing the "model" element in the diagram.

ViewBox ViewBox:createAddAndMoveViewBox
(in Element model,
in integer x,
in integer y,
in integer w,
in integer h)

This overlaps in a diagram box a new box which represents the "model" element
into a diagram box.
A ViewBox can be created in a Diagram, or in a parent ViewBox.  All the
associations and attribute values are set at the time of creation.



Chapter 3: Diagrams and view elements

3-26 Objecteering/J Libraries User Guide

"ViewElement" class

ViewElement overview
class ViewElement extends Element;

Graphical representation of a ModelElement.  For example, the box representing a
class in a diagram will be a ViewElement related to the Class.
A ViewElement belongs to a Diagram.

Figure 3-8. Detailed class diagram: ViewElement



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-27

Color management
The color of graphic elements is managed by ViewElement.  The "fg" colors
(foreround color) are those of the box lines and of its text, whilst the "bg" colors
(background color) are those of the background of the box.

Figure 3-9. The "Resources" dialog box in Objecteering/UML

The RGB system allows you to specify colors.  The values of the "Red" "Green"
and "Blue" attributes are those which appear in the color definition box (as shown
in Figure 3-9).  Whole values between 0 and 255 are concerned here, and they
are used to indicate the density of colors.  When everything is set to 0, the color is
black, and when everything is set to 1, the color is white.



Chapter 3: Diagrams and view elements

3-28 Objecteering/J Libraries User Guide

ViewElement properties
The ViewElement class has the following association:

♦= Model:Element: Link to the element represented by the ViewElement

The class has the following attributes:
Attribute values for colors:

♦= bgRed: Level of red in the background color.

♦= bgGreen: Level of green in the background color of the Element.

♦= bgBlue: Level of blue in the background color of the Element.

♦= fgRed: Level of red in the foreground color of the Element.

♦= fgGreen: Level of green in the foreground color of the Element.

♦= fgBlue: Level of blue in the foreground color of the Element.

Attribute values for line styles:

♦= lineWidth: width of the line drawing the Element.

♦= lineStyle: style of the line drawing the Element : solid, dash, dot, dashdot,
dashdoubledot, alternate, doubledot, longdash.

Attribute values for patterns:

♦= pattern: type of box fill-in (solid, clear, gray, cross, dark 1 to 4, light 1 to 4).

Attribute values for font:

♦= fontFamily: this attribute concerns the name of the font family, for example,
times new roman, lucida, helvetica, etc.  This can vary according to the
platform used.

♦= bold: application of "bold" to characters

♦= underlined: underlining of characters

♦= italic: characters in italics

♦= fontSize: size of characters



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-29

Attribute values for display modes:

♦= mask: used to mask elements

♦= detailedDisplay: used to indicate the level of detail shown

♦= taggedVisible: indicates whether or not tagged values are visible

♦= stereotypeDisplay: indicates whether stereotypes should be represented by a
small icon, a large icon or nothing



Chapter 3: Diagrams and view elements

3-30 Objecteering/J Libraries User Guide

"ViewLink" class

ViewLink overview
class ViewLink extends ViewElement;

Graphical link.  A Link is drawn between two ViewElements.  It represents
Elements such as Dependencies, Associations, Transitions, etc.

Figure 3-10. Detailed class diagram: ViewLink



Chapter 3: Diagrams and view elements

Objecteering/J Libraries User Guide 3-31

ViewLink properties
The ViewLink class has the following associations:

♦= OriginPosition:Point: Origin point of the link.

♦= IntermediatePosition:Point: Set of points that defines the intermediate angles of
the link.

♦= DestinationPosition:Point: Destination Point of the Link.

The ViewLink class has the following attributes:

♦= rakeMode: Determines whether or not adjacent links of the same kind must be
in rake mode.  This only functions for "generalization" links.

ViewLink constructor
ViewLink Diagram:createAndAddViewLink

(in Element linkModel);

Adds to a diagram a link which represents the "linkModel" element.  The link is, by
default, a straight line between the centers of origin boxes and link end-points.

ViewLink method
ViewLink:addPoint (in integer x, in integer y);

Adds a links to an intermediary point.  We then have a "broken" link.

ViewElement Diagram:GetLinkDestination
(in ViewLink link)

ViewElement Diagram:GetLinkOrigin (in ViewLink link)

These methods allow the origin and destination elements of a link to be found.  In
general, "ViewBox" is concerned, but links on links can also exist (for example, in
the case of a ClassAssociation).



Chapter 3: Diagrams and view elements

3-32 Objecteering/J Libraries User Guide

Editor management services

Overview
J provides services which are used to manage editors, for example to open
explorers and graphic editors.

Commands
NameSpace:openInBrowser();
This service is used to open a browser in the current NameSpace.

Diagram:openInEditor();
This service opens the current diagram in edit mode.



Chapter 4: System and execution
environment services



Chapter 4: System and execution environment services

Objecteering/J Libraries User Guide 4-3

System and environment

Presentation
Running a UNIX or a Windows process, getting information on environment
variables are necessary services for interacting properly with the current operating
system.

System environment variables
Dos and Windows use the notion of a system variable, which is close to the notion
of the UNIX environment variable.  It is possible to take the value of these
variables from J.  For everything linked to internal Objecteering/UML
parameterization, we strongly recommend the use of the "Module parameters".

getEnvironmentInfo(in String info,out String result);

Returns the value of the "info" environment variable in "result".  If "info" does not
exist, then "result" is an empty string.

Note: An undefined value or a value defined as empty produces the same result
(result = "")

Example:To recapture the content of the PATH variable:
String path;

getEnvironmentInfo ("PATH", path);

String getObjingPath ()

Returns the "OBJING_PATH" environment variable, which specifies where
Objecteering/UML is located.



Chapter 4: System and execution environment services

4-4 Objecteering/J Libraries User Guide

Running a process
boolean Object:checkedSpawn (in String command_i, inout
String result_o)

This operation spawns a command and returns results.  It is simpler but provides
less control than the following commands.
Example: checkedSpawn ("ps", result);

boolean Object:spawnProcess(in String commandLine, in
boolean withConsole, in boolean withShell, in boolean
wait, out int cmdStatus)

Creates a process which executes "commandLine". "withShell" indicates whether
or not the command should be launched in a shell (sh for Unix, command.com for
Win95 and cmd for NT).  "wait" indicates whether or not you should wait for the
end of the process.  "withConsole" is only used when console Windows (NT/95)
programs are launched, and indicates whether or not the MS/DOS console should
be made to appear.  "cmdStatus" indicates the outgoing status of the command,
and is only valid if "wait" is true.  This method returns a status which indicates
whether or not it was possible to launch the command.

boolean Object:spawnOutputProcess(in string
commandLine, in boolean withConsole, in boolean
withShell, out int cmdStatus, out String output)

Create a process which executes "commandLine". "withShell" indicates whether or
not the command should be launched in a shell (sh for Unix, command.com for
Win95 and cmd for NT).  "withConsole" is only used when console Windows
(NT/95) programs are launched, and indicates whether or not the MS/DOS
console should be made to appear.  "cmdStatus" indicates the outgoing status of
the command. "output" contains the set of standard and error outgoings of the
command.  This method returns a status which indicates whether or not it was
possible to launch the command.



Chapter 4: System and execution environment services

Objecteering/J Libraries User Guide 4-5

Notes on the two above calls:

♦= In Windows, when the "withConsole" parameter is equal to "false", the child
process with the SW_HIDE attribute is launched.  Consequently, when the
program launched is a Windows application (msdev, for example) it is
obligatory to set this parameter to "true", otherwise the application will never
appear.

♦= "commandLine" accepts blanks in file names if inverted commas (" ") are
placed around the file names.

♦= When the "withShell" parameter is equal to "true", it is possible to put any
metacharacter (*, >, etc) known to the shell into "commandLine".  The
metacharacter obviously depends on the platform shell (be careful of
Unix/Windows, Windows/NT and even Windows 95 portability).



Chapter 4: System and execution environment services

4-6 Objecteering/J Libraries User Guide

Getting the day's date
String Object:getCurrentTime ()
This returns the current date.

String Object getFormatedTime (in String pFormat)
This returns the date in the format specified by the pFormat string.  This carries
out the equivalent of the "strftime" system call.
For example, the result of the following example:
String pFormat = "%d / %m / %y"
String ITime = getFormatedTime(pFormat);
StdOut.write (Itime);

is the current date, for example, 14 / 12 / 01.
The formatting codes for pFormat are as follows:



Chapter 4: System and execution environment services

Objecteering/J Libraries User Guide 4-7

The code ... represents ...
%a the abbreviated weekday name.

%A the full weekday name.

%b the abbreviated month name.

%B the full month name.

%c the date and time representation appropriate to the
local time-zone.

%d the day of the month as a decimal number (01-31).

%H the hour in 24-hour format (00-23).

%I the hour in 12-hour format (01-12).

%j the day of the year as a decimal number (001-366).

%m the month as a decimal number (01-12).

%M the minute as a decimal number (00-59).

%p the current local time-zone's a.m./p.m. indicator for a
12-hour clock.

%S the second as a decimal number (00-59).

%U the week of the year as a decimal number, with
Sunday as the first day of the week (00-53).

%w the weekday as a decimal number (0-6, where
Sunday is 0).

%W the week of the year as a decimal number, with
Monday as the first day of the week (00-53).

%x the representation of the date for the current local
time-zone.

%X the representation of the time for the current local
time-zone.

%y the year without the century, as a decimal number
(00-99).

%Y the year with the century, as a decimal number.

%Z the name or abbreviation of the time-zone (no
characters if the time-zone is unknown).

%% the percent sign.



Chapter 4: System and execution environment services

4-8 Objecteering/J Libraries User Guide

As in the printf function, the # flag can prefix any formatting code.  In this case, the
meaning of the format code is changed as follows:

The format code ... for the ... platform means ...
%#a

%#A

%#b

%#B

%#p

%#X

%#z

%#Z

%#%

Windows that the # flag is ignored.

%#c Windows that long date and time
representation, appropriate to the
current local time-zone, is used (for
example, "Thursday, March 21,
2002, 11:30:15").

%#x Windows that long date representation,
appropriate to the current local
time-zone, is used (for example,
Thursday, March 21, 2002)..

%#d

%#H

%#I

%#j

%#m

%#M

%#S

%#U

%#w

%#W

%#y

%#Y

Windows that any leading zeros are
removed.



Chapter 4: System and execution environment services

Objecteering/J Libraries User Guide 4-9

The format code ... for the ... platform means ...
%C UNIX that long date and time

representation, appropriate to the
current local time-zone, is used (for
example, "Thursday, March 21,
2002, 11:30:15").



Chapter 4: System and execution environment services

4-10 Objecteering/J Libraries User Guide

Objecteering/UML management

Purpose
The Objecteering/UML management services provide information on the current
Objecteering/UML environment, and realize certain actions on the tool.

Save
boolean Object:save(in boolean askUserConfirmation)

Saves all modifications carried out since the last save in the current UML
modeling project.  If "askUserConfirmation" is true and the interpreter is not in
"batch" mode, a confirmation dialog box will be displayed.  In all other cases, a
save is triggered.  The return value indicates whether or not the save has been
triggered (it is only "false" if the user has refused the save when asked for
confirmation). After the save, the history of actions is empty.

Pre-condition:No UML Profile Builder session underway.

Post-condition:Return is true => save carried out.

Clear
Object:clearActionHistory()

Clears the history of actions carried out.  This obviously means that the
"undo/redo" operations cannot be used for actions carried out before this
command is run.

Pre-condition:NO UML Profile Builder session underway.

Version
String Object:getObjecteeringVersion()

Returns the Objecteering/UML version number. Example : "5.1.1".



Chapter 4: System and execution environment services

Objecteering/J Libraries User Guide 4-11

File system management

Presentation
J has a set of portable primitives (UNIX/Windows) for typical file system
management operations.
The J stream management services will then be able to access file contents.



Chapter 4: System and execution environment services

4-12 Objecteering/J Libraries User Guide

File system services
boolean Object:removeFile(in String name)

Destroys the "name" file.
The return is "true" if the action has been properly carried out, and "false" if this is
not the case.

boolean Object:moveFile(in String nameOrig, in String
nameDest)

Moves the "nameOrig" file to "nameDest".
The return is "true" if the action has been properly carried out, and "false" if this is
not the case.

boolean Object:copyFile(in String nameOrig, in String
nameDest)

Copies the "nameOrig" file to "nameDest".
The return is "true" if the files are identical, and "false" if this is not the case.
If a file has not been found, "false" is returned.

boolean Object:compareFile(in String name1, in String
name2)

Compares "name1" with "name2".
The return is "true" if the files are identical, and "false" if this is not the case.
If a file has not been found, "false" is returned.



Chapter 4: System and execution environment services

Objecteering/J Libraries User Guide 4-13

boolean Object:tmpFileName(out String name)

Calculates a temporary file name in "name".
The return is "true" if the action is properly carried out, and "false" if this is not the
case.

boolean Object:getFileSize(in String name, out int
size)

Returns the size of the "name" file in "size".
The return is "true" if the action is properly carried out, and "false" if this is not the
case.

boolean Object:mkDir(in String name)

Creates the "name" directory.
The return is "true" if the action has been properly carried out or if the directory
already existed, and "false" if this is not the case.

boolean Object:mkDirRec(in String name)

Creates the "name" directory and the parent directories if necessary.
The return is "true" if the action has been properly carried out or if the directories
already existed, and "false" if this is not the case.

boolean Object:rmDir(in String name, in boolean
removeContent)

Destroys the "name" directory. If "removeContent" is false, then the directory must
be empty, otherwise it must only contain files which will also be deleted.
The return is"true" if the action has been properly carried out, and "false" if this is
not the case.



Chapter 4: System and execution environment services

4-14 Objecteering/J Libraries User Guide

boolean Object:rmDirRec(in String name)

Destroys the "name" directory and its contents recursively.
The return is "true" if the action has been properly carried out, and "false" if this is
not the case.

String Object:getOSFamily()

Indicates the family of the host operating system : "Windows" or "Unix".

String[] Object:getFilesInDirectory (in String
directory)

This returns the list of files contained in the "directory" directory.

boolean Object:getFileTime (in String fileName, out int
date)

This retrieves the creation date of the "fileName" file in the "date" variable.  It
returns true if the operation has been successfully carried out.

Boolean Object:listFile (in String directory, in
boolean prependDir, in boolean recursive, in String
separator, in boolean withFile, in boolean
withDirectory, out String files)

This lists the contents of the "directory" directory in "files".
If "prependDir" is true, directory is concatenated before every entry.
If "recursive" is true, the list contains entries in the sub-directories.  "recursive"
implies "prependDir".
"separator" indicates the separator used to separate file names in "files".  It
returns true if the operation has been successfully carried out.
"withFile" indicates whether or not files should be returned.
"withDirectory" indicates whether or not sub-directories should be returned.



Chapter 5: Module management
facilities



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-3

Module management services

Presentation
Modules are packaged in a directory.  We recommend using the
"$OBJING_PATH/modules/<ModuleName>" directory for a <ModuleName>
module.
In this directory, there will be a module externalization file, containing the
necessary J instructions, stereotype definitions, command definitions, and so on.
In addition, there frequently exist additional scripts and resources, such as
bitmaps, help files, binaries, etc.
During the installation and initialization of a module, configuration operations, used
to prepare the scripts or binaries or to properly define an adapted directory
structure, may be necessary.
A well packaged module will carry out these operations, by writing predefined J
methods defined hereafter.
These methods will be automatically triggered during the reception/deletion and
installation/un-installation operations (for further details on module management
operations, please refer to chapter 10, "Exchanging profiles and modules" of the
Objecteering/UML Profile Builder module).



Chapter 5: Module management facilities

5-4 Objecteering/J Libraries User Guide

Module management services
boolean Object:moduleSelect()

This service is called after a module is selected (only available from
Objecteering/UML Modeler, and not from Objecteering/UML Profile Builder).  It is
also called for its parent modules, even if these are masked by the child module.

boolean Object:moduleUnselect()

This service is called after a module is unselected (only available from
Objecteering/UML Modeler).

boolean Object:moduleInstall()

This service is called after a module is installed.  This can either be:

♦= after a module is installed through the Objecteering/UML administration tool

♦= after a module is selected for the first time in Objecteering/UML Modeler, if the
same version of the module is not already present in the database
("moduleInstall" is called first and then "moduleSelect").

♦= after a new version of a module already present in the database is being
selected for the first time.  Please note that the code of this operation should
not assume that the module has already been selected.

If the module has already been installed through the Objecteering/UML
administration tool, the "moduleInstall" service is not called again when the
module is first selected in Objecteering/UML Modeler.



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-5

boolean Object:moduleUninstall()

This service is called after a module is uninstalled (only available from the
Objecteering/UML administration tool).

Note: When a module is unselected, it is not uninstalled from the database.
Module uninstallation from a database is carried out via the
Objecteering/UML administration tool command "Uninstall a module from a
database..." (for further information, please refer to the "Detailed view of
the Configuration menu" section in chapter 3 of the
Objecteering/Administrating Objecteering Sites user guide).

boolean Object:moduleInit()

This service is called after a module is delivered to a site.

Note: There is no equivalent "un-initialization" operation when a module is
deleted from a site.

boolean Object:moduleStart()

This service is called for each selected module (and its parent modules) when a
UML modeling project is loaded.  It is not called when a new module is selected.

boolean Object:moduleStop()

This service is called for each selected module (and its parent modules) when a
UML modeling project is unloaded.  It is not called when a module is unselected.

Package Object:getTypesPackage(String pPackageName);

This service is used to obtain the "pPackageName" types package.  This types
package is first searched for in the current test project, before being searched for
in the "_predefinedTypes" UML modeling project, where necessary.



Chapter 5: Module management facilities

5-6 Objecteering/J Libraries User Guide

Void Object:deleteTypesPackage(String pPackageName);

This service is used to delete the "pPackageName" types package from the
"_predefinedTypes" UML modeling project.

Void Object:installHelp();

This service is used to incorporate a module help file, which is located in <Module
work directory>/help/index.htm, into the main Objecteering/UML index.  In general,
it is best to use this service from moduleInit(), described above.

Void Object:uninstallHelp();

This service is used to remove a module entry point from the main
Objecteering/UML index.

Void Object:internalizePackage(String pDir,
String pPackageName);

This service is used to internalize an externalized package file.  The file name
which has the <pPackageName>.ext pDir form contains this file.

Void Object:internalizeTypesPackage(String
pPackageName);

This service is used to internalize a types package called "pPackageName" in the
test project, or, by default, in the "_predefinedTypes" UML modeling project.



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-7

Example
This trivial example illustrates the installation of a module.
boolean
Object:default#external#Code#MyGen#moduleInstall ()
{

StdOut.write("Installation of the MyGen module", NL);
return(true);

}

boolean
Object:default#external#Code#MyGen#moduleUninstall ()
{

StdOut.write("Uninstallation of the MyGen module",
NL);

return(false);
}



Chapter 5: Module management facilities

5-8 Objecteering/J Libraries User Guide

Getting module parameter values
Inside a module, parameter values are used for adapting module behavior.  This
value can be accessed from J.
boolean Object:getCurrentModuleParameterValue

(in String name,
in String profile,
out String value)

boolean Object:getParameterValue
(in String name,
in String profile,
in String module,
out String value)

These two services return in "value" the value of the "name" parameter defined in
the "profile" profile (of the current module for the first service).
If the profile is incorrect, in UML Profile Builder mode, they return false, and a
warning appears.
If the profile is incorrect, in UML Modeler mode, they return false.
If the parameter and the environment variable of the same name are non-existent,
in UML Profile Builder mode, they return true, and a warning appears.
If the parameter and the environment variable of the same name are non-existent,
in UML Modeler mode, they return true.

Boolean Object:moduleParameterExists
(in String pParamName,
in String pProfileName,
in String pModuleName)

This returns false if the parameter does not exist for the given module and profile.
Otherwise, it returns true.

boolean Object:currentModuleParameterExists(in String
pParamName, in String pProfileName)
This returns false if the parameter does not exist for the given profile.  Otherwise,
it returns true.



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-9

Managing consistency checks

Presentation
The Objecteering/UML CASE tool provides the user with over 200 powerful
consistency checks, which guarantee the quality and coherence of the model
produced.
However, the user may, in some modeling situations, prefer to have a certain
degree of flexibility with regard to the consistency checks applied to his model,
and for this reason, certain Objecteering/UML consistency checks are removable.
For further information on removable consistency checks, please refer to the
"Removable consistency checks" section in chapter 3 of the Objecteering/UML
Modeler  user guide.

Consistency check management services
setBuildInConsistencyCheckOff()
This call is used to deactivate optional consistency checks.  It has no parameters
and sends back no values.  This call is only accepted during a session, since it
modifies a saved value.

isBuildInConsistencyCheckOn()
This call indicates whether or not optional consistency checks are present.

Example
This simple example traces the installation of a module.
boolean Object:default#external#Code#MyGen#IsCheck ()
{
StdOut.write("test the presence of checks", NL);
return(isBuildInConsistencyCheckOn());
}

boolean Object:default#external#Code#MyGen#CheckOff ()
{
StdOut.write("Checks prevented, NL);
isBuildInConsistencyCheckOff();
return(true);
}



Chapter 5: Module management facilities

5-10 Objecteering/J Libraries User Guide

Managing work products

Overview
Work products have several predefined mechanisms, such as "propagation", or
"file management", which are supported by several methods that can be
redefined.
A work product groups together a generator's set of features as well as its results.
Through a dialog box, a work product is used to define the attributes which are to
be taken into account by the generator.  It is also used to execute the J methods
and to manage files generated by the work product.
All work products specialize the MpGenProduct metaclass.
A work product can be associated to files which will be automatically moved or
deleted when changes to the associated model occur.  For example, the deletion
of a class in Objecteering/UML brings about the deletion of the associated files
(C++ sources).

Managing work product attributes
A work product contains attributes that can be modified in a dialog box.  In a J
method, we sometimes need to access the attribute values of this work product for
generation purposes.
MpGenProduct:getAttributeVal (in String Name)
This service is used to access the value of an attribute defined on a work product.

MpGenProduct:setAttributeVal (in String Name, in String
Value)
This service is used to assign the value of an attribute defined on a work product.



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-11

Managing the work product propagation
Very often, a work product of the same kind exists in a model tree structure.
Typically, a package can have a work product, which has equivalent elements for
sub-packages and sub-classes.  Work product propagation is a useful facility for
end users, who can carry out operations which will be propagated on the entire
tree (for example, code generation).
The four following J methods must be defined on the UML profile which manages
the module and on the work product.
To adapt the management of work products (consistency and propagation on a
model), as well as the management of the generated files, these methods must be
redefined.



Chapter 5: Module management facilities

5-12 Objecteering/J Libraries User Guide

The ... method on the
MpGenProduct metaclass

is automatically triggered on a work
product when ...

initProduct (in MpGenProduct product) it is managed for the first time.  When a work
product is propagated to a model, the Product
parameter corresponds to a "parent" work
product.  The current work product can then be
initialized according to the "parent" work product.

update (in MpGenProduct product) this work product or its associated model element
is modified.  The work product is therefore
informed of the modifications that are carried out,
provided it has been managed.  This method
allows the user to manage the generated files
according to the modifications made to the work
product (different suffix, directory, etc.)

boolean mustPropagate () it is necessary to define until which model
elements (facade package, package, or class),
the propagation must continue.  Therefore, it is
possible to avoid the propagating of a work
product to the packages or classes depending on
the model element that is related to the work
product.  For example, if the work product that is
being processed is related to a class, this method
must return False if we do not wish to create a
work product on a class automatically.

boolean isPresent (in MpGenProduct
product)

It is necessary to know whether a similar work
product should be created during the propagation.
This feature is used when a work product is
already defined on a model element, but hasn't yet
been managed.  In this case, it is not necessary to
create this work product.



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-13

Retrieving a work product
When a model element is being generated, (package or class), the user may need
to know the generation work product with the same type defined on this element to
recover the attributes that are specific to this work product.
A package generation work product can easily bring on the generation of the
classes of this package.  It is then possible to retrieve the class' generation work
product.
ModelElement:default#external#getAnyProduct()
MpGenProduct
This service is used to find the generation work product of the current element
which is driving the current J execution.

Managing consistency and creation
initObject()
This is called on an element before its creation.

boolean verify()
This is called when the button "OK" is pressed to permit the product to close,
especially to increase the consistency rules.



Chapter 5: Module management facilities

5-14 Objecteering/J Libraries User Guide

Managing generation templates
A work product can be associated to a document template or to a generation
template.  The following methods are necessary for connecting these.
initTemplate (in String pName)
This relates a generation template to a product.  pName is the Name of the
template that must be accessible in the product module.
This method returns a boolean, as follows

♦= "false" if the generation template whose name has been used as a parameter
is not found

♦= "true" if the generation template whose name has been used as a parameter is
found

String generateWithTemplate()
This generates with the generation template related to the product.



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-15

Example
MyProduct:default#external#Code#MyGen#initProduct

(in MpGenProduct Product)
{
String ProductName;
String Suffix;
String Path;

// opening of a session
sessionBegin ("Propagate", true);

if (notVoid (Product))
{

// retrieval of the parent work product values
ProductName = Product.Name;
Path = Product.getAttributeVal("path");
Suffix = Product.getAttributeVal("suffix");

// initialization of the current work product
setName (ProductName);
setAttributeVal ("path", Path);
setAttributeVal ("suffix", Suffix);

}

// closing of the "Propagate" session
sessionEnd ();

}

MyProduct:default#external#Code#MyGen#update
(in MpGenProduct Product)

{
String ProductName;
String Suffix;
String Path;



Chapter 5: Module management facilities

5-16 Objecteering/J Libraries User Guide

// opening of a session
sessionBegin ("Propagate", true);

if (notVoid (Product))
{

// retrieval of the values of the parent work
product

ProductName = Product.Name;
Path = Product.getAttributeVal("path");
Suffix = Product.getAttributeVal("suffix");

// initialization of the current work product
setName (ProductName);
setAttributeVal ("path", Path);
setAttributeVal ("suffix", Suffix);

}

// deletion of all the files managed by the work
product

deleteAllFiles ();

// closing of the "Propagate" session
sessionEnd ();

}

MyProduct:default#external#Code#MyGen#mustPropagate ()
return boolean
{

// propagation is carried out on any model
// element associated to the current work product
// A similar work product will then be built for all
// the packages and classes
return true;

}



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-17

MyProduct:default#external#Code#MyGen#isPresent
(Product : in MpGenProduct) return boolean
{

// avoids having a work product with the same type
// on a model element with the package or class type
return Product.ClassOf==ClassOf;

}

Class:default#external#Code#MyGen#generateClass
{
MpGenProduct ClassProduct;
String Path;

// returns the first work product found on
// the class, with the defined "MyProduct" type
// on the "default#Code#MyGen" module
ClassProduct = getAnyProduct ();
Path = ClassProduct.getAttributeName("path");

StdOut.write("The Myen file of the class is
generated in ");

StdOut.write(Path, NL);
}



Chapter 5: Module management facilities

5-18 Objecteering/J Libraries User Guide

Managing generated files

Overview
Files are managed by a work product.  This allows the easy addition or deletion of
a file, according to the changes made to the model.
For example, the files managed by a work product can be automatically deleted
when the work product is deleted.

Features
On a generation work product, two methods can be used to manage the
generated files.  These are used to add or delete a file managed by the work
product.

The ... method is used to ...
mngFile (fileName : in String,
contents : in String)

create the "fileName" file with its "contents" and to
add it as a manager of the generation work product.

reverseAllFiles() reverses all files generated by the product and
modified by an editor.

Note: if mngFile(...) is called on a file that is already managed, its content is
updated if there are any differences.



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-19

Example
JavaProduct:default#external#Code#Java#generate ()
{
String content;
String fileName;

// method used to generate Java code
content = generateJava ();

fileName.strcat (getAttributeVal("path"),
"/",
Name,
".",
getAttributeVal("suffix"));

// create and manage the generated file
mngFile (fileName, content);

// update all the open editors
updateAllEditors ();

}



Chapter 5: Module management facilities

5-20 Objecteering/J Libraries User Guide

Editing generated files

Overview
Objecteering/UML provides a service that maintains consistency between external
text editors and the model.
It is possible to automatically open a dialog box on the corresponding element in
text visualizers, by double-clicking on a generated file zone, providing that specific
markers have been generated.
In the external editors, the same markers allow the Objecteering/UML repository to
be updated according to the modifications made by the user on the generated file.

Markers
The user must define markers in order to use the edition mechanisms mentioned
in the above paragraph.  Without a marker, the visualizer cannot be used to edit a
generated element by double-clicking, and it is impossible to retrieve the contents
of the generated files that have been modified by an external editor.
Markers are used to:

♦= call the dialog boxes from the internal view

♦= retrieve notes from the generated files, after external edition or during recursive
retrieval

The purpose of a marker is to keep:

♦= the line number concerned in the generated code

♦= the model element that has given rise to the part of generated code

♦= the "style" of the identifier



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-21

Marker styles
The ... style corresponds to ...

IdGen a text completely generated by the tool.

IdBox a model element (Element) entered in a dialog box.

IdTxt a text the user can modify in the generated files.

IdEnd the end of a marker zone. There is no particular meaning attached to
the corresponding type of code.

Marker primitives
The ... method returns an identifier ...

String idGen () which cannot be used to modify the model element in a visualizer.

String idBox () which allows the model element to be edited thanks to a dialog
box.

String idTxt () used to modify the model element in an external editor.

String idEnd () indicating the end of the zone containing the model element.

String marker (inString
depName, inString
textTypeName)

which allows the automatic creation of text on the current element
during the retrieval of code after using an external editor.  The
"depName" parameter is the name of the dependency which
points to the text we wish to create from the current element
(example "Descriptor"); "textTypeName" is the name of the text
type to be created (for example, "C++").

The markers inserted into the text are formatted when the "mngFile()" method is
called.  This method uses the following feature, which must be redefined
according to the language targeted by the generator:
MpGenProduct:default#external#MpGenProduct:getIdLineCom
ment () return String
This method returns the string that indicates the beginning of a comment line (for
example, in Java, it returns "//").



Chapter 5: Module management facilities

5-22 Objecteering/J Libraries User Guide

Internal visualization
MpGenProduct:default#external#MpGenProduct:intVisuFileN
ame (in String fileName)
This method is used to call an internal visualizer in the context of the generation
work product and to display a file managed by this generation work product.  The
"fileName" parameter is the complete name of the concerned file, including the
path and suffix.

External edition
MpGenProduct:default#external#MpGenProduct:extEditFileN
ame (in String fileName;)
This is used to call an external visualizer in the context of the generation work
product and to thus display a file managed by this generation work product.  The
"fileName" parameter is the complete name of the concerned file, including the
path and suffix.
The extEditFileName method uses the following method to retrieve the command
used to launch the editor:
String
Object:default#external#Object:getEditorCommandLine ()
By default, this method returns the value of the ExtEditorCommandLine
parameter.
For more complex editors, the user can redefine this method on the work product.

Updating the visualizers
The visualizers contain a generated file.  The user may wish to update these
visualizers following a new generation, in order to update the files.
MpGenProduct:default#external#updateAllEditors ()
This is used to update all the open graphic editors.



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-23

Example 1: idGen () method
To generate the comment preceeding a class declaration:
Class:default#Code#MyGen#generateClass ()
{
String Marker;

Marker=idGen () +
" //Class declaration" +
NL +
idEnd ();

return Marker
}

Thus, during the internal visualization of the file containing this class, double-
clicking on the comment will remain without effect.

Example 2: idBox () method
To generate the attributes of a class:
Attribute:default#Code#MyGen#generateAttribute ()
{

String Marker;
PartAttribute
{
Marker=Marker + idBox ()

+ getType()
+ " ; "
+ NL
+ idEnd ();

}
Return Marker

}

Therefore, when a file containing this class is being visualized internally, it will be
possible to open the edition dialog box of the corresponding attribute, by double-
clicking on each declaration string of an attribute.



Chapter 5: Module management facilities

5-24 Objecteering/J Libraries User Guide

Example 3: idTxt ()method
To generate the method code from the context of this method:
Operation:default#Code#MyProd#generateMethod ()
{

String Marker;
PartOperation
{

getOneNoteOfType ("C++")
{

Marker=Marker + idTxt ()
+ Content
+ NL
+ idEnd ();

}
}

if (Marker = "") {
Marker=marker("Descriptor" + "C++");

}
Return Marker;

}

If the C++ text... during the internal
visualization ...

during the external
visualization ...

existed before
generation

double-clicking on the
generated code opens the
edition dialog box of the "C++"
text

the code appears surrounded by
the markers.  It is possible to
modify it, and the "C++" type text
will be updated at the end of the
edition in the Objecteering/UML
repository

did not exist before
generation

only the markers appear,
double-clicking is not effective

Only the markers appear.  If the
user inserts code between the
markers, a C++ type text will be
automatically created at the end of
the edition.



Chapter 5: Module management facilities

Objecteering/J Libraries User Guide 5-25

Example 4: Internal visualization of a file
MyProduct:default#external#Code#MyGen#visualize ()
{

String fileName;
Filename=getAttributeVal("path")

+ Name,
+ getAttributeVal("suffix");

intVisuFileName (fileName);
}

Example 5: External edition of a file
MyProduct:default#external#Code#MyGen#edit ()
{

String fileName;
Filename=getAttributeVal("path")

+ Name,
+ getAttributeVal("suffix");

extEditFileName(fileName);
}



Chapter 6: Search services



Chapter 6: Search services

Objecteering/J Libraries User Guide 6-3

Overview of search services

Introduction
In order to carry out searches in Objecteering/UML using the J language, a
number of services belonging to the JSearch metaclass must be used.  The
JSearch metaclass is used not only to memorize search parameters, but also to
run searches and get related results.
The following diagram (Figure 6-1) illustrates the different metaclasses used.

Figure 6-1. Class diagram of the different metaclasses used in search operations



Chapter 6: Search services

6-4 Objecteering/J Libraries User Guide

The following example of code provides an illustration of code used to run the
search mechanism:

// Initialization of the structure encapsulated in a
J session (obligatory)

JSearch objecteeringSearch ;
// In J, variable declarations are carried out at the
beginning of a session

sessionBegin ("search", true) ; // Launch of a J session

// Initialization of obligatory parameters

objecteeringSearch.initObject (this) ;
// The search is run from the element selected
(for example, Package)

objecteeringSearch.setexpression ("Class") ;
// The Class string is searched for

objecteeringSearch.runSearch () ;
// Running the search

// objecteeringSearch.nextSearch () ;
Running the search in step by step mode

// Simple display of results:
objecteeringSearch.resultsJResultSearch
{

StdOut.write (getSymbol(), NL) ;
// The result is displayed in textual form.
}

objecteeringSearch.eraseAllResults () ;
// All results are deleted in Objecteering/UML

objecteeringSearch.delete ;
// The search is deleted

sessionEnd () ;
// End of the J session



Chapter 6: Search services

Objecteering/J Libraries User Guide 6-5

Search services

Overview of the JSearch metaclass
Figure 6-2 shows the JSearch metaclass, complete with its methods and
attributes.

Figure 6-2. The JSearch metaclass



Chapter 6: Search services

6-6 Objecteering/J Libraries User Guide

JSearch methods
The following methods are contained in the JSearch metaclass:
runSearch()

This runs or re-runs the search.  This method takes as its parameters the different
options positioned on the JSearch class and runs the search according to these
options.

nextSearch()

This is used in the step by step search mode (which must be selected), and is
used to continue a search or launch it for the first time.  It returns only one
element.

initObject(Object)

This method is used to initialize the structure using the default values, and takes
as its parameter the object from which the search is to be run.

eraseAllResults()

This method is used to delete all those elements found.

Note: This method must be called before either destroying the JSearch or saving
the results and destroying them later, as this operation is the responsibility
of the user.



Chapter 6: Search services

Objecteering/J Libraries User Guide 6-7

JSearch attributes
The JSearch metaclass has the following attributes for all search contexts:

♦= expression: The "expression" attribute indicates the expression which is to be
searched for (by default, this is empty).

♦= option: The "option" attribute specifies the correspondence between the
expression to be searched for and the string used in matches.  Options are
JContains, JBeginsWith, JEndsWith and JMatchesExactly.  By default, this is
set to JContains.

♦= caseSensitive: The "caseSensitive" attribute indicates whether or not the
search should distinguish between uppercase and lowercase characters (by
default, this is set to false).

♦= stepByStep: The "stepByStep" attribute specifies whether or not the search
should be carried out in step by step mode (by default, this is set to false).

♦= searchType: The "searchType" attribute indicates the type of search to be run,
so as to indicate what type of elements the search is to find.  Options are
JModel, JDiagram, JText, JAll.  By default, this is set ot JModel.

The JSearch metaclass has the following attributes for searches in diagrams:

♦= diagramElementType: The "diagramElementType" attribute indicates the
metaclass of the element searched for (by default, this is set to "All").

♦= diagramType: The "diagramType" attribute specifies the metaclass of the
diagram in which the search is to be carried out (by default, this is set to "All").

The JSearch metaclass has the following attributes for searches in textual
elements (notes, constraints):

♦= noteParentType: The "noteParentType" attribute indicates the metaclass of the
note's parent (by default, this is set to "All").

♦= noteType: The "noteType" attribute specifies the type of note (by default, this is
set to "All").

The JSearch metaclass has the following attributes for searches in the model:

♦= modelType: The "modelType" attribute indicates the metaclass of the model
element searched for.



Chapter 6: Search services

6-8 Objecteering/J Libraries User Guide

Overview of the JResultSearch metaclass
Figure 6-3 shows the JResultSearch metaclass, complete with its methods.

Figure 6-3. The JResultSearch metaclass

JResultSearch methods
The following methods are contained in the JResultSearch metaclass:
getSymbol ()

This method is redefined in the different JResults and returns a character string
which corresponds to the definition of the result, and more particularly, those
elements found.

action ()

This method is used, in the context of a simple object, to select the object in the
explorer.  For searches in diagrams, diagrams are selected and also opened.



Chapter 6: Search services

Objecteering/J Libraries User Guide 6-9

Overview of the JResultText metaclass
Figure 6-4 shows the JResultText metaclass, complete with its attributes.

Figure 6-4. The JResultText metaclass

JResultText attributes
The JResultText metaclass has the following attributes:

♦= referencedLine: The "referencedLine" attribute indicates the line where the
string has been found.

♦= referencedString: The "referencedString" attribute gives the contents of the
entire line where the string has been found.



Chapter 6: Search services

6-10 Objecteering/J Libraries User Guide

Examples of searches

Example 1: Simple search in a diagram
Example 1 below shows the search for a class named "Object" in a class diagram.

// Initializing the structure
JSearch objecteeringSearch;
sessionBegin ("search", true);

// Initializing parameters
objecteeringSearch.initObject (this);
objecteeringSearch.setexpression ("Object");
objecteeringSearch.setelementType ("Class");
objecteeringSearch.setdiagramType ("StaticClassDiagram");
objecteeringSearch.setsearchType ("JsearchTypeDiagram");

// Running the search
objecteeringSearch.runSearch ();

// Processing results (display)
objecteeringSearch.resultsJResultSearch
{

StdOut.write (getSymbol(), NL)
}

// Destroying the structure
objecteeringSearch.eraseAllResults ();
objecteeringSearch.delete;
sessionEnd ();



Chapter 6: Search services

Objecteering/J Libraries User Guide 6-11

Example 2: Step by step search in Java notes
Example 2 shows the search for the first two "newObject (" strings found in Java-
type notes.

// Initializing the structure
JSearch objecteeringSearch;
sessionBegin ("search", true);

// Initializing parameters
objecteeringSearch.initObject (this);
objecteeringSearch.setexpression ("new Object (");
objecteeringSearch.setnoteType ("JavaCode;JavaResult");
objecteeringSearch.setnoteParentType ("Operation");
objecteeringSearch.setsearchType ("JsearchTypeNote");
objecteeringSearch.setstepByStep (true);

// Running the search in step by step mode
objecteeringSearch.nextSearch ();

// Displaying the result
objecteeringSearch.resultsJResultSearch
{

StdOut.write (getSymbol(), NL)
}
Continuing the search
objecteeringSearch.nextSearch ();

// Displaying the result
objecteeringSearch.resultsJResultSearch
{

StdOut.write (getSymbol(), NL)
}

// Destroying the structure
objecteeringSearch.eraseAllResults ();
objecteeringSearch.delete;
sessionEnd ();



Chapter 7: Dynamic dialog boxes



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-3

Introduction to dynamic dialog boxes

Introduction
When a module developer wishes to "dialog" with a user, he can create a dialog
box, either modal or non-modal, through which communication can take place.
Modal dialog boxes block other operations until the dialog box is closed, whilst
non-modal dialog boxes can be left open whilst other actions are carried out.  For
example:

JBox box;
//start processing
box.show()
//end processing

The last line of the above code will only be executed after the dialog box has been
closed.
Controls are positioned vertically by default.  This positioning is handled by a
cursor, which updates its vertical or horizontal position during the next control.



Chapter 7: Dynamic dialog boxes

7-4 Objecteering/J Libraries User Guide

The following diagram illustrates the different metaclasses used (Figure 7-1).

Figure 7-1. Class diagram of the different metaclasses used

Various features can be added to these dialog box, whether modal or non-modal,
for example, text fields or combo boxes.
J boxes are constructed in horizontal sections and/or vertical sections.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-5

Calls used

Calls used to create and destroy dialog boxes
Object:createJBox (ident: in String, title: in String,

direction: in JLayoutType,
consultMode: boolean)

return JBox

This creates a JBox object which corresponds to a modal dialog box.
If the consultMode parameter has been set to true, then none of the dialog box
elements will be modifiable, and only the "OK" button will remain.

