
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

 Objecteering/J Language User Guide

 Version 5.2.2

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/001

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents

Chapter 1: Overview
Definition and objectives..1-3
J characteristics ...1-4
Executing J programs ..1-8
J and the metamodel ...1-9
Our first example..1-12

Chapter 2: J classes
Root classes ..2-3
Basic classes ...2-7
Input/output classes ...2-15
Metamodel classes ..2-18

Chapter 3: Methods, attributes and variables
Notion of reference ..3-3
J methods...3-4
Polymorphism/Access to the super class method definition3-5
Variables and parameters..3-6
Attributes ..3-9
Anonymous methods ...3-11

Chapter 4: J sets
Overview of J sets ...4-3
Messages to sets (spreading) ...4-6

Chapter 5: Statements
Flow of control..5-3
Assignments ..5-7
Message sending and diffusion ...5-9
"eval" statement ...5-11
Other services..5-13

Chapter 6: UML profiles
Overview of UML profiles ..6-3
Usage...6-5
Structuring UML profiles ..6-9

Chapter 7: Executing J online
Executing J online - Overview ...7-3
Command line syntax ..7-4

Chapter 8: J syntax
BNF form..8-3
J syntax ..8-5

Index

Chapter 1: Overview

Chapter 1: Overview

Objecteering/The J Language User Guide 1-3

Definition and objectives

Purpose of this manual
Welcome to the Objecteering/The J language user guide!
This user guide explains the notions, syntax and use of the J language. It is
aimed at users wishing to adapt the Objecteering/UML CASE tool to different sorts
of model usage, including:

♦= specific code generation

♦= model transformation to assist technical design

♦= definition of additional consistency checks

♦= adding model requests

J language
The J language is the language which supports Objecteering/UML Profile Builder,
and which allows the Objecteering/UML tool to be parameterized and driven. J is
an object language dedicated to handling models. It introduces unique features
designed and developed for this purpose.

Prerequisites
J is a "simple" object language. It is assumed that readers of this user guide are
already familiar with this type of language (Smalltalk, Eiffel, C++, Java, etc.), since
this user guide does not explain in detail the notions of class, generalization,
message sending, attribute and operation.
J programs are developed and executed using the Objecteering/UML Profile
Builder tool, described in the Objecteering/UML Profile Builder user guide.
J is based on the Objecteering/UML metamodel, described in the
Objecteering/Metamodel user guide. The main part of the J library is described in
the Objecteering/J Libraries User Guide user guide.

Chapter 1: Overview

1-4 Objecteering/The J Language User Guide

J characteristics

Java-like syntax
J is an object language with a Java-like syntax. It is dedicated to handling the
metamodel (browsing capacities) and the UML Profile mechanism (double look up
mechanism). Several Java features, such as interface, package and many Java
libraries cannot be handled, but J does have some specific unique features which
are very convenient when using the metamodel.

Interpreted language
J is an interpreted language. Its code can thus be modified and tested rapidly.
Instructions are immediately taken into account and their impact is immediately
apparent.
As a consequence, J provides the "eval" method, which makes it possible to
dynamically execute a String containing J code (see the "eval statement" section
of chapter 5 of this user guide).

Language for handling the metamodel
J is run at metamodel level and handles model elements created by the user. For
example, if the user creates a "client" class with "name" and "age" attributes, a J
program will be able to access the "client" object, ask for its attributes and then
handle the "name" and "age" objects.
The classes provided in J are, therefore, those defined by the metamodel, which
are all described in the Objecteering/Metamodel user guide.

Chapter 1: Overview

Objecteering/The J Language User Guide 1-5

UML profiles
UML profiles are essential to the structuring of a J program and to making it
customizable. For the J interpreter, the current UML profile is a fundamental piece
of information, used to identify the service (operation or attribute) that has been
called by a message. The class of the destination instance is just as important.
The J programmer uses UML profiles to:

♦= structure processing by theme (C++ generation, documentation generation,
etc.)

♦= redefine the method of a parent UML profile (generation parameterization)

♦= define a service that can be shared by several independent J programs (for
example, the directory that produces generated files)

Composition of a J program
J classes are predefined - basic classes (int, etc.) plus the Objecteering/UML
metamodel ("Class", "Association", etc.). The J programmer can declare new
methods on them, but cannot define new classes. The programmer uses the
objects created by users in Objecteering/UML (classes, attributes, etc.).