Object:createJNoModalBox (ident: in String,
title: in String,
direction: in JLayoutType,
profileNameCB: in String,
operationNameOkCB: in String,
operationNameCancelCB: in

String)
return JNoModalBox

This creates a JNoModalBox object corresponding to a non-modal dialog box.
The last three parameters are used to position call backs on the "OK" and
"Cancel" buttons.  They represent respectively:

♦= Profilename: the complete name of the profile where the call back method is
defined

♦= operationNameOkCB: the name of the operation called on the OK action

♦= operationNameCancelCB: the name of the operation called on the Cancel
action



Chapter 7: Dynamic dialog boxes

7-6 Objecteering/J Libraries User Guide

Jset:delete ()

This destroys the JSet dialog box.

Note 1:The user is responsible for destroying the dialog box, whether its creation
is included in a session or not.

Note 2:An identifier must be unique within a JSet, in the same way as each dialog
box must have a unique identifier.

Calls used to retrieve dialog boxes
Object:getJSet (identSet: in String)

return JSet

This retrieves the dialog box (modal or non-modal) which has identSet as its
identifier.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-7

JUserObject methods

JUserObject methods
JUserObject methods provide a usage context for the box in question (please note
that in Figure 7-2, the use link is present to simulate a relationship).

Figure 7-2. The JUserObject metaclass

The following methods are contained in the JUserObject class, which is an
abstract class:

appendUserData (object : inout Object);

This adds to the user data list a model object, in order to provide a usage context.

eraseUserData(object : inout Object);

This removes from the user data list a model object, if it has already been added
using the previous method.

getUserData ()
return SetOfObject

This returns the user data list.



Chapter 7: Dynamic dialog boxes

7-8 Objecteering/J Libraries User Guide

setUserInfo (label : in String)

This is used to memorize textual information.

getUserInfo()
return String

This returns textual information.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-9

JSet methods

JSet layout methods
beginLayoutSection (layout: in JLayoutType,

frame: in boolean,
frameLabel: in String)

According to the value defined for the JLayoutType, either a vertical
(JLayoutVertical) or a horizontal (JLayoutHorizontal)section is opened, with a
frame surrounding this section if frame has been set to true.  A title is given to this
frame is frameLabel has been defined.

endLayoutSection()

This closes the section previously opened.  If no section has been previously
opened, nothing happens.

changeColumn (spacing: in integer)

This creates a new column if the section is vertical, and a new line if the section is
horizontal.

getPosition (x: out integer
y: out integer)

This is used to obtain the position of the cursor.

changePosition (posCursor: in integer)

This changes the position of the cursor according to the co-ordinates provided.  It
is not, however, possible to move the cursor to a position inferior to the default
position.



Chapter 7: Dynamic dialog boxes

7-10 Objecteering/J Libraries User Guide

JSet addition methods
Graphic elements which include internal values are identified by a character string
defined by the user upon their creation.  This identifier makes it possible to modify
and retrieve graphic element values.
Graphic elements are made up of a title (this is optional), placed above the gadget
in question, except in the case of a toggle.
addLabel (label: in String)

This adds a remark.  The carriage return character is permitted.

addBitmap (bitmapName: in String)

This adds a bitmap (either a .gif or .bmp file).

addToggle (ident: in String, label: in String,
value: in boolean)

This adds a two-state button.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-11

addField (ident: in String, label: in String,
value: in String,
type: in JcontrolFieldTextType,
width: in integer)

This adds a text field.  The following JControlTextType types are possible:

♦= JControlTextField: a text field which may be edited

♦= JControlNumberField: a numeric field

♦= JControlDate: a date field

♦= JControlPassword: a password field

♦= JControlFileOpen: a file open field (this is a text field linked to a button and
used to open a file or directory selector, for both Windows and UNIX)

♦= JControlFileSave: a file save field (this is a text field linked to a button and
used to open a file or directory selector, for both Windows and UNIX)

♦= JControlDirectory: a file directory field (this is a text field linked to a button and
used to open a file or directory selector, for both Windows and UNIX)

Where the field is linked to a file or directory selector, the field is composed of the
text indicating the selected path and a button used to open the selector box.  In
UNIX, Open, Save and Directory open the same dialog box.

addText (ident: in String, label: in String,
value: in String, width: in integer,
height: in integer);

This adds a multi-line text.  The carriage return character separates the lines.

addList (ident: in String, label: in String,
multiple: in boolean, width: in integer,
height: in integer)

This adds a list.  The list is a multiple selection list, where the multiple parameter
has been set to true.  If this is not the case, a simple selection list is added.
List values are updated by the addListItem and removeListItem methods.



Chapter 7: Dynamic dialog boxes

7-12 Objecteering/J Libraries User Guide

addCombo (ident: in String, label: in String,
width: in integer)

This adds a combo box.  List values are updated by the addListItem and
removeListItem methods.

addHelp (labelHelp: in String, htmlFile: in String)

This adds a button called labelHelp , which is associated with the File html file.
This can be a url.

addTree (ident : in String, label : in String,
width : in integer, height : in integer,
multiple : in boolean)
return JTree

This adds a tree (and returns an instance of the JTree class).  The multiple
boolean indicates the trees selection mode (multiple/simple).



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-13

JSet value retrieval methods
getValue (ident: in String, value: inout String)

return boolean

This retrieves a value in the form of a string corresponding to the check which has
the ident identifier.  The gadget can be text, a field (text, date, numeric), a toggle,
in which case the state is converted into a string (true or false) or a list, in which
case the first selection is retrieved.

getValueList (ident: in String,
justSelection: in boolean,
valueList: inout SetOfString)

return boolean

This retrieves the list of those items which make up the list, if the justSelection has
been set to false.  Otherwise, the list of selected items is retrieved.

getTree (ident : in String)
return JTree

This retrieves the instance of the JTree class named "ident".



Chapter 7: Dynamic dialog boxes

7-14 Objecteering/J Libraries User Guide

JSet value modifying methods
setValue (ident: in String, value: in String)

return boolean

This allocates the character string to the check which has the ident identifier.  This
check can be text, a field (text, date, etc.), a number (whose value must be
numeric) or a toggle (whose value must be either true or false).

addListItem (identList: in String, value: in String,
bitmapName: in String,
selected: in boolean)

return boolean

This adds a field to the list, which has the identList as identifier, value as its value
and bitmapName (this can be left empty) as its bitmap.  The bitmap is not taken
into account for combo boxes.  If the selected parameter is set to true, it will be
selected in the list.  This is true for list and combo type checks.

removeListItem (identList: in String,
value: in String)

return boolean

This removes the value field from the list which has identList as its identifier.  This
is true for list and combo type checks.

getIdent ()
return String

This returns the dialog box identifier.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-15

readAndAddFile (ilvFileName: in String,
ilvScriptFileName: in String)

This adds an Ilog resource file to the dialog box.

resetList (ident : in String)

This is used to empty the "ident" identifying list.  This method also works with
combos.



Chapter 7: Dynamic dialog boxes

7-16 Objecteering/J Libraries User Guide

JSet presentation methods
boolean JSet::setFont(in string ident_i ,

in string family,
in integer fontSize,
in boolean bold,
in boolean italic)

This changes the character font of the "ident_i" identifier field.  It returns true if the
field exists and it is possible to allocate to this field the "family" font name with the
"fontsize" size, in bold if "bold" is true and in italics if "italics" is true.
Certain combinations of font size and bold/italic attributes are not possible for
certain fonts.  This depends on the font in question and the operating system.

boolean setForegroundColor(in string ident_i ,
in integer red ,
in integer green ,
in integer blue)

This changes the color of the text for the "ident_i" identifier field.  The intensity
values for red, green and blue should be situated between 0 and 255.  The
method returns true if the operation has been carried out correctly.  The method
returns false if the field has not been found, or if one of the values is incorrect.

boolean setBackgroundColor(in string ident_i,
in integer red,
in integer green,
in integer blue)

This changes the background color for the "ident_i" identifier field.  The intensity
values for red, green and blue should be situated between 0 and 255.  The
method returns true if the operation has been carried out correctly.  The method
returns false if the field has not been found, or if one of the values is incorrect.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-17

setFocus (ident : in string)

This gives the focus to the graphic element identified by the ident string.

setFocusOkButton ()

This gives the focus to the "OK" button.

setFocusCancelButton ()

This gives the focus to the "Cancel" button (if this exists).



Chapter 7: Dynamic dialog boxes

7-18 Objecteering/J Libraries User Guide

JTree and JTreeItem methods

JTree methods
The JTree class specializes the JUserObject class and defines a tree service.  It
contains the following operations:

addItem (parentItem : inout JTreeItem,
label : in String, bitmapName : in String,
selected : in boolean, index : in integer)
return JTreeItem

This adds a "parentItem" parent node to the JTree, by specifying its label, the
name of the associated bitmap (empty string if no bitmap is associated), its
selection state and an index (starting at 0) indicating its position in the list of nodes
of the same level.

addRootItem (label : in String, bitmapName : in String,
selected : in boolean, index : in integer)
return JTreeItem

This adds a node to the JTree, under the root, by specifying its label, the name of
the associated bitmap (empty string if no bitmap is associated), its selection state
and an index indicating its position in the list of nodes of the same level.

moveItem (item : inout JTreeItem,
itemParent : inout JTreeItem,
index : in integer)

This moves a JTreeItem (item) into another JTreeItem (itemParent).  The index
determines at which position the item is inserted in the parent item.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-19

getRoot ()
return JTreeItem

This retrieves the root of the JTree.  This node is not displayed in the tree, and
cannot, therefore, be a ghost item (for further information, please refer to the
JTreeItem method list).  To obtain a list of nodes added to the root, the root can be
obtained using this method, and then the list of child nodes (for further information,
please refer to the "getChildList" method in the JTreeItem method list).

removeItem(itemToRemove : inout JTreeItem)

This deletes from the tree the branch whose root it the "itemToRemove" item.

getSelectedItems(itemList : inout SetOfJTreeItem)

This retrieves the set of items selected in the JTree from the "itemList" list.

getCallbackItem ()
return JTreeItem

This retrieves the tree item on which a call to a callback has been triggered.



Chapter 7: Dynamic dialog boxes

7-20 Objecteering/J Libraries User Guide

JTreeItem methods
isSelected ()
return boolean

This returns the selection state of an item.

setSelected (selected : in boolean)

This changes an item's selection state.

getLabel ()
return String

This returns the label associated with the item.

setLabel (label : in String)

This modifies the label associated with the item.

getBitmapName ()
return String

This returns the name of the bitmap associated with the item.

setBitmap (bitmapName : in String)

This modifies the bitmap associated with the item.

getParent ()
return JTreeItem

This retrieves the item's parent node.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-21

getChildList(itemList : inout SetOfJTreeItem)

This retrieves from the "itemList" list the set of JTreeItem's child items.

getChild (index : in integer)
return JTreeItem

This retrieves the JTreeItem child of the current "index" index.

setGhostItem (ghostItem : in boolean)

This is used to state whether or not an item is a ghost item.  A ghost item internally
manages a "ghost" child.  The item has a "+" symbol, which is used to trigger a
Callback (defined through "setTreeExpandGhostItemCallback").  This can be
useful, for example, if the user wishes to build his tree directly.  Once the ghost
item has been expanded once by the user, it becomes a "normal" item.

isGhostItem ()
return boolean

This returns true if the current item is a ghost item.

searchSelectedRecursive (itemList : inout
SetOfJTreeItem)

This finds the list of selected JTreeItems.  The search is carried out on the branch
defined by the JTreeItem.

searchDataRecursive (object : inout Object)
return JTreeItem

This finds the JTreeItem to which the Object given as a parameter is associated.
The search is carried out on the branch defined by the JTreeItem.



Chapter 7: Dynamic dialog boxes

7-22 Objecteering/J Libraries User Guide

getIndex ()
return integer

This returns the index corresponding to the position of the item in its branch.

expand ()

This triggers the expansion of the branch of the tree defined by the JTreeItem.

isExpanded ()
return boolean

This returns true if the branch defined by the JTreeItem is expanded.

shrink()

This triggers the reduction of the branch defined by the JTreeItem.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-23

JBox and JNoModalBox methods

JBox methods
The JBox class specializes the JSet class and is used to implement modal dialog
boxes.  It contains the following method:

show ()
return boolean

This displays the dialog box in modal form (that is to say, all other operations are
blocked whilst the dialog box is open).  It returns true if the user clicks on the "OK"
button and false if the user clicks on the "Cancel" button (or the cross in the top
right-hand corner used to close the dialog box).



Chapter 7: Dynamic dialog boxes

7-24 Objecteering/J Libraries User Guide

JNoModalBox methods
The JNoModalBox class specializes the JSet class and is used to implement non-
modal dialog boxes.  It contains the following methods:

setCallback(ident: in String, profileName: in String,
operationName: in String)

This is used to position the operationName callback on the profile used as a
parameter on the box object.
If the identifier is a button identifier, the "operationName" is called when you click
on the button.
If the identifier is a list, the callback is called when you double-click on an element
in the list.

Note: In this case, the "ident" refers to another model element.

addButton (ident: in String, label: in String,
profileName: in String,
operationName: in String,
width: in integer)

addButtonBitmap (ident: in String, label: in String,
profileName: in String,
operationName: in String)

These methods are used to respectively add a button and a bitmap to a call back.

Note: The complete path must be provided for the bitmap.

When the callback is activated, only the JNoModalBox object is known.  If the user
wishes to store another usage context (for example, the object on which the
command has been run), then the "appendUserData", "getUserData" and
"eraseUserData" methods, detailed in the "JSet complementary methods" theme
of this section, should be used.  If the object is destroyed, then it is removed from
the user data list.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-25

show (consultMode: in boolean)

This displays the dialog box in non-modal form (that is to say, the dialog box does
not block other operations).
If consultMode has been set, then Objecteering/UML changes over to consultation
mode, and an egg-timer appears in the dialog boxes (except the current
JNoModalBox).

hide ()

This hides the dialog box.

JNoModalBox also contains operations used to associate callbacks to a JTree.

Note: The "setCallback" method is used to position the callback by default on the
JTree, which is then triggered by double-clicking on one of the tree's
leaves.

setTreeSelectionCallback(ident: in String,
profileName : in String,
operationName: in String)

This is used to position an "operationName" callback.  This callback is related to
the "ident" identifying JTree, and is triggered by the selection of one of the tree's
nodes.

setTreeExpandCallback (ident: in String,
profileName : in String,
operationName: in String)

This is used to set the "operationName" callback.  This callback is related to the
"ident" identifying JTree, and is triggered by the expansion of a node (double-click
on a node which has children, or on the "+" symbol adjoining the node).



Chapter 7: Dynamic dialog boxes

7-26 Objecteering/J Libraries User Guide

setTreeExpandGhostItemCallback(ident: in String,
profileName : in String,
operationName: in String)

This is used to set an "operationName" callback.  This callback is related to the
"ident" identifying JTree, and is triggered by the expansion of a particular node,
namely "GhostItem".  This node simulates the existence of a child (for further
information, please refer to the "JTree and JTreeItem methods" section in the
current chapter of this user guide).

setTreeShrinkCallback(ident: in String,
profileName : in String,
operationName: in String)

This sets an "operationName" callback.  This callback is related to the "ident"
identifying JTree, and is triggered by the shrinking of a branch (double-clicking on
a node whose children are visible, or on the "-" symbol adjoining the node).



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-27

JNoModalBox drag and drop methods
Object JNoModalBox::addDropZone

(in String ident, // field identifier
in String label, // field title
in Object initial, // initial value
in int width) // width

This adds and returns a drag and drop field which resembles those you can see in
standard windows.  Contrary to other fields, it is not editable, but accepts drops of
objects from the explorer.
This field as the "ident" identifier with the "label" label contains the "initial" object
(which can be void) and is of "width" width.

Important: Before being usable, at least one call to the appendAllowedMetaclass
method must be carried out (see below).

Example:
JObjectField f = box.addDropField("drarDropField",

"Drop field", null, 200);
f.appendAllowedMetaclass("NameSpace") // allow drop of

Class, Package,
Enumerate, ...

To create a drop field without the standard "target" bitmap, use the following
method:
JObjectField JNoModalBox::addDropField

(in String ident, // field identifier
in String label, // field title
in Object initial, // initial value
in int width) // width

JObjectField JNoModalBox::getDropField
(in string ident_i )

This returns the droppable field called "ident_i" or void if no droppable field of this
name exists.



Chapter 7: Dynamic dialog boxes

7-28 Objecteering/J Libraries User Guide

void JObjectField::appendAllowedMetaclass(in String
aMetaclassName)

This indicates that a drag and drop from a "aMetaclassName" class or child class
object is authorized.  "aMetaclassName" is the name of a metaclass you wish to
allow the user to drop in the field.  All metaclass names except "Object" are valid.

Warning: If this method is never called on the drag and drop field, no drag and
drop operations are authorized.

Object JObjectField::getValue()

This returns the object which has been dropped in the field.

JObjectField::setValue(in Object obj)

This changes the dropped object it "obj" is from a metaclass authorizing drops.  If
"obj" is void, this empties the field.

boolean JObjectField::acceptDropOf(in Object obj)

This returns true if the field accepts the object in question.  It checks that the
object's metaclass is either part of or inherits from one of the authorized
metaclasses.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-29

User interaction methods

The queryUser method

boolean queryUser (in String title, in String label)

This method is used to ask the user a question, in order to carry out conditional
processing.
For example:

if (queryUser ("Confirmation", "Do you really want to
delete the files?")) {

// File deletion
...

} else '
// No file deletion
...

}

The infoUser method

infoUser (in String title, in String label)

This method is used to display an information dialog box.
For example:

infoUser ("Information", "Generation complete." + NL +
"No errors during generation.")



Chapter 7: Dynamic dialog boxes

7-30 Objecteering/J Libraries User Guide

Examples of J box creation

Example 1: Creating a simple modal dialog box
Figure 7-3 shows part of the J code developed in the UML profiling project for the
creation of a simple modal dialog box.

Figure 7-3. Creating a simple modal dialog box



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-31

The complete J code is as follows:
// create a vertical box
JBox box=createJBox("simpleBoxIdent", "Simple dialog box",

JLayoutVertical, false);
String value;
int width=300;
int height=100;

// open a horizontal layout section
box.beginLayoutSection (JLayoutHorizontal,

true, "A beautiful frame");

// add a label
box.addLabel("This is a commentary "+NL+"Multi-line");
box.addToggle("tog1", "A toggle", false);
box.addToggle("tog2", "A second toggle", true);

// close the previous horizontal layout section.
box.endLayoutSection();

box.addField("field1", "Text:", "My text",
JControlTextField, width);

box.addText("text1", "Multi-line text: ",
"Enter the description:"+NL+"line 1"+NL+"line

2",
width, height);

// creation of a help button which accesses the file set as
a parameter
box.addHelp("Help",
getObjingPath()+"/help/whatsnew_us.htm");



Chapter 7: Dynamic dialog boxes

7-32 Objecteering/J Libraries User Guide

if (box.show()==true)
{

StdOut.write("Ok, Results :"+NL);
box.getValue("field1", value);
StdOut.write(value+NL);
box.getValue("text1", value);
StdOut.write(value+NL);
box.getValue("tog1", value);
StdOut.write(value+NL);

}
else
{

StdOut.write("Cancel"+NL);
}

// Do not forget to delete the box
box.delete();



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-33

The result of this code (shown in Figure 7-4) can be tested in your test project, by
running the related command from the context menu.

Figure 7-4. The newly created simple dialog box



Chapter 7: Dynamic dialog boxes

7-34 Objecteering/J Libraries User Guide

Example 2: Creating a non-modal dialog box
Figure 7-5 shows part of the J code developed in the UML profiling project for the
creation of a non-modal dialog box.

Figure 7-5. Creating a non-modal dialog box

Note: Please note that the three callbacks ("okCallback", "cancelCallback" and
"btnCallback") which feature in the J code for the creation of a non-modal
dialog box are themselves J methods defined in the "JNoModalBox"
metaclass reference.  Their associated J code can be visualized through
the "JCode" notes available on each of the J methods in question.



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-35

The complete J code is as follows:
JNoModalBox box=createJNoModalBox(

"inscriptionID",
"Inscription",
JLayoutHorizontal,
"default#external#Code#testJBox"
,
"okCallback()",
"cancelCallback()");

String content;
String name="Toto";
real real1=2;

// add a textField
box.addField("inscriptionIDName", "Name", "",

JControlTextField, 100);

// assign the textField value
box.setValue("inscriptionIDName", name);

// add a password
box.addField("inscriptionIDPass", "Password", content,

JControlPassword, 100);

box.addField("inscriptionIDAge", "Age", real1.toString(),
JControlNumberField, 100);

// add a button related to a callback (btnCallback)
box.addButtonBitmap("button2",

getObjingPath()+"mybmp.bmp",
"default#external#Code#testJBox",
"btnCallback()");

box.changeColumn(10);
box.addToggle("inscriptionIDMale", "Man", true);
box.addHelp("Help",
getObjingPath()+"/help/whatsnew_us.htm");

// show the box and set consultation mode
box.show(true);



Chapter 7: Dynamic dialog boxes

7-36 Objecteering/J Libraries User Guide

The result of this code (shown in Figure 7-6) can be tested in your test project, by
running the related command from the context menu.

Figure 7-6. The newly created non-modal dialog box



Chapter 7: Dynamic dialog boxes

Objecteering/J Libraries User Guide 7-37

Callbacks used
The following code is the code for the "okCallback" callback:

String Name;
String Password;
String Age;

String Man;
StdOut.write ("ok !", NL);

if (getIdent()=="inscriptionID")
{

getValue("inscriptionIDName", Name);
getValue("inscriptionIDPass", Password);
getValue("inscriptionIDAge", Age);
getValue("inscriptionIDMale", Man);

if (Man=="true")
{

StdOut.write("Mr ");

}
else
{

StdOut.write("Ms ");
}
StdOut.write(Name, "You are", Age, "years old and your
password is: ", Password,NL);

}

// Do not forget to delete the box
delete();

The following code is the code for the "cancelCallback" callback:

StdOut.write ("Canceled!", NL);

// Do not forget to delete the box
delete();



Chapter 7: Dynamic dialog boxes

7-38 Objecteering/J Libraries User Guide

The following code is the code for the "btnCallback" callback:

String Name;
String Password;
String Age;
String Man;

// create a consultation box (with only an OK button)

JBox box=createJBox("boxInfo", "Infos",
JLayoutVertical, true);

getValue("inscriptionIDName",Name);
getValue("inscriptionIDPass",Password);
getValue("inscriptionIDAge",Age);
getValue("inscriptionIDMale", Man);

if (Man=="true") box.addLabel("Man");

else

box.addLabel("Woman");
box.addLabel("Name:"+Name);
box.addLabel("Password: "+Password);
box.addLabel("Age: "+Age);box.show();

// Do not forget to delete the box
box.delete();



Chapter 8: DOM parser usage
services



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-3

Introduction to the DOM parser

Introduction
XML is considered as being the next important stage in the evolution of the Web.
A universal Web exchange format, recommended by the W3C, many standards
are now based around XML, so as to facilitate data sharing at a lesser cost.
Objecteering/UML incorporates an XML parser which can be accessed through J
programming via a DOM (Document Object Model) API, whose functioning will be
presented in this chapter.



Chapter 8: DOM parser usage services

8-4 Objecteering/J Libraries User Guide

A model dedicated to use of the parser
In order to implement the parser from J, users must be familiar with the simplified
model providing access to the DOM API of the XML parser.  Figure 8-1 presents a
class diagram of this model.

Figure 8-1. Class diagram of the DOM API providing access to the XML parser

Why a simplified model?
Most DOM objects (Attributes, Texts, Comments…) do not provide services
different enough from those of a node to justify their existence as separate
objects.  This means that these types of element can be created from the
JDOM_Document (createAttribute(), createComment()…) class, whilst retrieving
JDOM_Nodes and not JDOM_Attributes or JDOM_Comments.  This does not
affect the DOM possibilities of our API.



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-5

To illustrate the dynamics of parser use, Figure 8-2 shows a sequence diagram of
API use.

Note: To use this model, a J session must be open.

Figure 8-2. Sequence diagram illustrating the use of the API



Chapter 8: DOM parser usage services

8-6 Objecteering/J Libraries User Guide

Memory management
With the exception of JDOM_Document instances, JDOM_Node, JDOM_Parser
or JDOM_Element type objects are destroyed at the end of a J session, without
intervention on the part of the developer.  This makes it important to indicate the
reasons for this choice and their implications on the functioning of J programs.
Objects available in J are only proxies to real underlying DOM parser object.
These objects, instantiated when an XML file is read or when element creation
methods are called from the DOM API provided, are only destroyed when their
reference counters return to zero.  This means that the destruction of a
JDOM_Node element in J does not destroy the associated DOM element, as long
as another JDOM_[...] object references it.
To lighten Objecteering/UML's memory load, several objects are automatically
destroyed at the end of a J session.  This allows the JDOM tree to be destroyed
without destroying the underlying DOM tree, and provides the possibility of adding
the document to the user data contained in a non-modal dialog box (a window
which exists after the end of a J session).
This allows the developer to access tree elements during the life of the dialog box,
but implies the risk of not being able to free up the entire tree if destruction is
forgotten.
The memory management rule is, therefore, as follows:
A JDOM_Node, JDOM_Parser or JDOM_Element object must never be saved in
a non-modal dialog box, as these objects are destroyed at the end of a J session.
The desired JDOM_Document(s) must be attached to the non-modal dialog boxes
and destroyed when these dialog boxes are destroyed, or destroyed manually
before the end of the J session, if you only wish to handle documents locally.



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-7

JDOM_Parser methods

JDOM_Parser methods

Figure 8-3. The JDOM_Parser metaclass



Chapter 8: DOM parser usage services

8-8 Objecteering/J Libraries User Guide

The following methods are provided by the JDOM_Parser metaclass:
parse (pXMLFilePath : in String);
This method is used to run the parsing of an XML file whose complete path is
provided as an incoming parameter.
Parser options must be set before running this operation.

sawErrors(): boolean;
This method is used to check if the parser is in an incorrect state or not.

getErrors() : String;
This method retrieves the complete string of errors encountered by the parser.

getDocument(): JDOM_Document;
This method returns the JDOM_Document object representing the root of the
document tree.  This object provides primary access to the document's data.

setReuseGrammar(pReuseGrammar : in boolean);
This method does not exist on the DOM API.  It indicates whether or not the
existing grammar should be reused for the next parsing run.  If true, there can be
no internal subsets.

setDoNamespaces (pDoNameSpace : in boolean);
This method enables or disables the parser's namespace processing.  If set to
true, the parser starts enforcing all the constraints and rules specified by the
NameSpace specification.  By default, this is set to false.

setExitOnFirstFatalError (pExitOnFirstFatalError :
in boolean);

This method changes the behavior of the parser with regard to the first fatal error.
If set to true, the parser will exit at the first fatal error.  If set to false, then it will
report the error and continue processing.  By default, this is set to true.



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-9

setValidationConstraintFatal
(pValidationConstraintFatal : in boolean);
This changes the processing mode of a validation constraint.  If set to true,
validation constraints which are not respected are considered as being fatal
errors.  If set to true, the error is reported in the normal way.  By default, this is set
to false.

setCreateEntityReferenceNodes
(pCreateEntityReferenceNodes : in boolean);
This method allows the user to specify whether the parser should create entity
reference nodes in the JDOM tree being produced.  When the "create'" flag is
true, the JDOM tree contains entity reference nodes.  When the "create" flag is
false, no entity reference nodes are included in the JDOM tree.
The replacement text of the entity is included in either case, either as a child of the
Entity Reference node or in place at the location of the reference.

setIncludeIgnorableWhitespace
(pIncludeIgnorableWhitespace : in boolean);
This method allows the user to specify whether a "validating" parser should
include ignorable whitespaces as text nodes.  It has no effect on non-validating
parsers, which always include non-markup text.
If set to true, ignorable whitespaces will be added to the JDOM tree as text nodes.
The isIgnorableWhitespace method available on a JDOM_Node representing a
text node will return true for those text nodes only.
If set to false, all ignorable whitespaces will be discarded and no text node added
to the JDOM tree.
The use of this flag can clash with the use of the "xml:space" attribute.  Similarly,
this flag can clash with the use of the "preserve" keyword in diagrams.
By default, this is set to true.

setValidationScheme(pValidation : in boolean);
This sets the validation mode of the parser.  When set to false, validation is de-
activated, whilst when set to true, validation is activated.  By default, this is set to
true.



Chapter 8: DOM parser usage services

8-10 Objecteering/J Libraries User Guide

setDoSchema (pDoSchema : in boolean);
This method enables or disables the parser's schema processing.  By default, this
is set to false.

setValidationSchemaFullChecking
(pValidationSchemaFullChecking : in boolean);
This method activates or deactivates the exhaustive validation of constraints
which can be applied to schemas.  Exhaustive schema validation can be greedy in
terms of memory or runtime.
If this option is set to false, only basic rules are checked.  Currently, particle
unique attribution constraint checking and derivation restriction checking are
managed by this option.
This option is ignored if the parser does not validate schemas.
By default, this is set to false.

setToCreateXMLDeclTypeNode
(pToCreateXMLDeclTypeNode : in boolean);
XMLDecl-type nodes can be attached to the JDOM tree if this option has been
activated.  By default, this is set to false.

setExternalSchemaLocation
(pExternalSchemaLocation : in string);
This method redefines the values of schemaLocation attributes belonging to the
document or the "import" element.  The new location is given by this method.
Only the last call is recorded.
The syntax to be used to the same as for the document's schemaLocation
attribute.
The user can specify more than one XML Schema in the list.

setExternalNoNamespaceSchemaLocation
(pExternalNoNamespaceSchemaLocation : in string);
This redefines the document's noNamespaceSchemaLocation  attribute externally.
Only the last call is recorded.
The syntax to be used is the same as for the document's
noNamespaceSchemaLocation  attribute.



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-11

JDOM_Node methods

JDOM_Node methods

Figure 8-4. The JDOM_Node metaclass



Chapter 8: DOM parser usage services

8-12 Objecteering/J Libraries User Guide

The following methods are provided by the JDOM_Node metaclass:
getNodeName () : String;
This method returns the name of the node according to its type.

getNodeValue() : String;
This method returns the value of the node according to its type.

getNodeType() : JNodeType;
This method returns the type of the node.  This type can be one of the following
enumerate values:

♦= JNODE_NONE

♦= ELEMENT_JNODE

♦= ATTRIBUTE_JNODE

♦= TEXT_JNODE

♦= CDATA_SECTION_JNODE

♦= ENTITY_REFERENCE_JNODE

♦= ENTITY_JNODE

♦= PROCESSING_INSTRUCTION_JNODE

♦= COMMENT_JNODE

♦= DOCUMENT_JNODE

♦= DOCUMENT_TYPE_JNODE

♦= DOCUMENT_FRAGMENT_JNODE

♦= NOTATION_JNODE

♦= XML_DECL_JNODE

getParentNode () : JDOM_Node;
This returns the parent node if it has been defined or null if this is not the case.



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-13

getChildNodes (Inout pChilds [*] JDOM_Node) ;
This method returns the set of child elements of the current node in the pChilds
list, and returns null if there are no child elements.

Note: For optimization reasons, the set is not returned but is instead passed as
the InOut parameter.  In this respect, this method differs from the standard
DOM API.

getFirstChild () : JDOM_Node ;
This returns the first child node of the current node, and returns null if no child
nodes exists.

getLastChild () : JDOM_Node;
This returns the last child node of the current node, and returns null if no child
nodes exist.

getPreviousSibling () JDOM_Node;
This returns the sibling node preceding the current node, and returns empty if no
sibling nodes exist.

getNextSibling () : JDOM_Node;
This returns the next sibling node of the current node, and returns empty if no
sibling nodes exist.

getAttributes (InOut pAtts [*] JDOM_Node) ;
This returns the list of the current node's attributes if a JDOM_Element is
concerned, and returns an empty list if this is not the case.

Note: For optimization reasons, the set is not returned but is instead passed as
the InOut parameter.  In this respect, this method differs from the standard
DOM API.

getOwnerDocument () : JDOM_Document ;
This returns the node definition document.  If a JDOM_Document of a
JDOM_Node linked to a DOM_DocumentTree is concerned, this returns null.



Chapter 8: DOM parser usage services

8-14 Objecteering/J Libraries User Guide

cloneNode (In pDeep : boolean) : JDOM_Node;
Please refer to importNode on the JDOM_Document class.

insertBefore(Inout pNewChild: JDOM_Node, In pRefChild :
JDOM_Node):JDOM_Node;
This inserts the pNewChild node before the existing pRefChild node.  If pRefChild
is null, pNewChild is inserted after the last child of the current node.

replaceChild(Inout pNewChild: JDOM_Node, InOut
pOldChild : JDOM_Node):JDOM_Node;
This replaces pOldChild by pNewChild.  If pNewChild is already present in the
JDOM tree, it is first removed from it.

removeChild (Inout pOldChild : JDOM_Node) : JDOM_Node;
This removes pOldChild from the list of the current node's children and returns the
removed node.

appendChild (Inout pNewChild : JDOM_Node) : JDOM_Node;
This adds pNewChild after the last of the current node's children and returns the
added node.
If pNewChild is already in the JDOM tree, it is first removed from it.

hasChild () : boolean;
This indicates whether the current node has a child or not.

setNodeValue (In pValue : String);
This sets the value of the node for each node which accepts a value.



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-15

JDOM_Document methods

JDOM_Document methods

Figure 8-5. The JDOM_Document metaclass



Chapter 8: DOM parser usage services

8-16 Objecteering/J Libraries User Guide

The following methods are provided by the JDOM_Document metaclass:
getDocumentElement () : JDOM_Node ;
This returns a reference to the XML document root element.

getDoctype() : JDOM_Node;
This returns the Doctype of the XML document, or null if this is not present.

getElementsByTagName(In pTagName : String,
Inout pElts [*] JDOM_Node);

This returns elements named pTagName which are contained in the XML
document in the pElts list.

Note: For optimization reasons, the set is not returned but is instead passed as
the InOut parameter.  In this respect, this method differs from the standard
DOM API.

Unlike the DOM API, the returned list is not dynamic, but is rather a copy of the
tree at a given moment in time.

createElement (In pName : String) : JDOM_Element;
This creates an element named pName.

createTextNode (In pData : String) : JDOM_Node;
This creates a text using the pData data.

createComment (In pData : String) : JDOM_Node;
This creates a comment using the pData data.

createCDATASection (In pData : String) : JDOM_Node;
This creates a CDATASection using the pData data.

createNotation (In pData : String) : JDOM_Node;
This creates a notation using the pData data.



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-17

createProcessingInstruction (In pTarget : String,
In pData : String):
JDOM_Node;

This creates a "Processing Instruction" using the desired information.

createAttribute (In pName : String) : JDOM_Node;
This creates an attribute named pName.

createXMLDocument () : JDOM_Document;
This creates a new empty document (this replaces createDocument () of the DOM
API).

createXMLDocumentSkeleton (In pNamespaceURI : String,
In pQualifiedName : String,
In pPublicId : String,
In pSystemId : String) :
JDOM_Document;

This creates a document skeleton containing a DocumentType node, as well as
an empty root element.

createDocumentType (In pName : String,
In pPublicId : String,
In pSystemId : String):
JDOM_Node;

This creates a DocumentType node.

createEntity (In pName : String) : JDOM_Node;
This creates an entity named pName.

createEntityReference (In pName : String) : JDOM_Node;
This creates an entity reference named pName.



Chapter 8: DOM parser usage services

8-18 Objecteering/J Libraries User Guide

createXMLDecl(In pVersion:String,
In pEncoding:String,
In pStandAlone:String) :JDOM_Node;

This creates an XML declaration with the transmitted data.

importNode(Inout pNodeToImport: JDOM_Node,
In pDeep : JDOM_Node):JDOM_Node;

This method should be used instead of the cloneNode method, available on
JDOM_Node.
The import runs a duplication of the node and attaches it to the method's
application document.  pDeep indicates that you wish to copy all the sub-elements
of the node which is to be imported.

For example:

lElement = lDoc.createElement("AnElement") ;
lElement2= lDoc2.importNode(lElement,true);
//Copying the element named "AnElement" with its
sub-elements and affecting it to lElement2
lDoc2.getDocumentElement().appendChild(lElement2) ;
//Attaching the copy to the "root" element of the
lDoc2 document.

printXML (In pXMLFilePath : String) : Boolean;
This saves the XML file, giving it the complete path of the XML file.



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-19

JDOM_Element methods

JDOM_Element methods

Figure 8-6. The JDOM_Element metaclass



Chapter 8: DOM parser usage services

8-20 Objecteering/J Libraries User Guide

The following methods are provided by the JDOM_Element metaclass:
setAttribute (In pName : String, In pValue : String) ;
If the attribute named pName exists in the current element, this sets the value of
the attribute to pValue.  If this is not the case, the attribute named pName is
created under the current element with pValue as its value.

Note: pValue must be a simple string and must not contain elements such as
entity references.  To create such an attribute, you must first create the
attribute and then attached an entity reference to it, before adding it to the
element using a setAttributenode.

setAttributeNode (Inout pAttribute : JDOM_Node)
: JDOM_Node ;

This adds a new attribute to the element.  If an attribute of the same name as
pAttribute->getNodeName() already exists, it is simply replaced and returned.
Otherwise, this returns null.

removeAttribute (In pName : String) ;
This removes the attribute named pName from the current element.

removeAttributeNode (InOut pOldAttribute : JDOM_Node) :
JDOM_Node;

This removes pOldAttribute from the element's attributes and returns this same
element.

getTagName() : String;
This returns the name of the current element.

getAttribute (In pName : String) : String;
This returns the value of the attribute named pName of the current element.  This
is null if the attribute has no value defined or no default value.

getAttributeNode (In pName : String) : JDOM_Node;
This returns an attribute by its name or returns null if the attribute is not under the
element.



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-21

getElementsByTagName(In pTagName : String,
Inout pElts [*] JDOM_Node);

This returns the elements named pTagName encountered from the current
element onwards in the pElts list.

Note: For optimization reasons, the set is not returned but is instead passed as
the InOut parameter.  In this respect, this method differs from the standard
DOM API.

Unlike the DOM API, the returned list is not dynamic, but is rather a copy of the
tree at a given moment in time.



Chapter 8: DOM parser usage services

8-22 Objecteering/J Libraries User Guide

Example

Code of a method referenced by a module command

JDOM_Parser lParser;
JDOM_Node lRoot;
JDOM_Document lDoc;
String lName;

sessionBegin("loadXMLFile",true);

lParser = JDOM_Parser.create();
lParser.setValidationScheme(true);
lParser.setDoNamespaces(true);
lParser.setExitOnFirstFatalError(false);
lParser.setValidationConstraintFatal(false);
lParser.setIncludeIgnorableWhitespace(true);
lParser.parse("/tmp/MyFile.xml");

if (lParser.sawErrors() == true)
{

StdOut.write("Status parser 1 = ",
lParser.getErrors(),NL);

}

lDoc = lParser.getDocument();
if (notVoid(lDoc))
{

StdOut.write(" --- Document successfully
retrieved!",NL);

lRoot = lDoc.getDocumentElement();
if (notVoid(lRoot))

{
lName = lRoot.getNodeName();
StdOut.write(" --- Retrieving the root element ~"",
lName, "~" successful !",NL);

lRoot.<recursiveGetChilds();

}
else



Chapter 8: DOM parser usage services

Objecteering/J Libraries User Guide 8-23

StdOut.write(" --- Impossible to retrieve the root
element!",NL);

}

lDoc.printXML("/tmp/modules.xml");
lDoc.delete() ;
sessionEnd();



Chapter 8: DOM parser usage services

8-24 Objecteering/J Libraries User Guide

Code of the recursiveGetChilds method (defined on the
JDOM_Node metaclass)

JDOM_Node[] lChilds;
JDOM_Node[] lAtts;

StdOut.write("-----------------------------------------
------------------",NL);

getChildNodes(lChilds);
lChilds
{

StdOut.write(" --- Retrieving the element ~"",
getNodeName(), "~" :",NL);
StdOut.write(" --- Retrieving the composed
element ~"", getParentNode().getNodeName(), "~"

:",NL);
if (getNodeType() == JNODE_NONE)

{
StdOut.write(" --- Text = ", getNodeValue(),NL);
}
getAttributes(lAtts);
lAtts
{

StdOut.write ("Attribute = ", getNodeName(),
" Value = ", getNodeValue(), NL);
setNodeValue(getNodeValue()+"_NewValue");

}
lAtts.clear();
recursiveGetChilds();

}



Chapter 9: J report window services



Chapter 9: J report window services

Objecteering/J Libraries User Guide 9-3

Overview of the J report window

Introduction
When a module developer wishes to "report" the results of a processing operation
to a user , he can create a J report window.
A J report window is a non-modal dialog box, containing a hierarchical view of a
set of report lines.  Each line has an icon which indicates its type, for example
information, warning or error (as shown in Figure 9-1 below).

Figure 9-1. A J report window



Chapter 9: J report window services

9-4 Objecteering/J Libraries User Guide

Using the J report window

Important information on using the J report window!
All the methods used to handle J report windows are stored in the default#Report
profile.  This means that every time you call a method, you must prefix the name of
the method with #Report#.



Chapter 9: J report window services

Objecteering/J Libraries User Guide 9-5

Creating a report window
JNoModalBox Object:createReportBox (in String title)

This method creates a J report window, and destroys the former J report window,
if this already exists.
This method does not display the newly-created J report window.  To display it,
you should "manually" call the following standard method on the J report window:
show (in boolean objecteeringInConsultMode)

Example:
JNoModalBox box = #Report#createReportBox

( "My report box") ;

JNoModalBox Object:createNewReportBox (in String title)

This creates a new J report window, even if one already exists.
This method does not display the newly-created J report window.  To display it,
you should "manually" call the following standard method on the J report window:
show (in boolean objecteeringInConsultMode)

JNoModalBox Object:createReportBoxWithIdent
(in String title,
in String pIdentifier);

This creates a new J report window whose identifier is used in the "pIdentifier"
parameter.  If a J report window with this identifier already exists, it is destroyed.
This method does not display the newly-created J report window.  To display it,
you should "manually" call the following standard method on the J report window:
show (in boolean objecteeringInConsultMode)



Chapter 9: J report window services

9-6 Objecteering/J Libraries User Guide

Creating and displaying a report window
JNoModalBox Object:createAndShowReportBox (in String
title)

This method creates a J report window, destroys the former J report window (if
this already exists), and displays the newly-created J report window.

JNoModalBox Object:createAndShowNewReportBox (in String
title)

This creates a new J report window, even if one already exists, and displays it.

JNoModalBox Object:createAndShowReportBoxWithIdent
(in String title,
in String pIdentifier);

This creates and displays a new J report window whose identifier is used in the
"pIdentifier" parameter.  If a J report window with this identifier already exists, it is
destroyed.



Chapter 9: J report window services

Objecteering/J Libraries User Guide 9-7

Adding report lines
Each method below enables the developer to add lines to a J report window.
These methods all use the following parameters:

♦= String type: This gives a string determining which icon should be used for the
report line.  This can be the path to a bitmap or one of the predefined strings
shown in the table below:

The ... type has the ... bitmap
info

warning

error

modification

addition

deletion

♦= String title: This indicates the title of the report line.

♦= Object link: This specifies a browsable object to which the report line is linked.
When the user double-clicks on the report line in question, the linked object will
be selected in the explorer.



Chapter 9: J report window services

9-8 Objecteering/J Libraries User Guide

Adding a report line at the root
JTreeItem Object:linkToReport ( in string type ,

in string title )

This adds a report line to the root of the report window and links it to the current
(this) object.

Example:
#Report#linkToReport("info", "Information on

'"+Name+"'.") ;

JTreeItem JTree:addReport ( in string type ,
in string title ,
in Object link )

This adds a report line to the root of the report window and links it to the link
object.

Example:
JTreeItem aReportItem = box.#Report#addReport

("warning" ,
"A warning" ,
this);



Chapter 9: J report window services

Objecteering/J Libraries User Guide 9-9

Adding a report line under another report line
JTreeItem Object:linkToReportUnder

(in string parentTitle ,
in string type ,
in string title )

This adds a report line to the J report box and links it to the current object.  The
new report line is added under the "parentTitle" access path line.  Each access
path line should be separated by a "/".

Example:

To insert a new report line under the "B" report line, which itself is under the "A"
report line, proceed as follows:
#Report#linkToReportUnder("A/B","info", "a title");

JTreeItem JTreeItem:addReport ( in string type
, in string title
, in Object link )

This adds a report line under another report line.



Chapter 9: J report window services

9-10 Objecteering/J Libraries User Guide

Customizing the J report window

Introduction
The J report window can be customized, by creating a child profile under the
default#Report profile.
Through customization, it is possible to:

♦= add fields to the top and the bottom of the J report window

♦= define new types of report line and give them an icon

♦= redefine the behavior of the J report window when the user selects or double-
clicks on one of the report lines

Adding fields to the J report window
To add fields to the J report window, the "initBoxHeader ()" and "initBoxBottom"
protected abstract methods can be overloaded:
All the methods available on the JSet and JNoModalBox metaclasses can be
used.

Defining new types of report line
To define new types of report line, the "getBitmapFromType (in string type)"
method can be overloaded.
This method returns the access path to the bitmap to be used, from a report line
type.



Chapter 9: J report window services

Objecteering/J Libraries User Guide 9-11

Selecting and double-clicking
The following methods can be redefined:
JTreeItem::onSelect()

Call back called when a line is selected.

JTreeItem::onAction()

Call back called when a line is double-clicked upon.

Object::onSelect()

Method called by "JTreeItem::onSelect ()" on the linked object.  By default, this
does nothing.

Object::onAction()

Method called by "JTreeItem::onAction ()" on the linked object.  By default, this
select the object in the explorer.

By default, "JTreeItem::onSelect()"  calls "Object::onSelect()" and
"JTreeItem::onAction ()" calls "Object::onAction()" on the linked object.



Chapter 9: J report window services

9-12 Objecteering/J Libraries User Guide

J report window example

You can test this example by creating a macro using the "Macros" module.

// Creating the report box
JNoModalBox box = #Report#createReportBox

("My reports");

// Adding the "My information" report line to the root
JTreeItem aReportItem = box.#Report#addReport

("info",
"My informations",
this);

getRootPackage()
{

// Adding a line linked to the root package
#Report#linkToReport("info",

"Information on '"+Name+"'.") ;

// Adding "My warnings" to the root
aReportItem = box.#Report#addReport

("info",
"Notes checking :",
this);



Chapter 9: J report window services

Objecteering/J Libraries User Guide 9-13

// Finding all packages which don't have any
"summary" notes

OwnedElementPackage.<select
( void(getAllNotesOfType("summary")))

{
// Adding a warning line under the "Notes

checking :" line
#Report#linkToReportUnder("Notes checking :",

"warning",
Name+" package has no
'summary' note.");

}

// Finding all packages which don't have any
"description" notes

OwnedElementPackage.<select
( void(getAllNotesOfType("description")))

{
// Adding an error line under the aReportLine

line
aReportItem.#Report#addReport

("error", Name+" package has no description.",
this);

}
}



Chapter 9: J report window services

9-14 Objecteering/J Libraries User Guide

This code will display a J report window like that shown in Figure 9-2.

Figure 9-2. The J report window you just created

If you double-click on one of the leaf nodes, the corresponding package will be
selected in the explorer.



Chapter 10: Properties editor services



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-3

Overview of properties editor services

Metaclasses used in properties editor management
The following diagram (Figure 10-1) illustrates the different metaclasses used in
the management of the properties editor.

Figure 10-1. Class diagram of the different metaclasses used in the management of the
properties editor

The properties editor services provided by these metaclasses are detailed further
on in this chapter.



Chapter 10: Properties editor services

10-4 Objecteering/J Libraries User Guide

The PBoxDescription metaclass

Figure 10-2. The "PBoxDescription" metaclass

For details on the following services, please refer to the "Creating fields" section in
the current chapter of this user guide:

♦= "createEditField"

♦= "createEditStereotype"

♦= "createEditTag"

♦= "createEditText"

♦= "createGraphicLabel"

♦= "createGraphicBitmap"

♦= "createGraphicSeparator"

♦= "createGadgetButton"

♦= "createGadgetBitmapButton"

♦= "createGadgetChoice"

♦= "createGadgetToggle"

For details on the "setItem" service, please refer to the "Managing field positioning
using matrices" section in the current chapter of this user guide.



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-5

The PBoxMatrix metaclass

Figure 10-3. The "PBoxMatrix" metaclass

For details on the "pushInto" service, please refer to the "Managing field
positioning using matrices" section in the current chapter of this user guide.



Chapter 10: Properties editor services

10-6 Objecteering/J Libraries User Guide

Initializing the properties editor

Displaying new tabs in the properties editor
The appearance of a new tab in the properties editor is requested in:
Object:moduleSelect

and
Object:moduleStart

using the following service:
addPropertiesPage(String pageName, String profileName);

For example:
addPropertiesPage("My page",
"default#external#Code#myProfile#PropertiesBox");

Removing tabs from the properties editor
The removal of a tab from the properties editor is requested in:
Object:moduleStop()

and
Object:moduleUnselect()

in the module's installation profile.  The removal of a tab is carried out using the
following service:
removePropertiesPage(String pageName);

For example:
removePropertiesPage("My page");



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-7

Displaying the contents of the properties editor

The properties editor systematically runs the "initializePropertiesBox" method
within the given profile, when "addPropertiesPage" service is called.  This method
is called on the element selected in the explorer or in a graphic editor, and has the
following syntax:

initializePropertiesBox(inout PBoxDescription box)

This method's code is usually the following:
PBoxMatrix matrix;
// the matrix is the equivalent of beginLayoutSection

on JBoxes

sessionBegin("My properties page initialization",
true);

// persistent session

matrix = box.createMatrix("");
// creation of a matrix

initMatrix(box, matrix);
// initialization of the matrix, see further on for

details

box.setItem(matrix);
// affectation of the matrix to the editor

sessionEnd();
// end of a session

In this case, we are going to start by creating a matrix, using the "createMatrix"
method.
All the work is delegated to the "initMatrix" method, which will be defined on all the
metaclasses for which we require a different display.  Its syntax is usually the
following:



Chapter 10: Properties editor services

10-8 Objecteering/J Libraries User Guide

void initMatrix(inout PBoxDescription box,
inout PBoxMatrix matrix)

The last step is to affect the newly-created matrix to the properties editor, using
the "setItem" method.  Since the properties editor itself can only contain one single
item, a matrix containing all the elements to be displayed is always affected to it.



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-9

Example of the contents of the "initMatrix" method
void Class:initMatrix(inout PBoxDescription box,

inout PBoxMatrix matrix)
{
PBoxItem item; // items to be added to the matrix

// Addition of a label
item = box.createGraphicLabel("My_label");
matrix.pushInto(0, matrix.NbRows(), item);

// Addition of a group of radio buttons
item = box.createGadgetChoice

(this,"Persistence", "label_Persistence");
item.setRadio(true);

// true => radio buttons, false ==> combo box
item.appendLabel("label_Transient");
item.appendLabel("label_Persistent");
item.appendLabel("label_Undefined");

// Addition of the item at the bottom of the matrix
matrix.pushInto(0, matrix.NbRows(), item);

// Addition of the management of a tagged value type
item = box.createEditTag

(this,"sqlName","label_SQL_Name");
matrix.pushInto(0, matrix.NbRows(), item);

// Addition of a tickbox
item = box.createGadgetToggle(this,"Null","Not null");
matrix.pushInto(0, matrix.NbRows(), item);



Chapter 10: Properties editor services

10-10 Objecteering/J Libraries User Guide

// Addition of a simple text field
item = box.createEditField

(this,"TypeConstraint","String_size");
matrix.pushInto(0, matrix.NbRows(), item);

// Addition of a multi-line text field
item = box.createEditText

(this,"Check","Check_constraint");
matrix.pushInto(0, matrix.NbRows(), item);
}



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-11

Managing field positioning using matrices

A matrix is a zone broken down into lines and columns, and functions a little like
an Excel spreadsheet.  Items are positioned and aligned in one of the matrix cells.
A matrix is created using the following method:

PBoxMatrix PBoxDescription:createMatrix
(in String title);

This method creates a matrix zone, "PBoxMatrix", in which graphic gadgets are
positioned.
The following service is used to position an item in a cell:

PBoxMatrix:pushInto(in integer column,
in integer row,
inout PBoxItem item);

Column and line numbers start at zero.
A cell can only contain one item.

The "NbRows()" and "NbColumns()" methods are used to find out the current
number of lines and columns in the matrix.  If you run:

matrix.pushInto(0, matrix.NbRows(), item);

the item is automatically placed on the first free line of the matrix, in the first
column.

The main matrix must be affected to the properties editor, using the following
method:



Chapter 10: Properties editor services

10-12 Objecteering/J Libraries User Guide

PBoxDescription:setItem(inout PBoxItem mainItem);

This method is used to associate a specific item to the properties editor.  There
can be only one item, which is why a matrix is always affected to the properties
editor.

Note: For an overview of the "PBoxDescription" and "PBoxMatrix" metaclasses,
please refer to the "Overview of properties editor services" section in the
current chapter of this user guide.



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-13

Creating fields

The "PBoxDescription" class provides basic properties editor item creation
services.  These services are methods, all of which send back an object whose
basic class is "PBoxItem".
The "PBoxDescription" class has two relationships:

♦= "MainItem", which is the element to be put in the properties editor.  A matrix
created with the element is generally affected to it.

♦= "Object" is the edited model element.  This relationship is not needed by the
user, as "this" is already directed to it.

Note: For an overview of the "PBoxDescription" metaclass, please refer to the
"Overview of properties editor services" section in the current chapter of
this user guide.



Chapter 10: Properties editor services

10-14 Objecteering/J Libraries User Guide

Creating a simple text entry field
To create a simply text entry field, the following service should be used.
createEditField (inout Object object,

in String attributeName,
String title)

return PBoxEditField;

For example:
item = box.createEditField(this,"TypeConstraint",

"label_String_size");

This method is used to create a new editing field for an attribute named
"attributeName" which belongs to an "object" object.  The "title" field is used to
define the label preceding the text entry zone.

Note: It should be noted that for all field titles, the properties editor will look for
the translation of the "title" message in the <ModuleName>Ihmlabel.us
resource file.  This is the case for all fields in the properties editor.

The graphic associated depends on the nature of the attribute:

♦= for a String type attribute, the field is a simple text entry field

♦= for an enumerate attribute, the field is a combobox which automatically
contains all possible values for the enumerate

If a non-existent attribute name is entered, the following J methods are used:
String get<attributeName>;
to initialize the graphic, and

boolean set<attributeName> (content:in string);
to save information at user model level.

Note: The return value must indicate whether or not processing has been
correctly carried out.

The associated graphic is then a simple text zone.



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-15

For example:

void Class:initMatrix(inout PBoxDescription box,
inout PBoxMatrix matrix)

{
PBoxItem item;

item =
box.createEditField(this,"theName","label_theName");

matrix.pushInto(0, matrix.NbRows(), item);
}

String Class:gettheName()
{

return Name;
}

boolean Class:settheName (content : in string)
{

if (content.findLast(« «)== -1)
{

// names should not contain spaces
return false ;

}
else
{

sessionBegin(«Change name»,true);
// a session must be opened
setName(content);
return sessionEnd();
// the best method is to send back if the session

is valid
}

}



Chapter 10: Properties editor services

10-16 Objecteering/J Libraries User Guide

If the attribute is an enumerate, the following service is used:
setRadio(mode : in boolean) ;

When the "mode" parameter is true, this service is used to graphically represent
the attribute in the form of radio buttons.  By default, or if the "mode" parameter is
false, the attribute is represented by a combobox.

Note: This is only true where the attribute represented is an enumerate.  In other
cases, this method has no effect on the graphic object (a text field, for
example).



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-17

Creating a single-line gadget field to enter an integer
PBoxGadgetIntegerField createGadgetIntegerField

(inout SmObject object,
in string commandJ ,
in string title);

This method allows the definition of an editing zone for integers.
Please refer to the "createGadgetTextField" and "createEditField" methods for
further information.

Creating a stereotype selection field
createEditStereotype(inout ModelElement modelElement,

in string title )
return PBoxEditStereotype;

This method is used to create a selection field, associated with a "modelElement"
stereotype.  The "title" field allows the label preceding the field to be defined.
The associated field can be a combobox or radio buttons.  By default, the field is a
combobox, but this can be changed using the following method:
setRadio(mode : in boolean) ;

When the "mode" parameter is true, this method is used to graphically represent
the attribute in the form of radio buttons.  By default, or if the "mode" parameter is
false, the attribute is represented by a combobox.

append(stereotypeName : in string);

This service is used to add the "stereotypeName" stereotype to the field
stereotype list.

appendAll();

This service is used to add all the possible values to the list of stereotypes.



Chapter 10: Properties editor services

10-18 Objecteering/J Libraries User Guide

For example:
void Class :initMatrix(inout PBoxDescription box,

inout PBoxMatrix matrix)
{

PBoxItem item;

item = box.createEditStereotype
(this,"label_Stereotype");

item.setRadio(true);
if (isInPhysicalModel())
// a method specific to the module
{

item.append("table");
}
item.append("sqlView");
item.append("procedureClass");
matrix.pushInto(0, matrix.NbRows(), item);

}



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-19

Creating an editing field for a tagged value
PBoxEditTag createEditTag (inout ModelElement

modelElement,
in string tagTypeName,
in string title );

This method is used to create an editing field for a tagged value named
"tagTypeName" which belongs to a "modelElement" element, and its parameters.
The "title" field defines the label preceding the text entry zone.
Graphically, the field is presented in the form of a tickbox, indicating the name of
the tagged value ("tagTypeName") and the name of a text field containing the
parameter(s) of the tagged value.

Note: Objecteering/UML does not handle mistakes in the name of the tagged
value type!

For example:

// Addition of the management of a tagged value type
item = box.createEditTag

(this,"sqlName","label_SQL_Name");
matrix.pushInto(0, matrix.NbRows(), item);

Creating a multi-line editing field
PBoxEditText createEditText (inout SmObject object,

in string attributeName,
in string title);

This method is used to create a new editing field for an attribute named
"attributeName" belonging to an "object" object.  The "title" field is used to define
the label preceding the text entry zone.
The associated graphic is automatically a multi-line zone.



Chapter 10: Properties editor services

10-20 Objecteering/J Libraries User Guide

Creating a label
createGraphicLabel (in string title )

return [@*] class PBoxGraphicLabel;

This method is used to create a label.  This element will be translated in the
properties editor by a non-modifiable text string.

Adding a bitmap
createGraphicBitmap

(bitmapFileName : in string () := /@
CR_string::empty() @/)

return [@*] class PBoxGraphicBitmap;

This method is used to create a bitmap.

Adding a separation line
createGraphicSeparator ()

return [@*] class PBoxGraphicSeparator;

This method is used to create a horizontal separation line.



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-21

Adding a button
createGadgetButton

object [@*] : inout class SmObject,
commandJ : in string (),
title : in string () := /@ CR_string::empty() @/)

return [@*] class PBoxGadgetButton;

This method is used to create a button.  The J callback associated with the
button's action is defined in the "commandJ" field.  This method is run on the
"object" object, and "title" is the button's label.

createGadgetBitmapButton
(object [@*] : inout class SmObject,
commandJ : in string (),
bitmapFileName : in string () :=

/@ CR_string::empty() @/)
return [@*] class PBoxGadgetBitmapButton;

This method provides exactly the same service as the previous method.  However,
instead of having a label on the button, a bitmap whose file is indicated in
"bitmapFileName" appears.

Note 1: In the J callback, the current module is not known!  As a consequence, the
"getCurrentModuleParameterValue" and "getMulMessage" services do not
function.

Note 2: "bitmapFileName" must be the name of a file located in the
$(OBJING_PATH)/res/bmp directory.



Chapter 10: Properties editor services

10-22 Objecteering/J Libraries User Guide

For example:

void Class :initMatrix(inout PBoxDescription box,
inout PBoxMatrix matrix)

{
PBoxItem item;
PBoxMatrix m3;

// The properties editor only accepts bitmaps which are
// located in $objing/res/bmp/.
// Providing a path serves no purpose.

item = box.createGadgetBitmapButton
(this, "selectInBrowser",
"loupe.gif");
m3.pushInto(0, m3.NbRows(), item);

//
// Label for physical model on the same line
//
item=box.createGraphicLabel

(ihmMsg1("Physical_model_x1",Name));
// Here, the second item is placed on the last occupied
// line of the matrix in the second column
m3.pushInto(1, m3.NbRows()-1, item);

// My m3 matrix is positioned in the initial matrix.

matrix.pushInto(0, m3.NbRows(), item);
}



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-23

Adding a combobox or radio buttons
PBoxGadgetChoice createGadgetChoice

(inout SmObject object,
in string commandJ ,
in string title );

This method is used to create a selected field associated with an "object" object.
"title" is used to define the label preceding the field.
"commandJ" is used to define the basis of function names which will be called to
initialize the graphic gadget and save information.

To initialize the graphic, the following service is used:
string get<commandJ> ();

To save information at user model level, the following service is used:
boolean set<commandJ> (content : in string);

The return value must indicate whether or not processing has been correctly
carried out.
These methods are run on the "object" object.  The associated graphic can be a
combobox or radio buttons.



Chapter 10: Properties editor services

10-24 Objecteering/J Libraries User Guide

Services provided by the "PBoxGadgetChoice" class
setRadio(mode : in boolean) ;

When the "mode" parameter is true, this service is used to graphically represent
the attribute in the form of radio buttons.  By default, or if the "mode" parameter is
false, the attribute is represented by a combobox.

appendLabel(label [@*] : in string ());

This service is used to add the "label" string to the list of attribute values.

For example:

// Addition of a set of radio buttons
item = box.createGadgetChoice(this,"Persistence",

"label_Persistence" );
item.setRadio(true);
// true => radio buttons, false ==> combobox
item.appendLabel("label_Transient");
item.appendLabel("label_Persistent");
item.appendLabel("label_Undefined");
// Addition of the item at the bottom of the matrix
matrix.pushInto(0, matrix.NbRows(), item);



Chapter 10: Properties editor services

Objecteering/J Libraries User Guide 10-25

Adding a tickbox
PBoxGadgetToggle createGadgetToggle

(inout SmObject object,
in string commandJ ,
in string title );

This method is used to define an editing zone for tickboxes.
"title" is used to define the label preceding the field.
"commandJ" is used to define the basis for function names which will be called to
initialize the graphic field and save information.

To initialize the field, the following service is used:
boolean get<commandJ> ();

To save information at user model, the following service is used:
boolean set<commandJ> (in boolean content );

The return value must indicate whether or not processing has been correctly
carried out.
These methods are run on the "object" object.
The associated field can be a combobox or radio buttons.  By default, the field is a
combobox, but this can be changed using the following method:
setRadio(mode : in boolean) ;

When the "mode" parameter is true, this is used to graphically represent the
attribute in the form of radio buttons.  By default, or if the "mode" parameter is
false, the attribute is represented by a combobox.



Chapter 11: Miscellaneous



Chapter 11: Miscellaneous

Objecteering/J Libraries User Guide 11-3

Scan services

Purpose
It is always possible and not discouraged to navigate through the metamodel
meta-associations by using the usual J navigation mechanism.  Scan services
provide a uniform way to browse a model, by using the most commonly used
paths.
Scan services skip other uninteresting intermediate metaclasses, such as
metaclasses representing links ("Use", "Communication", "Realization").

Usage
Most metaclasses have scan services.  Any time you wish to browse, please
consult the origin metaclass, and see if the required service is present.
All scan services return sets, even if there can exist only one single related
element.
This is practical for diffusing messages to the result, even if nothing is returned.

Example
We want to know the UseCases that cooperate with an Actor.  We first have to
look at the "Actor" documentation.  We can get this result in the usual way, by
navigating the associated "Communication" occurrences, and then the UseCases
associated with these occurrences.
Scan services will provide the result through the following simple instruction:
cooperatingUseCase = myActor.getCooperatingUseCases();



Chapter 11: Miscellaneous

11-4 Objecteering/J Libraries User Guide

Stream exchange services

Presentation
Objecteering/UML provides two services for stream exchange facilities and two
formats:

♦= the "externalization format": This format is specific to Objecteering/UML.  It has
the advantage of providing a complete stream storage of the Objecteering/UML
data, and of using the universal identification mechanism.  The teamwork
facility and the module externalization service use this format.

♦= the XMI format: This format corresponds to the OMG UML XMI standard.  It is
an open format which allows the exchange of models between different tools.
It contains neither Objecteering/UML-specific data nor diagrams, nor does it
use identifiers.



Chapter 11: Miscellaneous

Objecteering/J Libraries User Guide 11-5

"Externalization" format services
boolean Object:externalizeIntoDir(in String dirName, in
boolean isRecursive)
This either recursively externalizes or not, according to "isRecursive", the current
object in the "dirName" directory in one or several files.  It returns "true" if this has
been correctly carried out.

boolean Object:internalizeFile(in String rootFile, in
String dirName, in boolean recursive)
This internalizes the "rootFile" file contained in "dirName".  If "recursive" is true,
then all components of the object described in "rootFile" are also internalized.
If "recursive" if false, then only components which are not described in their own
file are internalized.
In this mode, if the object described in "rootFile" exists in the database before
internalization and there are non-internalized components described in "rootFile",
these remain linked as components.
Those which are not described in "rootFile" are deleted.
Finally, those which are described in "rootFile" and which do not exist in the
database are created in simplified form.
This returns "true" if the internalization has been properly carried out. The
internalization is always carried out in the context of a UML modeling project.

boolean Object:internalizeSetOfFiles(in String
rootFiles[], in String dirName, in boolean recursive)
The same is true for "internalizeFile" but a set of files which are internalized are
taken into account all at once.

String Object:getExternalFileNameFromObject(in String
pRootDir, in boolean pWithExt)
This returns the name of the externalization file associated with the current object.
If "pWithExt" is true, the externalization files extension is added.  "pRootDir" can
be an empty string.



Chapter 11: Miscellaneous

11-6 Objecteering/J Libraries User Guide

String Object:getExternalFileNameFromString(in String
pRootDir, in String pObjectLogicalId, in String
pObjectName, in boolean pWithExt)
This returns the name of the externalization file associated with the object
identified by "pObjectLogicalId" or "pObjectName" name, preceded by "pRootDir".
If "pWithExt" is true, the externalization files extension is added. "pRootDir" can be
an empty string.
The pObjectLogicalId and pObjectName parameters are exclusive.  In the case of
conflict, "pObjectLogicalId" is selected.  Use "pObjectName" for a "Project" or a
"SoModule".



Chapter 11: Miscellaneous

Objecteering/J Libraries User Guide 11-7

XMI services
The Objecteering/XMI module is used to generate and re-read XMI files.  The file
format is the standard UML format for model exchange between different kinds of
tools.  XMI exchange is based on the OMG UML 1.3 and 1.4 standards.

Note: Objecteering/XMI module import can also be used to re-read XMI files, but
cannot be used to generate them.

XMI functions
The Objecteering/XMI module has three main functions:

♦= The generation of XMI files from an Objecteering/UML model

♦= The creation of an Objecteering/UML model from an XMI file

♦= The update of an Objecteering/UML model from an XMI file
For further information on XMI, please refer to the Objecteering/XMI user guide.



Chapter 11: Miscellaneous

11-8 Objecteering/J Libraries User Guide

"Object" class

Overview
In the J language, every element is an instance of Object.  Primitive types such as
"int" or "String" are sub-classes of Object, but every Class metamodel, such as
"Element" or "Class", is also a sub-class of Object.
The "Object" class is also described in the J reference manual.  Its interest here is
to implement several general methods available in the J library.



Chapter 11: Miscellaneous

Objecteering/J Libraries User Guide 11-9

Project management services

Overview
In the J language, services are provided for project management.  For example, J
provides services for the creation or deletion of UML modeling projects, as well as
for the selections of modules, and so on.

Administration mode - Creating a UML modeling project
Project Object:createProject (in String projectName)
This service creates a UML modeling project named projectName.  The name
must be unique.  The UML modeling project is created with selection of default
modules.  This service must be called only in administration mode.  The new UML
modeling project is returned if the creation is a success, otherwise the interpreter
is stopped.
This API run on Object necessitates a particular context which can be retrieved in
three ways:
1 -  in the context of module installation (the installModule method)
2 -  in the initial context of launching J on-line (administration mode)
3 -  after retrieving the J on-line initialization object (administration mode) using the

getStartUpObject() method

Example: MyProject = getStartUpObject() .createProject("MyProject");

Opening a UML modeling project
Project Object:openProject(in String projectName)
This opens the "projectName" project and returns the Project open.  An error is
sent if the UML modeling project does not exist.  Opening consists of positioning
the internalization context on the realized UML modeling project.



Chapter 11: Miscellaneous

11-10 Objecteering/J Libraries User Guide

Adding a module used by a UML modeling project
boolean Project:addUsedModule (in String moduleName)
This service adds the moduleName module as a module used by the UML
modeling project to which the message is sent.  The module must be installed.
The service returns true if the module has been added or if it was already present,
and false otherwise.  This service must be called in the context of a session (for
further information, please refer to the "Managing the Session" section of chapter
2 of the Objecteering/J Libraries User Guide).

Selecting a module
Project:updateSelectedModules (in String[]
pModuleNamesToSelect, in String[]
pModuleNamesToDeselect)
In the current UML modeling project, this selects the modules whose names are
contained in "pModuleNamesToSelect", and deselects those in
"pModuleNamesToDeselect".  For each module selected, a license token is taken
if the module is subject to a license.  When the module is unselected, the license
token is released.

Getting parameter values
boolean Object:getParameterValue (in String name, in
String profile, in String module, out String value)
This returns in "value" the value of the parameter "name" defined in the "profile"
profile of the "module" module.  This returns false if the parameter does not exist.

Finding predefined types
Object Object:findPredefinedType (in String TypeName)
This returns the "TypeName"predefined type or returns empty if this is not found.
The type is searched for in the "_predefinedTypes" UML modeling project.



Chapter 11: Miscellaneous

Objecteering/J Libraries User Guide 11-11

Finding an object from its identifiers
Element Object:projectFindFromIds (in String
PhysicalId, in String SiteId)
This looks for an object in the current UML modeling project from its identifiers.
"PhysicalId" is the base identifier and "SiteId" is the site identifier.  The object is
first looked for with regard to its "PhysicalId" and then regarding its "SiteId", if the
first search is not successful.
If the object is not found or if there is no current UML modeling project, an empty
object is returned.

Finding the two identifiers of an element
Object:getBothIds (out String PhysicalId, out String
SiteId)
This returns both the physical and logical identifiers of the current element.  An
empty string is returned if no identifier exists.



Index



acceptDropOf    7-28
action    6-8
Actor    11-3
addBitmap    7-10
addButton    7-24
addButtonBitmap    7-24
addCombo    7-12
addDiagram    3-16
addDropField    7-27
addDropZone    7-27
addField    7-11
addHelp    7-12
Adding a bitmap    10-20
Adding a button    10-21
Adding a combobox or radio buttons

10-23
Adding a separation line    10-20
Adding a tickbox    10-25
Adding fields to the J report window

9-10
Adding report lines    9-7
addItem    7-18
addLabel    7-10
addList    7-11
addListItem    7-14
addPoint    3-22, 3-31
addPropertiesPage    10-6, 10-7
addReport    9-8, 9-9
addRootItem    7-18
addText    7-11
addToggle    7-10
addTree    7-12
addUsedModule    11-10
Administration mode    11-9

Specific J services    11-9

append    10-17
append<RoleName>    2-8
appendAll    10-17
appendAllowedMetaclass    7-28
appendChild    8-14
appendLabel    10-24
appendUserData    7-7
Association    2-3, 3-4, 3-8, 3-30
Attribute    2-4, 2-7, 3-23, 5-10
ATTRIBUTE_JNODE    8-12
beginLayoutSection    7-9
Calls used to create and destroy

dialog boxes    7-5
createJBox    7-5
createJNoModalBox    7-5
delete    7-6

CDATA_SECTION_JNODE    8-12
CDATASection    8-16
changeColumn    7-9
changePosition    7-9
checkedSpawn    4-4
Class    2-3, 2-7, 3-6, 3-18, 3-23, 3-26,

5-13
Class diagram    3-4, 3-8, 3-12, 3-16
clearActionHistory    4-10
cloneNode    8-14
close    3-19
Code generation    5-11
Code of a method referenced by a

module command    8-22
Code of the recursiveGetChilds

method (defined on the
JDOM_Node metaclass)    8-24

Collaboration    3-18
Command definitions    5-3
COMMENT_JNODE    8-12



Communication class    11-3
compareFile    4-12
Consistency check management

services    5-9
Consistency checks    2-5, 2-6, 5-9

Flexibility    5-9
copyFile    4-12
createAddAndMoveViewBox    3-25
createAndAddActivityDiagram    3-18
createAndAddClassDiagram    3-17
createAndAddCollaborationDiagram

3-17
createAndAddDeploymentDiagram

3-17
createAndAddInstanceDeploymentDia

gram    3-17
createAndAddObjectDiagram    3-17
createAndAddSequenceDiagram    3-

17
createAndAddStateDiagram    3-18
createAndAddUseCaseDiagram    3-

16
createAndAddViewLink    3-31
createAndShowNewReportBox    9-6
createAndShowReportBox    9-6
createAndShowReportBoxWithIdent

9-6
createAttribute    8-17
createCDATASection    8-16
createClassDiagram    3-10, 3-16
createComment    8-16
createDocumentType    8-17
createEditField    10-14
createEditStereotype    10-17
createEditTag    10-19
createEditText    10-19
createElement    8-16
createEntity    8-17

createEntityReference    8-17
createGadgetBitmapButton    10-21
createGadgetButton    10-21
createGadgetChoice    10-23
createGadgetIntegerField    10-17
createGadgetToggle    10-25
createGraphicBitmap    10-20
createGraphicLabel    10-20
createGraphicSeparator    10-20
createJBox    7-5
createJNoModalBox    7-5
createMatrix    10-11
createNewReportBox    9-5
createNotation    8-16
createProcessingInstruction    8-17
createProject    11-9
createReportBox    9-5
createReportBoxWithIdent    9-5
createTextNode    8-16
createUseCaseDiagram    3-16
createXMLDecl    8-18
createXMLDocument    8-17
createXMLDocumentSkeleton    8-17
Creating a J method    3-8
Creating a label    10-20
Creating a multi-line editing field    10-

19
Creating a non-modal dialog box    7-

34
Creating a report window    9-5
Creating a simple modal dialog box

7-30
Creating a simple text entry field    10-

14
Creating a single-line gadget field to

enter an integer    10-17



Creating a stereotype selection field
10-17

Creating an editing field for a tagged
value    10-19

Creating and displaying a report
window    9-6

currentModuleParameterExists    5-8
Cursor    7-3
Cursor positioning    7-3
Customizing the J report window    9-

10
default#Report profile    9-4
Defining new types of report line    9-

10
delete    2-8, 7-6
deleteTypesPackage    5-6
Dependency    3-4, 3-30
Derivation restriction checking    8-10
Design patterns    2-3
Diagram    3-3, 3-4, 3-6, 3-7, 3-21, 3-

23, 3-26
Diagram class

Consistency rules    3-15
Constructors    3-16
Methods    3-19
Overview    3-12
Properties    3-14

Diagrams and view elements
Diagram class    3-12
Editor management services    3-32
Handling diagrams and view

elements with J    3-6
Metamodel synthesis    3-4
Point class    3-21
Presentation    3-3
ViewBox class    3-23
ViewElement class    3-26
ViewLink class    3-30

Dialog boxes    5-10, 5-20
Displaying new tabs    10-6
Displaying new tabs in the properties

editor    10-6
Doctype    8-16
Document Object Model    8-3
DOCUMENT_FRAGMENT_JNODE

8-12
DOCUMENT_JNODE    8-12
DOCUMENT_TYPE_JNODE    8-12
DOM API    8-3
DOM parser    8-3
DOM parser objects    8-6
DOM_DocumentTree    8-13
Double-clicking    9-14
dump    3-19
Editing generated files    5-20

External edition    5-22
Internal visualization    5-22
Marker primitives    5-21
Marker styles    5-21
Markers    5-20
Updating the visualizers    5-22

Editor management services    3-32
Commands    3-32

Element    3-4, 3-7, 3-30
ELEMENT_JNODE    8-12
endLayoutSection    7-9
Entity reference nodes    8-9
Entity references    8-20
ENTITY_JNODE    8-12
ENTITY_REFERENCE_JNODE    8-

12
Enumerate attribute    10-14
erase<RoleName>    2-8
eraseAllResults    6-6
eraseUserData    7-7



Example of a simple search    6-10
expand    7-22
Explorer    2-6, 3-32
extEditFileName    5-22
External edition    5-22
externalizeIntoDir    11-5
File system management

Presentation    4-11
File sytem management

File system services    4-12
findPredefinedType    11-10
First steps

Entering and executing    3-10
Overview    3-8

Generalization    2-3, 3-4, 3-8
generateWithTemplate    5-14
Generation work product    5-18
get_sessionName    2-6
get<attributeName>    10-14
get<commandJ>    10-23
getAttribute    8-20
getAttributeNode    8-20
getAttributes    8-13
getAttributeVal    5-10
getBitmapFromType    9-10
getBitmapName    7-20
getBothIds    11-11
getCallbackItem    7-19
getChild    7-21
getChildList    7-21
getChildNodes    8-13
getCooperatingUseCases    11-3
getCurrentModuleParameterValue

5-8, 10-21
getCurrentTime    4-6
getDiagrams    3-18

getDoctype    8-16
getDocument    8-8
getDocumentElement    8-16
getDropField    7-27
getEditorCommandLine    5-22
getElementsByTagName    8-16, 8-21
getEnvironmentInfo    4-3
getErrors    8-8
getExternalFileNameFromObject    11-

5
getExternalFileNameFromString    11-

6
getFilesInDirectory    4-14
getFileSize    4-13
getFileTime    4-14
getFirstChild    8-13
getFormatedTime    4-6
getIdent    7-14
getIdLineComment    5-21
getIndex    7-22
getJSet    7-6
getLabel    7-20
getLastChild    8-13
GetLinkDestination    3-31
GetLinkOrigin    3-31
getMulMessage    10-21
getNextSibling    8-13
getNodeName    8-12
getNodeType    8-12
getNodeValue    8-12
getObjecteeringVersion    4-10
getObjingPath    4-3
getOSFamily    4-14
getOwnerDocument    8-13
getParameterValue    5-8, 11-10
getParent    7-20



getParentNode    8-12
getPreviousSibling    8-13
getRoot    7-19
getSelectedItems    7-19
getStartUpObject    11-9
getSymbol    6-8
getTagName    8-20
getTree    7-13
getTypesPackage    5-5
getUserData    7-7
getUserInfo    7-8
getValue    7-13, 7-28
getValueList    7-13
Ghost item    7-21
Grammar    8-8
Graphic editor    3-32
Graphic editors    2-6
Handling diagrams and ViewElements

with J
Graphic management    3-7
Model and representation    3-6

hasChild    8-14
hide    7-25
High level primitives    2-3

Advantages    2-3
IdBox    5-21
IdEnd    5-21
IdGen    5-21
IdTxt    5-21
ihmlabel.us    10-14
importNode    8-18
infoUser    7-29
infoUser method    7-29
initBoxBottom    9-10
initBoxHeader    9-10
initializePropertiesBox    10-7

initMatrix    10-8
initObject    5-13, 6-6
initProduct    5-12
initTemplate    5-14
InOut parameters    8-13, 8-16, 8-21
insertBefore    8-14
Installation profile    10-6
installHelp    5-6
installMethod    11-9
Internal visualization    5-22
internalizeFile    11-5
internalizePackage    5-6
internalizeSetOfFiles    11-5
internalizeTypesPackage    5-6
intVisuFileName    5-22
isBuildInConsistencyCheckOn    5-9
isExpanded    7-22
isGhostItem    7-21
isPresent    5-12
isSelected    7-20
J dialog box    7-3

Modal    7-3
Non-modal    7-3

J dialog box features
Buttons    7-4
Combo boxes    7-4
Text fields    7-4

J instructions    5-3
J language    6-3

Presentation    1-3
J language services

action    6-8
addBitmap    7-10
addButton    7-24
addButtonBitmap    7-24
addCombo    7-12



addDiagram    3-16
addField    7-11
addHelp    7-12
addItem    7-18
addLabel    7-10
addList    7-11
addListItem    7-14
addPoint    3-22, 3-31
addPropertiesPage    10-6, 10-7
addReport    9-8, 9-9
addRootItem    7-18
addText    7-11
addToggle    7-10
addTree    7-12
addUsedModule    11-10
append    10-17
appendAll    10-17
appendChild    8-14
appendLabel    10-24
appendUserData    7-7
beginLayoutSection    7-9
changeColumn    7-9
changePosition    7-9
checkedSpawn    4-4
clearActionHistory    4-10
cloneNode    8-14
close    3-19
compareFile    4-12
copyFile    4-12
createAddAndMoveViewBox    3-25
createAndAddActivityDiagram    3-

18
createAndAddClassDiagram    3-17
createAndAddCollaborationDiagram

3-17
createAndAddDeploymentDiagram

3-17

createAndAddInstanceDeployment
Diagram    3-17

createAndAddObjectDiagram    3-17
createAndAddSequenceDiagram

3-17
createAndAddStateDiagram    3-18
createAndAddUseCaseDiagram

3-16
createAndAddViewLink    3-31
createAndShowNewReportBox    9-

6
createAndShowReportBox    9-6
createAndShowReportBoxWithIdent

9-6
createAttribute    8-17
createCDATASection    8-16
createClassDiagram    3-10, 3-16
createComment    8-16
createDocumentType    8-17
createEditField    10-14
createEditStereotype    10-17
createEditTag    10-19
createEditText    10-19
createElement    8-16
createEntity    8-17
createEntityReference    8-17
createGadgetBitmapButton    10-21
createGadgetButton    10-21
createGadgetChoice    10-23
createGadgetIntegerField    10-17
createGadgetToggle    10-25
createGraphicBitmap    10-20
createGraphicLabel    10-20
createGraphicSeparator    10-20
createJBox    7-5
createJNoModalBox    7-5
createMatrix    10-11



createNewReportBox    9-5
createNotation    8-16
createProcessingInstruction    8-17
createProject    11-9
createReportBox    9-5
createReportBoxWithIdent    9-5
createTextNode    8-16
createUseCaseDiagram    3-16
createXMLDecl    8-18
createXMLDocument    8-17
createXMLDocumentSkeleton    8-

17
currentModuleParameterExists    5-

8
delete    7-6
deleteTypesPackage    5-6
dump    3-19
endLayoutSection    7-9
eraseAllResults    6-6
eraseUserData    7-7
expand    7-22
extEditFileName    5-22
externalizeIntoDir    11-5
find PredefinedType    11-10
generateWithTemplate    5-14
get_sessionName    2-6
get<attributeName>    10-14
get<commandJ>    10-23
getAttribute    8-20
getAttributeNode    8-20
getAttributes    8-13
getAttributeVal    5-10
getBitmapFromType    9-10
getBitmapName    7-20
getBothIdsCall    11-11
getCallbackItem    7-19

getChild    7-21
getChildList    7-21
getChildNodes    8-13
getCooperatingUseCases    11-3
getCurrentModuleParameterValue

5-8, 10-21
getCurrentTime    4-6
getCurrentTimeCall    4-6
getDiagrams    3-18
getDoctype    8-16
getDocument    8-8
getDocumentElement    8-16
getEditorCommandLine    5-22
getElementsByTagName    8-16, 8-