Note: Objecteering/UML work products are an exception. The user can define
"work product classes" that can be handled in J.

Accessing information
There are several ways to access or handle information:

♦= through simple attributes, which are predefined by the Objecteering/UML
metamodel

♦= through "class" attributes, which can be defined by the J programmer

♦= through method parameters

♦= through local variables

Chapter 1: Overview

1-6 Objecteering/The J Language User Guide

Sets
One of the most important aspects of the J language is its capacity to handle sets.
Sets are found in:

♦= elements linked to a given model element (for example, the attributes of a class
or the parameters of an operation, etc.)

♦= variables, attributes or parameters

Browsing is made easier
The J language is used to browse a model, in order to manage all the related
information (for example, the classes of a package, the operations of these
classes, etc.). This browsing is handled through:

♦= the sending and diffusing of messages

♦= the notion of context

♦= control messages

The sending and diffusion of messages
J provides two major control structures:

♦= the sending of a message, used to apply a method to an object, is written as
follows:

object.method_name (parameters) ;

♦= the diffusion of messages applies either to a set of objects, or to an object
reference. Message diffusion is used to send the message to all set
occurrences, or to avoid the processing of an empty reference, and is written
as follows:

ReferenceSet.<method_name (parameters) ;

Anonymous methods are a special case of diffusion. They work in the same way,
but instead of applying a method to a set or to an object reference, the whole
block of instructions is applied according to the set or the reference.
ReferenceSet
{

J processing
}

Chapter 1: Overview

Objecteering/The J Language User Guide 1-7

The "if" instruction
The "if" instruction is the conditional control structure within J programs. It applies
to boolean expressions:
if (condition1)
{

instructions
}
else if (condition2)
{

instructions
}
else
{

instructions
}

Control messages
J provides the following control messages, which make browsing easier:

♦= the "select" message, which is used to filter certain elements (selection)

♦= the "while" message, which can limit the evaluation of an expression
These messages are particularly well adapted to sets.

Comments
The "//" characters indicate comments, which are valid until the end of the current
line.
if (condition) { // a comment

The "/*...*/" characters surround contained comments.

Chapter 1: Overview

1-8 Objecteering/The J Language User Guide

Executing J programs

Editing a UML profiling project
J programs are developed using the UML profiling project editor. To use this tool,
you must have a license for Objecteering/UML Profile Builder.

Running programs
There are two ways to execute J programs:

♦= through commands: commands correspond to menu entries for the final user.
They are directly associated with a J method, and are run on the original object
of the command.

♦= through the J language on line, in "batch" mode. This mode is explained in
chapter 7 of this user guide.

Chapter 1: Overview

Objecteering/The J Language User Guide 1-9

J and the metamodel

Overview
The metamodel defined for Objecteering/UML is accessible through the J
language. J uses metaclasses, meta-associations, meta-roles and meta-attributes
to navigate within a model and access model information.
J can also transform the metamodel, for example, change attribute values, create
or determine model elements or modify links).
As we have already seen, J is used to define methods at metaclass level.

Chapter 1: Overview

1-10 Objecteering/The J Language User Guide

Handling rules

Figure 1-1. Part of the metamodel (simplified)

In Figure 1-1, the names of all the attributes whose visibility is "public"
("printPublicAttributes()" J method) can be displayed.

Note: This example can be edited in the example UML profiling project and can
be executed by running the "printPublicAttributes" command on classes.

Class:printPublicAttributes()
{

PartAttribute
{

if (Visibility==Public)
StdOut.write (Name, NL);

}
}

Chapter 1: Overview

Objecteering/The J Language User Guide 1-11

Note: "NL" indicates the return. "StdOut" is the standard output which will be the
Objecteering/UML console most of the time. "write" is a method of writing,
which allows an unlimited number of parameters, which can be character
strings or other basic types (integer, boolean, etc). "PartAttribute" is the
concatenation of the "Part" role name, and the "Attribute" metaclass name.
For J, and from a "Class" instance perspective, it designates all attributes
belonging to the current class. "Name" is the attribute of the "Attribute"
metaclass.

Chapter 1: Overview

1-12 Objecteering/The J Language User Guide

Our first example

Aims of the program example
We are going to develop a first program which lists the names of the classes of
the package ("Package" metaclass), and for each class, provides a list of public
methods.