21
getEnvironmentInfo    4-3
getErrors    8-8
getExternalFileNameFromObject

11-5
getExternalFileNameFromString

11-6
getFilesInDirectory    4-14
getFileSize    4-13
getFileTime    4-14
getFirstChild    8-13
getFormatedTime    4-6
getIdent    7-14
getIdLineComment    5-21
getIndex    7-22
getJSet    7-6
getLabel    7-20
getLastChild    8-13
GetLinkDestination    3-31
GetLinkOrigin    3-31
getMulMessage    10-21
getNextSibling    8-13
getNodeName    8-12



getNodeType    8-12
getNodeValue    8-12
getObjecteeringVersion    4-10
getObjingPath    4-3
getOSFamily    4-14
getOwnerDocument    8-13
getParameterValue    5-8, 11-10
getParent    7-20
getParentNode    8-12
getPreviousSibling    8-13
getRoot    7-19
getSelectedItems    7-19
getSymbol    6-8
getTagName    8-20
getTree    7-13
getTypesPackage    5-5
getUserData    7-7
getUserInfo    7-8
getValue    7-13
getValueList    7-13
hasChild    8-14
hide    7-25
idBox    5-21
idEnd    5-21
idGen    5-21
idTxt    5-21
importNode    8-18
infoUser    7-29
initBoxBottom    9-10
initBoxHeader    9-10
initializePropertiesBox    10-7
initMatrix    10-8
initObject    5-13, 6-6
initProduct    5-12
initTemplate    5-14
insertBefore    8-14

installHelp    5-6
internalizeFile    11-5
internalizePackage    5-6
internalizeSetOfFiles    11-5
internalizeTypesPackage    5-6
intVisuFileName    5-22
isBuildInConsistencyCheckOn    5-9
isExpanded    7-22
isGhostItem    7-21
isPresent    5-12
isSelected    7-20
kind    3-19
layoutViewElements    3-20
linkToReport    9-8
linkToReportUnder    9-9
listFile    4-14
marker    5-21
mkDir    4-13
mkDirRec    4-13
mngFile    5-18, 5-21
moduleInit    5-5
moduleInstall    5-4
moduleParameterExists    5-8
moduleSelect    5-4, 10-6
moduleStart    5-5, 10-6
moduleStop    5-5, 10-6
moduleUninstall    5-5
moduleUnselect    5-4, 10-6
moveFile    4-12
moveItem    7-18
mustPropagate    5-12
NbColumns    10-11
NbRows    10-11
nextSearch    6-6
onAction    9-11
onSelect    9-11



open    3-19
openInBrowser    3-32
openInEditor    3-32
openProject    11-9
parse    8-8
printXML    8-18
projectFindFromIds    11-11
pushInto    10-11
queryUser    7-29
readAndAddFile    7-15
removeAttribute    8-20
removeAttributeNode    8-20
removeChild    8-14
removeFile    4-12
removeItem    7-19
removeListItem    7-14
removePropertiesPage    10-6
replaceChild    8-14
resetList    7-15
reverseAllFiles    5-18
rmDir    4-13
rmDirRec    4-14
runSearch    6-6
save    4-10
sawErrors    8-8
searchDataRecursive    7-21
searchSelectedRecursive    7-21
sessionAbort    2-6
sessionBegin    2-5
sessionCheck    2-6
sessionEnd    2-6
sessionHasBegun    2-6
set<attributeName>    10-14
set<commandJ>    10-23
setAttribute    8-20
setAttributeNode    8-20

setAttributeVal    5-10
setBitmap    7-20
setBuildInConsistencyCheckOff    5-

9
setCallback    7-24
setCreateEntityReferenceNodes

8-9
setDiagramDumpPath    3-19
setDoNamespaces    8-8
setDoSchema    8-10
setExitOnFirstFatalError    8-8
setExternalSchemaLocation    8-10
setFocus    7-17
setFocusCancelButton    7-17
setFocusOkButton    7-17
setGhostItem    7-21
setIncludeIgnorableWhitespace    8-

9
setItem    10-12
setLabel    7-20
setNodeValue    8-14
setRadio    10-16, 10-24
setReuseGrammar    8-8
setSelected    7-20
setToCreateXMLDeclTypeNode    8-

10
setTreeExpandCallback    7-25
setTreeExpandGhostItemCallback

7-26
setTreeSelectionCallback    7-25
setTreeShrinkCallback    7-26
setUserInfo    7-8
setValidationConstraintFatal    8-9
setValidationSchemaFullChecking

8-10
setValidationScheme    8-9
setValue    7-14



show    7-23
shrink    7-22
spawnOutputProcess    4-4
spawnProcess    4-4
tmpFileName    4-13
uninstallHelp    5-6
update    5-12
updateAllEditors    5-22
updateSelectedModules    11-10
verify    5-13

J libraries    1-4
File management    1-4
Generated file management and

edition    1-4
Module management services    1-4
Scan services    1-4
Services    1-4
Stream exchange services    1-4
System and environment    1-4
Work product    1-4

J library services
Building a module    1-4
Coupling the operating system    1-4
Creating a simplified graphical user

interface    1-4
Creating, modifying and

automatically positioning
diagrams    1-4

Dynamically modifying a model    1-
4

Realizing model exchanges in
standardized ASCII form    1-4

J methods    1-3, 5-10
J report window    9-3
J report window creation services

createAndShowNewReportBox    9-
6

createAndShowReportBox    9-6

createAndShowReportBoxWithIdent
9-6

createNewReportBox    9-5
createReportBox    9-5
createReportBoxWithIdent    9-5

J rules    1-3
J service syntax    1-6
J stream management services    4-11
JBox class    7-4, 7-23
JBox methods    7-23

show    7-23
JControlTextType types    7-11
JDOM tree    8-6, 8-9
JDOM_Document    8-6
JDOM_Document instances    8-6
JDOM_Document methods    8-15

createAttribute    8-17
createCDATASection    8-16
createComment    8-16
createDocumentType    8-17
createElement    8-16
createEntity    8-17
createEntityReference    8-17
createNotation    8-16
createProcessingInstruction    8-17
createTextNode    8-16
createXMLDecl    8-18
createXMLDocument    8-17
createXMLDocumentSkeleton    8-

17
getDoctype    8-16
getDocumentElement    8-16
getElementsByTagName    8-16
importNode    8-18
printXML    8-18

JDOM_Element    8-6



JDOM_Element methods    8-19
getAttribute    8-20
getAttributeNode    8-20
getElementsByTagName    8-21
getTagName    8-20
removeAttribute    8-20
removeAttributeNode    8-20
setAttribute    8-20
setAttributeNode    8-20

JDOM_Node    8-6
JDOM_Node methods    8-11

appendChild    8-14
cloneNode    8-14
getAttributes    8-13
getChildNodes    8-13
getFirstChild    8-13
getLastChild    8-13
getNextSibling    8-13
getNodeName    8-12
getNodeType    8-12
getNodeValue    8-12
getOwnerDocument    8-13
getParentNode    8-12
getPreviousSibling    8-13
hasChild    8-14
insertBefore    8-14
removeChild    8-14
replaceChild    8-14
setNodeValue    8-14

JDOM_Parser    8-6
JDOM_Parser methods    8-7

getDocument    8-8
getErrors    8-8
parse    8-8
sawErrors    8-8

setCreateEntityReferenceNodes
8-9

setDoNamespaces    8-8
setDoSchema    8-10
setExitOnFirstFatalError    8-8
setExternalNoNamespaceSchemaL

ocation    8-10
setExternalSchemaLocation    8-10
setIncludeIgnorableWhitespace    8-

9
setReuseGrammar    8-8
setToCreateXMLDeclTypeNode    8-

10
setValidationConstraintFatal    8-9
setValidationSchemaFullChecking

8-10
setValidationScheme    8-9

JNODE_NONE    8-12
JNoModalBox class    7-4, 7-24
JNoModalBox drag and drop methods

7-27
acceptDropOf    7-28
addDropField    7-27
addDropZone    7-27
appendAllowedMetaclass    7-28
getDropField    7-27
getValue    7-28
setValue    7-28

JNoModalBox methods    7-24
addButton    7-24
addButtonBitmap    7-24
hide    7-25
setCallback    7-24
setTreeExpandCallback    7-25
setTreeExpandGhostItemCallback

7-26
setTreeSelectionCallback    7-25
setTreeShrinkCallback    7-26



show    7-25
JResultSearch metaclass    6-8
JResultSearch methods    6-8

action    6-8
getSymbol    6-8

JResultText attributes    6-9
referencedLine    6-9
referencedString    6-9

JResultText metaclass    6-9
JSearch attributes    6-7

caseSensitive    6-7
diagramElementType    6-7
diagramType    6-7
expression    6-7
modelType    6-7
noteParentType    6-7
noteType    6-7
option    6-7
searchType    6-7
stepByStep    6-7

JSearch metaclass    6-3, 6-5
JSearch methods    6-6

eraseAllResults    6-6
initObject    6-6
nextSearch    6-6
runSearch    6-6

JSet addition methods    7-10
addBitmap    7-10
addCombo    7-12
addField    7-11
addHelp    7-12
addLabel    7-10
addList    7-11
addText    7-11
addToggle    7-10
addTree    7-12

JSet class    7-4, 7-23, 7-24
JSet layout methods    7-9

beginLayoutSection    7-9
changeColumn    7-9
changePosition    7-9
endLayoutSection    7-9
getPosition    7-9
setFocus    7-17
setFocusCancelButton    7-17
setFocusOkButton    7-17

JSet presentation methods    7-16
setBackgroundColor    7-16
setFont    7-16
setForegroundColor    7-16

JSet value modifying methods    7-14
addListItem    7-14
getIdent    7-14
readAndAddFile    7-15
removeListItem    7-14
resetList    7-15
setValue    7-14

JSet value retrieval methods    7-13
getTree    7-13
getValue    7-13
getValueList    7-13

JTree class    7-4, 7-18
JTree methods    7-18

addItem    7-18
addRootItem    7-18
getCallbackItem    7-19
getRoot    7-19
getSelectedItems    7-19
moveItem    7-18
removeItem    7-19

JTreeItem class    7-4
JTreeItem methods    7-20



expand    7-22
getBitmapName    7-20
getChild    7-21
getChildList    7-21
getIndex    7-22
getLabel    7-20
getParent    7-20
isExpanded    7-22
isGhostItem    7-21
isSelected    7-20
searchDataRecursive    7-21
searchSelectedRecursive    7-21
setBitmap    7-20
setGhostItem    7-21
setLabel    7-20
setSelected    7-20
shrink    7-22

JUserObject class    7-4, 7-18
JUserObject methods

eraseUserData    7-7
JUserObject methods    7-7

appendUserData    7-7
getUserData    7-7
getUserInfo    7-8
setUserInfo    7-8

kind    3-19
layoutViewElements    3-20
License token    11-10
Link    2-3, 2-7, 3-12, 3-30
linkToReport    9-8
linkToReportUnder    9-9
listFile    4-14
Low level primitives    2-4
Macros    9-12
Managing a session

Ending a session    2-6

Managing consistency    2-6
State of a session    2-6

Managing consistency checks    5-9
Managing generated files    5-18

Features    5-18
Managing the session

Starting a session    2-5
Managing work products

Managing consistency and creation
5-13

Managing generation templates    5-
14

Managing work product attributes
5-10

Managing work product propagation
5-11

Overview    5-10
Retrieving a work product    5-13

marker    5-21
Marker primitives    5-21
Marker styles    5-21
Markers    5-20

Purpose    5-20
Use    5-20

Matrix    10-8
Memory management    8-6
Memory management rule    8-6
Metaclass    2-3, 7-4
Metaclass instance    2-7
Metaclasses used in properties editor

management    10-3
Metamodel    3-3
mkDir    4-13
mkDirRec    4-13
mngFile    5-18, 5-21
Model transformation    2-3

High-level primitives    2-3



Low-level primitives    2-4
Managing the session    2-5

Model transformation low level
primitives
append<RoleName>    2-8
delete    2-8
erase<RoleName>    2-8
new    2-8
set<AttributeName>    2-8

Model transformation primitives
Adding a link    2-7
Changing attribute values    2-7
Creating a metaclass instance    2-7
Deleting a link    2-7
Destroying an element    2-7
Low level primitives    2-8
Overview    2-7
Sorting    2-7

ModelElement    3-6, 3-12, 3-13, 3-26
Module externalization file    5-3
Module externalization service    11-4
Module management services

Getting module parameter values
5-8

Presentation    5-3
Module packaging    5-3
moduleInit    5-5
moduleInstall    5-4
moduleParameterExists    5-8
moduleSelect    5-4, 10-6
moduleStart    5-5, 10-6
moduleStop    5-5, 10-6
moduleUninstall    5-5
moduleUnselect    5-4, 10-6
moveFile    4-12
moveItem    7-18

MpGenProduct class    5-10
mustPropagate    5-12
NameSpace    3-4
Namespace processing    8-8
NbColumns    10-11
NbRows    10-11
new    2-8
nextSearch    6-6
Node type enumerate values    8-12
noNamespaceSchemaLocation    8-10
NOTATION_JNODE    8-12
Object class    11-8
Object link    9-7
Objecteering/Enterprise Edition    11-7
Objecteering/Metamodel    1-3
Objecteering/The J Language    1-3
Objecteering/UML management

Clear    4-10
Purpose    4-10
Save    4-10
Version    4-10

Objecteering/UML metamodel    2-4
Objecteering/UML Modeler    5-9
Objecteering/UML Profile Builder    1-

3, 2-7, 5-3
Objecteering/XMI    11-7
Objecteering/XMI module functions

Creating an Objecteering/UML
model from an XMI file    11-7

Generating XMI files from an
Objecteering/UML model    11-7

Updating an Objecteering/UML
model from an XMI file    11-7

onAction    9-11
onSelect    9-11
open    3-19
openInBrowser    3-32



openInEditor    3-32
openProject    11-9
Operation    2-3
Package    2-3, 3-4, 3-8, 3-12, 3-18, 5-

13
parse    8-8
Particle unique attribution constraint

checking    8-10
PBoxDescription    10-13
PBoxDescription metaclass    10-4
PBoxItem    10-13
PBoxMatrix metaclass    10-5
pFormat formatting codes    4-6
Point    3-4
Point class

Constructor    3-22
Coordinate system    3-22
Overview    3-21
Properties    3-21

Portable primitives    4-11
printXML    8-18
Processing instructions    8-17
PROCESSING_INSTRUCTION_JNO

DE    8-12
Project management services    11-9
projectFindFromIds    11-11
Properties editor    3-9, 10-6
Proxies    8-6
pushInto    10-11
queryUser    7-29
queryUser method    7-29
readAndAddFile    7-15
Realization class    11-3
Redefining the behavior of the J report

window    9-10
Removable consistency checks    2-5,

2-6, 5-9

removeAttribute    8-20
removeAttributeNode    8-20
removeChild    8-14
removeFile    4-12
removeItem    7-19
removeListItem    7-14
removePropertiesPage    10-6
Removing tabs    10-6
Removing tabs from the properties

editor    10-6
replaceChild    8-14
Report line addition methods

addReport    9-8, 9-9
linkToReport    9-8
linkToReportUnder    9-9

Report line links    9-7
Report lines    9-3

Error    9-3
Information    9-3
Warning    9-3

Repository    5-20
resetList    7-15
Retrieving a work product    5-13
reverseAllFiles    5-18
rmDir    4-13
rmDirRec    4-14
Role    2-4
runSearch    6-6
save    4-10
sawErrors    8-8
Scan services

Purpose    11-3
Usage    11-3

schemaLocation    8-10
Search parameters    6-3
Search services    6-3



searchDataRecursive    7-21
searchSelectedRecursive    7-21
Selecting and double-clicking    9-11
Services provided by the

"PBoxGadgetChoice" class    10-24
Session    2-3
sessionAbort    2-6
sessionBegin    2-5
sessionCheck    2-6
sessionEnd    2-6
sessionHasBegun    2-6
set<AttributeName>    2-8, 10-14
set<commandJ>    10-23
setAttribute    8-20
setAttributeNode    8-20
setAttributeVal    5-10
setBackgroundColor    7-16
setBitmap    7-20
setBuildInConsistencyCheckOff    5-9
setCallback    7-24
setCreateEntityReferenceNodes    8-9
setDiagramDumpPath    3-19
setDoNamespaces    8-8
setDoSchema    8-10
setExitOnFirstFatalError    8-8
setExternalNoNamespaceSchemaLoc

ation    8-10
setExternalSchemaLocation    8-10
setFocus    7-17
setFocusCancelButton    7-17
setFocusOkButton    7-17
setFont    7-16
setForegroundColor    7-16
setGhostItem    7-21
setIncludeIgnorableWhitespace    8-9
setItem    10-12

setLabel    7-20
setNodeValue    8-14
setRadio    10-16, 10-24
setReuseGrammar    8-8
setSelected    7-20
setToCreateXMLDeclTypeNode    8-

10
setTreeExpandCallback    7-25
setTreeExpandGhostItemCallback

7-26
setTreeSelectionCallback    7-25
setTreeShrinkCallback    7-26
setUserInfo    7-8
setValidationSchemaFullChecking

8-10
setValidationScheme    8-9
setValue    7-14, 7-28
show    7-23
shrink    7-22
Simple search in a diagram    6-10
Simplified model    8-4
sortSemanticAssociation    2-8
spawnOutputProcess    4-4
spawnProcess    4-4
Specific J services

Adding a module used by a UML
modeling project.    11-10

Administration mode    11-9
Finding an object from its identifiers

11-11
Finding predefined types    11-10
Finding the two identifiers of an

element    11-11
Getting parameter values    11-10
Open project.    11-9
Selecting a module    11-10

Specific research



System environment variables    4-3
State machine    3-18
Step by step search    6-11
Step by step search in Java notes    6-

11
Stereotype definitions    5-3
Stream exchange services

Externalization format    11-4
Externalization format services    11-

5
Presentation    11-4
XMI format    11-4
XMI functions    11-7
XMI services    11-7

String title    9-7
String type attribute    10-14
String types    9-7
Syntax    1-6
Syntax conventions    1-6
System and environment

Presentation    4-3
Running a process    4-4

Tagged values    3-6
Teamwork facility    11-4
TEXT_JNODE    8-12
tmpFileName    4-13
Transition    3-30
UML metamodel    3-4
UML profile    5-11
UML standard    3-6
uninstallHelp    5-6
update    5-12
updateAllEditors    5-22
updateSelectedModules    11-10
Updating the visualizers    5-22
Use case    3-18, 11-3

Use case diagram    3-16
Use class    11-3
User interaction services

infoUser    7-29
queryUser    7-29

Using the J report window    9-4
Validation constraints    8-9
Validation mode    8-9
verify    5-13
ViewBox    3-4, 3-7, 3-13, 3-23
ViewBox class

Constructor    3-25
Overview    3-23
Properties    3-24

ViewElement    3-3, 3-4, 3-6, 3-12, 3-
21, 3-22, 3-26, 3-30

ViewElement class
Color management    3-27
Overview    3-26
Properties    3-28

ViewLink    3-4, 3-7, 3-13, 3-23
ViewLink class    3-30

Constructor    3-31
Method    3-31
Properties    3-31

W3C    8-3
Web exchange format    8-3
Whitespaces    8-9
Work product    5-10, 5-18
XMI services

Stream exchange services    11-7
XML    8-3
XML documents    8-16
XML parser    8-4
XML_DECL_JNODE    8-12
XMLDecl-type nodes    8-10





www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

   Objecteering/Metamodel User Guide

               Version 5.2.2



Contents

Chapter 1: Overview
Presentation ...................................................................................................1-3
Glossary .........................................................................................................1-4

Chapter 2: First Steps
Presentation ...................................................................................................2-3
Preparing the development environment ......................................................2-4
Example 1: Writing J methods on the Class metaclass ................................2-5
Example 2: Creating models automatically: Model transformation ...............2-6

Chapter 3: Metamodel Overview
Metaclasses defined in the metamodel .........................................................3-3
Metamodel packages.....................................................................................3-6
Class hierarchy ..............................................................................................3-7
Enumerate types used in the metamodel ....................................................3-12

Chapter 4: Extensibility mechanism and general elements (CoreModel)
Overview ........................................................................................................4-3
"Element" class ..............................................................................................4-7
"ModelElement" class ....................................................................................4-9
"ModelTree" class ........................................................................................4-12
"Item" class ..................................................................................................4-13
"Dependency" class .....................................................................................4-14
"Stereotype" class........................................................................................4-16
"TaggedValue" class....................................................................................4-18
"TagParameter" class ..................................................................................4-23
"TagType" class ...........................................................................................4-25
"Constraint" class.........................................................................................4-27
"Note" class..................................................................................................4-29
"NoteType" class..........................................................................................4-34
"InternalProduct" class.................................................................................4-36
"MpGenProduct" class .................................................................................4-37



Chapter 5: Static Model
Overview ........................................................................................................5-3
"Project" class ................................................................................................5-9
"NameSpace" class .....................................................................................5-11
"Package" class ...........................................................................................5-17
"Classifier" class ..........................................................................................5-23
"GeneralClass" class ...................................................................................5-26
"Class" class ................................................................................................5-28
"DataType" class..........................................................................................5-34
"Feature" class .............................................................................................5-37
"Attribute" class ............................................................................................5-39
"Operation" class .........................................................................................5-44
"Parameter" class ........................................................................................5-51
"Association" class.......................................................................................5-55
"AssociationEnd" class ................................................................................5-57
"ClassAssociation" class .............................................................................5-62
"Enumeration" class.....................................................................................5-63
"EnumerationLiteral" class...........................................................................5-66
DataFlows and Signals ................................................................................5-67
"Signal" class ...............................................................................................5-70
"DataFlow" class ..........................................................................................5-73
"Generalization" class ..................................................................................5-75
"Use" class ...................................................................................................5-78
"Realization" class .......................................................................................5-80
"TemplateParameter" class .........................................................................5-82

Chapter 6: Use Case Model
Overview ........................................................................................................6-3
"UseCase" class ............................................................................................6-6
"Actor" class .................................................................................................6-11
"Communication" class ................................................................................6-15
"UseCaseDependency" class ......................................................................6-17

Chapter 7: State Machine Model
Overview ........................................................................................................7-3
"StateMachine" class .....................................................................................7-7
"StateVertex" class ......................................................................................7-10
"State" class .................................................................................................7-11
"PseudoState" class ....................................................................................7-14
"Transition" class .........................................................................................7-15
"InternalTransition" class .............................................................................7-19
"Condition" class ..........................................................................................7-20
"Event" class ................................................................................................7-21



Chapter 8: Activity Model
Overview ........................................................................................................8-3
ActivityGraph class ........................................................................................8-7
ActivityState class ..........................................................................................8-9
ActionState class .........................................................................................8-11
SubActivityState class .................................................................................8-12
ObjectFlowState class .................................................................................8-13
Partition class...............................................................................................8-15
SignalSending and SignalReceipt pseudo states .......................................8-17

Chapter 9: Physical Model (Components and Nodes)
Overview ........................................................................................................9-3
"Node" class...................................................................................................9-7
"Component" class.........................................................................................9-9
"NodeInstance" class ...................................................................................9-12
"ComponentInstance" class.........................................................................9-14

Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances)
Model

Overview ......................................................................................................10-3
"Collaboration" class ..................................................................................10-11
"Interaction" class ......................................................................................10-13
"ClassifierOccurence" class.......................................................................10-15
"Instance" class..........................................................................................10-17
"ClassifierRole" class .................................................................................10-19
"AttributeOccurence" class ........................................................................10-21
"AttributeLink" class ...................................................................................10-23
"AttributeRole" class ..................................................................................10-24
"AssociationOccurence" class ...................................................................10-25
"Link" class.................................................................................................10-27
"AssociationRole" class .............................................................................10-28
"AssociationEndOccurence" class ............................................................10-29
"LinkEnd" class ..........................................................................................10-31
"AssociationEndRole" class.......................................................................10-32
"Message" class.........................................................................................10-33
"CollaborationMessage" class ...................................................................10-35
"SequenceMessage" class ........................................................................10-37

Chapter 11: Implementation of the OMG 1.4 UML metamodel in
Objecteering/UML

Why do differences exist .............................................................................11-3
Implementation of the OMG UML metaclasses in Objecteering/UML ........11-4
Correspondence between Objecteering/UML metaclasses and OMG UML
metaclasses ...............................................................................................11-10

Index



Chapter 1: Overview



Chapter 1: Overview

Objecteering/Metamodel User Guide 1-3

Presentation

Introduction
Welcome to the Objecteering/Metamodel user guide!
The Objecteering/UML metamodel contains the most accurate description of the
information managed by the Objecteering/UML CASE tool, as well as its definition
and links.
This user guide constitutes the working base for all those who wish to implement
new services which use the metamodel, such as model transformation, code or
documentation generation, metrics calculation, requests to the model, and so on.
It is a programmer’s guide to users using the Objecteering/UML Profile Builder
tool. J language programmers will find in this user guide all the predefined J
classes (Objecteering/UML metaclasses) which can be handled.

What is a metamodel?
A metamodel is the model of a model.  The Objecteering/UML metamodel
provides a detailed description of the model supported by Objecteering/UML.  The
Objecteering/UML CASE tool is built using automated model transformation and
code generation techniques, based on the presented metamodel.  All its elements
(model dialog boxes, graphic editors, model manager, etc.) are deduced from the
metamodel.  The user, therefore, has here the model of the Objecteering/UML
CASE tool itself.

Using the metamodel
Each metaclass is documented, with a description of its attributes, relationships
and relationships in the opposite direction.  The names provided are precisely
those which must be used from the J language, in order to work with the
metamodel (attribute names, names of the roles which are concatenated with the
ones of the opposite classes, names of the classes).  Services and consistency
rules are also presented.  In addition, element composition graphs are explained,
in order to present the way in which new instances are created.



Chapter 1: Overview

1-4 Objecteering/Metamodel User Guide

Glossary

Metamodel: model of a model.  The UML metamodel, as implemented by
Objecteering/UML, is defined using this metamodel.
Metaclass: a class which represents an element of a metamodel.  For example,
"Component" is a metaclass.  Every component in a UML model is an instance of
this metaclass.  Metaclasses are defined using meta-attributes, meta-
associations, etc.



Chapter 2: First Steps



Chapter 2: First Steps

Objecteering/Metamodel User Guide 2-3

Presentation

Preliminary steps
Welcome to the Objecteering/Metamodel First Steps!
Objecteering/UML Profile Builder is the tool through which the metamodel can be
edited and J can be executed.  We recommend that you carry out the UML Profile
Builder First Steps (chapters 2 and 3 of the Objecteering/UML Profile Builder user
guide) before trying out these metamodel First Steps.
J is structured and interpreted and provides additional utilities, such as the
possibility of creating UML extensions, or defining new kinds of work products or
generation templates. J can also be dynamically executed.
To be able to use the Objecteering/UML Profile Builder tool, you must have the
correct license.

Getting familiar with metamodel handling
Conventions exist which allow a J programmer to navigate within a metamodel,
and to access information. This is illustrated in Example 1.

Creating models automatically: Model transformation
Objecteering/UML provides a session management mechanism, which makes it
possible to change and transform a model using J.  A small transformation
example will be provided in Example 2.



Chapter 2: First Steps

2-4 Objecteering/Metamodel User Guide

Preparing the development environment

Editing a UML profiling project
The Objecteering/UML Profile Builder user guide explains how to run the
Objecteering/UML Profile Builder tool.

♦= start Objecteering/UML

♦= create or open a UML profiling project

♦= develop the "default#external#J_examples" profile, consult the code for the
"Class" metaclass methods and consult the code of the metaclass in the meta-
explorer

♦= try to run related commands on example UML modeling projects



Chapter 2: First Steps

Objecteering/Metamodel User Guide 2-5

Example 1: Writing J methods on the Class metaclass

J principle
Once a J method has been created on a specific metaclass, its J code has direct
access to the metaclass property.  By simply naming the attributes, J gets the
values of a metaclass occurrence.  Associations are handled through role names.
Adding a role name to an associated metaclass name designates the set of
occurrences related to the current occurrence.
For example, the "Class" metaclass is related by the "Behavior" association to the
"StateMachine" metaclass, which plays the "Behavior" role.  From a "Class"
context, the name "BehaviorStateMachine" designates all StateMachine
occurrences related to the current class.

Example
The "Class" metaclass has the following attributes: "isMain" and "isActive".  It
specializes "GeneralClass", which has the "isElementary" attribute.
"GeneralClass" specializes "Classifier", which in turn specializes "NameSpace"
(whose attributes are "IsAbstract", "IsRoot", "IsLeaf" and "Visibility"), which
specializes "ModelElement", which has the "Name" attribute.
The following "printClassProperties" J method prints the values of all values of a
class.  This method can be run on a test project using the "printClassProperties"
command.
Class: printClassProperties ()

{
StdOut.write (IsMain, IsActive, IsElementary, IsAbstract,
IsLeaf, IsRoot, Visibility, Name, NL);
}

Result example:
falsetruefalsefalsetruefalsePublicC1



Chapter 2: First Steps

2-6 Objecteering/Metamodel User Guide

Example 2: Creating models automatically: Model
transformation

Session mechanism
The following example will create an accessor on a class for every defined
attribute.  For each one, a J session model transformation operation (for further
information, please see chapter 2, "Modifying a UML Model with J", of the
Objecteering/J Libraries User Guide) should be created.  The "SessionBegin" and
"SessionEnd" instructions are used for this.

Example
The addAccessor J method below creates "get" and "set" operations for each
attribute of the class.  Words extracted from the metamodel (roles, attribute and
metaclass names) are in bold.  "create", "set" and "append" are low level
instructions for transforming a model, and can be run on a model using the
"addAccessors" command.
Class:addAccessors()
{
Operation M;
Parameter P;
Class C;
sessionBegin ("addAccessor", true);
C = this;
PartAttribute
{

M = Operation.new;
M.setName("set-" + Name);
C.appendPart(M);
P=Parameter.new;
P.setName("AttValue");
M.appendIO(P);
M = Operation.new;
M.setName("get-" + Name);
C.appendPart(M);
P = Parameter.new;
P.setName("R");
M.appendReturn(P);

}
sessionEnd();}



Chapter 3: Metamodel Overview



Chapter 3: Metamodel Overview

Objecteering/Metamodel User Guide 3-3

Metaclasses defined in the metamodel

Generalization graph

Figure 3-1. Generalization graph of the metamodel

This class generalization graph presents all the accessible metaclasses of the
metamodel.  Element and ModelElement are the root classes, ModelElement
being the most important one.  A short definition of every class is provided in the
"Class hierarchy" section of the current chapter of this user guide.



Chapter 3: Metamodel Overview

3-4 Objecteering/Metamodel User Guide

Major elements of the metamodel

Figure 3-2. The principal elements of the metamodel



Chapter 3: Metamodel Overview

Objecteering/Metamodel User Guide 3-5

The diagram shown in Figure 3-2 summarizes the major elements which structure
the entire metamodel, such as NameSpace, and its subsidiary sub-classes. The
root of a model is the Project, related to one ModelPackage.  This Package will
then be broken down into into a Package organization tree, down to more detailed
NameSpaces such as Classes or UseCases. These elements will then have other
related models structured by StateMachines,  Collaborations and Interactions.



Chapter 3: Metamodel Overview

3-6 Objecteering/Metamodel User Guide

Metamodel packages

Presentation
Figure 3-3 presents the packages contained in the metamodel.  Every package is
dedicated to a specific UML modeling area.  The two exceptions are CoreModel,
which presents the most abstract classes, and DiagramsAndViewElements, which
presents the graphical part of the model.

Figure 3-3. Metamodel packages

CoreModel:Abstract base classes of the model, and UML extensibility
mechanisms.
DiagramsAndViewElements: Model of diagrams supported by Objecteering/UML.
StaticModel: Classes and packages, with their various properties and links.
UseCaseModel: Use cases and actors with their properties and links.
PhysicalModel: Nodes and components, which make up implementation and
component diagrams.
StateMachineModel: State machines, states and transitions, which describe the
dynamics of a system.
ActivityModel: Activity graphs, action states, object flow states and partitions,
representing a process or a workflow.
CollaborationAndInstances: Roles and instances are described at this level.
Object model and sequence diagrams are presented here.



Chapter 3: Metamodel Overview

Objecteering/Metamodel User Guide 3-7

Class hierarchy

Element: Atomic constituent of a model
..........Note: Textual part, attached to a ModelElement.
..........EnumerationLiteral: Defines an atom (i.e., with no relevant substructure),

represents one in the list of values that an enumeration may have.
..........TemplateParameter: Parameter for Templated elements.
..........TagParameter: Parameter for TaggedValues.
..........ModelElement: Named entity in a model.
ModelElement: Named entity in a model
..........Association: Definition of links which may exist between objects.
..........AssociationEndOccurence: End point of a link.
.....................AssociationEndRole: Specifies an endpoint of an association as used

in a collaboration.
.....................LinkEnd: End point of a link.
..........AssociationOccurence: Occurrence of an association. Presented as a link in

a collaboration diagram.
.....................AssociationRole: Specific usage of an association needed in a

collaboration.
.....................Link: Connection between instances.
..........AttributeOccurence: Named slot in an instance or role, which has the value

of an attribute.
.....................AttributeLink:  Named slot in an instance, which has the value of an

attribute.
.....................AttributeRole: Named slot in a ClassifierRole, which has the value of

an attribute.
..........ClassAssociation: Class relating other classes.  It is both a class and an

association.



Chapter 3: Metamodel Overview

3-8 Objecteering/Metamodel User Guide

..........ClassifierOccurence: Instance or Role which is an occurrence of a classifier

.....................ClassifierRole: A classifier role is a specific role played by a
participant in a collaboration.

.....................Instance: Entity to which a set of operations can be applied and
which has a state that stores the results of the operations.

...............................ComponentInstance: Instance of a component.

...............................NodeInstance: Instance of a node.

..........Collaboration: Describes how Instances or roles can cooperate to
implement a modelElement such as an operation or a UseCase.

..........Communication: Communication link between actors and use cases.

..........Condition: Boolean expression for making a choice.

..........Constraint: Semantic restriction expressed as an expression in text form.

..........DataFlow: Circulation of information between model elements.
          Dependency: Shows that the implementation or functioning of one or more

elements requires the presence of one or more other elements.
..........Event: Specification of a significant occurrence which has a location in time

and space.
..........Feature: Property, like operation or attribute, which is encapsulated within

another entity, such as an interface, a class, or a data type.
.....................AssociationEnd: Connection of an association to one of its related

classes.
.....................Attribute: Property of a class.
.....................Operation: Individual pieces of invokable behavior.
..........Generalization: Taxonomic relationship between a more general element

and a more specific element.
..........Interaction: Message sequencing context.
..........InternalProduct: Additional elements attached to ModelElements.
.....................Diagram: Graphic representation of a model.



Chapter 3: Metamodel Overview

Objecteering/Metamodel User Guide 3-9

.....................MpGenProduct: Work product produced automatically by
Objecteering/UML.

          ModelTree: Root class for each each element organizing ModelElements.
                     Item: Can be specialized to add new elements to the metamodel.
..........NameSpace: Part of a model in which each name has a unique meaning.
.....................Classifier: Element which describes behavioral and structural

features.
.............................Component: Physical unit of implementation with well-defined

interfaces, which is intended to be used as a replaceable part
of a system.

.............................GeneralClass: General definition of a class

............................................Actor: Active element external to the system, and
which cooperates with it.

............................................Class: Description of a set of objects which share the
same attributes, operations, methods, relationships,
and semantics.

............................................DataType: A descriptor of a set of primitive values
which lack identity

............................................Enumeration: Special kind of DataType whose range is
a list of predefined values, called
EnumerationLiterals.

............................................Signal:  Specification of an asynchronous stimulus
communicated between instances.

............................................UseCase: Unit of externally visible functionality
provided by part of a system.

.............................Node: Run-time physical object which represents a
computational resource.

.....................Package: Decomposition unit of a model.

..........Message: Occurrence of an operation, processed by instances.

.....................CollaborationMessage: Message used in the collaboration or object
diagrams.



Chapter 3: Metamodel Overview

3-10 Objecteering/Metamodel User Guide

.....................SequenceMessage: Messages used for sequence diagrams.

..........NoteType: Defines a specific kind of note.

..........Parameter: Information received as input or returned as output by an
operation.

..........Partition: Mechanism for dividing the states of an ActivityGraph into groups.

..........Project: Working space for a model.

..........Realization: Implementation link between a class and its interface, or
between a component and its interface.

..........StateMachine: Graph of states and transitions which describes the dynamic
behavior of objects.

.....................ActivityGraph: Special case of a StateMachine that defines a
computational process in terms of the control-flow and object-flow
among its constituent actions.

..........StateVertex: Abstraction of a node in a statechart graph.

.....................PseudoState: Abstraction of different types of nodes in the state
machine graph.

.....................State: Notable situation or condition during the life of an object.

.............................ActivityState: A state representing a specific activity at a given
point in time.

............................................ActionState: Description of an action that cannot be
broken down further.

............................................SubActivityState: Activities that are decomposed into
sub activities.

.............................ObjectFlowState: Defines an object flow between actions in an
ActivityGraph.

..........Stereotype: Specific adaptation of ModelElement semantics.

..........TaggedValue: Attachment of a piece of information to a ModelElement.

..........TagType: Definition of TaggedValues allowed for a defined metaclass.



Chapter 3: Metamodel Overview

Objecteering/Metamodel User Guide 3-11

..........Transition: Path from one state to another.

.....................InternalTransition: Transition which is internal to a state.

..........UseCaseDependency: Inheritance or dependency link (Uses) between
UseCases.

..........Use: Usage dependency between elements.
Point: Graphic point in a diagram.
ViewElement: Graphic representation of a ModelElement.
..........ViewLink: Graphical link.
..........ViewBox: Graphical boxes.



Chapter 3: Metamodel Overview

3-12 Objecteering/Metamodel User Guide

Enumerate types used in the metamodel

Presentation
As in the UML 1.4 OMG standards, many values are expressed by predefined
literals.  For example, the visibility of a Feature is expressed by values such as
"Public".  All predefined literals are summarized here.

Description
♦= KindOfAccess (Read, Write, ReadWrite, AccessNone): Different sorts of

access that an Attribute may have.

♦= VisibilityMode (Public, Protected, Private, VisibilityUndefined): Visibility that a
Feature or a Component of a NameSpace may have.

♦= MethodPassingMode (MethodIn, MethodOut): Defines whether or not the
receiver object will be modified by the Operation.

♦= PassingMode (In, Out, Inout): Passing mode of a Parameter in an Operation.

♦= StateKind (InitialState, DeepHistoryState, ShallowHistoryState, JoinState,
ForkState, BranchState, FinalState, SignalReceiptState, SignalSendingState,
SynchronizationState): Defines every kind of pseudo state, each of them
having specific notation and semantics.

♦= ActionKind (CallAction, ReturnAction, CreateAction, DestroyAction,
TerminateAction): Useful for sequence diagrams, by defining the specific
nature of every message. Defines the different kinds of Action that exist in
UML.

♦= KindOfStateMachine (Dynamic, Protocol): Specifies whether a State machine
describes the dynamics of a ModelElement (Class, UseCase, Package), or is a
protocol state machine.

♦= EventType (SignalEvent, CallEvent, TimeEvent, ChangeEvent): Defines every
possible kind of Event, which may be "Receiving a signal", receiving or sending
a message, time event (clock), change defined by a boolean expression.

♦= PredefinedEventType (EntryEvent, DoEvent, ExitEvent): InternalTransitions
may be of one of these predefined types.

♦= AggregationKind (KindIsAssociation, KindIsAggregation, KindIsComposition):
Establishes whether an Association is not an Aggregation, or is a shared
aggregation or a true composition.



Chapter 4: Extensibility mechanism
and general elements
(CoreModel)



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-3

Overview

Presentation
Element and ModelElement are the most abstract metaclasses in the metamodel.
Every element of the metamodel is derived from these metaclasses.
ModelElements represent the most important UML element.  They have a Name,
can be described by Notes and can be annotated with Constraints.
In addition, the extensibility mechanism provided by UML can be applied to these
elements through TaggedValues and Stereotypes.  Objecteering/UML is
advanced with regard to UML 1.4, inasmuch as it implements the Profile concept,
which structures the definition of TaggedValues, Stereotypes and Notes.

CoreModel metaclasses
♦= Constraint: Semantic restriction expressed as an expression in text form.

♦= Element: Atomic constituent of a model.

♦= InternalProduct: Additional elements attached to ModelElements.

♦= ModelElement:  Named entity in a Model.

♦= ModelTree: The root for each element organizing ModelElements using an
"OwnerShip" association.

♦= Item: Used to add new elements.

♦= Dependency: Used to state that the implementation or functioning of one or
more elements requires the presence of one or more other elements.

♦= MpGenProduct:  Work product produced automatically by Objecteering/UML.

♦= Note: Textual part, attached to a ModelElement.

♦= NoteType: Defines a specific kind of Note.

♦= Stereotype: Specific adaptation of ModelElement semantics.

♦= TagParameter: Parameter for TaggedValues.

♦= TaggedValue: Attachment of a piece of information to a ModelElement.

♦= TagType: Definition of TaggedValues allowed for a defined metaclass.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-4 Objecteering/Metamodel User Guide

Metamodel synthesis

Figure 4-1. Diagram of the core model

UML defines TaggedValues and Stereotypes as extensibility mechanisms.  In
addition, Objecteering/UML provides the "Note" concept, which defines the
annotated descriptions, and defines NoteType and TagType, which define which
Notes and TaggedValues are allowed in a given context.
Objecteering/UML provides the notion of Profile, supported by the
Objecteering/UML Profile Builder module, which organizes the specification of
Stereotypes, Tagged Values, and Notes.  At Profile Specification level are defined
instances of TagTypes, Stereotypes and NoteTypes.  At model level (using
Objecteering/UML Modeler), TaggedValues, Notes and references to Stereotypes
are realized, in accordance with the Profile specification.
ModelTree and Item are extensions to UML, used for extensibility purposes.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-5

Example 1: Extensibility mechanism

Figure 4-2. Examples of Notes, Stereotype and Tagged Values are provided here

In this diagram, are presented representation of instances of the following
metaclasses: Notes related to NoteTypes (not visible), TaggedValues related to
TagType and TaggedValues.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-6 Objecteering/Metamodel User Guide

Example 2: Constraints

Figure 4-3. Examples of Constraints

Several representations of Constraints are presented here.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-7

"Element" class

Element overview
abstract class Element;

Atomic constituent of a model.
In the metamodel an Element is the top metaclass of the metaclass hierarchy.
Every element of a model is an Element.  Elements are structured into Projects,
which constitute their definition space.  Every element is "universally identified" in
Objecteering/UML. An identifier has the following form: "Site id + Base id + Project
id + element id".  The identifier is assigned upon creation, and never changes.
Elements in different projects can have the same identifier. This means that they
are identical.

Figure 4-4. Detailed class diagram for Element

See also: Note, EnumerationLiteral, ModelElement, TemplateParameter,
TagParameter.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-8 Objecteering/Metamodel User Guide

Element methods
String getIdentifier()
Return the identifier of the object, which is the universal identifier of the element
and which is allocated by Objecteering/UML.  This value cannot be set by J.

object:findFromSiteId (in String className, in String
siteId)
Finds an Element in the current database from its id.  The Object is void if no
object is founded.

Example:
C?=findFromSiteIdentifier ("Class", "1285576512");



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-9

"ModelElement" class

ModelElement overview
abstract class ModelElement extends Element;

Named entity in a model.  Describes every element that can exist in a model.  Only
low level elements are not ModelElements.  ModelElements can be annotated by
TaggedValues, by Constraints, by Stereotypes and by Notes.

Figure 4-5. Detailed class diagram for ModelElement

See also: Tagged values, Stereotypes, Constraints, Notes



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-10 Objecteering/Metamodel User Guide

ModelElement properties
The class has the following associations:

♦= Product:InternalProduct: Link to a work product deduced (generated) from the
ModelElement

♦= Descriptor:Note: Notes (documentation, sections of code, etc.) describing the
ModelElement

♦= Tag:TaggedValue: TaggedValues which annotate the ModelElement

♦= Extension:Stereotype: Stereotype which metaclassifies the ModelElement

♦= ConstraintDefinition:Constraint: Constraints which express restrictions on the
ModelElement

♦= SupplierDependency:Dependency: Designates a dependency that relates to a
supplier ModelElement

The class owns the following attribute:
Name: Name of the element.  Frequently A ModelElement belongs to a
NameSpace, and the Name must follow unicity rules.

ModelElement consistency rules
♦= A ModelElement accesses Stereotypes, NoteTypes and TagTypes provided by

the Profiles selected by the project.

♦= Classes designated by the "BaseClass" attributes of Stereotypes or NoteTypes
or TagTypes associated with the elements are compatible with the element
class.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-11

ModelElement methods
Scan methods:
Note[] getNotes()
Returns the Notes which describe the element.

MpGenProduct[] getProducts()
Returns the work product (C++, Java, Documentation, ...) associated to the
element (see MpGenProduct metaclass).

TaggedValue[] getTaggedValues()
Returns the TaggedValues which annotate the element.

boolean isTaggedValue (in String ofName)
Determines if the element is annotated with the tagged value whose name is
given.

TaggedValue[] getAllTaggedValues (in String ofName)
Returns the TaggedValues, whose name is given, which annotate the elements.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-12 Objecteering/Metamodel User Guide

"ModelTree" class

ModelTree overview
abstract class ModelTree extends ModelElement;

ModelTree is the root for each element organizing ModelElements using an
"OwnerShip" association. The "ElementOwnerShip" association provides a
hierarchy of model elements that can be managed by the model explorer or by the
teamwork facility.
This metaclass is not part of the UML standard.  "NameSpace" is a typical
subclass, taking advantage of the containment facility provided by ModelTree.

Figure 4-6. Detailed class diagram for ModelTree

ModelTree properties
The class has the following association:

♦= OwnedElement:ModelTree: Defines the composition tree of a model. For
example, the decomposition of packages into sub-packages and classifiers is
based on this association.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-13

"Item" class

Item overview
Item extends ModelTree;

Item is a concrete class, that can be specialized for adding new elements to UML.
Item, like "ModelTree", can be decomposed hierarchically, and browsed by the
explorer. As a typical example, dictionary terms, or requirements have been
modeled as stereotypes of Item.   This metaclass is an extension to UML.
A tree of Item must have a root Item belonging directly to a Project instance.

Figure 4-7. Class diagram for Item



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-14 Objecteering/Metamodel User Guide

"Dependency" class

Dependency overview
Dependency extends ModelElement;

A Dependency states that the implementation or functioning of one or more
elements requires the presence of one or more other elements.
In the metamodel, a Dependency is a directed relationship from a client (or clients)
to a supplier (or suppliers), stating that the client is dependent on the supplier (in
other words, the client element requires the presence and knowledge of the
supplier element).  In the metamodel, an Abstraction is a Dependency in which
there is mapping between the supplier and the client.  Depending on the specific
stereotype of Abstraction, mapping may be formal or informal, and may be
unidirectional or bidirectional.  If an Abstraction element has more than one client
element, the supplier element maps into the set of client elements as a group.  For
example, an analysis-level class might be split into several design-level classes.
The situation is similar if there is more than one supplier element.
Dependencies are widely used inside Objecteering/UML to manage traceability.
Any model element can be traced to another model element using this
association.

Figure 4-8. Class diagram for Dependency



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-15

Dependency properties
The class has the following association:

♦= ClientDependency: designates a dependency that relates to a client
ModelElement.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-16 Objecteering/Metamodel User Guide

"Stereotype" class

Stereotype overview
Stereotype extends ModelElement;

Specific adaptation of ModelElement semantics.  Through Stereotypes, the end
user can create new icons, and new adaptations to ModelElements.  Stereotypes
are defined in dedicated Profiles.
Example 1 presents a set of Stereotypes applied to various ModelElements.

Figure 4-9. Detailed class diagram for Stereotype



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-17

Stereotype properties
The class has the following associations:

♦= Sub:Stereotype: Stereotypes may be inherited through this Association.

♦= RequiredTag:TagType: Tagged values allowed by the current Stereotype.  The
Stereotype acts as a new metaclass whose attributes are these TaggedValues.

♦= RequiredNote:NoteType: Notes that are specifically defined for ModelElement
annotated by this Stereotype.

♦= StereotypeConstraint:Constraint: Constraint that will apply to every element
annotated by this Stereotype.

The class owns the following attributes:

♦= Icon: Icon that can represent the stereotyped ModelElement.

♦= BaseClass: Metaclass whose instances can be annotated by the current
Stereotype.

Stereotype consistency rules
♦= A modeled element can only be associated with, at most, one Stereotype.

♦= There can be no loops in the generalization relationship (Inheritance) between
Stereotypes.

Stereotype constructor
Stereotypes cannot be created with the J language.  They are defined at the meta-
level (in Profiles), and do not belong to a ModelElement at the model level.
Services are provided for getting the available Stereotypes.
Stereotype Object: findStereotypeInProject (in String
stereotypeName, in String metaClassName)
Finds the Stereotype defined in the current project, which has the indicated Name,
and for the indicated metaClass.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-18 Objecteering/Metamodel User Guide

"TaggedValue" class

TaggedValue overview
TaggedValue extends ModelElement;

Attachment of a piece of information to a ModelElement.  In Objecteering/UML,
TaggedValues can have parameters, and have to comply with TagTypes which
define what kind of TaggedValues may exist.
Example 1 presents various TaggedValues.
TaggedValues belong to their annotated ModelElement, or to their annotated
Note.

Figure 4-10. Detailed class diagram for TaggedValue

See also: TagType, TagParameter.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-19

TaggedValue properties
The class has the following associations:

♦= Definition:TagType: Determines the TagType which is the model of the current
TaggedValue.

♦= Qualifier:TagParameter: Current qualifier of the TaggedValue.  A qualifier is a
parameter that is placed in first place Tag:Qualifier (Parameters)

♦= Actual:TagParameter: Parameters of the TaggedValue.

TaggedValue consistency rules
♦= The BaseClass attribute of the TagType associated with the TaggedValue

(Instantiation association) must be consistent with the modeling element which
contains the TaggedValue.

♦= The number of values entered for a TagValue must be consistent with the
number of parameters defined in the corresponding TagType.

♦= The Annotation associations are exclusives.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-20 Objecteering/Metamodel User Guide

TaggedValue constructor
TaggedValueElement : createTaggedValue (in String pName, in
String pTagType, in String pMetaClass)
This operation creates a TaggedValue whose type and metaclass on which it is
defined are given.
Example:
TaggedValue MyTag = createTaggedValue ("", "persistent",
"Class");

TaggedValue Element : createTaggedValueWithParams (in String
pName, in String pTagType, in Object[] pParameterList, in
String pQualifier, in String pMetaClass)
This operation creates a TaggedValue whose Type, Parameters, Qualifier and
metaClass on which it is defined are given.
Example:
TaggedValue MyTag = createTaggedValueWithParams ("",
"Heval", Params, "aQualifier", "Note");

ModelElement : addTaggedValue (in TaggedValue pTaggedValue)
This operation adds a TaggedValue to the current ModelElement.
TaggedValue Element:createAndAddTaggedValue (in String
pName, in String pTageType)
This operation creates, and adds to the element it is applied to, a TaggedValue
whose type (TagType) is given.
Example:
TaggedValue MyTag = MyClass.createAndAddTaggedValue ("",
"nocode");



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-21

TaggedValue Element:createAndAddTaggedValueWithParams (in
String pName, in String pTagType, in Object []
pParameterList, in String pQualifier)
This operation creates, and adds to the element it is applied to, a TaggedValue
whose type, parameters and qualifier are given.
Example:
TaggedValue MyTag =
MyPackage.createAndAddTaggedValueWithParams ("", "hygen",
Params, "Aqualifier");



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-22 Objecteering/Metamodel User Guide

TaggedValue methods
TagParameter[] getParameters()
Returns the TagParameters of the TaggedValue

TagType[] getTagType()
Returns the TagType of the TaggedValue.

TagParameter TaggedValue::createAndAddTagParameter
(in String value)

Creates and adds a TagParameter to a TaggedValue.

Example:
TagParameter MyParameter =
ATaggedValue.<createAndAddTagParameter("Val");

void TaggedValue::addTagParameter
(in TagParameter parameter)

Adds a TagParameter to a TaggedValue.

Example:
TagParameter parameter = createTagParameter ("Val");
if (parameter != null) {

MyTaggedValue.addTagParameter (parameter);
}



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-23

"TagParameter" class

TagParameter overview
TagParameter extends Element;

Parameter for TaggedValues.  TaggedValues are somewhat more powerful in
Objecteering/UML.  They can have parameters which must conform to the
TagType structure.
TagParameters belong to their TaggedValue. (See Example 1).

Figure 4-11. Detailed class diagram for TagParameter

See also: TaggedValue, TagType.

TagParameter properties
The class owns the following attribute:

♦= Value: Parameter value.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-24 Objecteering/Metamodel User Guide

TagParameter consistency rules
♦= The number of TagParameters contained in a TaggedValue must correspond

to the number of parameters defined in its TagType.

TagParameter constructor
TagParameter Object::createTagParameter

(in String value)
Creates a TagParameter.

Example:
TagParameter parameter = createTagParameter ("Val");

Please refer to TaggedValues, which have services to create TagParameters with
the owner TaggedValue.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-25

"TagType" class

TagType overview
TagType extends ModelElement;

Definition of TaggedValues authorized for a defined metaclass.
These TagTypes are defined in UML profiling projects and structured by Profiles.

 

Figure 4-12. Detailed class diagram for TagType

See also: TaggedValue.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-26 Objecteering/Metamodel User Guide

TagType properties
The class owns the following attributes:

♦= BaseClass: Metaclass that can be annotated by tagged values which are
occurrences of the current TagType.

♦= ParamNumber: Number of parameters an occurrence may have.

♦= IsQualified: Determines whether or not an occurrence (tagged value) has a
qualifier.

♦= BelongToPrototype: Determines whether or not a TagType occurrence belongs
to the signature.  For example, the TagType "*" which defines a pointer
declaration in C++, belongs to the prototype of operations.

TagType constructor
TagTypes cannot be created with the J language.  They belong to Profiles at
metalevel, and are not structured at model level.

TagType Object: findTagTypeInProject (in String tagTypeName,
in String metaClassName)
Returns the TagType defined in the project, corresponding to the name and
metaclass specified as parameters.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-27

"Constraint" class

Constraint overview
Constraint extends ModelElement;

Semantic restriction expressed as an expression in text form.
Constraints can express restrictions and relationships which cannot be expressed
using UML notation.  They are particularly useful for stating global conditions or
conditions that affect a number of elements.
Constraints can have predefined names, and can also represent pre-conditions,
post-conditions and invariants (pre-defined stereotypes).  Language-specific
modules (C++, Java) will add a specific stereotype for the pre and post conditions
and invariants expressed in these languages, such as, for example, C++Invariant,
or JavaPreCondition.
In Objecteering/UML, a Constraint is not composed of anything.  It is simply
managed by specific copy/transfer rules.
Example 2 shows different cases of Constraints.

Figure 4-13. Detailed class diagram for Constraint



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-28 Objecteering/Metamodel User Guide

Constraint properties
The class has the following association:

♦= ConstrainedElement:ModelElement: Defines which elements are concerned by
the constraint.

The class owns the following attributes:

♦= BaseClass: Metaclass whose instances can be constrained by the current
Constraint.

♦= Body: If the constraint is not predefined (e.g., ordered), then it is expressed in
the body.  Objecteering/UML supports natural language.  For each generator
(C++, Java), certain constraints have a dedicated stereotype
(JavaPrecondition, C++Invariant) and are taken into account during code
generation.

Constraint consistency rules
The Name and Body attributes are exclusive.

Constraint constructor
Constraint ModelElement: createConstraint (in String pName,
in String pType, in String pBody)
This operation creates a Constraint whose name, type and body are given.

ModelElement:addConstraint (in Constraint pConstraint)
This operation adds a Constraint to the current element.

Constraint ModelElement:createAndAddConstraint (in String
pName, in String pType, in String pBody)
This operation creates and adds to the current element a Constraint whose name,
type and body are given.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-29

"Note" class

Note overview

Note extends Element;

Textual part, attached to a ModelElement.  Notes correspond to UML Notes which
appear in diagrams, but also to every textual part associated to ModelElements.
They include implementation code, documentation, or every possible kind of
textual information.  Notes are related to NoteTypes, which declare the permitted
Notes in a model.
In Objecteering/UML, Notes belong to their annotated ModelElement. (See
Example 1).

Figure 4-14. Detailed class diagram for Note

See also: NoteType.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-30 Objecteering/Metamodel User Guide

Note properties
The class has the following associations:

♦= Model:NoteType: The NoteType defines authorized kinds of Notes in a
particular context (in specific modules, Profiles).

♦= Annotation:TaggedValue: For recursion reasons, a Note is not a
ModelElement.  Therefore, the current specific association makes it possible to
annotate a Note by a TaggedValue.

The class owns the following attributes:

♦= Name: Name of the Note.  This defines the purpose of the Note, and has to
conform to the NoteType Name, when it is defined.

♦= Content: Textual content of the Note. This text can be a description or any
syntax used for a target language.

Note consistency rules
The BaseClass attribute of the NoteType associated with a Note must be
consistent with the modeling element which contains the Note.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-31

Note constructor
Note ModelElement:createNote (in String pName, in String
pNoteType, in String pContent, in String pMetaClass);
This operation creates a Note whose type and content are given.
Example:
Note MyNote = createNote ("", "comment", "This is a
comment!", "Package");

ModelElement:addNote (in Note pNote)
This operation adds a Note to the current element
Example:
MyPackage.<addNote (MyNote);

Note ModelElement:createAndAddNote (in String pName, in
String pNoteType, in String pContent)
This operation creates and adds to the current element a Note whose type and
content are given.
Example:
Note MyNote = MyClass.<createAndAddNote ("", "comment",
"This is a comment!");

Note ModelElement:createAndAddNoteWithTaggedValues (in
String pName, in String pNoteType, in String pContent, in
Object[] pTaggedValues)
This operation creates and adds to the current element a Note whose
TaggedValues are given.
Example:
Note MyNote = MyPackage.<createAndAddNoteWithTaggedValues
("", "comment", "This is a comment!", TaggedValues);



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-32 Objecteering/Metamodel User Guide

Note ModelElement:createNoteWithTaggedValues (in String
pName, in String pNoteType, in String pContent, in Object[]
pTaggedValues, in String pMetaClass)
This operation creates a Note whose TaggedValues are given.
Example:
Note MyNote =createNoteWithTaggedValue ("", "comment", "This
is a comment!", TaggedValues, "Package");

Note clone ()
This operation makes a complete copy of the current Note.
Example:
Note MyCopy =MyNote.<clone ();

addTaggedValue (in TaggedValue pTaggedValue)
This operation adds a TaggedValue to the current Note.
Example:
MyNote.<addTaggedValue (ATaggedValue);



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-33

Note methods
Scan methods:
TaggedValues[] getTaggedValues()
Returns the TaggedValues which annotate the Note.

NoteType[] getNoteType()
Returns the types (NoteType) of the Note.

boolean isTaggedValue (in boolean ofName)
Determines if the Note is annotated with the TaggedValue whose name is given.

TaggedValue[] getAllTaggedValues (in String ofName)
Returns the TaggedValues, whose name is given, which annotate the Note.

String pathName ()
This operation returns the complete "path" of a Note.
Example:
String MyPath = MyNote.<pathName ();



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-34 Objecteering/Metamodel User Guide

"NoteType" class

NoteType overview
NoteType extends ModelElement;

Defines a specific kind of Note.  NoteTypes are defined in UML profiling projects
within a particular Profile.  They are conditioned by Objecteering/UML annex tools,
editors and generators.
For example, document templates are defined before associated text.  This text is
determined by textual headings which must be entered for use by generated
documents.  The same applies to generated code, which determines the textual
zones to be entered.

Figure 4-15. Detailed class diagram for NoteType

See also: Note.

NoteType properties
The class owns the following attribute:

♦= BaseClass: Defines the metaclass to be documented by the occurrences of the
NoteType.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-35

NoteType constructor
NoteTypes cannot be created using the J language in Objecteering/UML.  They
belong to the meta-level, and should only be referred to.  Services are provided in
order to find the available NotesTypes given a current Project.
NoteType Object : findNoteTypeInProject (in String note
TypeName, in String metaClassName)
Returns the NoteType defined in the project, which conform to the parameters.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-36 Objecteering/Metamodel User Guide

"InternalProduct" class

InternalProduct overview
abstract class InternalProduct extends ModelElement;

Additional elements attached to ModelElements.  Represents additional elements
attached to ModelElements such as work products or diagrams.
An InternalProduct belongs to its ModelElement.

Figure 4-16. Detailed class diagram for InternalProduct

See also: MpGenProduct

InternalProduct properties
The class has the following associations:

♦= Representation:Component: Component which models the InternalProduct.



Chapter 4: Extensibility mechanism and general elements (CoreModel)

Objecteering/Metamodel User Guide 4-37

"MpGenProduct" class

MpGenProduct overview
MpGenProduct extends InternalProduct;

Work products produced automatically by Objecteering/UML.  This metaclass
provides a logical view on physical parts generated by Objecteering/UML.  For
example, an HTML document is a set of files, that are represented by this
MpGenProduct in Objecteering/UML.
Objecteering/UML manages the consistency between the model, this
WorkProduct and the corresponding physical elements (Files).

Figure 4-17. Detailed class diagram for MpGenProduct



Chapter 4: Extensibility mechanism and general elements (CoreModel)

4-38 Objecteering/Metamodel User Guide

MpGenProduct methods
See the "Managing work products" section of chapter 5 ("Module Management
Facilities" of the Objecteering/J Libraries user guide. Work products have several
mechanisms that can be used through a set of methods.



Chapter 5: Static Model



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-3

Overview

Presentation
The static model is organized by the NameSpace concept. The two major notions
are Classifier and Package, with all their properties and dependencies.  The
DataFlow notion is an extension of UML.

Metamodel synthesis

Figure 5-1. The StaticModel



Chapter 5: Static Model

5-4 Objecteering/Metamodel User Guide

StaticModel metaclasses
♦= Project: Working space for a model.

♦= ModelTree: Used to create hierarchical links.

♦= NameSpace: Part of a model in which each name has a unique meaning.

♦= Package:  Decomposition unit of a model.

♦= Classifier:  Element which describes behavioral and structural features.

♦= GeneralClass: General definition of a class.

♦= Class: Description of a set of objects which share the same attributes,
operations, methods, relationships, and semantics.

♦= DataType: A descriptor of a set of primitive values which lack identity.

♦= Feature: Property, like operation or attribute, which is encapsulated within
another entity, such as an interface, a class, or a data type.

♦= Attribute: Property of a class.

♦= Operation: Individual pieces of invokable behavior.

♦= Parameter: Information received as input or returned as output by an operation.

♦= Association: Definition of links which may exist between objects.

♦= AssociationEnd: Connection of an association to one of its related classes.

♦= ClassAssociation: Class relating other classes.  It is both a class and an
association.

♦= Enumeration: Special kind of DataType whose range is a list of predefined
values, called EnumerationLiterals.

♦= EnumerationLiteral: Defines an atom (i.e., with no relevant substructure),
represents one in the list of values that an enumeration may have.

♦= Signal: Specification of an asynchronous stimulus communicated between
instances.

♦= DataFlow: Circulation of information between model elements.

♦= Generalization: Taxonomic relationship between a more general element and a
more specific element.

♦= Use: Usage dependency between elements.

♦= Realization: Implementation link between a class and its interface, or between
a component and its interface.

♦= TemplateParameter: Parameter for templated elements.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-5

Example 3: Package diagram

Figure 5-2. Subsystem package made up of packages of various functionality areas

Packages, composed packages, use links and Generalization metaclasses
feature in this diagram.



Chapter 5: Static Model

5-6 Objecteering/Metamodel User Guide

Example 4: Class diagram which has various combinations of
classes

Figure 5-3. Different examples of classes



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-7

Example 5: Various kinds of class members

Figure 5-4. Various examples of class features (Feature, Attribute, Operation metaclasses)



Chapter 5: Static Model

5-8 Objecteering/Metamodel User Guide

Example 6: Various dependencies between classes (Associations
and ClassAssociations, Realization, dependencies)

Figure 5-5. Class dependencies

For further information, please see the "Association", "AssociationLink",
"Qualifiers", "Class", "ClassAssociation", "Realization" and "Use" metaclasses



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-9

"Project" class

Project overview
Project extends ModelElement;

Working space for a model.  A Project in Objecteering/UML corresponds to the
UML "Model" concept.  A Project in Objecteering/UML has a root Package, and in
addition a configuration, expressing the loaded modules (and their Profiles), the
value of the ModuleParameters, etc.
A Project does not belong to any other element.

Figure 5-6. Detailed class diagram for Project

See also: Package.



Chapter 5: Static Model

5-10 Objecteering/Metamodel User Guide

Project properties
The class has the following associations:

♦= Model:Package: Defines the Package associated to the Project (Equivalent to
the UML "Model" notion), that is the root of the Project's Package organization.

♦= RootItem:Item: Specifies an Item which may be the root of an Item tree.
Please refer to the "Project management services" section in chapter 7 of the
Objecteering/J Libraries User Guide user guide.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-11

"NameSpace" class

NameSpace overview
abstract class NameSpace extends ModelTree ;

Part of a model in which each name has a unique meaning.  A NameSpace
encompasses both the UML notion of NameSpace and of GeneralizableElement.
NamesSpaces are Packages and Classifiers.
In Objecteering/UML, a NameSpace belongs to another NameSpace, with the
single exception of the root NameSpace, which is associated to the Project.

Figure 5-7. Metamodel of the NameSpace metaclass



Chapter 5: Static Model

5-12 Objecteering/Metamodel User Guide

NameSpace properties
The class has the following associations:

♦= Sent:DataFlow: DataFlows sent by the NameSpace

♦= Parent:Generalization: Association to the parent NameSpace through the
intermediate Generalization Class.

♦= Declared:Instance: Instances declared in the context of the current
NameSpace.

♦= Destination:Use: NameSpaces "used" (having an <<access>> or an
<<import>> dependency) by the current NameSpace.

♦= OwnedDataFlow:DataFlow: DataFlows belonging to a NameSpace.  If they
have an origin NameSpace, then it is the owner.  Otherwise, the NameSpace
which constitute the definition context of the DataFlow (typically designates the
Package in which the diagram has been defined) will be the owner.

♦= MessagesContext:Interaction: Defines various interactions that may exist
between instances belonging to the current NameSpace.

♦= Realized:Realization: Link to the Realization intermediate metaclass, in order to
define the realization link between an Interface and a Class.

The class owns the following attributes:

♦= IsAbstract: An abstract NameSpace is defined on a very general level and
does not have direct instances.

♦= IsLeaf: Determines if the NameSpace is an inheritance tree leaf.  This prohibits
future inheritance.

♦= IsRoot: Determines that the current NameSpace is the root of a Generalization
tree.

♦= Visibility: Defines the visibility of the NameSpace, in its owning NameSpace.
(visibility of a Class in a Package, for example)



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-13

NameSpace consistency rules
For an element E contained in a NameSpace N, E will be able to access element
E', if E' :

♦= belongs to N, or belongs to a NameSpace N1, with "public" visibility, and where
N1 checks the following properties:

♦= N1 belongs to N, or

♦= N1 is used by N, or

♦= N1 is referenced by N, or

♦= these dependencies are run through on a single level (non transitivity)

♦= or belongs to a parent NameSpace N2 of N, with public or protected visibility,
or belongs to a NameSpace N3 which checks one of the properties above (N1
to N) with regard to N2' (N3' belongs to, is referenced by or is used by N2').

A NameSpace has a unique name in its naming space, which itself is a
NameSpace.  The uniqueness check concerns the components and the elements
referenced by a NameSpace.  Furthermore, predefined types (integer, etc.) which
cannot have homonyms are also used.
The "uniqueness of names" rule also concerns instances defined in the
NameSpace.
A maximum of one generalization link can exist between two NameSpaces.
A maximum of one use link can exist between two NameSpaces.
An abstract NameSpace can only specialize an abstract NameSpace.(Warning)
A Root NameSpace cannot have parents.
A NameSpace cannot specialize a  "Leaf" NameSpace.
A Leaf NameSpace cannot be abstract.  This exclusion is only managed by the
entry dialog box.
Cycles between Generalization links cannot exist.



Chapter 5: Static Model

5-14 Objecteering/Metamodel User Guide

NameSpace methods
DataType findType (in String typeName)
This operation returns the DataType whose name is given if present in the current
element.
Example:
DataType MyColor = MyPackage.<findType ("Color");

Enumeration findEnumerate (in String enumName)
This operation returns the Enumeration whose name is given if present in the
current element.
Example:
Enumeration MyColor = MyPackage.<findEnumerate ("Color");

Class getClassByName (in String pName)

This operation returns the first Class owned by the element whose name is given.
Example:
Class MyClass =MyPackage.getClassByName ("MyClass");

Package getPackageByName (in String pName)
This operation returns the first Package owned by the element whose name is
given.
Example:
Package MyPackage = AParentPackage.getPackageByName
("MyPackage");



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-15

NameSpace containsThisNameSpace (in NameSpace pNameSpace)
This operation returns the Parameter if it is owned by the element and has the
same name.
Example:
Class MyClass =MyPackage.containsThisNameSpace (ThisClass);

NameSpace: addClass (inout Class pClass)
This operation adds a Class to the current NameSpace.
Example:
MyPackage.<addClass (Aclass);

NameSpace:addEnumeration (inout Enumeration pEnumeration)
This operation adds an Enumeration to the current element.
Example:
MyPackage.<addEnumeration (AEnumeration);

NameSpace:addDataType (inout DataType pDataType)
This operation adds a DataType to the current element.
Example:
MyPackage.<addDataType (ADataType);

NameSpace:addUseCase (inout UseCase pUseCase)
This operation adds a UseCase to the current element.



Chapter 5: Static Model

5-16 Objecteering/Metamodel User Guide

NameSpace:addActor (inout Actor pActor)

This operation adds an Actor to the current element.
Example:
MyPackage.<addActor (MyActor).

NameSpace:setNameSpaceParams (in VisibilityMode pVisibility,
in boolean pIsAbstract, in boolean pIsLeaf, in boolean
pIsRoot)
This operation sets attributes to a NameSpace.
Example:
MyClass.<setNameSpaceParams (Public, false, false, false);

NameSpace [] getUsedNameSpaces
This operation returns the NameSpaces used by the NameSpace.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-17

"Package" class

Package overview
Package extends NameSpace;

Decomposition unit of a model.  The Package is the main structuring unit of
models.  It defines a hierarchy that decomposes a Model.  Packages can contain
Packages, Classifiers, etc.
Example 3 presents examples of Packages, package embedding, and
dependencies between Packages.
A Package belongs to its parent Package, represented as a NameSpace in the
metamodel, except for the root Package, which belongs to a Project.

Figure 5-8. Detailed class diagram for Package



Chapter 5: Static Model

5-18 Objecteering/Metamodel User Guide

Package properties
The class has the following associations:

♦= Referenced:NameSpace: Referenced NameSpaces.  Referencing is a specific
UML mechanism, that provides accessibility to the referenced element, without
having the hierarchical ownership constraints.

♦= Behavior:StateMachine: StateMachines that may express behavior at the
Package level.

♦= Example:Collaboration: Collaborations expressing the dynamics of the current
Package.

The class has the following attribute:

♦= IsInstantiable: Indicates that the Package may be instantiated.

Package consistency rules
♦= A Package belongs to a Package or to a Project.

♦= A Package can only specialize a Package.

♦= Generalization links between Packages are acyclic.

♦= Use links between Packages are acyclic.

♦= A Package uses only Packages.

♦= A Package cannot specialize and use a Package at the same time.

♦= The combination of generalization links and use links cannot form a cycle.

♦= A StateMachine is unique in the Package.

♦= A Collaboration is unique in the Package.

♦= A NameSpace is unique in the Package.

♦= An Instance is unique in the package.

♦= A Package can reference any NameSpace (NameSpace visibility checks do
not apply).

♦= A Package stereotyped <<sub-system>> can implement or use interfaces.

♦= According to element accessibility rules for a Package, P1, embedded
Packages can also access interfaces accessed by their owner Package.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-19

Package constructor
Package ModelElement:createPackage (in String pName)
This operation creates a Package whose name is given.
Example:
Package MyPackage = createPackage ("MyPackage");

Package createAndAddPackage (in String pName)
This operation creates and adds to the current Package a sub-Package.
Example:
Package MyPackage =Apackage.<createAndAddPackage
("MyPackage");

Package:addPackage (inoutPackage pPackage)
This operation makes a Package owns another one.
Example:
MyOwnerPackage.<addPackage (AnOwnedPackage);

addReference (in NameSpace pReferenced)
This operation makes a Package reference another one.
Example:
MyReferencerPackage.<addReference (AReferencedPackage);



Chapter 5: Static Model

5-20 Objecteering/Metamodel User Guide

Package methods
Actor[] getActors ()
Returns the Actors of the Package.

Actor[] getReferencedActors()
Returns the Actors referenced by the Package.

StateMachine[] getStateMachines()
Returns the StateMachines expressing the behavior at the package level.

UseCase[] getUseCases()
Returns the UseCases of the Package.

UseCase[] getReferencedUseCases ()
Returns the UseCases referenced by the Package.

Class[] getAllClasses()
Returns the Classes of the Package.

Class[] getReferencedClasses()
Returns the Classes referenced by the Package.

Collaboration[] getCollaborations()
Returns the Collaborations which express the dynamic of the Package.

Diagram[] getDiagrams()
Returns the Class, Deployment, Deployment instance, Object, Sequence and use
case Diagrams of the Package.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-21

Class NameSpace[] getUsedNameSpaces()
Returns the Elements used by the Package.

NameSpace[] getReferencedNameSpaces()
Returns the Elements referenced by the Package.

Enumeration[] getEnumerations()
Returns the Enumerations of the Package.

DataFlow[] getSentDataFlows()
Returns the DataFlows sent by the Package.

DataFlow[] getReceivedDataFlows()
Returns the DataFlows received by the Package.

Instance[] getInstances()
Returns the Instances declared in the context of the Package.

Package[] getParentPackages()
Returns the parent Package which is specialized by the current Package.

Package[] getUsedPackages()
Returns the used Packages.

Package[] getReferencedPackages()
Returns the Packages referenced by the Packages().

DataType[] getDataTypes()
Returns the DataTypes of the Package.



Chapter 5: Static Model

5-22 Objecteering/Metamodel User Guide

Package[] getPackages()
Returns the sub-packages of the Package.

Component[] getComponents()
Returns the Components of the Package.

Node[] getNodes()
Returns the Nodes of the Package.

NodeInstance[] getNodeInstances()
Returns the NodeInstances of the Package.

ComponentInstance[] getComponentInstances()
Returns the ComponentInstances of the Package.

Component[] getReferencedComponents()
Returns the Components referenced by the Package.

Node[] getReferencedNodes()
Returns the Nodes referenced by the Package.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-23

"Classifier" class

Classifier overview
abstract class Classifier extends NameSpace;

Element that describes behavioral and structural features.  A Classifier is an
abstract view of the most important metaclasses such as Class, UseCase, Actor,
Component and Node.  A Classifier notably factorizes the aggregation to features.
A Classifier is owned by a NameSpace (see the concrete subclasses).

Figure 5-9. Detailed class diagram for Classifier

See also: Class, GeneralClass, Component, Node, UseCase, Actor.



Chapter 5: Static Model

5-24 Objecteering/Metamodel User Guide

Classifier properties
The class has the following association:

♦= Part:Feature: Relates a Classifier to its Attributes, Operations, and also
navigable AssociationEnds.

Classifier consistency rules
A Classifier accesses its composed NameSpace, public NameSpaces contained
in or referenced by the composed NameSpace, NameSpaces used by its
compound and public NameSpaces contained in or referenced by them.  It
recursively accesses the parent NameSpaces of its compound, and the public
NameSpaces contained in or referenced by them.
The names of the current Classifier's AssociationEnds, Operations and Attributes
must be unique.  This uniqueness also applies to the parent Classifiers of the
current Classifier (Warning).
The signature of an operation intervenes in its control of uniqueness, with regard
to other operations.  It must be different from the signatures of the current
Classifier's operations, and also from the signatures of the compound's operations
(Warning), if the operation is not redefined.
For members of parents, only public and protected visibility members are checked.
There is no check on repetition in parents for the "create" and "delete" operations.
There is no check on repetition if the member name is "undefined".
A Classifier can implement an interface once only, but may implement several.
A Classifier may only implement interface classes. An interface class cannot
implement another interface class.
A non-abstract Classifier cannot have abstract methods (Warning).
A protected Classifier is accessible by public and protected Classifiers, its
NameSpace , only through private relationships. (Warning)
A private Classifier is accessible by public and protected Classifiers, its
NameSpace, only through private relationships. (Warning)



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-25

Classifier methods
Classifier:addAttribute (inout Attribute pAttribute)
This operation adds an Attribute to the current element.
Example:
MyClass.<addAttribute (AnAttribute);

Classifier:addAssociationEnd (inout AssociationEnd
pAssociationEnd)
This operation adds an AssociationEnd to the current element.
Example:
MyClass.<addAssociationEnd (AnAssociationEnd);

Classifier:addOperation (inout Operation pOperation)
This operation adds an Operation to the current element.
Example:
MyClass.<addOperation (AnOperation);

FeatureClassifier containsThisFeature (in Feature pFeature)
This operation returns the Feature if it is owned by the element.
Example:
Operation MyOperation = MyClass.<containsThisFeature
(ThisOperation);

Attribute[] getAttributes()
Returns the Attributes of the Classifier.

Operation[] getOperations()
Returns the Operations of the Classifier.



Chapter 5: Static Model

5-26 Objecteering/Metamodel User Guide

"GeneralClass" class

GeneralClass overview
abstract class GeneralClass extends Classifier;

A GeneralClass is an elaborated Classifier.
A GeneralClass belongs to its NameSpace.

Figure 5-10. Detailed class diagram for GeneralClass

See also: Class, Actor, DataType, Enumeration, UseCase, Signal.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-27

GeneralClass properties
The class has the following associations:

♦= Cooperation:Communication: Manages the Actor/UseCase communication link.
This link is symmetrical.

♦= CommunicationLink:Communication: Manages the Actor/UseCase
communication link.  This link is symmetrical.

The class owns the following attribute:

♦= IsElementary : Determines whether a Class is elementary or primitive.  A Class
is primitive if its value cannot be decomposed and its instances are not
handled by the application.  For example, "integer" and "boolean" are
elementary Classes, whereas "Human" or "Device" are generally not.

GeneralClass consistency rules
No Associations can exist on a primitive Class.
A non primitive Class cannot type an attribute.



Chapter 5: Static Model

5-28 Objecteering/Metamodel User Guide

"Class" class

Class overview
Class extends GeneralClass;

Description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics.  The Class is the major concept for the
object-oriented model.  It specifies which Instances can exist in an application.
In Objecteering/UML, an Interface is a specific kind of Class, which is represented
by a predefined Stereotype. (See Example 4 and 6 for Class diagrams).
In Objecteering/UML, a Class is owned by a NameSpace, which can be a
Package or a Class.

Figure 5-11. Detailed class diagram for Class

See also: Classifier, NameSpace, Feature, Attribute, Operation.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-29

Class properties
A Class has the following associations:

♦= Template:TemplateParameter: In case of template Classes, this association
defines its template parameters.

♦= Behavior:StateMachine: Defines the state machines that specify the behavior
of the Class.

♦= Example:Collaboration: Collaborations expressing the dynamics of the current
NameSpace.

The class owns the following attributes:

♦= IsMain: A main class is a Class whose unique instance represents the
application.

♦= IsActive: Specifies whether an Object of the Class maintains its own thread of
control.  If true, then an Object has its own thread of control and runs
concurrently with other active Objects.  If false, then Operations run in the
address space and under the control of the active Object that controls the
caller.

Class consistency rules
♦= A Class can belong to a Package, or to a Class.

♦= A Class has no communication links.

♦= A Class can only contain Classes, DataTypes and Enumerations.

♦= A Class can only specialize (Generalization) Class.  Between two Classes, a
maximum of one generalization link may exist.

♦= An Interface class can only specialize an Interface class.

♦= An Active class can only specialize an Active class.

♦= A Class can only use (Use) Classes.  Between two Classes, a maximum of one
Use link may exist.

♦= An active Class cannot be Interface.

♦= A primitive Class can have neither StateMachines nor Collaborations.



Chapter 5: Static Model

5-30 Objecteering/Metamodel User Guide

Class constructor
Class ModelElement:createClass (in String pName)
This operation creates a Class whose name is given.
Example:
Class MyClass = createClass ("MyClass");

Class NameSpace:createAndAddClass (in String pName)
This operation creates and adds to the current NameSpace a Class whose name
is given.
Example:
Class MyClass = MyPackage.<createAndAddClass ("MyClass");



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-31

Class methods
StateMachine[] getStateMachines()
Returns the StateMachine describing the behavior of the Class.

Class[] getClasses()
Returns the sub-classes of the Class.

Class[] getUsedClasses()
Returns used Classes.

Class[] getParentClasses()
Returns parent Classes.

Collaboration[] getCollaborations()
Returns Collaborations expressing the dynamic of the Class.

Diagram[] getDiagrams()
Returns the Class, Object, or Sequence diagrams of the Class.

Enumeration[] getEnumerations()
Returns the Enumerations defined locally in the Class.

DataFlow[] getSentDataFlows()
Returns the DataFlows sent by the Class.

DataFlow[] getReceivedDataFlows()
Returns the DataFlows received by the Class.

Instance[] getInstances()
Returns the Instances declared in the context of the Class.



Chapter 5: Static Model

5-32 Objecteering/Metamodel User Guide

Class[] getImplementedInterfaces()
Returns implemented Interfaces.

AssociationEnd[] getAssociationEnds()
Returns the navigable links starting from the Class.

AssociationEnd[] getNoNavigableAssociationEnds()
Returns the non-navigable links starting from the Class.

DataType[] getDataTypes()
Returns the Datatypes declared in the Class.

boolean isAbstract()
Determines if the Class in an abstract Class.

boolean isMain()
Determines if the Class is a main Class.

String pathName()
This operation returns the complete "path" of a Class.  The path is the composition
link of the Packages and Classes containing this Class, such as "P1 : P2 : Class".
Example:
String MyPath =MyClass.<pathName();

Class:setClassParams (in boolean pIsElementary, in boolean
pIsMain)

This operation sets parameters of a Class.
Example:
MyClass.<setClassParams (false, false);



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-33

Class Class:clone()
This operation makes a complete copy of the current Class.
Example:
Class MyCopy = Class MyClass.<clone();



Chapter 5: Static Model

5-34 Objecteering/Metamodel User Guide

"DataType" class

DataType overview
DataType extends GeneralClass;

A descriptor of a set of primitive values which lacks identity.
DataTypes include numbers, Strings, and enumerated values.  DataTypes are
passed by value and are immutable entities.  DataTypes can be used as primitive
classes.
In Objecteering/UML, DataTypes belong to a NameSpace.

Figure 5-12. Detailed class diagram for DataType



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-35

DataType consistency rules
A DataType cannot contain NameSpaces.
A DataType neither sends nor receives DataFlows.
A DataType does not implement Interface classes.
A DataType has no communication links.
A DataType can only belong to a Class, a Package, or a Signal.
A DataType may only specialize (Generalization) a DataType.
A DataType may only use (Use) a DataType.