Realization principle
The J method, which we will call "listClasses", must be defined on the "Package"
metaclass. This method will run through all the classes of the package that is
being processed, and for each class, it will list methods with public visibility.

Note: This example is for the "listClasses" command on packages.

J program
Package:listClasses () Method definition
{

OwnedElementClass // Going through the Package
classes

{
StdOut.write(NL, "CLASS:", Name);
PartOperation.<select (Visibility == Public)
// Going through the method's public classes
{

StdOut.write(NL, " Public method:", Name);
}

}
} // End of "listClasses

Chapter 1: Overview

Objecteering/The J Language User Guide 1-13

Description of the terms used

Term Nature Definition
Package Metamodel class Package

NL Constant Return (New Line)

OwnedElementClass object (Class[]) Classes of the current package

StdOut Predefined variable Standard output

PartOperation object(Operation[]) The operations of the class

Visibility object - (String attribute) Visibility of an operation

Name object - (String attribute) Name of the current object

listClasses J method Defined method

String basic class Character string

write Predefined method Writing in a file

Execution
If a "Human_Society" package is composed of "Man" and "Woman" classes with
the "walk" and "eat" methods, the "listClasses" message sent to the
"Human_Society" object will give the following result:
CLASS: Man
Public method :eat
Public method :walk
CLASS: Woman
Public method :eat
Public method :walk

Chapter 2: J classes

Chapter 2: J classes

Objecteering/The J Language User Guide 2-3

Root classes

Overview
Root classes are top level classes which generalize all other classes.

The "Object" class
The "Object" class is the basic class of all the classes present in the J language.
All classes, including basic classes (integer, String, etc.), specialize the "Object"
class.

The ... operator corresponds to ...
== reference equality

!= reference inequality

The Object[] class
The Object[] class represents a set of objects, whatever their nature. It
specializes "Object".
A constructor exists with the set type written "SetOf" that can be associated to any
J class. The type built in this way specializes Object[]. It is thus possible to
handle String[] or Attribute[].

Note: Sets whose elements are sets are not implemented at present.

See chapter 4 of this user guide for set handling services.

Chapter 2: J classes

2-4 Objecteering/The J Language User Guide

The "Metaclass" class
J classes, either primitive classes like "int" or UML metaclasses like "Association",
are all instances of the "Metaclass" class. Thus, without knowing which is the
element handled, it is possible to find out its "Metaclass", and then to discover its
metaclass name, followed by its parent metaclasses. All the classes present in
the J language are instances of the "Metaclass" class.

Purpose of the "Metaclass" class
Having access to the "meta metamodel" allows the realization of more generic
processing using the J language. This mechanism is similar to the Java
introspection mechanism.
Changes to the metamodel in J are not permitted (only changes to the model).
Introspection services are, therefore, limited.

ClassOf
MetaClass Object: ClassOf()
"ClassOf" returns an object's metaclass.

Name
String MetaClass: Name()
"Name" returns the metaclass name.

String Object: metaclassName()
Short cut to get the metaclass name of an element.

Chapter 2: J classes

Objecteering/The J Language User Guide 2-5

Symbolic access to metamodel features
Syntax:
boolean Object:getFeature (in String feature, out
Object value)

Returns the value of "feature" in "value" for the current object. "feature" is either
an attribute, or a dependency with a destination class. The return is true if
"feature" is defined on the current object.
Example: We are going to use "getFeature" to recover the name and features of a
class:
String name;
Feature[] features;
Object o;

this.getFeature("Name", o);
name ?= o;

getFeature("PartFeature", o);
features ?= o;

Chapter 2: J classes

2-6 Objecteering/The J Language User Guide

ParentOf
MetaClass MetaClass: ParentOf() return MetaClass

"ParentOf" returns the parent metaclass of the current class or returns empty if no
parent class exists.

Example:

In this example, we are going to display the name of the metaclass and the name
of the parent metaclass of any object.

Note: This example can be executed with the "dump" command on any model
element ("Object")..