DataType constructor
DataType NameSpace:createAndAddDataType (in String pName)
This operation creates and adds to the current NameSpace a DataType whose
name is given.
Example:
DataType MyDataType = MyClass.<createAndAddDataType
("MyDataType");

DataType ModelElement:createDataType (in String pName)
This operation creates a DataType whose name is given.
Example:
DataType MyNodeType = createDataType ("Node");



Chapter 5: Static Model

5-36 Objecteering/Metamodel User Guide

DataType methods
Object Object:findPredefinedType (in String TypeName)
Returns the  "TypeName" predefined name type or empty if not found.  The type is
searched for in the "_predefinedTypes" UML modeling project.  Returned
elements are generally of "DataType" type. This service is very practical in finding
representatives of predefined types, like, for example, "int".

AssociationEnd[] getAssociationEnds()
Returns the navigable links starting from the DataType.

DataType[] getParentDataTypes()
Returns the parent DataTypes.

DataType[] getUsedDataTypes()
Returns the DataTypes used by the DataType.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-37

"Feature" class

Feature overview
abstract class Feature extends ModelElement;

Property, like operation or attribute, which is encapsulated within another entity,
such as an Interface, a Class, or a  DataType.
In the metamodel, a Feature declares a behavioral or structural characteristic of
an Instance of a Classifier or of the Classifier itself.
Properties of a Class that can be handled in an abstract way.  In
Objecteering/UML, an AssociationEnd is also a Feature.  The Name of a Feature
corresponds to the name of the role of the opposite related Class.
In Objecteering/UML, a Feature belongs to its Classifier.
See Example 5 where several examples of Feature exist.

Figure 5-13. Detailed class diagram for Feature

See also: Classifier, Enumerated types.



Chapter 5: Static Model

5-38 Objecteering/Metamodel User Guide

Feature properties
The class owns the following attributes:

♦= Visibility: Member visibility (Public, Protected or Private).

♦= IsClass: Specifies a class member, that is shared by all instances of the class.

♦= IsAbstract: Determines abstract Features, i.e. those not implemented at this
level.

Feature consistency rules
A Feature belongs to a Classifier.
It has a unique name in its Classifier.  The uniqueness of the name is not checked
if the name is undefined.

Feature methods
Classifier[] getComposedClass()
Provides the Classifier which contains the Feature.

Feature:SetFeatureParams (in VisibilityMode pVisibility, in
boolean pIsClass, in boolean pIsAbstract)
This operation sets parameters of a Feature.
Example:
MyOperation.<setFeatureParams (Public, false, false);



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-39

"Attribute" class

Attribute overview
Attribute extends Feature;

Property of a Class.  An Attribute is a named slot within a Classifier that describes
a range of values that instances of the said Classifier may hold. (See Example 5)
In Objecteering/UML, an Attribute belongs to a GeneralClass as a Feature, or to
an AssociationEnd as a Qualifier.

Figure 5-14. Detailed class diagram for Attribute

See also: GeneralClass, Classifier, Enumerate type.



Chapter 5: Static Model

5-40 Objecteering/Metamodel User Guide

Attribute properties
The class has the following association:

♦= Type:GeneralClass: Determines which class is the Attribute's type

The class has the following attributes:

♦= IsDerived: Determines if the Attribute is a dynamic dependency, i.e. its value is
calculated dynamically, via an expression.

♦= IsSet: Determines whether the Attribute is a set.

♦= Multiplicity: Provides, if necessary, the size of the set.

♦= TypeConstraint: Provides an indication of the instantiation of the Attribute's
elementary class.  For example, in the case of an Attribute String,
TypeConstraint determines the size of the String (*, 10, etc.).

♦= Changeable: Determines the access mode of the Attribute (read, write,
read/write, neither).

♦= TargetIsClass: Determines that the target itself is a metaclass.

♦= Value: Default value of the Attribute.  This value is assigned to the Instances
upon creation, unless a specific value is defined.

Attribute consistency rules
♦= An Attribute can belong to a Class, an Actor, a UseCase, a Component, a

Node or an association link.

♦= An Attribute can be typed by a Class, a DataType or a primitive Enumeration.

♦= The name of an Attribute must be different from those of its AssociationEnds,
the Operations and the Attribute of its owner.  The rule also applies to the
parents of its owner (Warning).

♦= An Attribute has a Classifier as type, which is accessible from its owner, in
accordance with the visibility rules on Classifier.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-41

Attribute constructor
Attribute ModelElement:createAttribute (in String pName, in
GeneralClass pType, in String pInitValue, in String
pMultiplicity)
This operation creates an Attribute whose type is a GeneralClass.
Example:
Attribute MyColor = createAttribute ("MyColor", ColorEnum,
"Blue", "1");

Attribute Modelelement:createPredefinedAttribute (in String
pName, in String pType, in String pInitValue, in String
pMultiplicity)
This operation creates an Attribute whose type is int, real, char, string, boolean or
undefined.  It avoids having to get a reference to these predefined types before
getting the Attribute.
Example:
Attribute MyRate = createPredefinedAttribute ("MyRate",
"real", "", "l");

Attribute Classifier:createAndAddPredefinedAttribute (in
String pName, in String pType, in String pInitValue, in
String pMultiplicity)
This operation creates and adds to the current element an Attribute whose type is
either int, char, real, string, boolean or undefined.
Example:
Attribute MyAttribute
=Aclass.<createAndAddPredefinedAttribute ("name", "String",
"Lucas", "l");



Chapter 5: Static Model

5-42 Objecteering/Metamodel User Guide

Attribute Classifier:createAndAddAttribute (in String pName,
in GeneralClass pType, in String pInitValue, in String
pMultiplicity)
This operation creates and adds to the current element an Attribute whose type is
a GeneralClass.
Example:
Attribute MyAttribute =Aclass.<createAndAddAttribute
("MyAttribute", ColorEnum, "Blue", "l");



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-43

Attribute methods
GeneralClass[] getType()
Returns the type of the Attribute.

boolean isClass()
Returns "true" if the Attribute is a class member.

boolean isSet()
Returns "true" if the Attribute is a set of elements.

String pathName()
This operation returns the complete "path" of an Attribute, that is the composition
list of Packages, and classes for the Attribute, such as "P1 : P2 : C1 : Attribute".
Example:
String MyPath =MyAttribute.<pathName();

Attribute:setAttributeParams (in KindOfAccess pChangeable,
in String pTypeConstraint, in boolean pIsSet, in boolean
pTargetIsClass, in boolean pIsDerived)
This operation sets parameters of an Attribute.  It has to be excecuted in a J
session.
Example:
MyAttribute.<setAttributeParams (Read, "", false, false,
false);



Chapter 5: Static Model

5-44 Objecteering/Metamodel User Guide

"Operation" class

Operation overview
Operation extends Feature;

Individual pieces of invocable behavior.  In Objecteering/UML, this metaclass
defines both the Operation, and the method which implements it.  Example 5
presents various kind of Operations.
An Operation belongs to its Classifier.

Figure 5-15. Detailed class diagram for Operation

See also: Parameter, Classifier, Enumerated types.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-45

Operation properties
The class has the following associations:

♦= Redefines:Operation: Redefinition link between Operations of inherited
classes. Redefining an Operation preserves the same names and parameters,
but may specify the pre and post conditions, and the method's internal behavior

♦= IO:Parameter: Defines the parameters making up the method.

♦= Return:Parameter: Link to the eventual return parameter.  The return
parameter is only distinguished by this association, from the IOParameter.

♦= Behavior:StateMachine: Defines the States diagram associated to the
Operation.

♦= Used:Class: Determines the classes specifically used in the implementation of
the current Operation.

♦= Example:Collaboration: Collaborations that illustrate the dynamic of this
Operation.

♦= OUsed:Use: Signals that may be raised as exceptions by the Operation.

The class owns the following attributes:

♦= Passing: Operation mode (in or inout).  By default, this is "inout".  This mode
determines whether the message receiver object is updated (inout) or not (in)
when the method is invoked.

♦= Final: Final Operations cannot be redefined.  Some OO languages, such as
Java, optimize final operations.

♦= Concurrency: Distinguishes different invocation mode of an operation.  It
typically specifies concurrent modes.



Chapter 5: Static Model

5-46 Objecteering/Metamodel User Guide

Operation consistency rules
♦= The name of an Operation must be different from the names of the

AssociationEnds and Attributes of its owner.  The same is true for the parent
Classifiers of the owner. (Warning).

♦= The signature of an Operation must be different from the signatures of the
operations of its owner.  The same is true for the parents of the owner
(Warning).  In the latter case,  the check only concerns the Features of public
and protected visibility.

♦= There is no repetition check in parent owners for the "create" and "delete"
Operations.

♦= The signature is made up of the name, mode, directives and parameters of the
operation, as well as its return type. TaggedValues, for whom the
BelongToPrototype TagType is true, are taken into account in the calculation of
the signature. For example, in C++ the “*” or “&” tagged values exist on the
parameters which intervene in the overload for the C++ language.

♦= A parameter name must be unique for an Operation.

♦= A redefined Operation must belong to a parent of the owner of the Operation.

♦= The Operation must have the same signature as the redefined Operation, if the
case arises.

♦= A private Operation cannot be redefined.

♦= The visibility of an Operation cannot be wider (public > protected > private)
than that of the redefined Operation.

♦= A class Operation cannot be redefined.

♦= If the Operation is abstract, then the owner must be abstract (Warning).

♦= A non-abstract Operation cannot be redefined in an abstract
Operation.(Warning)

♦= A constructor has no return parameters.

♦= A destroyer has neither Parameters nor return parameters.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-47

Operation constructor
Operation ModelElement:createOperation (in String pName)
This operation creates an Operation whose name is given only.
Example:
Operation MyOperation =createOperation ("MyOperation");

Operation createCompleteOperation (in String pName, in
Parameter[] pParamSet, in Parameter pParamReturn, in Note
pBody, in Note pReturnExpr, in VisibilityMode pVisibility,
in boolean pIsClass, in boolean pIsAbstract,
inMethodPassingMode pPassing)
This operation creates a complete Operation with its name, parameters, return
parameter, body and several others attributes.
Example:
Operation MyOperation =createCompleteOperation
("OperationName", Parameters, ReturnParameter, BodyExpr,
ReturnExpr, Public, true, false, MethodOut);

Operation Classifier : createAndAddOperation (in String
pName)
This operation creates and adds to the current Classifier an Operation whose
name is given.
Example:
Operation MyOperation =Aclass.<createAndAddOperation
("print");



Chapter 5: Static Model

5-48 Objecteering/Metamodel User Guide

Operation methods
Parameter[] getReturnParameter()
Returns the "return Parameter".

StateMachine[] getStateMachines()
Returns the StateMachines specifying the behavior of the Operation.

Class[] getUsedClasses()
Returns the Classes specifically used in the implementation of the Operation.

Collaboration[] getCollaborations()
Returns the Collaborations illustrating the dynamic of the Operation.

Operation[] getRedefinesOperation()
Returns the parent Operation.

Parameter[] getIOParameters()
Returns the Parameters of the Operation.

Signal[] getSignals()
Returns the Signals that may be raised as exceptions by the Operation.

boolean isAbstract()
Determines if the Operation is an abstract Operation.

boolean isClass()
Determines if the Operation is a class Operation.

String pathName()
This operation returns the complete "path" of an Operation.
Example:
String MyPath =MyOperation.<pathName();



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-49

boolean Operation:sameSignature (in Operation method)
This operation determines if both Operations have the same interface.  It does not
compare the names of the methods.
Example:
boolean Same =MyOperation.<sameSignature (AnotherOperation);

boolean Operation:sameSignatureWithName (in Operation
method)
This operation determines if both Operations have the same interface.  The
names of the methods are compared.  If two operations have identical names, this
operations returns false.
Example:
boolean Same =MyOperation.<sameSignatureWithName
(AnotherOperation);

Operation:addParameter (in Parameter pParameter)
This operation adds a Parameter to the current Operation.
Example:
MyOperation.<addParameter (MyParameter);

Operation:addReturnParameter (in Parameter pParameter)
This operation adds a return Parameter to the current Operation.
Example:
MyOperation.<addReturnParameter (MyParameter);

Operation:addUsedClass (in Class pClass)
This operation makes the current Operation use a Class.
Example:
MyOperation.<addUsedClass (AUsedClass);



Chapter 5: Static Model

5-50 Objecteering/Metamodel User Guide

Operation:addRedefine (in Operation pOperation)
This operation adds a Redefine link to the current operation.
Example:
RedefinedOperation.<addRedefine (AnOperation);

Operation Operation:clone()
This operation makes a complete copy of the current Operation.
Example:
Operation MyCopy =MyOperation.<clone();

Operation:setOperationParams (in MethodPassingMode pPassing,
in boolean pFinal)
This operation sets Parameters of an Operation.
Example:
MyOperation.<setOperationParams (MethodOut, false);

Operation:clearParameter()

This operation deletes all the Parameters of the current Operation.
Example:
MyOperation.<clearParameter();



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-51

"Parameter" class

Parameter overview
Parameter extends ModelElement;

Information received as input or returned as output by an Operation.
Their main characteristics are their name, passing mode and type.
The return value of an Operation is a specific case managed by a specific
association between Operation and Parameter.  Parameters can be seen in
Example 5.
In Objecteering/UML, a Parameter belongs to its Operation.

Figure 5-16. Detailed class diagram for Parameter

See also: Enumerated types, Operation, GeneralClass.



Chapter 5: Static Model

5-52 Objecteering/Metamodel User Guide

Parameter properties
The class has the following association:

♦= Type:GeneralClass: Defines the class to which the Parameter belongs.

The class owns the following attributes:

♦= DefaultValue: Default value of the Parameter.  When the caller does not
specify any value, then the default value is applied.

♦= ParameterPassing: Defines the passing mode (in, out or inout) of the
Parameter.

♦= IsSet: Determines whether it is a set of elements (set of ...).

♦= Multiplicity: Defines the size of the Set (* if unlimited, constant, or whole
number), if IsSet is true.

♦= TypeConstraint: Construction Parameter of the Parameter's class (for example,
the size of a characters String).

Parameter consistency rules
♦= A Parameter belongs to an Operation.

♦= A Parameter has as a type a Class, a DataType or an Enumeration.

♦= A Parameter Out cannot have a default value,

♦= The "Returned" and "Composed" relationships are exclusive.  One of them
must be defined.

♦= The Parameter type must be accessible from the Classifier of its Operation.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-53

Parameter constructor
Parameter ModelElement:createReturnPredefinedParameter (in
String pType, in boolean pIsSet, in String pMultiplicity, in
String pTypeConstraint)
This operation creates a return Parameter whose type is int, real, char, string,
boolean or undefined.
Example:
Parameter MyParameter =createReturnPredefinedParameter
("float", false, "l", "");

Parameter ModelElement:createReturnParameter (in
GeneralClass pType, in boolean pIsSet, in String
pMultiplicity, in String pTypeConstraint)
This operation creates a return Parameter whose type is a GeneralClass.
Example:
Parameter MyParameter =createReturnParameter (Var__Graphic,
false, "l", "");

Parameter ModelElement:createParameter (in String pName, in
GeneralClass pType, in PassingMode ParameterPassing, in
boolean pIsSet, in String pMultiplicity, in String
pTypeConstraint, in String pDefaultValue)
This operation creates a Parameter whose type is a GeneralClass.

Parameter ModelElement:createPredefinedParameter (in String
pName, in String pType, in PassingMode pParameterPassing, in
booleaan pIsSet, in String pMultiplicity, in String
pTypeConstraint, in String pDefaultValue)
This operation creates a Parameter whose type is integer, real, undefined, char,
boolean or String.
Example:
Parameter MyParameter =createPredefinedParameter ("width",
"real", In, false, "l", "", "0");



Chapter 5: Static Model

5-54 Objecteering/Metamodel User Guide

Parameter methods
GeneralClass[] getParameterType()
Returns the GeneralClass which types the Parameter.

boolean isSet()
Determines if the Parameter is a set of elements.

String pathName()
This operation returns the complete "path" of a Parameter.
Example:
String MyPath =MyParameter.<pathName();

Parameter:setParameterParams (in PassingMode
pParameterPassing, in boolean pIsSet, in String
pMultiplicity, in String pTypeConstraint, in String
pDefaultValue)
This operation sets the Attributes of a Parameter.
Example:
MyParameter.<setParameterParams (Out, false, "1", "", "");

Parameter clone()
This operation makes a complete copy of the current Parameter.
Example:
Parameter MyCopy =MyParameter.<clone();

Parameter cloneWithoutTag()
This operation makes a copy of the current Parameter without its TaggedValues.
Example:
Parameter MyCopy =MyParameter.<cloneWithoutTag();



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-55

"Association" class

Association overview
Association extends ModelElement;

Definition of links that may exist between objects.  An Association describes
discrete connections among objects or other instances in a system.
An Association is often established between two Classes (binary associations),
but can be established between several classes (n-ary associations).  An
Association can be related to a ClassAssociation, which may, for example, provide
attributes and operations.
The connections to the associated Classes are specified through the
AssociationEnd metaclass.  The AssociationEnd metaclass will provide the
properties of an association, such as multiplicities, navigability, etc.  Aggregation
is a specific case of Association.
See Example 6 for the different cases of Associations.
An Association in Objecteering/UML physically belongs to no other elements. It
behaves in a specific way during transfer and copy/paste operations, depending
on whether the connected classes are transferred in conjunction or not.

Figure 5-17. Association metamodel

See also: AssociationEnd, ClassAssociation.



Chapter 5: Static Model

5-56 Objecteering/Metamodel User Guide

Association properties
The class has the following associations:

♦= Connection:AssociationEnd: Defines the links of an Association to the Classes.

♦= LinkToClass:ClassAssociation: Specifies a ClassAssociation which may be
related to the Association.

Association consistency rules
♦= There can be no composition on an n-ary Association.

♦= There can only be one single aggregation on an Association's
AssociationEnds.

Association constructor
Association ModelElement:createAssociation (in String pName,
in AssociationEnd pOrigin, in AssociationEnd pDestination)
This operation creates a binary Association whose name and two
AssociationEnds are given.
Example:
Association MyAssociation =createAssociation
("MyAssociation", Origin, Destination);

Association methods
Class[] getAssociatedClass()
Returns the Classes related to the Association.

AssociationEnd[] getAssociationEnds()
Returns the links of the Association to the Classes.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-57

"AssociationEnd" class

AssociationEnd overview
AssociationEnd extends Feature;

Connection of an Association to one of its related Classes.  An AssociationEnd is
an endpoint of an Association, which connects the Association to a Classifier.
Each AssociationEnd is part of one Association.
When the Association is navigable, this link is considered to be a property of the
connected Class.  It is thus a Feature in the same way as Attributes or Operations.
An Association is linked to several Classes via AssociationEnds which determine
roles, multiplicities and navigabilities.
The connected Classifier is defined by the usual composition link from Classifier to
Feature.
(See Example 6)
For Objecteering, an AssociationEnd is a Component of a Class.

Figure 5-18. Detailed diagram for AssociationEnd

See also: Association, Classifier, Enumerated types.



Chapter 5: Static Model

5-58 Objecteering/Metamodel User Guide

AssociationEnd properties
The class has the following associations:

♦= Related:Association: Defines the links of an Association with the related
Classes.

♦= Qualifier:Attribute: Defines a Qualifier on the AssociationEnd.  Qualified
Associations are presented in Example 6.

The class owns the following attributes:

♦= MultiplicityMin: Minimum value of the Association's multiplicity.  When placed
on a target end, the multiplicity specifies the number of target instances that
may be associated with a single source instance across the given Association.

♦= MultiplicityMax: Maximum value of the multiplicity.

♦= Aggregation: This attribute is used to distinguish between the usual
associations (KindIsAssociation), shared aggregation (KindIsAggregation), and
strong aggregations (KindIsComposition)

♦= IsChangeable: When placed on a target end, specifies whether an instance of
the Association may be modified from the source end.

♦= IsClass: If this boolean is true, then the link is shared by all the target class
instances.

♦= IsOrdered: When placed on a target end, specifies whether the set of links
from the source instance to the target instance is ordered.

♦= IsNavigable: Specifies that the association (which must be binary) can be
browsed from the opposite class to the class attached to the current
AssociationEnd.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-59

AssociationEnd consistency rules
♦= An AssociationEnd can belong to a Class, an Actor, a DataType, a Node or a

Signal.

♦= In the case of a binary Association, the Classifier accessed by an
AssociationEnd  must be accessible by the Classifier owner of the Association.

♦= An AssociationEnd can link a Class to a Class, a Datatype or a Signal.

♦= An AssociationEnd can link a DataType to a Class or a DataType.

♦= An AssociationEnd can link a Signal to a Class or a DataType.

♦= An AssociationEnd can link a Actor to a Class, an Actor or a DataType.

♦= An AssociationEnd can link a Node to a Node.

♦= There are no controlled visibility rules on n-ary Associations.

♦= An AssociationEnd's name must be different from that of the AssociationEnds,
Operations and Attributes of its owner.  This is also the case for the “owner's"
parents (Warning).

♦= An AssociationEnd can only involve a Classifier.

♦= Multiplicities (also called cardinalities) must be consistent: CardinalityMax >
CardinalityMin. In particular, CardinalityMin must not equal "*".

♦= The IsAbstract and IsClass attributes are exclusive.

♦= If the association is an aggregation, then the maximum multiplicity is 1.

♦= A public Association oriented from a public Classifier cannot be linked to a
private or protected Classifier.

♦= An AssociationEnd can be made up of Attributes.  These Attributes have a
unique name in the AssociationEnd.



Chapter 5: Static Model

5-60 Objecteering/Metamodel User Guide

AssociationEnd constructor
AssociationEnd Classifier:createAndAddAssociationEnd (in
String pRole, in String pCardMin, in String pCardMax, in
boolean pIsNavigable)
This operation creates and adds to the current Classifier an AssociationEnd
whose role name and multiplicities are given.
Example:
AssociationEnd MyAssociationEnd
=Aclass.<createAndAddAssociationEnd ("ClientRole", "0", "1",
true);

AssociationEnd
Classifier:createAndAddMonoOrientedAssociation (in
Classifier pToClassifier, in String pName, in String pRole,
in String pDestMin, in String pDestMax, in String pOrigMin,
in String pOrigMax, in VisibilityMode pVisibility, in
boolean pIsClass, in boolean pIsAbstract)
This operation creates and adds to the current Classifier an Association which is
mono-oriented.  The AssociationEnd returned is the one linked to the current
(origin) Classifier.  This operation does not specify the origin role name, because it
is a usual shorthand.
Example:
AssociationEnd MyAssociationEnd
=Aclass.<createAndAddMonoOrientedAssociation (ClientClass,
"Cclient", "ClientRole", "0", "1", "1", "*", Private, true,
false);

AssociationEnd ModelElement:createAssociationEnd (in String
pRole, in String pCardMin, in String pCardMax)
This operation creates an AssociationEnd whose role name and multiplicities are
given.
Example:
AssociationEnd MyAssociationEnd = createAssociationEnd
("MyRole", "0", "*");



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-61

AssociationEnd methods
Association[] getAssociation()
Returns the Association related to the link.

Attribute[] getQualifiers()
Returns the qualifiers on the link.

boolean isClass()
Returns "true" if the link is a class member.

AssociationSetAssociationEndParams (in AggregationKind
pAggregatioon, in boolean pIsChangeable, in boolean
pIsOrdered)
This operation sets parameters of an AssociationEnd.  It has to be done in a J
session.
Example:
MyAssociationEnd.<setAssociationEndParams
(KindIsAssociation, true, false);



Chapter 5: Static Model

5-62 Objecteering/Metamodel User Guide

"ClassAssociation" class

ClassAssociation overview
ClassAssociation extends ModelElement;

Class relating other classes.  It is both a Class and an Association.  A
ClassAssociation is represented in UML as a class that plays the role of an
Association. (See Example 6)
In Objecteering/UML, a ClassAssociation is a component of an Association.

Figure 5-19. Detailed class diagram for AssociationClass

See also: Class, Association.

ClassAssociation properties
The class has the following association:

♦= ClassPart:Class: Link to the Class that composes the ClassAssociation.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-63

"Enumeration" class

Enumeration overview
Enumeration extends GeneralClass;

Special kind of DataType whose range is a list of predefined values, called
EnumerationLiterals.  This notion corresponds to C++ or Java enum, or equivalent
types in Pascal, Ada, or any other language.
In Objecteering/UML, an enumeration belongs to its NameSpace.

Figure 5-20. Detailed class diagram for Enumeration

See also: EnumerationLiteral.



Chapter 5: Static Model

5-64 Objecteering/Metamodel User Guide

Enumeration properties
The class has the following association:

♦= Value:EnumerationLiteral: Link with the Literal which represents the possible
values of the type representatives.

Enumeration consistency rules
♦= An Enumeration belongs to a Package, a Class or a Signal.

♦= An Enumeration contains no NameSpaces.

♦= An Enumeration has no members.

♦= An Enumeration has no use links (USE), generalization links (Generalization),
realization links or communication links.

♦= An Enumeration contains no DataFlows.

♦= An Enumeration does not implement interfaces.

♦= An Enumeration contains no Instances.

♦= An Enumeration cannot be instantiated.

♦= The IsElementary value is always true.  The IsAbstract value is always false.

♦= EnumerationLiterals defined by an Enumeration each have a different name.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-65

Enumeration constructor
Enumeration NameSpace:createAndAddEnumeration (in String
pName, in Object[] pValues)
This operation creates and adds to the current NameSpace an Enumeratioon
whose name and values are given.
Example:
Enumeration MyColorType =MyClass.<createAndAddEnumeration
("color", createSetOf2("Blue", "Red"));

Enumeration ModelElement:createEnumeration (in String pName,
in String[] pValues)
This operation creates an Enumeration whose name and values are given.
Example:
Enumeration MyColors =createEnumeration ("MyColors",
createSetOf2("Blue", "Red"));

Enumeration methods
EnumerationLiteral[] getEnumerationLiterals()
Provides the possible values of the type representatives.



Chapter 5: Static Model

5-66 Objecteering/Metamodel User Guide

"EnumerationLiteral" class

EnumerationLiteral overview
EnumerationLiteral extends Element;

Defines an atom (i.e., with no relevant substructure), represents one in the list of
values that an enumerated may have.  The Name of the EnumerationLiteral
represents its symbolic value.
An EnumerationLiteral belongs to its Enumeration.

Figure 5-21. Detailed class diagram for EnumerationLtteral

EnumerationLiteral properties
The class owns the following attribute:
Name: Name of the EnumerationLiteral.  It represents the symbolic value of the
associated Enumeration.

EnumerationLiteral consistency rules
An EnumerationLiteral has a unique name in the Enumeration.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-67

DataFlows and Signals

Metamodel synthesis

Figure 5-22. Internal package diagram for SignalDataFlowEvent

DataFlows are an extension of UML which provide the means of presenting the
information which navigates between model elements.  Signals define what kinds
of DataFlow may exist.  Signals can represent the circulation of objects,
parameters, or message calls.



Chapter 5: Static Model

5-68 Objecteering/Metamodel User Guide

Example 7: Signals

Figure 5-23. Signals



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-69

Example 8: DataFlow

Figure 5-24. DataFlow is an extension specific to Objecteering/UML.  It is represented by the
DataFlow metaclass



Chapter 5: Static Model

5-70 Objecteering/Metamodel User Guide

"Signal" class

Signal overview
Signal extends GeneralClass;

Specification of an asynchronous stimulus communicated between Instances.
Signals are processed by StateMachines, which represent how SignalEvents are
taken into account.  Objecteering/UML provides the DataFlow extension to UML.
Using this extension, a Signal can be declared as representing a ModelElement
(GeneralClass, Operation, or Parameter).  A DataFlow associated to the Signal
will then be able to express that Data, represented by the Signal, may circulate
between different NameSpaces.
Examples of Signals can be seen in Example 7.
In Objecteering/UML, a Signal belongs to a NameSpace, notably its Package.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-71

Figure 5-25. Detailed class diagram for Signal

See also: DataFlow, Event.



Chapter 5: Static Model

5-72 Objecteering/Metamodel User Guide

Signal properties
The class has the following associations:

♦= Base:GeneralClass: Class that the Signal may represent.

♦= OBase:Operation: Operation that the Signal may represent.

♦= PBase:Parameter: Parameter that the Signal may represent.

The class owns the following attributes:

♦= IsEvent: Establishes if it is an event in the sense of event-based systems :
(CORBA, Java, XWindow's, RDBMS).

♦= IsException: Defines if it is an exception, as they exist in Java, C++, etc.

Signal consistency rules
Dependencies arising from a Signal respect accessibility rules between
NameSpaces.
A Signal can only belong to a Package or to a Class.
There are no DataFlows on a Signal.
There are no Communication links on a Signal.
A maximum of one dependency can exist between a Signal and another element
(Generalization or Use).



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-73

"DataFlow" class

DataFlow overview
DataFlow extends ModelElement;

Circulation of information between model elements.  Representation of all types of
information that can be transmitted between elements. For example, they can be
objects or requests.
A DataFlow between elements expresses that the kind of information that it
represents (defined through its ModelSignal) can circulate between the connected
elements.
This is an extension to the UML model, and can provide high level (system level)
information exchange diagrams.
Example 8 presents different DataFlows.
In Objecteering/UML, a DataFlow belongs to a Package.

Figure 5-26. Detailed class diagram for DataFlow

See also: Signal, NameSpace.



Chapter 5: Static Model

5-74 Objecteering/Metamodel User Guide

DataFlow properties
The class has the following associations:

♦= Destination:NameSpace: Designates the NameSpaces (Packages, Classes,
etc.) that are targeted by the DataFlow.

♦= SModel:Signal: Defines the DataFlow as being an instance of the associated
Signal.

DataFlow consistency rules
At least one of the Receive or Send relationships must be defined.
The element designated by the Instantiation relationship must be accessible to the
Signal's NameSpace owner.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-75

"Generalization" class

Generalization overview
Generalization extends ModelElement;

Taxonomic relationship between a more general element and a more specific
element.
Generalization corresponds to the usual Inheritance concept.  In
Objecteering/UML, it covers fewer elements than UML.  Every element that may
have this kind of link is a GeneralizableElement in UML, whilst this is restricted to
the NameSpace concept in Objecteering/UML.  (See Examples 3 and 4)
In Objecteering/UML, a Generalization belongs to its SubTypeNameSpace.

Figure 5-27. Detailed class diagram for Generalization

See also: NameSpace.



Chapter 5: Static Model

5-76 Objecteering/Metamodel User Guide

Generalization properties
The class has the following association:

♦= SuperType:NameSpace : Defines the parent element.

The class owns the following attribute:

♦= Discriminator: Designates a family of sub-classes with the same parent class.
The name appears graphically, by linking the Generalizations belonging to this
family.

Generalization consistency rules
A Generalization link between NameSpaces must conform to the accessibility
rules of these NameSpaces.
There is no Generalization on Enumeration and Component.
A Generalization must concern two NameSpaces of the same MetaClass, with the
exception of Signal which can inherit from a Signal or from a Class.

Generalization constructor
Generalization NameSpace:createAndAddGeneralization (in
NameSpace pParent)
This operation creates and adds to the current NameSpace a Generalization of
the parameter.
Example:
Generalization MyGeneralization
=MyClass.<createAndAddGeneralization (AParentClass);

NameSpace:addGeneralization (inout NameSpace pParent)
This operation adds a Generalization link to the current NameSpace.
Example:
MyDerivedPackage.<addGeneralization (AParentPackage);



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-77

Generalization methods
String pathName()
This operation returns the complete "path" of a Generalization.
Example:
String MyPath =MyGeneralization.<pathName()



Chapter 5: Static Model

5-78 Objecteering/Metamodel User Guide

"Use" class

Use overview
Use extends ModelElement;

Usage dependency between elements.  The Use metaclass represents the
specific kind of <<access>> or <<import>> dependency between Packages or
Classes. Use dependencies are presented in Examples 6 and 3.
Use dependencies belong to their user NameSpace.

Figure 5-28. Detailed class diagram for Use

See also: NameSpace.

Use properties
The class has the following associations:

♦= Used:NameSpace: Used NameSpace. Its properties are accessible from the
user NameSpace.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-79

Use consistency rules
The NameSpaces which link the Use class must have the same terminal
Metaclass, with the exception of the following :

♦= an Actor can use a Package, a Class, a Component or a Signal.

♦= a Component can use a class Interface or a Component.

♦= a Signal can use a Signal or a Class.

♦= an Operation can use a Signal or a Class.

Use constructor
NameSpace:addUse (in NameSpace pUsed)
This operation adds a Use to the current NameSpace.
Example:
MyUserPackage.<addUse (AUsedPackage);



Chapter 5: Static Model

5-80 Objecteering/Metamodel User Guide

"Realization" class

Realization overview
Realization extends ModelElement;

Implementation link between a Class and its Interface, or between a Component
and its Interface.  Realization links can be seen in Example 6.
In Objecteering/UML, a Realization belongs to its NameSpace..

Figure 5-29. Detailed class diagram for Realization

See also: NameSpace, Class, Component.

Realization properties
The class has the following association:

♦= Implemented:Class : End of the implementation link towards an Interface.



Chapter 5: Static Model

Objecteering/Metamodel User Guide 5-81

Realization consistency rules
A Realization can only exist between a Class and a Class Interface or between a
Component and a Class Interface.
The "implemented" Interface class must be accessible from the NameSpace.



Chapter 5: Static Model

5-82 Objecteering/Metamodel User Guide

"TemplateParameter" class

TemplateParameter overview
TemplateParameter extends Element;

Parameter for Templated elements. Templated Classes can be seen in Example
4.
In Objecteering/UML, TemplateParameters belong to their GeneralClass.  Binding
an implementation Class is provided in Objecteering/UML through dedicated
TaggedValues.

Figure 5-30. Detailed class diagram for TemplateParameter

See also: GeneralClass.

TemplateParameter properties
The class owns the following attribute:

♦= Value: Parameter value.



Chapter 6: Use Case Model



Chapter 6: Use Case Model

Objecteering/Metamodel User Guide 6-3

Overview

Presentation
The UseCase Model is based on two central notions, Actor and UseCase.  It
includes the various dependencies that can exist between these elements.
UseCases are then broken down into scenarios represented by Collaborations, or
StateMachine diagrams, which are defined in separate diagrams.

Metamodel synthesis

Figure 6-1. Internal package diagram for UseCase

UseCase and Actor are two main concepts, with different links that may exist
(Collaboration, Use and Inheritance)



Chapter 6: Use Case Model

6-4 Objecteering/Metamodel User Guide

UseCase model metaclasses
♦= UseCase: Unit of externally visible functionality provided by part of a system.

♦= Actor: Active element external to the system, and which cooperates with it.

♦= Communication: Communication link between Actors and UseCases

♦= UseCaseDependency: Inheritance or dependency link (Uses) between
UseCases.

Example 9: Actors and UseCases

Figure 6-2. UseCase diagrams. See the UseCase and Actor metaclasses



Chapter 6: Use Case Model

Objecteering/Metamodel User Guide 6-5

Example 10: Actors cooperating with objects in a sequence
diagram

Figure 6-3. "Customer" represents an Actor



Chapter 6: Use Case Model

6-6 Objecteering/Metamodel User Guide

"UseCase" class

UseCase overview
UseCase extends GeneralClass;

Unit of externally visible functionality provided by part of a system.  A UseCase is
expressed by sequences of messages exchanged by system units and one or
more Actors of the system.
The definition of a UseCase includes all of the behavior that it entails.  This
behavior can be expressed by Sequence diagrams, Activity diagrams, Object
diagrams, etc.
UseCases are structured by Packages, and have cooperation links with Actors.
Example 9 presents a UseCase diagram.
UseCases belong to a NameSpace.



Chapter 6: Use Case Model

Objecteering/Metamodel User Guide 6-7

Figure 6-4. Detailed class diagram for UseCase

See also: Actor, Collaboration, UseCaseDependency .



Chapter 6: Use Case Model

6-8 Objecteering/Metamodel User Guide

UseCase properties
The class has the following associations:

♦= Behavior:StateMachine: StateMachines which describe the behavior of the
UseCase.  They can define, for example, activity diagrams, that express
another view than Sequence diagrams.

♦= Example:Collaboration: Collaborations expressing the dynamics of the current
NameSpace.

♦= Used:UseCaseDependency: In the dependencies between UseCases, this
defines the link to the UseCaseDependency  association.

UseCase consistency rules
♦= A Generalization link can exist between any UseCases of the current Project

(Model).  Although it is not obligatory, we recommend that you follow the
accessibility rules of the other Classifiers.

♦= A UseCase follows the visibility rules of a NameSpace.

♦= A UseCase can only have Generalization links with other UseCases.

♦= There can be no communication links between UseCases.

♦= A communication on a base UseCase cannot be redefined on a derived
UseCase.

♦= A use on a base UseCase can be redefined on a derived UseCase, if the use
is stereotyped by <<extend>>.

♦= There can be no loops in a Generalization graph between UseCases.

♦= There can be no loops in a use graph (UseCaseDependency) stereotyped by
<<include>> or <<extend>> only.

♦= A UseCase can only use another UseCase once, except in the case of the
<<extend>> stereotype.



Chapter 6: Use Case Model

Objecteering/Metamodel User Guide 6-9

UseCase constructors
UseCase ModelElement:createUseCase (in String pname)
This operation creates a UseCase whose name is given.
Example:
UseCase MyUseCase =createUseCase ("MyUseCase");

UseCase NameSpace:createAndAddUseCase (inString pName)
This operation creates and adds to the current NameSpace a UseCase whose
name is given.

Example:
UseCase MyUseCase = MyPackage.<createAndAddUseCase
("MyUseCase");



Chapter 6: Use Case Model

6-10 Objecteering/Metamodel User Guide

UseCase methods
Actor[] getTransmitterActors()
Returns the Actors which communicate with the UseCase.

StateMachine[] getStateMachines()
Returns the StateMachines of the UseCase.

UseCase[] getParentUseCases()
Returns the parent UseCases.

Collaboration[] getCollaborations()
Returns the Collaborations of the UseCases.

Diagram[] getDiagrams()
Returns the Diagrams of the UseCases.

UseCase[] getExtendedUseCases()
Returns the UseCases that are extended.

UseCase[] getIncludedUseCases()
Returns the UseCases that are included.

addUseCaseDependency (in UseCaseDependency
pUseCaseDeppendency)
This operation adds an UseCaseDependency  to the current UseCase.
Example:
MyUseCase.<addUseCaseDependency (AUseCaseDependency);



Chapter 6: Use Case Model

Objecteering/Metamodel User Guide 6-11

"Actor" class

Actor overview
Actor extends GeneralClass;

Active element external to the system, and cooperating with it.  An Actor is an
idealization of an external person, process, or thing interacting with a system,
subsystem, or class.  An Actor characterizes the interactions that outside users
may have with the system.  An Actor may be a human, an external software
component, a device, that cooperates with the system.
Actors can have communication links with UseCases (see Example 9).  They can
also communicate between Actors (extension of Objecteering/UML to UML).
Actors can appear in Sequence diagrams (see Example 10), or Collaboration
diagrams, where the accurate communication with system's objects is shown.
Actor is a specific kind of Classifiers.  An Actor can have generalization links with
other Actors, can have Attributes and Operations.
An Actor in Objecteering/UML physically belongs to a NameSpace, that must be a
Package.



Chapter 6: Use Case Model

6-12 Objecteering/Metamodel User Guide

Figure 6-5. Actor Metamodel

See also: Communication, UseCase.



Chapter 6: Use Case Model

Objecteering/Metamodel User Guide 6-13

Actor consistency rules
♦= A Generalization link between Actors can be created between any of the Actors

in a Project.  Although it is not obligatory, we recommend that you follow the
accessibility rules of Classifiers.

♦= An Actor can only specialize (Generalization) another Actor. A maximum of one
generalization link may exist between two Actors.

♦= A communication link cannot be established from an Actor to itself.

♦= A communication link towards an Actor cannot be repeated towards the Actors
which specialize it.

♦= There can be no loops in a Generalization graph between Actors.

Actor constructor
Actor ModelElement:createActor (in String pName)
This operation creates an Actor whose name is given.
Example:
Actor MyActor =createActor ("MyActor");

Actor NameSpace:createAndAddActor (in String pName)
This operation creates and adds to the current NameSpace an Actor whose name
is given.
Example:
Actor MyActor =MyPackage.<createAndAddActor ("MyActor");



Chapter 6: Use Case Model

6-14 Objecteering/Metamodel User Guide

Actor methods
Actor[] getCooperatingActors()
Returns Actors which communicate with the current Actor.

Actor[] getParentActors()
Returns parent Actors.

UseCase[] getCooperatingUseCases()
Returns UseCases which communicate with the Actor.



Chapter 6: Use Case Model

Objecteering/Metamodel User Guide 6-15

"Communication" class

Communication overview
Communication extends ModelElement;

Communication link between Actors and UseCases.  This kind of link might exist
between an Actor and a UseCase, but also between Actors.
In Objecteering/UML, a Communication belongs to its origin Classifier
(Transmitter).
Example 9 shows communication link examples.

Figure 6-6. Detailed class diagram for Communication

Communication properties
The class has the following associations:

♦= Cooperation:GeneralClass: Destination GeneralClass (UseCase or Actor) for
the cooperation.

♦= Transmitter:GeneralClass: Destination GeneralClass (UseCase or Actor) for
the cooperation.

Communication consistency rules
A Communication must link two Actors or an Actor and a UseCase.



Chapter 6: Use Case Model

6-16 Objecteering/Metamodel User Guide

Communication constructors
Communication ModelElement:createCommunication (in String
pName, in GeneralClass pTarget)
This operation creates a Communication whose name and target (UseCase or
Actor) are given.
Example:
communication Mycommunication =createCommunication
("Mycommunication", aClass);

GeneralClass:addCommunication (in Communication
pCommunication)
This operation adds a Communication to the current GeneralClass (UseCase or
Actor).
Example:
MyActor.<addCommunication (Mycommunication);

Communication GeneralClass:createAndAddCommunication (in
String pName, in GeneralClass pTarget)
This operation creates and adds to the current GeneralClass a Communication
whose name and target are given.
Example:
Communication MyCommunication
=Actor.<createAndAddCommunication ("", AnotherClass);



Chapter 6: Use Case Model

Objecteering/Metamodel User Guide 6-17

"UseCaseDependency" class

UseCaseDependency overview
UseCaseDependency extends ModelElement;

Inheritance or dependency link (Uses) between UseCases in Objecteering/UML.
This specific metaclass has been created for defining these links.
Two predefined Stereotypes are defined for this link: <<extends>>, and
<<includes>>.
UseCaseDependency  belongs to its origin UseCase.
Examples of UseCaseDependency  are shown in Example 9.