Object:dump()
{

MetaClass Mclass = ClassOf();
StdOut.write("Metaclass : ", Mclass.Name, NL);
Mclass.ParentOf()
{

StdOut.write("Parent metaclass: ", Name, NL);
}

}

Chapter 2: J classes

Objecteering/The J Language User Guide 2-7

Basic classes

Overview
Basic J classes, like all the others, specialize the "Object"root class. Any J
method created at "Object" class level will, therefore, be available for any J class.
Five basic types are available:

♦= int

♦= float

♦= boolean

♦= String

♦= enumerate

Chapter 2: J classes

2-8 Objecteering/The J Language User Guide

The "int" class
The "int" class indicates integer values. Specific operators are described below.

The ... method or operator corresponds to ...
< "less than" integer comparison.

<= less than or equal to integer comparison.

> greater than integer comparison.

>= "greater than or equal to" integer comparison.

+ the sum of integers.

- the subtraction of integers.

* the multiplication of integers.

/ the division of integers.

% the obtaining of the modulo.

float toFloat() the conversion to float.

String toString() the conversion to String.

Note 1: If there is a processing error, a message is displayed and the J
interpreter stops.

Note 2: There is an implicit conversion of the integers into reals.

Chapter 2: J classes

Objecteering/The J Language User Guide 2-9

The "float" class
The "float" class gives real values. Specific operators are described below.

The ... method or operator corresponds to ...
+ the sum of floats.

- the subtraction of floats.

* the multiplication of floats.

/ the division of floats.

< "less than" real comparison.

<= "less than or equal to" real comparison.

> "greater than" real comparison.

>= "greater than or equal to" real comparison.

float sqrt() the square root extraction.

float pow(Exponent : in float) the raising to the "Exponent" power.

float log() the obtaining of the Napierian logarithm.

float exp() the obtaining of the exponential.

int toInt() the conversion to integer.

String toString() the conversion to String.

float u = 1.0;
float e;
e = u.exp() ; // e == 2.71...
u = e.log() ; // u == 1.0

Chapter 2: J classes

2-10 Objecteering/The J Language User Guide

The "boolean" class
The "boolean" class gives boolean values. These are used by classic operators
(and, or and not). There are two possible values:

♦= true

♦= false
Specific operators are detailed below.

The ... method
or operator

corresponds to ...

String toString() the conversion to String.

|| a logical "or" between boolean expressions. If the left-hand term of a
"||" is true, the right-hand term is not evaluated.

&& a logical "and" between boolean expressions. If the left-hand term of
a "&&" is false, the right-hand term is not evaluated.

! a logical "negation" of a boolean expression.

boolean b = true ;
String s;
s = b.toString(); // s = "true"

Chapter 2: J classes

Objecteering/The J Language User Guide 2-11

The "String" class
The "String" class gives character Strings. Character strings have an unlimited
size. Their specific operators are described below.

The ... method or operator corresponds to ...
< "less than" String comparison.

<= "less than or equal to" String comparison.

> "greater than" String comparison.

>= "greater than or equal to" String comparison.

+ the conversion to String and the concatenation of
the parameters.

int size() the obtaining of the String size.

space (in int SpacesNumber the completion of the String by an indicated number
of spaces.

substitute (in String ToSubstitute, in
String NewValue)

the replacement of all the occurrences of
"ToSubstitute", by "NewValue" in the String.

toUpper() the conversion to Upper Case.

toLower() the conversion to Lower Case.

int findFirst (in String Pattern, in int
StartIndex)

the position of the first occurrence of "Pattern" from
"StartIndex" or -1 if "Pattern" is not present.

int findLast(in String Pattern) the position of the last occurrence of "Pattern" or -1
if "Pattern" is not present.

String[] segment (in String Separator) all the segments between separators. Each
occurrence of "Separator" precisely defines 2
segments that can be empty.

String[] findToken(in String
SeparatorsSet)

all the lexemes separated by one or more
occurrences of one of the characters of
"SeparatorsSet".

eraseBefore(in int StartIndex) the deletion of the characters placed before
"StartIndex".

eraseAfter(in int StartIndex) the deletion of the characters placed after
"StartIndex".