Figure 6-7. Detailed class diagram for UseCaseDependency

See also: UseCase.

UseCaseDependency properties
The class has the following association:

♦= Target:UseCase: In a dependency between UseCases, defines the link to the
target UseCase



Chapter 6: Use Case Model

6-18 Objecteering/Metamodel User Guide

UseCaseDependency consistency rules
A UseCaseDependency must link two different UseCases and support one of the
predefined Stereotypes: <<extend>> or <<include>>.

UseCaseDependency constructors
UseCaseDependency ModelElement:createUseCaseDependency (in
String pName, in UseCase pTarget)
This operation creates a UseCaseDependency  whose name and target are given.
Example:
UseCaseDependency MyUseCaseDependency
=createUseCaseDependency ("MyUseCaseDependency", aUseCase);

UseCaseDependency UseCase:createAndAddUseCaseDependency (in
String pName, in UseCase pUseCase)
This operation creates and adds to the current UseCase a UseCaseDependency
whose name is given.
Example:
UseCaseDependency MyUseCaseDependency
=AUseCase.<createAndAddUseCaseDependency
("MyUseCaseDependency", AnotherUseCase);



Chapter 7: State Machine Model



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-3

Overview

Presentation
StateMachines describe the dynamic behavior of a system by describing how
Transitions are triggered between different States.

Metamodel synthesis

Figure 7-1. StateMachine model: overview of the metamodel

The State model is organized around StateMachines and States.  Transitions and
Events are the two other important concepts. StateMachines are mainly defined at
Class level, but can also exist at Package, UseCase, and Operation level, where
they mainly correspond to activity diagrams.



Chapter 7: State Machine Model

7-4 Objecteering/Metamodel User Guide

StateMachine model metaclasses
♦= StateMachine: Graph of States and Transitions which describes the dynamic

behavior of objects.

♦= StateVertex: Abstraction of a Node in a statechart graph.

♦= State: Notable situation or condition during the life of an object.

♦= PseudoState: Abstraction of different types of nodes in the StateMachine
graph.

♦= Transition: Path from one State to another.

♦= InternalTransition: Transition which is internal to a State.

♦= Condition: Boolean expression for making a choice.

♦= Event: Specification of a significant occurrence which has a location in time
and space.



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-5

Example 11: State diagram - Condition and Event

Figure 7-2. Events and Conditions



Chapter 7: State Machine Model

7-6 Objecteering/Metamodel User Guide

Example 12: State diagram - InternalTransition Pseudo states,
States and Transitions

Figure 7-3. Different kinds of States and Transitions



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-7

"StateMachine" class

StateMachine overview
StateMachine extends ModelElement;

Graph of States and Transitions that describes the dynamic behavior of objects.
StateDiagams can also define the usage protocol for Classes.
Example 12 presents a State diagram.
In Objecteering/UML, a StateMachine belongs to a Package, an Operation, a
UseCase or a Class. Its natural position is to belong to a Class.



Chapter 7: State Machine Model

7-8 Objecteering/Metamodel User Guide

Figure 7-.4 Detailed class diagram for StateMachine

See also: State, Transition, Enumerated type.



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-9

StateMachine properties
The class has the following associations:

♦= Top:State: Defines the root state for the current StateMachine.  All other States
will be sub-states of the TopState.

♦= EComponent:Event: Events are defined in the context of a StateMachine.

The class owns the following attribute:

♦= Kind: A StateMachine can be a dynamic StateMachine, as usually defined in
UML (Harel State diagrams), or protocol StateMachine.  Protocol
StateMachines represent the usage protocol of the class's Operations.  It
defines in which order and for which conditions and States an Operation can
be invoked.

StateMachine consistency rules
A StateMachine can only redefine another StateMachine if it is a class component.
Consistency between the two StateMachines is not maintained.
Events defined in the StateMachine have a unique name.
A StateMachine always has a Top state.

StateMachine methods
State[] getRootState()
Returns the root State of the StateMachine.

Diagram[] getDiagrams()
Returns the state Diagrams of the StateMachine.

State[] getStates()
Returns the States defined in the StateMachine.

Transition[] getTransitions()
Returns the Transitions defined in the StateMachine.



Chapter 7: State Machine Model

7-10 Objecteering/Metamodel User Guide

"StateVertex" class

StateVertex overview
StateVertex extends ModelElement;

Abstraction of a node in a Statechart graph.  A StateVertex can be either a State,
or a PseudoState that is only a graphical convention.  Different kinds of
StateVertex can be seen in Example 12.
StateVertex belong to a State, or to the StateMachine if they are a root State.

Figure 7-5. Detailed class diagram for StateVertex

StateVertex properties
The class has the following associations:

♦= Incoming:Transition: Specifies the Transitions entering the Vertex.

♦= OutGoing:Transition: Specifies the Transitions departing from the Vertex.



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-11

"State" class

State overview
State extends StateVertex;

Notable situation or condition during the life of an object.
A State represents a period of time during which an object waits for some Event to
occur; or a period of time during which an object performs some ongoing activity.
States are interconnected by Transitions.
Example 12 shows different kind of States.
In Objecteering/UML, States belong either to another State, or to a StateMachine
if they are the root (Top).

Figure 7-6. Detailed class diagram for State

See also: StateMachine, Event, Transition.



Chapter 7: State Machine Model

7-12 Objecteering/Metamodel User Guide

State properties
The class has the following associations:

♦= Deferred:Event: A list of Events the effect of whose occurrence during the
State is postponed until the owner enters a State in which they are not
deferred, at which time they may trigger Transitions as if they had just
occurred.

♦= Internal:InternalTransition: Transitions that occur entirely within the State.  If
one of their triggers is satisfied then the action is performed without changing
State.  This means that the entry or exit condition of the State will not be
invoked.  These Transitions apply even if the StateMachine is in a nested
region and they leave it in the same State.

♦= Sub:State: Hierarchical decomposition of States.  In Objecteering/UML, a State
is a composite State if there are substates.

♦= Part:PseudoState: PseudoStates which decompose the current State.
PseudoStates are managed by a specific association, in order to clearly
separate them from real States.

The class owns the following attribute:

♦= IsConcurrent: Defines a concurrent State.  A concurrent State is a composite
State, whose substates are concurrent areas.  If a State is concurrent, it is
made up of threads, which are states that run simulataneously.

State consistency rules
♦= A composite state must not contain more than one initial state, one final state,

one deep history state and one shallow history state (which are PseudoStates).

♦= States within a single state have a unique name.

♦= The Representation::StateMachine  and Composition::State associations are
exclusive.



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-13

State methods
State[] getParentState()
Returns the parent State.

Event[] getEvents()
Returns the Events defined on the State.

Transition[] getIncomingTransitions()
Returns the Transition entering into the State.

Transition[] getOutGoingTransitions()
Returns the Transitions departing from the State.

State[] getParentStates()
Returns all parent states, except root State.

State[] getSubStates()
Returns the sub-states of the State.



Chapter 7: State Machine Model

7-14 Objecteering/Metamodel User Guide

"PseudoState" class

PseudoState overview
PseudoState extends StateVertex;

Abstraction of different types of nodes in the StateMachine graph.  PseudoStates
represent every kind of graphical node in a StateMachine, except States, such as
a branch, a fork, etc.
Example 12 presents various kinds of PseudoStates.
In Objecteering/UML, a PseudoState belongs to a State.

Figure 7-7. Detailed class diagram for PseudoState

See also: Transition, Enumerated type.

PseudoState properties
The class owns the following attribute:

♦= Kind: Nature of the PseudoState (InitialState, DeepHistoryState, etc.)



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-15

"Transition" class

Transition overview
Transition extends ModelElement;

Path from one State to another.  Transitions represent the reaction of an object in
a certain State, to a particular Event.  For protocol State diagrams, Transitions
represent the possible paths between States.
Examples 11 and 12 present Transitions.
In Objecteering/UML, a Transition belongs to its SourceStateVertex.



Chapter 7: State Machine Model

7-16 Objecteering/Metamodel User Guide

Figure 7-8. Detailed class diagram for Transition

See also: StateMachine.



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-17

Transition properties
The class has the following associations:

♦= Post:Condition: Condition that must be fulfilled once the transition has
occurred.  Useful only for protocol State diagrams.

♦= Processed:Operation: Operation processed once the Transition is triggered.
This is a shorthand for a call Event, and is at the same time useful for defining
the Operation carried by a transition in protocol State diagrams.

♦= Guard:Condition: Condition under which a Transition may be triggered.

♦= Target:StateVertex: Specifies the Transitions entering the Vertex.

♦= Source:StateVertex: Specifies the Transitions departing from the Vertex.

♦= Trigger:Event: Events that may trigger the Transition (under initial State and
initial Transitions). This association is exclusive from the ReceivedEvents
string.

♦= Effects:Signal: When the Transition is accomplished, an occurrence of this
Signal will be sent.

The class owns the following attributes:

♦= Effect: Defines the actions triggered by the Transition. This field excludes the
association ProcessedOperation that is a shorthand for defining a call action.

♦= SentEvents: Events sent by the Transition once it is triggered.

♦= ReceivedEvents: Received Events that trigger the Transition.

Transition consistency rules
♦= The Processed, Trigger, ReceivedEvent and PredefinedEvent!=otherEvent

properties are exclusive.

♦= The SendEvent and SentEvents properties are exclusive.



Chapter 7: State Machine Model

7-18 Objecteering/Metamodel User Guide

Transition methods
Condition[] getPostCondition()
Returns the Condition that must be fulfilled once the Transition has occurred.

State[] getTargetState()
Returns the target State of the Transition.

Condition[] getGuardCondition()
Returns the Condition in which a Transition may be triggered.

State[] getSourceState()
Returns the source State of the Transition.

Event[] getTriggerEvent()
Returns the Event that may trigger the Transition.

Operation[] getProcessedOperation()
Returns the Operation processed once the Transition is triggered

Signal[] getSignal()
Returns the Signal sent when the Transition is accomplished.



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-19

"InternalTransition" class

InternalTransition overview
InternalTransition extends Transition;

Transition that is internal to a State.  It can be triggered on entry, or exit to the
State, or can describe an activity that is performed while being in the State (do
Transitions).  (See Example 7).
A Transition belongs to its origin StateVertex.

Figure 7-9. Detailed class diagram forInternalTransition

See also: State, Enumerated type.

InternalTransition consistency rules
The Start and Reach associations must be empty on an InternalTransition.



Chapter 7: State Machine Model

7-20 Objecteering/Metamodel User Guide

"Condition" class

Condition overview
Condition extends ModelElement;

Boolean expression for making a choice.
Conditions are mainly used in State diagrams, in order to guard the Transitions.
The Name of a Condition contains an expression (string) which produces its
valuation in any programming language.
Examples of Conditions can be seen in Example 11 (State Diagrams).
In Objecteering/UML, a Condition belongs to Messages or Transitions.

Figure 7-10. Detailed class diagram for Condition

See also: Transition, Message.



Chapter 7: State Machine Model

Objecteering/Metamodel User Guide 7-21

"Event" class

Event overview
Event extends ModelElement;

Specification of a significant occurrence that has a location in time and space.  An
instance of an Event can lead to the activation of a behavioral feature in an object.
An Event can be either an occurrence of a Signal, a message occurrence, a time
or a change expression occurrence. (See Example 11)
In Objecteering/UML, an Event belongs to a StateMachine.

Figure 7-11. Detailed class diagram for Event

See also: Signal, State, Transition, StateMachine, Operation, Enumerated type.



Chapter 7: State Machine Model

7-22 Objecteering/Metamodel User Guide

Event properties
The class has the following associations:

♦= Called:Operation: Direct link to an Operation in case of a call event.

♦= Model:Signal: Signal from which the Event is an occurrence.

The class owns the following attributes:

♦= Kind: Defines the nature of the event (Time, Signal occurrence, etc.)

♦= Expression: Expression initiating the Event.  This can be a time expression, or
a triggering condition, it may contain parameters values in case of Operation
call Event, etc.

Event consistency rules
Event names are unique within their State Diagram “owner”.
The associations towards Signal and Operation are exclusive between them and
with the  “Expression” attribute.  They depend on the value of the “Kind” attribute:

♦= If Kind == SignalEvent, there is a relation towards Signal

♦= If Kind == CallEvent, there is a relation towards Operation

♦= If Kind == TimeEvent, the Expression attribute must not be empty

♦= If Kind == ChangeEvent, the Expression attribute must not be empty



Chapter 8: Activity Model



Chapter 8: Activity Model

Objecteering/Metamodel User Guide 8-3

Overview

Presentation
An activity diagram graphically illustrates an ActivityGraph, which shows a
procedure or a workflow.  An ActivityGraph is a special instance of a state
machine in which all or most of the states are activity states or action states, and
in which all or most of the transitions are triggered by completion of activity in the
source states.

Metamodel synthesis

Figure 8-1. ActivityModel: overview of the metamodel

The Activity model is organized around ActivityGraphs, ActionStates and
ObjectFlowStates.  Partitions are another important concept.  To create an activity
diagram, an ActivityGraph, for which an activity diagram is subsequently created,
must first be created.  ActivityGraphs can be created on Class, Component, Node,
Signal, UseCase and Actor classifiers, and on Operations and Packages.



Chapter 8: Activity Model

8-4 Objecteering/Metamodel User Guide

Activity model metaclasses
♦= ActivityGraph: Graph of activity states, action states and object flow states,

which can be organized into partitions, and which shows a procedure or
workflow.  Activity diagrams are created from ActivityGraphs.

♦= ActivityState: A state which describes a specific activity at a given point in time.

♦= ActionState: A state which may not be broken down, and which describes an
action.  The name of this state is, be default, the name of the action triggered.

♦= SubActivityState: A state which breaks down into another activity graph.

♦= ObjectFlowState: Special state, associated to the class it represents.

♦= Partition: The division of an activity graph. ActionStates can be allocated to
partitions graphically, through the "Assignment" association.  They are also
sometimes called swimlanes.

♦= SignalSending: A pseudo state which has no actions, but whose outgoing
transition sends a signal.

♦= SignalReceipt: A pseudo state which has no actions, but whose incoming
transition receives a signal.



Chapter 8: Activity Model

Objecteering/Metamodel User Guide 8-5

Example 13: Activity diagram without partitions

Figure 8-2. Activity diagram without partitions



Chapter 8: Activity Model

8-6 Objecteering/Metamodel User Guide

Example 14: Activity diagram with partitions

Figure 8-3. The same activity diagram as shown in Figure 8-2, but featuring partitions



Chapter 8: Activity Model

Objecteering/Metamodel User Guide 8-7

ActivityGraph class

ActivityGraph overview
ActivityGraph extends StateMachine;

Special case of a StateMachine that defines a computational process in terms of
the control-flow and object-flow among its constituent actions.
Activity diagrams define shorthand forms that are convenient for modeling control-
flow and object-flow in computational and organizational processes.
The primary basis for activity graphs is to describe the states of an activity or
process involving one or more classifiers.  Activity graphs can be attached to a
Package, a Classifier (including UseCases) or an Operation .
Activity diagrams are associated to ActivityGraphs and to ActionStates that are
decomposed into SubActivityStates.
An ActivityGraph is the container of all elements of an activity diagram, through its
partition and its top state decomposition.

Figure 8-4. Detailed class diagram for ActivityGraph

See also: StateMachine, State, Partition



Chapter 8: Activity Model

8-8 Objecteering/Metamodel User Guide

ActivityGraph properties
The ActivityGraph class contains the following association:

♦= Swimlane:Partition: Partitions belonging to the ActivityState, each of which
contains some of the model elements.

ActivityGraph consistency rules
An ActivityGraph must belong to an Operation or a NameSpace, except a
DataType, or an Enumeration.
An ActivityGraph is always made up of a root state (SubActivityState).



Chapter 8: Activity Model

Objecteering/Metamodel User Guide 8-9

ActivityState class

ActivityState overview
ActivityState extends State;

Execution of an atomic action, typically the invocation of an Operation.  An activity
state is a simple State with an entry action whose only exit transition is triggered
by the implicit event of completing the execution of the entry action.  The State
therefore corresponds to the execution of the entry action itself and the outgoing
Transition is activated as soon as the action has completed its execution.
An ActivityState may perform more than one action as part of its entry action.  An
ActivityState may not have an exit action, a do activity or InternalTransitions.

Figure 8-5. Detailed class diagram for ActivityState

See also: State, ActionState, SubActivityState



Chapter 8: Activity Model

8-10 Objecteering/Metamodel User Guide

ActivityState properties
The ActivityState class contains the following attributes:

♦= IsDynamic: Specifies whether the state's actions might be executed
concurrently.  It is used in conjunction with the dynamicArguments attribute.

♦= DynamicArguments: ArgListsExpression that determines at runtime the number
of parallel executions of the actions of the state.  The value must be a set of
lists of objects, each list serving as arguments for one execution.  This attribute
is ignored if the isDynamic attribute is false.

♦= DynamicMultiplicity: Number of parallel executions of the actions of state.  This
attribute is ignored if the isDynamic attribute is false.



Chapter 8: Activity Model

Objecteering/Metamodel User Guide 8-11

ActionState class

ActionState overview
ActionState extends ActivityState;

Description of an action that cannot be broken down further.  An ActionState has
no SubStates.

Figure 8-6. Detailed class diagram for ActionState

ActionState consistency rules
An ActionState never contains States.
An ActionState always has an InternalTransition.
An ActionState belongs to a SubActivityState.



Chapter 8: Activity Model

8-12 Objecteering/Metamodel User Guide

SubActivityState class

SubActivityState overview
SubActivityState extends ActivityState;

Activities that are decomposed into sub activities.  SubActivityStates are
decomposed into SubStates through the "Composition" association, defined on
the parent State metaclass.

Figure 8-7. Detailed class diagram for SubActivityState

See also: ActivityState

SubActivityState consistency rules
A SubActivityState has no InternalTransitions.
A SubActivityState belongs to another SubActivityState or to an ActivityGraph.



Chapter 8: Activity Model

Objecteering/Metamodel User Guide 8-13

ObjectFlowState class

ObjectFlowState overview
ObjectFlowState extends State;

Defines an object flow between actions in an ActivityGraph.  Signifies the
availability of an instance of a Classifier, possibly in a particular state or condition,
usually as the result of an Operation.  An instance of a particular class, possibly in
a particular state, is available when an ObjectFlowState is occupied.
The generation of an object by an action in an ActionState may be modeled by an
object flow state that is triggered by the completion of the action state.  The use of
the object in a subsequent ActionState may be modeled by connecting the output
transition of the object flow state as an input transition to the action state.
Generally, each action places the object in a different state that is modeled as a
distinct object flow state.

Figure 8-8. Detailed class diagram for ObjectFlowState

See also: State, Classifier



Chapter 8: Activity Model

8-14 Objecteering/Metamodel User Guide

ObjectFlowState properties
The ObjectFlowState class contains the following associations:

♦= ObjectFlowType:Classifier: Classifier that defines the base class of the current
ObjectFlowState.  The CurrentObjectFlow is an instance of the associated
Classifier.

♦= InState:State: Association to the state representing the current state of the
ObjectFlowState.

The ObjectFlowState class contains the following attributes:

♦= IsSynch: Indicates whether an object flow state is used as a synch state.

♦= CurrentState: Value of the current state.  If the association "ClassifierInState" is
set, then this value has no meaning.  By extension, this value can be a boolean
expression, or any text expressing a current situation.  This is a more flexible
way of representing "ClassifierInState" elements in an activity diagram.

ObjectFlowState consistency rules
An ObjectFlowState never contains States.
An ObjectFlowState has no InternalTransitions.
An ObjectFlowState always belongs to a SubActivityState.



Chapter 8: Activity Model

Objecteering/Metamodel User Guide 8-15

Partition class

Partition overview
Partition extends ModelElement;

Mechanism for dividing the states of an ActivityGraph into groups.  Partitions often
correspond to organizational units in a business model.  They may be used to
allocate characteristics or resources among the States  of an activity graph.
An activity can be referenced by several partitions.  This means that different
responsibilities can be presented in different diagrams.  For example, a
department (package) can be responsible for an activity in a diagram, whereas in
a more detailed diagram, an Actor is presented as being responsible for the
activity in question.  PseudoStates and ObjectFlowStates can be presented
straddling several partitions.  This presentation is purely graphic, and does not
necessarily correspond to their affectation to a partition.
In Objecteering/UML, a partition can be associated to a namespace that it
represents (extension to UML).  Very often, a partition represents a Classifier or a
Package (organizational unit).

Figure 8-9. Detailed class diagram for Partition

See also: ActivityGraph, ModelElement, State, NameSpace



Chapter 8: Activity Model

8-16 Objecteering/Metamodel User Guide

Partition properties
The Partition class contains the following associations:

♦= Contents:State: Specifies the states that belong to the partition.  They need not
constitute a nested region.

♦= Represented:NameSpace: In Objecteering/UML, partitions can represent
NameSpaces.  They very often represent Classifiers as active elements or
Packages as organizational units.



Chapter 8: Activity Model

Objecteering/Metamodel User Guide 8-17

SignalSending and SignalReceipt pseudo states

SignalSending overview
SignalSending is a particular case of PseudoState;

SignalSending is a state which has no actions, but whose outgoing transition
sends a signal.  The dialog box reflects this fact, inasmuch as it contains a "name"
field and a "sent signal" field.  The signal entered corresponds to the outgoing
transition's "send events".

Figure 8-10. Detailed class diagram for SignalSending

See also: PseudoState, StateVertex



Chapter 8: Activity Model

8-18 Objecteering/Metamodel User Guide

SignalReceipt overview
SignalReceipt is a particular case of PseudoState;

SignalReceipt is a state which has no actions, but whose incoming transition
receives a signal.   The dialog box reflects this fact, inasmuch as it contains two
fields, "Name" and "Received event".  "Received event" corresponds to the
"Trigger event" of the incoming transition.

Figure 8-11. Detailed class diagram for SignalReceipt

See also: PseudoState, StateVertex



Chapter 9: Physical Model
(Components and Nodes)



Chapter 9: Physical Model (Components and Nodes)

Objecteering/Metamodel User Guide 9-3

Overview

Presentation
The Implementation diagram and the Deployment diagram are supported by this
package, the two major notions being Component and Node.

Figure 9-1. Physical model

Node and Component extend the Classifier metaclass. Therefore, they benefit
from the previously defined notions of association between Nodes, dependencies
for Components, Interface implementation, etc.
The Deployment association declares which Components are deployed on which
Nodes.  The Implementation association defines the correspondence between the
logical and the physical models.



Chapter 9: Physical Model (Components and Nodes)

9-4 Objecteering/Metamodel User Guide

Physical model metaclasses
♦= Node: Run-time physical object which represents a computational resource.

♦= Component: Physical unit of implementation with well-defined interfaces, which
is intended to be used as a replaceable part of a system.

♦= ComponentInstance: Instance of a Component.

Example 15: Implementation diagram

Figure 9-2. See the "Component" metaclass



Chapter 9: Physical Model (Components and Nodes)

Objecteering/Metamodel User Guide 9-5

Example 16: Deployment diagram

Figure 9-3. The "Node" metaclass is developed here



Chapter 9: Physical Model (Components and Nodes)

9-6 Objecteering/Metamodel User Guide

Example 17: Instance of Nodes and Components

Figure 9-4. Instance of Nodes and Components



Chapter 9: Physical Model (Components and Nodes)

Objecteering/Metamodel User Guide 9-7

"Node" class

Node overview
Node extends Classifier;

Run-time physical object that represents computational resource, Nodes generally
have at least a memory and often also processing capacity.  Associations
between Nodes represent communications paths.
As presented in Example 16, Nodes represent the deployment of Components.
Nodes belong to their owner NameSpace, which must be a Package.

Figure 9-5. Detailed class diagram for Node



Chapter 9: Physical Model (Components and Nodes)

9-8 Objecteering/Metamodel User Guide

Node properties
The class has the following association:

♦= Resident:Component: Defines the Components that reside in the Node.

Node consistency rules
♦= A Node can specialize a Node (relationship NameSpace towards

Generalization) which belongs to the visibility domain of the Package in which it
is contained.

♦= The Instantiation association of ClassifierOccurrence towards Classifier, for the
case of a Node exclusively represents NodeInstances.

♦= The Components accessible for the Deployment relationship are the
Components accessible from the Package containing the Node.

♦= The name of a Node is unique in the Package in which it is contained.

Node methods
AssociationEnd[] getAssociationEnds()
Returns the AssociationEnds starting from the Node.

Node[] getParentNodes()
Returns the parent Nodes.



Chapter 9: Physical Model (Components and Nodes)

Objecteering/Metamodel User Guide 9-9

"Component" class

Component overview
Component extends Classifier;

Physical unit of implementation with well-defined Interfaces, which is intended to
be used as a replaceable part of a system.  Each Component embodies the
implementation of certain classes from the system design.  Any physical element
in a software development can be represented by a Component.  A library, a
binary or a bean are examples of Components.  By extension, any work product (a
C++ source, documentation, etc.) can be a specific kind of Component.
In Objecteering/UML, a Component belongs to a NameSpace.
Example 15 shows representations of Components.

Figure 9-6. Detailed class diagram for Component

See also: Node, MpGenProduct.



Chapter 9: Physical Model (Components and Nodes)

9-10 Objecteering/Metamodel User Guide

Component properties
The class has the following association:

♦= Resident:ModelElement: Defines all the ModelElements implemented by the
Component.  It generally concerns classes and packages, but there is no
restriction to the kind of element that a Component can implement.

Component consistency rules
♦= There can be no generalization relationship on a Component.

♦= There can be no redefinition of Operations, since there is no generalization.

♦= There can be no associations between Components.

♦= A Component can use (Use link) all the Components, Actors and Classes
visible from the NameSpace in which it is contained.

♦= A Component can implement (Realization link, towards the class of the same
name) all the interface Classes (containing the interface stereotype) visible
from the NameSpace in which it is contained.

♦= A Component can implement all the ModelElements of the project
(Implementation:Component link).

♦= A Component has a unique name in its compound.

♦= If it implements a Class, this class has the Interface stereotype.

♦= A Component is never linked to an AssociationEnd.



Chapter 9: Physical Model (Components and Nodes)

Objecteering/Metamodel User Guide 9-11

Component methods
Component[] getComponents()
Returns sub-components of the Component.

ModelElement[] getImplementedElements()
Returns the ModelElements implemented by the Component.

NameSpace[] getUsedNameSpaces()
Returns the Elements used by the Component.

DataFlow[] getReceivedDataFlows()
Returns the DataFlows received by the Component.

DataFlow[] getSentDataFlows()
Returns the DataFlows sent by the Component.

Operation[] getOperations()
Returns the Operations of the Component.



Chapter 9: Physical Model (Components and Nodes)

9-12 Objecteering/Metamodel User Guide

"NodeInstance" class

NodeInstance overview
NodeInstance extends Instance;

Instance of a Node.  Nodes represent a kind of executable unit, whereas
NodeInstances represent examples of communicating Nodes.  Through a
clustering association, NodeInstances can present the instances that they contain,
such as objects or components.
Being an Instance, a NodeInstance also belongs to its NameSpace.
Example 17 presents NodeInstance representations.

Figure 9-7. Detailed class diagram for NodeInstance

See also: ComponentInstance, Node, Component.



Chapter 9: Physical Model (Components and Nodes)

Objecteering/Metamodel User Guide 9-13

NodeInstance consistency rules
♦= A NodeInstance can only represent (instantiation  link) a Node.

♦= The Nodes accessible are those which may be accessed by the NameSpace
which contains the NodeInstance.

♦= A NodeInstance has a unique name in its NameSpace.



Chapter 9: Physical Model (Components and Nodes)

9-14 Objecteering/Metamodel User Guide

"ComponentInstance" class

ComponentInstance overview
ComponentInstance extends Instance;

Instance of a Component.  The semantic range of components starts from C++
source code, documentation or an executable library, from the Component model
dedicated to business objects, such as Java ejb, for example.  In the "business
object Component" examples, ComponentInstances are necessary.  These
Instances can be deployed in specific NodeInstances, and their behavior is
specific.
Example 17 presents an instance of the implementation and deployment diagram.

Figure 9-8. Detailed class diagram for ComponentInstance

See also: NodeInstance, Component.



Chapter 9: Physical Model (Components and Nodes)

Objecteering/Metamodel User Guide 9-15

ComponentInstance consistency rules
♦= A ComponentInstance is only created in a NodeInstance or in a

ComponentInstance.

♦= A ComponentInstance can only represent (Instantiation association) a
Component.

♦= The name of a ComponentInstance is unique in the instance in which it is
contained.



Chapter 10: Collaboration, Roles and
Instances (Collaboration
and Instances) Model



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-3

Overview

Presentation
Collaboration is a structure unit for modeling roles.  Object diagrams and
sequence diagrams present either instances or roles, depending on whether they
are in a Collaboration or in a NameSpace.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-4 Objecteering/Metamodel User Guide

Metamodel synthesis: The "Occurence" metamodel

Figure 10-1. Occurences

Occurences define an abstract level for the instance model or the role model.
They give a general view of how objects are related to their links, model, etc.
Instance model and Role model then add specific features, such as Collaboration
or NameSpace structuring, or the representation of Instances in roles.
Messages have a different structure, depending on where they appear.  In
sequence diagrams, they have an accurate sequencing model, defined by specific
associations between SequenceMessages.
In Collaboration Diagrams, they do not have such accurate information on
sequencing or focus of control, but have a sequence expression string and are
related to links.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-5

Metamodel synthesis: The "Instance" Metamodel

Figure 10-2. Internal package diagram for Instances

Instances are defined at NameSpace level. Link, LinkEnd and AttributeLink define
the elements presented at Instance Level.  Messages are already defined at
Occurence abstract level.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-6 Objecteering/Metamodel User Guide

Classes of the package
♦= Collaboration: Describes how Instances or roles can cooperate to implement a

ModelElement such as an Operation or a UseCase.

♦= Interaction : Message sequencing context.

♦= ClassifierOccurence: Instance or Role, which is an occurrence of a Classifier.

♦= Instance: Entity to which a set of Operations can be applied and which has a
State that stores the effects of the Operations.

♦= ClassifierRole: A ClassifierRole is a specific role played by a participant in a
Collaboration.

♦= AttributeOccurence: Named slot in an Instance or Role, which has the value of
an Attribute.

♦= AttributeLink: Named slot in an instance, which has the value of an attribute.

♦= AttributeRole: Named slot in a ClassifierRole, which has the value of an
Attribute.

♦= AssociationOccurence: Occurrence of an Association. Presented as a Link in
an Object diagram.

♦= Link: Connection between Instances.

♦= AssociationRole: Specific usage of an association needed in a collaboration.

♦= AssociationEndOccurence : End point of a Link.

♦= LinkEnd: End point of a Link.

♦= AssociationEndRole: Specifies an endpoint of an Association as used in a
Collaboration.

♦= Message: Occurrence of an Operation, processed by Instances.

♦= CollaborationMessage: Message used in Collaboration or Object diagrams.

♦= SequenceMessage: Messages used for Sequence diagrams.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-7

Example 18: AttributeLink, AttributeOccurrence

Figure 10-3. Object diagram for the "Link", "Instance", "AttributeLink" metaclasses



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-8 Objecteering/Metamodel User Guide

Example 19: Sequence diagram for a Collaboration

Figure 10-4. In this kind of diagram, there always exists an "Interaction" occurrence



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-9

Example 20: Collaboration diagram

Figure 10-5. Behind this kind of diagram, there is a "Collaboration" occurrence, and an
"Interaction" occurrence



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-10 Objecteering/Metamodel User Guide

Metamodel synthesis: The "Collaboration" metamodel

Figure 10-6. Internal package diagram for CollaborationModel

Collaborations present a dynamic view for NameSpaces, typically for UseCases
and Packages.  They structure models where ClassifierRole is the major notion,
accompanied by Messages, AssociationRoles, etc.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-11

"Collaboration" class

Collaboration overview
Collaboration extends ModelElement;

Describes how Instances or Roles can co-operate with a ModelElement such as
an Operation or a UseCase.  A Collaboration describes how an Operation or a
Classifier, like a UseCase, is realized by a set of Classifiers and Associations,
used in a specific way.  The Collaboration defines a context for performing tasks
defined by Interactions.  In the metamodel, a Collaboration contains a set of
ClassifierRoles and AssociationRoles, which represent the Classifiers and
Associations that take part in the realization of the associated Classifier or
Operation.  Example 20 presents a Collaboration diagram.
In Objecteering/UML, a collaboration belongs to a UseCase, a Class, a Package
or an Operation.

Figure 10-7. Detailed class diagram for Collaboration



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-12 Objecteering/Metamodel User Guide

Collaboration properties
The class has the following associations:

♦= Component:ClassifierRole: Determines the ClassifierRoles that belong to the
Collaboration.

♦= Part:Interaction: Defines various Interactions that may exist between roles
belonging to the current NameSpace.

♦= CRepresented:Class: Class being the context of the Collaboration

♦= PRepresented:Package: Package being the context of the Collaboration

♦= ORepresented:Operation: Operation being the context of the Collaboration

♦= URepresented:UseCase: UseCase being the context of the Collaboration

Collaboration consistency rules
♦= Associations towards Class, Package, Operation and UseCase are exclusive;

one of them must be defined.

♦= The name of the Collaboration must be unique in its “owner”.

Collaboration methods
Diagram[] getDiagrams()
Returns the Collaboration and Sequence diagrams of the Collaboration.

ClassifierRole[] getRoles()
Returns the Roles of the Collaboration.

SequenceMessage[] getSequenceMessages()
Returns the Sequence Messages of the Collaboration.

CollaborationMessage[] getCollaborationMessages()
Returns the Collaboration Messages of the Collaboration.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-13

"Interaction" class

Interaction overview
Interaction extends ModelElement;

Message sequencing context.  A Message has dependencies to successor or
predecessor Messages and activators.  It does not exist only in the context of its
owner instance, and needs to be defined in an execution context called
Interaction.
An Interaction belongs to a Collaboration, or to a NameSpace.  In
Objecteering/UML, an Interaction is closely linked to its representation diagram
(Sequence or Collaboration).  It is "hidden" to the end user, who sees only the
diagram. The Messages of a diagram all belong to the same Interaction.
An Interaction belongs to a Collaboration or a NameSpace. (See Examples 19
and 20)

Figure 10-8. Detailed class diagram for Interaction

See also: NameSpace, Collaboration, Message, Diagram.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-14 Objecteering/Metamodel User Guide

Interaction properties
The class has the following association:

♦= Owned:Message: Messages defined in the context of this Interaction.

The class owns the following attribute:

♦= IsConcurrent: Determines if the Interaction will be sequential or between
concurrent objects.

Interaction consistency rules
♦= All the messages which make up the interaction must be of the same type,

CollaborationMessage or SequenceMessage.

♦= Associations towards Collaboration and NameSpace are exclusive; one of
these associations must be defined.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-15

"ClassifierOccurence" class

ClassifierOccurence overview
ClassifierOccurence extends ModelElement;

Instance or Role which is an Occurrence of a Classifier.  A ClassifierOccurence is
an abstract class that factorizes the similarities between an Instance and a Role.
In Objecteering/UML, a ClassifierOccurence belongs to a Collaboration if it is a
ClassifierRole, or to a NameSpace if it is an Instance (see Example 18 or 19).

Figure 10-9. Detailed class diagram for ClassifierOccurence

See also: Instance, ClassifierRole.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-16 Objecteering/Metamodel User Guide

ClassifierOccurence properties
The class has the following associations:

♦= Base:NameSpace: Defines the NameSpace as the model of the Instance or
Role

♦= Sent:SequenceMessage: Messages sent by the Occurrence.

♦= Slot:AttributeOccurence: Occurrences of Attributes for the current object
(Instance or Role)

♦= Connection:AssociationEndOccurence: Links connected to the current
ClassifierOccurence.

The class owns the following attributes:

♦= IsConstant: Determines whether it is a constant.

♦= Value: Current value of the Instance.

ClassifierOccurence consistency rules
♦= Repetition of names is forbidden for all the AttributeOccurences.

♦= The NameSpace referenced by the Instantiation relationship must be
accessible by the “owner” element of the ClassifierOccurence.

♦= A ClassifierOccurence must have a name, or the instantiation association must
be defined.

♦= A ClassifierOccurrence can instantiate a package which is stereotyped
<<sub-system>> and which is instantiable (in other words, a package which
owns the IsInstantiable attribute).



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-17

"Instance" class

Instance overview
Instance extends ClassifierOccurence;

Entity to which a set of Operations can be applied and which has a state that
stores the effects of Operations.
An Instance is connected to zero or one Classifier, which declares its structure
and behavior.  It has a set of attribute values and is connected to a set of Links,
both sets matching the definitions of its Classifier (if there is one).  The two sets
implement the current state of the Instance. (See Example 18)
In Objecteering/UML, an Instance belongs to its NameSpace.

Figure 10-10. Detailed class diagram for Instance

See also: Classifier, Link, LinkEnd, AttributeLink, Message.

Instance properties
The class has the following association:

♦= Part:Instance: Instances can be embedded.  This can represent cluster.  In
Objecteering/UML, this is used to represent ComponentInstances supported by
NodeInstances, or Objects in ComponentInstances or NodeInstances.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-18 Objecteering/Metamodel User Guide

Instance consistency rules
♦= The ClassifierOccurence::Links association must designate an instance of

LinkEnd.

♦= The ClassifierOccurence::Properties association must designate an instance of
AttributeLink.

♦= The clustering and context relationships are exclusive.

Instance methods
AttributeLink[] getAttributes()
Returns the occurrences of Attribute for the Instance

LinkEnd[] getLinkEnds()
Returns the LinkEnds connected to the Instance.

Classifier[] getType()
Returns the Type of the Instance.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-19

"ClassifierRole" class

ClassifierRole overview
ClassifierRole extends ClassifierOccurence;

A ClassifierRole is a specific role played by a participant in a Collaboration.  A
ClassifierRole specifies a restricted view of a Classifier (a projection), defined by
what is required in the Collaboration. (See Example 20 for Collaboration
diagrams).
In Objecteering/UML, a ClassifierRole belongs to its Collaboration.

Figure 10-11. Detailed class diagram for ClassifierRole

See also: Collaboration

ClassifierRole properties
The class has the following association:

♦= Represented:Instance: Instance represented by the Role.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-20 Objecteering/Metamodel User Guide

ClassifierRole consistency rules
The instance designated by the Representation Association must, if the case
arises, respect the following accessibility rules:

♦= If the current ClassifierRole is defined in a Collaboration of Class, Package or
UseCase, the accessibility rule is that of the NameSpace in which the
ClassifierRoles "owner" Collaboration is defined.

♦= If the ClassifierRole is defined in a Collaboration Operation collaboration, the
instances accessible are those of the Operation's “owner” NameSpace, and
those of the classes used (use or parameters) by the Operation.

♦= The ClassifierOccurence::Link association must designate an instance of the
AssociationEndRole class.

♦= The ClassifierOccurence::Properties association must designate an instance of
the AttributeRole class.

ClassifierRole methods
Instance[] getInstance
Returns the Instance represented by the Role.

SequenceMessage[] getSentSequenceMessages()
Returns the Messages sent by the Role.

SequenceMessage[] getReceivedSequenceMessages()
Returns the SequenceMessages received by the Role.

Classifier[] getClassifierType()
Returns the Classifier which is the Type of the Role.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-21

"AttributeOccurence" class

AttributeOccurence overview
abstract class AttributeOccurence extends ModelElement;

Named slot in an instance or role, which has the value of an attribute.  Defines an
attribute's value at instance level. This element appears in Object diagrams.  (See
Example 18 and 19)
In Objecteering/UML, an AttributeOccurence belongs to a ClassifierOccurence.

Figure 10-12. Detailed class diagram for AttributeOccurence

See also: Attribute.

AttributeOccurence properties
The class has the following association:

♦= Base:Attribute: Defines the optional Attribute that specifies the AttributeLink.

The class owns the following attribute:

♦= Value: Current value of the attribute's Slot for the Instance.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-22 Objecteering/Metamodel User Guide

AttributeOccurence consistency rules
♦= If the ClassifierOccurence associated with the AttributeOccurence is itself

associated with a Classifier, the Attribute indicated by the Instantiation
relationship must be an Attribute of Classifier.

♦= If the Instantiation association is defined, the name of the object must be the
name of the attribute designated by the relationship.

♦= The name of the object must not be defined and must be unique in its
ClassifierOccurence.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-23

"AttributeLink" class

AttributeLink overview
AttributeLink extends AttributeOccurence;

Named slot in an Instance, which has the value of an Attribute.  Defines an
attribute's value at the Instance level.  This element appears in Object diagrams.
(See Example 18)
In Objecteering/UML, an AttributeLink belongs to an Instance.

Figure 10-13. Detailed class diagram for AttributeLink

See also: Instance, Attribute.

AttributeLink consistency rules
♦= The AttributeOccurence::Properties association must only designate Instances

of the Instance class.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-24 Objecteering/Metamodel User Guide

"AttributeRole" class

AttributeRole overview
AttributeRole extends AttributeOccurence;

Named slot in a ClassifierRole, which has the value of an Attribute.  Defines an
attribute's value at  Collaboration level.  This element appears in Collaboration
diagrams. (See Example 20)
In Objecteering/UML, an AttributeRole belongs to a ClassifierRole.

Figure 10-14. Detailed class diagram for AttributeRole

See also: Attribute, ClassifierRole.