Chapter 2: J classes

2-12 Objecteering/The J Language User Guide

The ... method or operator corresponds to ...
erase(in int StartIndex, in int
StopIndex)

the deletion of the characters placed between
"StartIndex" and "StopIndex ", including the
indexes.

assign(in String Origin, in int
StartIndex, in int StopIndex)

the assignment with the "Origin" part placed
between "StartIndex" and "StopIndex ", including
the indexes.

boolean strnequal (in String
ToCompare, in int Length)

the comparison with "ToCompare" on a "Length"
length.

strcat (...) the concatenation of the list of strings indicated as
parameters of the current string.

concat (...) the conversion into a string and the concatenation
of the list of strings indicated as parameters of the
current string.

strncpy (in String Origin, in int
Length)

the assignment with the first "Length" characters of
"Origin".

strncat(in String ToAdd, in int Length) the concatenation of the first characters of "ToAdd"
with the "Length".

strip (in String BorderSet) the deletion of all the occurrences of the characters
of "BorderSet" at the beginning and at the end.

prepend(in String ToAdd) the adding of "ToAdd" at the beginning.

insertStr(in StringToAdd, in int
Position)

the insertion of "ToAdd" in the "Position" position.

overwrite(in String ToWrite, in int
Position)

the overwriting of "ToWrite" from "Position".

float toFloat() the conversion to float.

int toInt() the conversion to integer.

boolean toBoolean() the conversion to Boolean.

String toString() the conversion to String (identity).

Chapter 2: J classes

Objecteering/The J Language User Guide 2-13

Note on + operator
If one of the + operators is not a String, it must be converted. This conversion is
predefined for basic classes. For other classes, the "String toString ()" message is
sent and its return is used as operator.

Example of a String
String s1 = "/usr/bin:";
String s2 = ":/bin";
String s3 = ":/usr/ucb:";
String[] ss ;
s1 = s1+s2+s3; // s1 = "/usr/bin::/bin:/usr/ucb:"
ss = s1.segment(":");
// ss == {"/usr/bin", "", "/bin", "/usr/ucb", ""}
ss = s1.findToken(":");
// ss == {"/usr/bin", "/bin", "/usr/ucb"}

Escape character in a constant String
The "~" character is used to avoid interpreting the character that follows.
Generally, the "~" symbol is used to insert the "" character in a character String.
String s1 = "the symbol ~"~~~" is used to insert the
character ~"~"~"";

Chapter 2: J classes

2-14 Objecteering/The J Language User Guide

enumeration type
In J, new enumeration elements may not be created. However, several
enumerations are predefined in the Objecteering/UML metamodel. For example,
the "Visibility" enumerate has the (Public, Private, Protected) values. (For further
information, please see the enumerated type used in the metamodel).

The ... method corresponds to ...
int toInt() the conversion of an enumeration into "int", according to the literal

order, starting with "according to".

String toString() converts an enumeration into String.

Values are handled in J purely by literal names.

Chapter 2: J classes

Objecteering/The J Language User Guide 2-15

Input/output classes

Overview
The family of stream classes (stream, outStream, inStream) is used to manage
input/output. Three predefined instances of the "outStream" class correspond to
the standard exits (stdOut, stdErr, stdFile).

The "Stream" class
The "Stream" class is abstract. It provides no services.

The "outStream" class
The "outStream" class represents output flows. Its methods are as follows:

The ... method is used to ...
boolean open(in String
pFileName, in boolean
pAppendMode)

open the file indicated by "name". If "pAppendMode" is true,
this operation does not reset the file to zero and prepares to
write in append mode. If pAppendMode is false, this
operation overwrites the previous contents and prepares to
write in the file. If the file does not exist, it is created. If the
file cannot be opened, false is returned.

The "pFileName" parameter is an absolute or relative path.

The second parameter (pAppendMode) is optional. Its
default value is false.

write (in basic_class p1

in basic_class p2, ...)

write the list of primitive values supplied as parameters.

close () close the file.

existFile (in String
FileName, out boolean
answer)

test the existence of the file by its name.

Chapter 2: J classes

2-16 Objecteering/The J Language User Guide

The "inStream" class
The "inStream" class represents in files. It is used to read the dataflow stored in
the file. Its methods are as follows:

The ... method is used to ...
boolean open(in String
FileName)

open the file with the indicated name. The file must exist.

read (in String buffer) read the file in the "buffer".

close () close the file.

existFile (in String
FileName,out boolean
answer)

test the existence of a file, using its name.

Example
We are going to write different values in a file.
boolean b=true;
int i= 23;
outStream MyFile;
MyFile.open("EXIT");
MyFile.write ("i == ",i, " b == ", b, NL);
MyFile.close();

The result in the "EXIT" file is as follows:
i == 23 b == true

Note: The "inStream" class combined with "eval" is used to load the formatted
data.

Chapter 2: J classes

Objecteering/The J Language User Guide 2-17

Predefined output
The default output linked to the predefined output corresponds to the console if J
execution is launched in Objecteering/UML.

The ... exit corresponds to ...
StdOut the predefined output for messages (screen or console).

StdErr the predefined output for error messages.

Chapter 2: J classes

2-18 Objecteering/The J Language User Guide

Metamodel classes

Overview
The classes of the metamodel (as well as basic classes and work products) are
the only classes available from J. Their definition can be extended by the addition
of J methods or class attributes, but not by the addition of new instance attributes.
New classes may not be created.
Access to a model's information is deduced from the graphical representation of
the metamodel.

Note: The work product class (MpGenProduct) is an exception.

Accessing attributes
Access to an object's attributes is gained through the "." notation, by simply using
their name:
Class c = ...;
String n;

n = c.Name;

or in the context of a Class:
String n;
n = Name; // equivalent to : n = this.Name

Chapter 2: J classes

Objecteering/The J Language User Guide 2-19

Accessing associations
Access to associations is achieved by concatenating the role name with the
association destination class name or one of its derived classes.

Figure 2-1. Extract of the metamodel used

Class c= ...
Feature[] theFeature;
Attribute[] theAttributes;

// Access to the class c features :
// role == Part , destination class == Feature
theFeatures = c.PartFeature;

// Access to the class c attributes
// (the attributes are features)
// role == Part, destination class == Attribute
theAttributes = c.PartAttribute;

Chapter 2: J classes

2-20 Objecteering/The J Language User Guide

The type of objects obtained also depends on the association's maximum
multiplicity:

♦= If it is equal to 1, a simple object, possibly empty, is returned.

♦= If it is greater than 1, an object set, possibly empty, is returned.

Chapter 3: Methods, attributes and
variables

Chapter 3: Methods, attributes and variables

Objecteering/The J Language User Guide 3-3

Notion of reference

Definition
Local variables, operation parameters and class and instance attributes whose
type is neither a basic class nor a set, are references towards the objects
concerned. A reference is empty if it does not refer to any object.
The notVoid service can be used to test whether or not a reference is empty.

Example:
if (notVoid (ref))

//non empty reference
...else

//empty reference

Note: A void service, which carries out the opposite operation, also exists.

Chapter 3: Methods, attributes and variables

3-4 Objecteering/The J Language User Guide

J methods

Definition
J methods support the definition of all J program processing. They are linked to J
classes, presented in chapter 2 of this user guide.

Declaration
A J method called "method_name", linked to a J class called "class_name", in the
default UML profile, will be defined as follows:
class_name: default#method_name
{
// J instructions
}

Note: The metamodel editor produces this syntax, and the J programmer need
only enter the instructions which constitute the method body.

Example
We are going to write a specific "print" method, linked to the "Class" class and that
displays the class name.
Class:print()
{
// the name of a class is contained in the Name
attribute
StdOut.write("PRINT ", Name);
}

Chapter 3: Methods, attributes and variables

Objecteering/The J Language User Guide 3-5

Polymorphism/Access to the super class method
definition

Like any other object language, the sending of a message supports
polymorphism. We are going to use the previous example to distinguish attributes
from other features ("format" example).
Class:printFeature()
{

PartFeature.<print();
}

Feature:print()
{

// The current object is a Feature
StdOut.write("Feature : ", format(), NL);

}

String Feature:format()
{

return Name; // Very simple formatting...
}

String Attribute:format()
{

// The formatting consists in prefixing
// the name of '(Attribute) '
return "(Attribute) " + super.format;

}

The "super" pseudo-variable, used in the "format" method of Attribute, is used to
send a message to the current object (here it is "format") defined in its parent
class. This characteristic authorizes code factorization in the parent classes.

Chapter 3: Methods, attributes and variables

3-6 Objecteering/The J Language User Guide

Variables and parameters

Local variables
Local variables can be defined at the beginning of the J "block" (method body or
anonymous methods). Their scope and life span are limited to their method
definition. Their definition syntax takes the following form:
class_name variable_name; // or
class_name variable_name =initial_value;

A variable defined without any explicit initial value is initialized according to its
type.