AttributeRole consistency rules
The AttributeOccurence::Properties association must only designate instances of
the ClassifierRole class.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-25

"AssociationOccurence" class

AssociationOccurence overview
AssociationOccurrence extends ModelElement;

Occurence of an Association.  Presented in a Collaboration diagram.  In
Collaboration diagrams, this element specifies links between objects. (See
Example 18 and 19)
In Objecteering/UML, AssociationOccurences  belong to no element.

Figure 10-15. Detailed class diagram for AssociationOccurence

See also: Association, AssociationEnd, AssociationRole, Link.

AssociationOccurence properties
The class has the following association:

♦= Base:Association: Defines the Association that specifies this
AssociationOccurence.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-26 Objecteering/Metamodel User Guide

AssociationOccurence consistency rules
♦= If the Representation association is defined, then there must be consistency

between the AssociationEndOccurences of the AssociationOccurence and the
AssociationEnds of the Association represented.

♦= If the Representation association is defined, the name of the
AssociationOccurence must be the name of the Association.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-27

"Link" class

Link overview
Link extends AssociationOccurence;

Connection between Instances.  A Link is an Instance of an Association.  It has a
set of LinkEnds that matches the set of AssociationEnds of the Association.
Example 18 presents Links in Object diagrams.
In Objecteering/UML, a Link belongs to no element.

Figure 10-16. Detailed class diagram for Link

See also: LinkEnd, Association, AssociationEnd.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-28 Objecteering/Metamodel User Guide

"AssociationRole" class

AssociationRole overview
AssociationRole extends AssociationOccurence;

Specific usage of an Association needed in a Collaboration.  In Collaboration
diagrams, this element specifies links between objects playing roles. (See
Example 19)
In Objecteering/UML, an AssociationRole belongs to no element.

Figure 10-17. AssociationRole Metamodel

See also: Association, AssociationEnd, AssociationEndRole.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-29

"AssociationEndOccurence" class

AssociationEndOccurence overview
AssociationEndOccurence extends ModelElement;

End point of a link.  An AssociationEndOccurence is the part of a Link that
connects to an object.  It corresponds to an AssociationEnd of the Link’s
Association. (See Examples 18 and 19)
An AssociationEndOccurence  belongs to an AssociationOccurence.

Figure 10-18. Detailed class diagram for AssociationEndOccurence

See also: Association, AssociationEnd, LinkEnd, AssociationEndRole.

AssociationEndOccurence properties
The class has the following associations:

♦= Model:AssociationEnd: The AssociationEndOccurence is an Occurence of this
AssociationEnd.

♦= LinkNode:AssociationOccurence: AssociationOccurence ended by the current
AssociationEndOccurence



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-30 Objecteering/Metamodel User Guide

AssociationEndOccurence consistency rules
♦= If the Instantiation association is defined, then the linked

AssociationOccurence (LinkNode) must instantiate the association linked to the
AssociationEnd which plays the role of Model.

♦= If the Instantiation association of the ClassifierOccurence referenced by the
Links relationship is defined, and the AssociationEndOccurence references an
AssociationEnd, then the model and its occurrences must correspond
completely.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-31

"LinkEnd" class

LinkEnd overview
LinkEnd extends AssociationEndOccurence;

End point of a Link.  A LinkEnd is the part of a Link that connects to an Instance.
It corresponds to an AssociationEnd of the Link’s Association. (See Example 18)
A LinkEnd belongs to a Link.

Figure 10-19. Detailed class diagram for LinkEnd

See also: Link, AssociationEnd, Association.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-32 Objecteering/Metamodel User Guide

"AssociationEndRole" class

AssociationEndRole overview
AssociationEndRole extends AssociationEndOccurence;

Specifies an endpoint of an Association as used in a Collaboration.  It is related to
the target ClassifierRole, and to the instantiated AssociationEnd. (See Example
19)
In Objecteering/UML, an AssociationEndRole belongs to its AssociationRole.

Figure 10-20. Detailed class diagram for AssociationEndRole

See also: AssociationRole, AssociationEnd, Association.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-33

"Message" class

Message overview
Message extends ModelElement;

Occurrences of an Operation, processed by Instances, Messages are used in
Object diagrams, Collaboration diagrams and Sequence diagrams.  If the
Message has no InvokedOperations, then its description is in its Name.  A
Message is defined in the context of an Interaction.  The sequencing information
has a meaning only in this context.
These different examples are presented in Example 19 and 20.
In Objecteering/UML, a Message belongs to an Interaction.

Figure 10-21. Detailed class diagram for Message

See also: CollaborationMessage, SequenceMessage, Interaction,
EnumeratedType.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-34 Objecteering/Metamodel User Guide

Message properties
The class has the following associations:

♦= Invoked:Operation: Operation that is invoked by the Message.

♦= Guard:Condition: Condition allowing branches to be defined between
Messages.

The class owns the following attributes:

♦= TargetList: List of parameters passed, Events sent, etc.

♦= IsSynchronous: Determines if the Message is synchronous or not.

♦= KindOfAction: Useful for distinguishing create, destroy or return messages.

Message consistency rules
♦= If the Invocation association is defined, the name of the Message must be the

name of the Operation.

♦= The Invocation association can only be defined if the type of the Message is
ActionCall.

Message methods
Condition[] getGuardCondition()
Returns the Condition which allows the definition of branches between messages.

Operation[] getInvokedOperation()
Returns the Operation invoked by the message.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-35

"CollaborationMessage" class

CollaborationMessage overview
CollaborationMessage extends Message;

Message used in Collaboration or Object diagrams.  For the purposes of an
Object or Collaboration diagram, Messages do not have precise sequencing
information, as in  Sequence diagrams, but instead have a direct connection to the
transportation link.  Therefore, a dedicated Metaclass has been defined.
CollaborationMessages belong to an interaction, just as Messages do (see
Example 19)

Figure 10-22. Detailed class diagram for CollaborationMessage

See also: Interaction.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-36 Objecteering/Metamodel User Guide

CollaborationMessage properties
The class has the following association:

♦= Channel:AssociationEndOccurence: Defines the Messages that are carried by
this link, in Collaboration diagrams.  The AssociationEndOccurence provides
the direction of the Message and designates the object destination of the
Message.  The opposite object is the origin of the Message.

The class owns the following attribute:

♦= Sequence: Sequence information used to explain parallelism.



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

Objecteering/Metamodel User Guide 10-37

"SequenceMessage" class

SequenceMessage overview
SequenceMessage extends Message;

Messages used for Sequence diagrams.  Messages are specific to Sequence
diagrams.  There is a detailed description of the sequencing between Messages
(see Example 19).

Figure 10-23. Detailed class diagram for SequenceMessage



Chapter 10: Collaboration, Roles and Instances (Collaboration and Instances) Model

10-38 Objecteering/Metamodel User Guide

SequenceMessage properties
The class has the following associations:

♦= Receiver:ClassifierOccurence: Instance receiving the Message.

♦= Predecessor:SequenceMessage: Provides the sequencing between the
Messages.

♦= Activated:SequenceMessage: Determines the flow of control of messages.
This means that the ActivatorMessage is activated by the current Message.

SequenceMessage consistency rules
♦= If the “owner” of a SequenceMessage is an Interaction of NameSpace, the

Destination and Origin associations must designate Instances.

♦= If the “owner” of a SequenceMessage is an Interaction of Collaboration, the
Destination and Origin associations must designate ClassifierRoles.

SequenceMessage methods
ClassifierOccurence[] getReceiverClassifierOccurence()
Returns the instance (ClassifierOccurence) which receives the Message.

ClassifierOccurence[] getSentClassifierOccurence()
Returns the instance (ClassifierOccurence) which sends the Message.

SequenceMessage[] getActivatedMessages()
Returns the activated Messages.

SequenceMessage[] getPredecessorMessages()
Returns the predecessor Messages.



Chapter 11: Implementation of the
OMG 1.4 UML metamodel
in Objecteering/UML



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

Objecteering/Metamodel User Guide 11-3

Why do differences exist

Table 1 expresses how the UML metaclasses defined by the OMG are
implemented.  Comments explain both why there are differences and expected
evolutions.
The main reasons why there are differences are the following:
1 -  There are implementation constraints, in particular as there is no multiple

generalization and there are no class associations in the Objecteering/UML
metamodel.

2 -  There exist strict naming rules for a metamodel to be implemented by
Objecteering/UML.  For example, a role name must never be the same as a
class name.  There are frequent cases where UML names have to be adapted
for that reason.

3 -  There are “operability” constraints, in order to obtain models that can
effectively be edited by the users.  These constraints may for example relax
some association cardinalities.  Some associations need to be less generic,
than those defined by the OMG metamodel, in order to provide a real type
checking by the case tool, and accurate help during modeling.

4 -  Some concepts are not implemented to the same level of detail, in order to
avoid unnecessary information, that can be too burdensome to manage for the
end user.  This is typically the case of the “Action” metaclass.

5 -  Some concepts are judged too new to be really stable, and are postponed for
future release.

6 -  Some notions are implemented differently.
However, the internal Objecteering/UML metamodel is very close to the OMG
metamodel.



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

11-4 Objecteering/Metamodel User Guide

Implementation of the OMG UML metaclasses in
Objecteering/UML

The ... OMG
metaclass

is implemented
as ...

comments

Abstraction NO Some subclasses are implemented more
specifically, some are not.

Action Action Action is not developed in terms of the many
OMG subclasses in Objecteering

ActionSequence Action There is no distinction in terms of classes, as
well as the many other action subclasses

ActionState ActionState Same concept

ActivityGraph ActivityGraph Same concept

Actor Actor Same concept

AggregationKind "AggregationKind" Enumerated type

Argument NO The action notion is expressed through
Objecteering/UML attributes

Association Association Same concept. Beware of the “navigability"
management, that is differently managed in
Objecteering/UML

AssociationClass AssociationClass Same concept. Associations are used instead
of multiple inheritance

AssociationEnd AssociationEnd Same concept. Navigability is differently
managed.

AssociationEndRole AssociationEndRole Same concept

AssociationRole AssociationRole Same concept

Attribute Attribute Same concept

AttributeLink AttributeLink Same concept

BehavioralFeature See Operation,
Feature

The properties are spread over Operation and
Feature

Binding NO Tagged values on Use dependency provide
predefined Objecteering/UML types.

Boolean boolean J type



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

Objecteering/Metamodel User Guide 11-5

The ... OMG
metaclass

is implemented
as ...

comments

CallEvent Event, attribute
“ Kind ”

Event is not decomposed into subclasses.
However, it has a discriminator attribute.

CallState ActionState (?) No distinction has been reified by a sub-
class.

ChangeableKind “ KindOfAccess ”
enumeration

Same concept

ChangeEvent Event Event is not decomposed into subclasses,
but has a “ kind ” attribute for that purpose.

Class Class Same concept

Classifier Classifier Same concept

ClassifierInState ClassifierInState Same concept

ClassifierRole ClassifierRole Same concept

Collaboration Collaboration Same concept. Collaboration is merged with
Interaction in Objecteering/UML

Comment NO see Note There is no use of this metaclass. The
Objecteering/UML “ Note ” concept supports
this notion.

Component Component Same concept

ComponentInstance ComponentInstance Same concept

CompositeState State Depending on the presence of sub-states, a
state is composite or not

Constraint Constraint Same concept

DataType DataType Same concept

DataValue String This part is almost never used

Dependency Use More accurate and less generic than the
Dependency class, the Use class provides
close semantics. The UseCase Dependency
class is another example.

Element Element Same concept. Objecteering/UML provides
the Identifier notion (Universal identification
mechanism) in addition.



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

11-6 Objecteering/Metamodel User Guide

The ... OMG
metaclass

is implemented
as ...

comments

ElementOwnership ElementOwnership
association

The association class is translated into an
association. The attribute “ Visibility ” is
reported on the target element.

ElementImport Referencing
association

This class is translated by an association. The
consequence is that Objecteering/UML does
not manage the name and visibility
mechanism.

Enumeration Enumeration Same concept

EnumerationLiteral EnumerationLiteral Same concept

Event Event Same concept

Exception

Expression String attribute Expressions, that have semantics which
depend on the target language, are simply
strings in Objecteering/UML.

Extend Extend stereotype Applied to UseCaseDependency

ExtensionPoint NO Same restriction.

Feature Feature Same concept

FinalState State Composite or final state or managed at the
state level

Flow No No

GeneralizableElement Merged with the
“ NameSpace ”
concept

NameSpace has the “ GeneralizableElement ”
properties. Thus, single inheritance is
preserved, and semantics are not disturbed.

Generalization Generalization Same concept

Guard Condition Same concept

Include Include stereotype Applied to UseCaseDependency

Instance Instance Same concept

Integer integer Applied to UseCaseDependency

Interaction Interaction Same concept



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

Objecteering/Metamodel User Guide 11-7

The ... OMG
metaclass

is implemented
as ...

comments

Interface Class with the
Interface stereotype

Having not defined a different metaclass
makes it possible to the User to change the
status “Class” vs “Interface” of an element
during its existence.

Link Link Same concept

LinkEnd LinkEnd Same concept

LinkObject No Not handled

Location Reference No

Mapping No Never used

Message Message Same concept

MessageInstance NO Messages can be modeled in the
collaboration diagrams

Method Operation Methods and operations are merged in the
Objecteering/UML metamodel

Model Project A project is a model, plus its “context” made
of the loaded modules, and the values of the
module’s parameters

ModelElement ModelElement Same concept

Multiplicity two “ string ”
attributes

the range is expressed by two strings that
can be interpreted.

Name string name attributes are managed by the
consistency mechanism of Objecteering/UML

Namespace NameSpace Same concept

Node Node Same concept

NodeInstance NodeInstance Same concept

Object Instance “Instance“  has no subclasses. It
encompasses the Object notion.

ObjectFlowState ObjectFlowState Same concept

Operation Operation Merged with the “Method” concept with
Objecteering/UML



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

11-8 Objecteering/Metamodel User Guide

The ... OMG
metaclass

is implemented
as ...

comments

Package Package Same concept

Parameter Parameter Same concept

ParameterDirectionKind PassingMode These notions are very close "return" is in
Objecteering/UML a specific association.

Partition Partition Same concept

Permission Use Correspond precisely to the Use semantics.

PresentationElement ViewElement Same concept. UML does not further define
the graphical metamodel.

Primitive Attribute
“ IsPrimitive ” on
classes

The basic types inside Objecteering/UML are
represented as “terminal” types, not as
metaclasses

ProgrammingLanguage
Type

NO Never used

Pseudostate PseudoState Same semantics

PseudostateKind StateKind Enumerated type

Reception No Merged with the Operation/Feature concepts

Relationship No Subclasses are implemented in a more
concrete way.

Request No No identified interest

Signal Signal Same concept

SignalEvent Event ; Kind attribute The Objecteering/UML Event concept
encompasses the Event subclass.  The
“Kind” attribute categorizes the different UML
Event subclasses.

SimpleState State The State class

State State Same concept

StateMachine StateMachine Same concept

StateVertex StateVertex Same concept

Stereotype Stereotype Same concept. Objecteering/UML uses the
profile concept as a structuring mechanism.



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

Objecteering/Metamodel User Guide 11-9

The ... OMG
metaclass

is implemented
as ...

comments

Stimulus Message 0

String string H type

StructuralFeature Attribute StructuralFeature is only justified by some
MOF (Meta Object Facilities - OMG
standard) considerations. This intermediate
abstract class has no interest for UML

Structure NO never used

StubState PseudoState This is just a specific kind of state.

SubmachineState No Embedded state is the only mechanism.

SubActivityState SubActivityState Same concept

Subsystem Package Package stereotyped <<sub-system>>.

SynchState PseudoState This is just a specific kind of state.

TaggedValue TaggedValues There are extensions to the UML
“TaggedValue” concept. (Profile definition)

TemplateParameter TemplateParameter Same concept. Binding is realized through
specific tagged values.

Transition Transition Same concept

UseCase UseCase Same concept.

UseCaseInstance NO Rarely used

VisibilityKind VisibilityMode Enumerated type



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

11-10 Objecteering/Metamodel User Guide

Correspondence between Objecteering/UML
metaclasses and OMG UML metaclasses

The ...
Objecteering/UML
metaclass

Represents in UML ... comments ...

ActionState ActionState Same concept

ActivityGraph ActivityGraph Same concept

ActivityState Does not exist in UML ActivityState is an abstract parent
class of the ActionState and
SubActivityState metaclasses.

Actor Actor Same concept

Association Association Same concept.  In
Objecteering/UML, associations
may not be generalized.

AssociationEnd AssociationEnd Same concept.  May be treated as
a feature in Objecteering/UML,
with a specific representation of
navigability.

AssociationEndOccurence AssociationEndRole
LinkEnd

Abstraction of these more
concrete concepts

AssociationEndRole AssociationEndRole Same concept.

AssociationOccurence Link AssociationRole Abstraction of these elements

AssociationRole AssociationRole Same concept. For reasons of
heaviness, AssociationRole does
not inherit Association, but is
related to it.

Attribute Attribute, Structural Feature Same concept.
“ StructuralFeature ” is not used

AttributeLink AttributeLink Same concept

AttributeOccurence AttributeLink AttributeRole Abstraction of these elements

AttributeRole AttributeRole Same concept

AttributeRole AttributeRole Same concept

Class Class, Interface Same concept



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

Objecteering/Metamodel User Guide 11-11

The ...
Objecteering/UML
metaclass

Represents in UML ... comments ...

ClassAssociation ClassAssociation Same concept. Objecteering/UML
represents it as being related to
Class and Association, whereas
the OMG metamodel represents it
as specializing both metaclasses.

Classifier Classifier Same concept. Some properties
are delegated to the
“ GeneralClass ” metaclass in
Objecteering/UML.

ClassifierOccurence ClassifierRole Instance Abstraction of these more
concrete Instances.

ClassifierRole ClassifierRole Same concept

Collaboration Collaboration Same concept

CollaborationMessage Stimuli Same concept

Communication Association In Objecteering/UML,
Communication links have a
dedicated metaclass.

ComponenetInstance ComponentInstance Same conceppt.

Component Component Same concept

Condition Guard

Constraint Constraint Same concept

DataFlow Does not exist Extension to UML. Flow diagrams
are provided by this feature

DataType DataType Same concept

Diagram Does not exist Diagram model is not specified in
the UML standard

Element Element In Objecteering/UML, elements
are identified, and in the space of
a project

Enumeration Enumeration Same concept

EnumerationLitteral EnumerationLitteral Same concept

Event Event Same concept



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

11-12 Objecteering/Metamodel User Guide

The ...
Objecteering/UML
metaclass

Represents in UML ... comments ...

Feature Feature Same concept, but covers
AssociationEnd in
Objecteering/UML

GeneralClass Does not exist This does not exist in UML. This
abstract intermediary class is
convenient for handling elaborated
classifiers

Generalization Generalization Same concept.  In
Objecteering/UML, only
NameSpaces can be generalized

Instance Instance Same concept

Interaction Interaction Same concept

InternalProduct Does not exist Specific to the tool facilities, not to
the supported model

InternalTransition Transition Distinguishes the Transitions that
are internal to a State

Link Link Same concept

LinkEnd LinkEnd Same concept

Message Message Same concept

ModelElement ModelElement Same concept

MpGenProduct Does not exist Specific to Objecteering/UML, and
its generation capabilities (work
products)

NameSpace NameSpace Same concept

Node Node Same concept

NodeInstance NodeInstance Same concept

Note Does not exist. Kind of
TaggedValue

Notes are supported in
Objecteering/UML by a specific
metaclass. Their definition is
structured by Profiles

NoteType Does not exist Defines the permitted Notes, in a
Profile



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

Objecteering/Metamodel User Guide 11-13

The ...
Objecteering/UML
metaclass

Represents in UML ... comments ...

ObjectFlowState ObjectFlowState Same concept

Operation Operation In Objecteering/UML, Operations
include the Method notion.

Package Package Same concept

Parameter Parameter Same concept

Partition Partition Same concept

Project Model Projects include the configuration
definition (Modules, Parameter
values, etc.)

PseudoState PseudoState Same Concept

Realization Abstraction and realize
stereotype

Same concept, more concrete in
Objecteering/UML.

Sequence Message Message Message dedicated to sequence
diagrams

Signal Signal Same concept

State State Same concept

StateMachine StateMachine Same concept

StateVertex StateVertex Same concept

Stereotype Stereotype Same concept

SubActivityState SubActivityState Same concept

TaggedValue TaggedValues Same concept, more developed in
Objecteering/UML

TagParameter Value of a UML Tag Tagged Values are more
sophisticated in Objecteering/UML

TagType Does not exist Tagged values are more
developed in Objecteering/UML.
In particular, they are defined by
Profiles

TemplateParameter TemplateParameter Same concept

Transition Transition Same concept



Chapter 11: Implementation of the OMG 1.4 UML metamodel in Objecteering/UML

11-14 Objecteering/Metamodel User Guide

The ...
Objecteering/UML
metaclass

Represents in UML ... comments ...

Use Permission dependency Specific metaclass in
Objecteering/UML for this kind of
dependency.

UseCase UseCase Same concept

UseCaseDependency Include and Extend Same concept more represented
as a dependency in
Objecteering/UML

UsesInheritance Association Specific metaclass defined in
Objecteering/UML for this purpose
(dependencies among UseCases)

ViewBox Does not exist Diagrams are notes specified in
UML

ViewElement PresentationElement No further specification in UML

ViewLink Does not exist Diagrams are not specified in
UML



Index



Accessor    2-6
ActionState    8-13
ActionState metaclass    3-10, 8-3, 8-

4, 8-7, 8-9, 8-11
Consistency rules    8-11

Activity diagram    6-6, 7-3, 8-3, 8-7
Activity model

Example of activity diagram with
partitions    8-6

Example of activity diagram without
partitions    8-5

Metamodel synthesis    8-3
Package classes    8-4
SignalReceipt    8-17

ActivityGraph    8-4
ActivityGraph metaclass    3-10, 8-3,

8-7, 8-12, 8-13, 8-15
Consistency rules    8-8
Properties    8-8

ActivityState metaclass    3-10, 8-3, 8-
4, 8-8, 8-9, 8-11, 8-12
Properties    8-10

Actor metaclass    3-9, 5-23, 5-26, 6-3,
6-4, 6-6, 6-10, 6-11, 6-14, 8-3, 8-15
Consistency rules    6-13
Constructor    6-13
Methods    6-13

addAccessor J method    2-6
Aggregation    5-55
Association    2-5
Association metaclass    3-7, 3-12, 4-

16, 5-4, 5-57, 5-62, 9-7, 10-10, 10-
13, 10-24, 10-26, 10-27, 10-28, 10-
31
Consistency rules    5-56
Constructor    5-56
Methods    5-56

Properties    5-56
AssociationEnd metaclass    3-8, 5-4,

5-37, 5-39, 5-55, 5-56, 5-57, 9-8, 9-
10, 10-28, 10-30, 10-31
Consistency rules    5-59
Constructor    5-60
Methods    5-61
Properties    5-58

AssociationEndOccurence metaclass
10-5, 10-28, 10-30, 10-31
Consistency rules    10-29
Properties    10-28

AssociationEndOccurrence metaclass
3-7

AssociationEndRole metaclass    3-7,
10-5, 10-19, 10-28, 10-31

AssociationOccurence metaclass
10-5, 10-24, 10-26, 10-27, 10-28
Consistency rules    10-25
Properties    10-24

AssociationOccurrence metaclass    3-
7

AssociationRole metaclass    3-7, 10-
5, 10-9, 10-10, 10-27, 10-31

Attribute    2-5, 2-6
Attribute metaclass    3-8, 3-12, 5-4, 5-

39, 5-57, 6-11, 10-5, 10-17, 10-22,
10-23
Consistency rules    5-40
Constructor    5-41
Methods    5-43
Properties    5-40

AttributeLink metaclass    3-7, 10-4,
10-5, 10-16, 10-17, 10-22
Consistency rules    10-22

AttributeOccurence metaclass    10-5,
10-20, 10-22, 10-23
Consistency rules    10-21



Properties    10-20
AttributeOccurrence metaclass    3-7
AttributeRole metaclass    3-7, 10-5,

10-19, 10-23
Consistency rules    10-23

Binary association    5-55
C++    4-26
Class    5-39
Class diagram    5-28
Class metaclass    2-5, 3-5, 3-9, 3-12,

5-4, 5-23, 5-28, 5-39, 5-57, 5-62, 5-
78, 5-80, 5-82, 7-3, 7-7, 8-3, 10-10
Consistency rules    5-29
Constructor    5-30
Methods    5-31
Properties    5-29

ClassAssociation metaclass    3-7, 5-
4, 5-55, 5-62
Properties    5-62

Classifier    5-39
Classifier metaclass    2-5, 3-9, 5-3, 5-

4, 5-11, 5-17, 5-23, 5-26, 5-37, 5-39,
5-44, 5-57, 5-80, 6-8, 6-11, 6-13, 6-
14, 8-7, 8-13, 8-14, 8-15, 8-16, 9-3,
9-7, 9-9, 10-5, 10-10, 10-14, 10-16,
10-18
Consistency rules    5-24
Methods    5-25
Properties    5-24

ClassifierOccurence metaclass    10-5,
10-14, 10-16, 10-18, 10-20, 10-37
Consistency rules    10-15
Properties    10-15

ClassifierOccurrence metaclass    3-8
ClassifierRole metaclass    3-8, 10-5,

10-9, 10-10, 10-18, 10-23, 10-31,
10-37
Consistency rules    10-19
Methods    10-19

Properties    10-18
Code generation    1-3
Collaboration    10-3
Collaboration and Instance

Package classes    10-5
Collaboration diagram    6-11, 10-3,

10-10, 10-23, 10-24, 10-27, 10-32,
10-34

Collaboration metaclass    3-5, 3-8, 6-
3, 6-7, 6-10, 10-3, 10-5, 10-9, 10-10,
10-12, 10-13, 10-18, 10-23, 10-27,
10-31, 10-37
Consistency rules    10-11
Methods    10-11
Properties    10-11

CollaborationMessage metaclass    3-
9, 10-5, 10-13, 10-32, 10-34
Properties    10-35

Communication metaclass    3-8, 6-4,
6-8, 6-11, 6-13, 6-14
Consistency rules    6-14
Constructors    6-15
Properties    6-14

Component metaclass    3-9, 3-12, 4-
35, 5-23, 5-57, 5-80, 8-3, 9-3, 9-4,
9-7, 9-9, 9-12, 9-14
Consistency rules    9-10
Methods    9-11
Properties    9-10

ComponentInstance metaclass    3-8,
9-4, 9-12, 9-14, 10-16
Consistency rules    9-15

Condition metaclass    3-8, 7-4, 7-17,
7-20, 10-33

Constraint metaclass    3-8, 4-3, 4-6,
4-9, 4-16
Consistency rules    4-27
Constructor    4-27
Overview    4-26



Properties    4-27
CoreModel

Metamodel synthesis    4-4
Package classes    4-3

DataFlow metaclass    3-8, 5-3, 5-4, 5-
67, 5-70, 5-73, 9-11
Consistency rules    5-74
Properties    5-74

DataType metaclass    3-9, 5-4, 5-26,
5-34, 5-63, 8-8
Consistency rules    5-35
Constructor    5-35
Methods    5-36

Dependency    4-3
Dependency metaclass    3-8
Deployment diagram    9-3
Diagram metaclass    3-8
Document templates    4-33
Documentation generation    1-3
Element metaclass    3-3, 3-7, 4-3, 4-

7, 4-9, 4-28, 5-66, 5-82
Methods    4-8

Enumerate type metaclass    5-39
Enumerate types

ActionKind    3-12
AggregationKind    3-12
Description    3-12
EventType    3-12
KindOfAccess    3-12
KindOfStateMachine    3-12
MethodPassingMode    3-12
PassingMode    3-12
PredefinedEventType    3-12
StateKind    3-12
VisibilityMode    3-12

Enumerated type metaclass    5-51, 7-
8, 7-14, 7-21

EnumeratedType metaclass    7-19,
10-32

Enumeration class
Methods    5-65

Enumeration metaclass    3-9, 5-4, 5-
26, 5-63, 5-66, 8-8
Consistency rules    5-64
Constructor    5-65
Properties    5-64

EnumerationLiteral metaclass    3-7, 4-
7, 5-4, 5-63, 5-66
Consistency rules    5-66
Properties    5-66

Event metaclass    3-8, 3-12, 5-71, 7-
3, 7-4, 7-9, 7-11, 7-15, 7-21, 10-33
Consistency rules    7-22
Properties    7-22

Example 1
J principle    2-5

Example 2
Session mechanism    2-6

Feature metaclass    3-8, 3-12, 5-4, 5-
37, 5-39, 5-44, 5-57
Consistency rules    5-38
Methods    5-38
Properties    5-38

First Steps
Editing a UML profiling project    2-4
Preliminary steps    2-3

GeneralClass    6-14
GeneralClass metaclass    2-5, 3-9, 5-

4, 5-26, 5-28, 5-34, 5-39, 5-51, 5-63,
5-70, 5-82, 6-6, 6-11, 6-15
Consistency rules    5-27
Properties    5-27

Generalization metaclass    3-8, 4-16,
5-4, 5-75, 6-8, 6-13
Consistency rules    5-76



Constructor    5-76
Methods    5-77
Properties    5-76

Generation template    2-3
Graphic editors    1-3
Instance    10-18, 10-22

Metamodel synthesis    10-4
Instance metaclass    3-8, 5-28, 5-37,

5-70, 9-12, 9-14, 10-4, 10-5, 10-10,
10-14, 10-16, 10-26, 10-30, 10-32,
10-37
Consistency rules    10-17
Methods    10-17
Properties    10-16

Interaction metaclass    3-8, 10-12, 10-
32, 10-34
Consistency rules    10-13
Properties    10-13

InternalProduct metaclass    3-8, 4-3,
4-35
Properties    4-35

InternalTransition metaclass    3-11, 7-
4, 7-12, 7-19, 8-9, 8-11, 8-12, 8-14
Consistency rules    7-19

Item    4-3
Item metaclass    3-9
J code    2-5
J method    2-5, 2-6
J methods

addAccessor    2-6
J session    2-6
Java    4-26
Java ejb    9-14
Link    4-10
Link metaclass    3-7, 4-10, 10-4, 10-5,

10-16, 10-26, 10-30
LinkEnd metaclass    3-7, 10-4, 10-5,

10-16, 10-17, 10-26, 10-28, 10-30

Message metaclass    3-9, 5-67, 7-20,
10-5, 10-12, 10-13, 10-16, 10-32,
10-34, 10-36, 10-37
Consistency rules    10-33
Methods    10-33
Properties    10-33

Meta-association    1-4
Meta-attribute    1-4
Metaclass    1-4, 2-4, 2-5, 2-6, 3-3
Metaclass hierarchy    4-7

ActionState metaclass    3-10
ActivityGraph metaclass    3-10
ActivityState metaclass    3-10
Actor metaclass    3-9
Association metaclass    3-7
AssociationEnd metaclass    3-8
AssociationEndOccurrence

metaclass    3-7
AssociationEndRole metaclass    3-

7
AssociationOccurrence metaclass

3-7
AssociationRole metaclass    3-7
Attribute metaclass    3-8
AttributeLink metaclass    3-7
AttributeOccurrence metaclass    3-

7
AttributeRole metaclass    3-7
Class metaclass    3-9
ClassAssociation metaclass    3-7
Classifier metaclass    3-9
ClassifierOccurrence metaclass    3-

8
ClassifierRole metaclass    3-8
Collaboration metaclass    3-8
CollaborationMessage metaclass

3-9
Communication metaclass    3-8



Component metaclass    3-9
ComponentInstance metaclass    3-

8
Condition metaclass    3-8
Constraint metaclass    3-8
DataFlow metaclass    3-8
DataType metaclass    3-9
Diagram metaclass    3-8
Element metaclass    3-7
Enumeration metaclass    3-9
EnumerationLiteral metaclass    3-7
Event metaclass    3-8
Feature metaclass    3-8
GeneralClass metaclass    3-9
Generalization metaclass    3-8
Instance metaclass    3-8
Interaction metaclass    3-8
InternalProduct metaclass    3-8
InternalTransition metaclass    3-11
Link metaclass    3-7
LinkEnd metaclass    3-7
Message metaclass    3-9
ModelElement metaclass    3-7
MpGenProduct metaclass    3-9
NameSpace metaclass    3-9
Node metaclass    3-9
NodeInstance metaclass    3-8
Note metaclass    3-7
NoteType metaclass    3-10
ObjectFlowState metaclass    3-10
Operation metaclass    3-8
Package metaclass    3-9
Parameter metaclass    3-10
Partition metaclass    3-10
Point metaclass    3-11
Project metaclass    3-10

PseudoState metaclass    3-10
Realization metaclass    3-10
SequenceMessage metaclass    3-

10
Signal metaclass    3-9
State metaclass    3-10
StateMachine metaclass    3-10
StateVertex metaclass    3-10
Stereotype metaclass    3-10
SubActivity metaclass    3-10
TaggedValue metaclass    3-10
TagParameter metaclass    3-7
TagType metaclass    3-10
TemplateParameter metaclass    3-7
Transition metaclass    3-11
Use metaclass    3-11
UseCase metaclass    3-9
UseCaseDependency metaclass

3-11
ViewBox metaclass    3-11
ViewElement metaclass    3-11
ViewLink metaclass    3-11

Meta-explorer    2-4
Metamodel    1-4

Generalization graph    3-3
Major elements    3-4

Metamodel class hierarchy    3-3
Metamodel packages

ActivityModel package    3-6
CollaborationAndInstances package

3-6
CoreModel package    3-6
DiagramsAndViewElements

package    3-6
PhysicalModel package    3-6
StateMachineModel package    3-6
StaticModel package    3-6



UseCaseModel package    3-6
Metrics calculation    1-3
Model dialog boxes    1-3
Model transformation    1-3, 2-3
ModelElement metaclass    2-5, 3-3, 3-

7, 3-12, 4-3, 4-7, 4-9, 4-15, 4-17, 4-
24, 4-26, 4-28, 4-33, 5-9, 5-37, 5-51,
5-55, 5-62, 5-70, 5-73, 5-75, 5-78,
5-80, 6-14, 6-16, 7-7, 7-10, 7-15, 7-
20, 7-21, 8-15, 9-10, 9-11, 10-5, 10-
10, 10-12, 10-14, 10-20, 10-24, 10-
28, 10-32
Consistency rules    4-10
Methods    4-11
Properties    4-10

ModelElements metaclass    4-35
ModelTree    4-3
ModelTree metaclass    3-9, 5-4

Properties    4-12
MpGenProduct metaclass    3-9, 4-3,

4-11, 4-35, 4-36, 9-9
Methods    4-37

NameSpace    10-3
NameSpace metaclass    2-5, 3-5, 3-9,

4-10, 5-3, 5-4, 5-11, 5-17, 5-23, 5-
26, 5-28, 5-34, 5-63, 5-75, 5-78, 5-
80, 6-6, 6-8, 6-11, 6-13, 8-8, 8-15,
8-16, 9-7, 9-9, 9-12, 9-13, 10-3, 10-
4, 10-9, 10-12, 10-13, 10-16
Consistency rules    5-13
Methods    5-14
Properties    5-12

N-ary association    5-55
Node metaclass    3-9, 5-23, 8-3, 9-3,

9-4, 9-7, 9-8, 9-9, 9-12, 9-13
Consistency rules    9-8
Methods    9-8
Properties    9-8

NodeInstance metaclass    3-8, 9-12,
9-14, 10-16
Consistency rules    9-13

Note metaclass    3-7, 4-3, 4-4, 4-7, 4-
9, 4-16, 4-17, 4-33
Consistency rules    4-29
Constructor    4-30
Methods    4-32
Properties    4-29

NoteType metaclass    3-10, 4-3, 4-4,
4-28
Constructor    4-34
Properties    4-33

Object diagram    6-6, 10-3, 10-20, 10-
22, 10-26, 10-32, 10-34

Objecteering/J Libraries User Guide
4-37, 5-10

Objecteering/UML metaclasses    1-3
Objecteering/UML Modeler    4-4
Objecteering/UML Profile Builder    2-

3, 2-4, 4-4
Objecteering/UML Profile Builder tool

1-3
ObjectFlowState metaclass    3-10, 8-

3, 8-4, 8-13, 8-15
Consistency rules    8-14
Properties    8-14

Occurence
Metamodel synthesis    10-3

OMG    3-12
Operation metaclass    3-8, 3-12, 5-4,

5-44, 5-51, 5-57, 5-70, 6-11, 7-3, 7-
7, 7-21, 8-3, 8-7, 8-8, 8-9, 8-13, 9-
11, 10-5, 10-10, 10-16, 10-32, 10-33
Consistency rules    5-46
Constructor    5-47
Methods    5-48
Properties    5-45



Pa ckage metaclass    5-3
Package metaclass    3-9, 3-12, 5-4,

5-9, 5-11, 5-17, 5-28, 5-70, 5-73, 5-
78, 6-6, 6-11, 7-3, 7-7, 8-3, 8-7, 8-
15, 8-16, 9-7, 10-9, 10-10
Consistency rules    5-18
Constructor    5-19
Methods    5-20
Properties    5-18

Parameter metaclass    3-10, 3-12, 5-
4, 5-51, 5-67, 5-70
Consistency rules    5-52
Constructor    5-53
Methods    5-54
Properties    5-52

Partition metaclass    3-10, 8-3, 8-4, 8-
7, 8-15
Properties    8-16

Physical model
Package classes    9-4

Point metaclass    3-11
Predefined J classes    1-3
Profile    4-15
Project metaclass    3-5, 3-10, 4-7, 5-

4, 5-11, 6-13
Properties    5-10

PseudoState metaclass    3-10, 3-12,
7-4, 7-10, 7-12, 7-14, 8-15, 8-17, 8-
18
Properties    7-14

Realization metaclass    3-10, 5-4, 5-
80
Consistency rules    5-81
Properties    5-80

Role metaclass    10-10, 10-14
Role name    2-5
Sequence diagram    6-6, 6-11, 10-3,

10-32, 10-34, 10-36

SequenceMessage metaclass    3-10,
10-3, 10-5, 10-13, 10-32, 10-36
Consistency rules    10-37
Methods    10-37
Properties    10-37

Session management mechanism    2-
3

Signal metaclass    3-9, 5-4, 5-26, 5-
67, 5-70, 7-17, 7-21, 8-3, 8-18
Consistency rules    5-72
Properties    5-72

SignalReceipt    8-4, 8-18
SignalSending    8-4, 8-17
State diagram    7-7, 7-20
State Machine model

Metamodel synthesis    7-3
Package classes    7-4

State metaclass    3-10, 7-3, 7-4, 7-7,
7-10, 7-11, 7-12, 7-14, 7-15, 7-19,
8-3, 8-7, 8-9, 8-11, 8-12, 8-13, 8-14,
8-15, 8-16, 10-5
Consistency rules    7-12
Methods    7-13
Properties    7-12

StateMachine metaclass    2-5, 3-5, 3-
10, 3-12, 5-70, 6-8, 6-10, 7-3, 7-4,
7-7, 7-10, 7-11, 7-12, 7-14, 7-16, 7-
21, 8-3, 8-7
Consistency rules    7-9
Methods    7-9
Properties    7-9

StateVertex metaclass    3-10, 7-4, 7-
10, 7-11, 7-14, 7-17, 7-19, 8-17
Properties    7-10

Static model
DataFlows    5-67
Metamodel synthesis    5-3
Package classes    5-4



Signals    5-67
Stereotype metaclass    3-10, 4-3, 4-4,

4-9, 4-15, 5-28, 6-16
Consistency rules    4-16
Constructor    4-16
Properties    4-16

SubActivityState metaclass    3-10, 8-
4, 8-7, 8-8, 8-9, 8-11, 8-12, 8-14
Consistency rules    8-12

Tagged value metaclass
Constructor    4-19
Methods    4-21

TaggedValue metaclass    3-10, 4-3,
4-4, 4-9, 4-16, 4-17, 4-22, 4-24
Consistency rules    4-18
Properties    4-18

TaggedValues    4-31
TagParameter metaclass    3-7, 4-3, 4-

7, 4-17, 4-22
Consistency rules    4-23
Constructor    4-23
Properties    4-22

TagType    4-19
TagType metaclass    3-10, 4-3, 4-4,

4-17, 4-22, 4-24
Constructor    4-25
Properties    4-25

TemplateParameter metaclass    3-7,
4-7, 5-4, 5-82
Properties    5-82

The J language    1-3, 2-3, 4-8, 4-16,
4-25, 4-34

Transition metaclass    3-11, 7-3, 7-4,
7-7, 7-10, 7-11, 7-14, 7-15, 7-19, 7-
20, 7-21, 8-9, 8-13, 8-17, 8-18
Consistency rules    7-17

Methods    7-18
Properties    7-17

UML extensibility mechanism    3-6
UML extension    2-3
UML metamodel    1-4
UML Profile    4-4, 4-25, 4-29, 5-9
UML Profiles    4-16, 4-24, 4-33
Universal identification mechanism

4-7, 4-8
Use metaclass    3-11, 5-4, 5-78, 6-16

Consistency rules    5-79
Constructor    5-79
Properties    5-78

UseCase metaclass    3-5, 3-9, 3-12,
5-23, 5-26, 6-3, 6-4, 6-6, 6-13, 6-14,
6-16, 7-3, 7-7, 8-3, 8-7, 10-5, 10-10
Consistency rules    6-8
Constructor    6-9
Methods    6-10
Properties    6-8

UseCase model
Metamodel synthesis    6-3
Package classes    6-4

UseCaseDependency metaclass    3-
11, 6-4, 6-7, 6-8, 6-10, 6-16
Consistency rules    6-17
Constructors    6-17
Properties    6-16

Using the metamodel    1-3
ViewBox metaclass    3-11
ViewElement metaclass    3-11
ViewLink metaclass    3-11
What is a metamodel?    1-3
Work product    2-3, 4-11, 9-9