Type Initial value
int 0

float 0.0

boolean false

String ""

inStream, outStream a stream in the closed state

other (non primitive) empty

An explicit initial value can be a literal value, a variable already defined (local
variable, attribute parameter) or an expression:
int i = 5;
int j = i;
String s = i.toString();
String n = Name;
Class c = this;
Feature[] som = PartFeature;

Chapter 3: Methods, attributes and variables

Objecteering/The J Language User Guide 3-7

Predefined variables
Predefined variables are as follows:

The ... variable represents ...
this the current object.

StdOut, StdFile the "standard screen" file for normal messages

StdErr the "error standard exit" file.

NL (New Line) String representing the passing to a new line.

Tab (Tabulation) String representing the tabulation character.

Method parameters
Methods can have parameters. Parameters behave in the same way as local
variables, and are defined as follows:
return_class class_name:method_name (in class1_name
Parameter1_name,

inout class2_name parameter2_name);

In general, their form is:
Passing_mode Class_name parameter_name

Passing modes
Passing modes indicate whether the caller (the emitter of messages) should
provide parameter values or whether he must wait for the resulting value.

The ... mode defines a parameter as ...
in input (provided by the caller).

inout input/output (received by the caller).

Note: Techniques such as Java "wrappers" are not necessary with J.

Chapter 3: Methods, attributes and variables

3-8 Objecteering/The J Language User Guide

Actual parameter types
Passing modes determine the actual parameter types that are compatible with
those of formal parameters.

With the ... mode the type of actual parameter must ...
in be compatible (like the simple assignment) with the type of the

formal parameter

inout be identical to the formal parameter type.

Return instruction
As in Java, "return" exits the current method, with a value as parameter.
boolean Package : Generate()
{

boolean Result;//false by default
...

return Result;

"return" is also used to exit a method which returns nothing. In this case, there is
no expression after "return".

Chapter 3: Methods, attributes and variables

Objecteering/The J Language User Guide 3-9

Attributes

Overview
J provides the notion of attribute, which is the essential means of information
storage and access. There are two families of attributes:

♦= instance attributes

♦= class attributes

Instance attributes
Instance attributes are attributes specific to each of the handled objects. The
definition is imposed by the metamodel and is fixed. The J programmer cannot
define new instance attributes (for example, the "Name" attribute), except for the
work product classes (see MpGenProduct metaclass).

Class attributes
Class attributes are attributes whose value is shared by all the class instances. A
J programmer can define new class attributes, but cannot modify those UML
profiles delivered with Objecteering/UML.

Example of declaration
A class attribute is declared outside any method:
Attribute_Class_Name Class_name:Attribute_name
Attribute_Class_Name;
//For example
String Object:Environment
String Schema:Environment
String Class:Environment

Note: The Objecteering/UML Profile Builder tool produces this syntax.

Chapter 3: Methods, attributes and variables

3-10 Objecteering/The J Language User Guide

Access to attributes
The "." and ".<" operators allow access to an object's attributes. When the current
object's attributes are indicated, they are directly named.
For class attributes, the "." operator is used to explicitly indicate the attribute class.
If the class attribute is defined on the class (or a parent class) of the current
object, it is also possible to indicate the attribute directly.

The ... expression defines access to ...
MyPackage.Name the "Name" instance attribute of the "MyPackage"

class or one of its parent classes.

Class:Environment the "Environment" class attribute of the "Class" class
or of one of its parent classes.

To access class attributes, it is recommended that you use the ":" operator
systematically, even if the current context allows a simpler designation.

Chapter 3: Methods, attributes and variables

Objecteering/The J Language User Guide 3-11

Anonymous methods

Definition
An anonymous method is a method without a name or parameters. Its body is
embedded in a named method or in another anonymous method. The beginning
and the end of the body are indicated respectively by "{" and "}".
Local variables can be defined before the first instruction.
Instructions can access local variables and method parameters. However, there
is no direct access to the instance or class attributes of embedding objects. The
use of "super" is not permitted.

Diffusion to an object
An anonymous method is always distributed to the object that comes syntactically
before the "{" at the beginning of the body. In the body of the anonymous method,
the "this" variable is initialized with this object or successively with each of these
elements if it is a set.

Chapter 3: Methods, attributes and variables

3-12 Objecteering/The J Language User Guide

Example 1
We are now going to concatenate all the attributes of a class in a character String.

Note: This program can be executed with the "printAttribute" command on a
class.

Class:printAttribute()
{

String line;
PartAttribute // diffusion to the attributes
{ // beginning of the anonymous method

//We are here in the context of an attribute
String buffer = "," + Name;
line = line + buffer
//access to an embedded variable

}//end of the anonymous method
//return to a Class context

StdOut.write("the ", Name, " class's attributes
are ",
line, NL);

}

Example 2
Let's take the previous example and apply the method to the Attribute's name
directly, i.e. a character String, instead of applying it to the Attribute.
Class:printAttribute2()
{

String line;
PartAttribute.<Name // diffusion to the attribute

// names
{

// this == a character String
line = line + "," + this;
// no more need for Name

}
StdOut.write("The attributes of the class ", Name,

" are ",line,NL);
}

Chapter 4: J sets

Chapter 4: J sets

Objecteering/The J Language User Guide 4-3

Overview of J sets

Purpose
J programs use sets extensively in their processing. Sets facilitate the browsing of
a model and allow the easy handling of groups of objects.
The metamodel has numerous cases of n-ary associations between classes (for
example, package classes, class operations or operation parameters). Their
access is easily processed through sets.

Notation
Sets are defined with the "class of the elements[]"class, such as Object[], String[],
Class[], etc.

Declaration
The following declaration is used to obtain an empty set of objects "Object":
Object[] E;

Order of the elements
Set elements are put in a certain order. The order of insertion in the set will be the
order of the scanning of these elements when anonymous methods are diffused
or applied. The order is very important in the metamodel. For example, the order
in which class operations are accessed in the "PartOperation" object is the order
in which these operations appear in the model, as well as in the parameters of an
operation (IOParameter), etc.

Chapter 4: J sets

4-4 Objecteering/The J Language User Guide

Assignment between sets
Sets are considered as basic classes. The assignment between sets, therefore,
copies the value of a set into another set. The example below shows a trick used
to empty a set, given that a declared set is empty by default.
Feature[] E1;
Feature[] Emptied;
E1 = PartFeature;
...
E1 = Emptied; // E1 becomes an empty set

Example
The example below is used to list the names of all the parameters of all the
operations of the current class. Firstly, an anonymous method is used, and then a
diffused message carries out the same processing.
// First case : anonymous method
PartOperation
{

IOParameter
{

StdOut.write(Name, ", ");
}

}
// Second case : message diffusion
Parameter:Print()
{

StdOut.write(Name, ", ");
}//End of "Print" method

//PartOperation
{

IOParameter.<Print(); // message diffusion "Print()"
}

Chapter 4: J sets

Objecteering/The J Language User Guide 4-5

Empty set
The "notVoid" service can be used to test whether or not a set is empty.
If (notVoid (mySet))

//non empty set
else

//empty set

Note: A void service, which carries out the opposite operation, also exists.

Chapter 4: J sets

4-6 Objecteering/The J Language User Guide

Messages to sets (spreading)

Access to the i element
J sets do not currently allow instructions such as "E[i]=V;" or "V=E[i];" to be
executed. The specific services below must be used:
Object:getItemSet (inObject[] pSet, in int pIndex, out
Object pElt)
Returns in "pElt", the "pIndex" rank element of the "pSet" set. The first element is
at the 0 index. "pSet" and "pElt" types can be more precise (String[] and String,
for example).

Object:setItemSet (inout Object[] pSet, in int pIndex,
in Object pElt)
Replaces the "pIndex" rank element by "pElt" in "pSet". The set must have an
element at the "pIndex" index. The first element is at the 0 index. "pSet" and "pElt"
types can be more precise (String[] and String, for example).

Object:sort(in boolean pAscendingSort, in String
pMetaAttributeName)
Sorts a set in ascending or descending order, according to the value of
pAscendingSort. The sort criterion is provided by the name of a meta-attribute for
metamodel objects, and by the value of the objects which make up the set for the
basic classes (int, float, boolean, String, enumerate). For the latter,
pMetaAttributeName is ignored and becomes optional.

Note: To directly sort modeling elements, the "sortSemanticAssociation" service
should be used (please refer to the "Model transformation primitives"
section in chapter 2 of the Objecteering/J Libraries user guide).

boolean Object:contains (in Object pElement)
Indicates whether pElement belongs to the set in question. If the set contains
model elements, a reference to pElement is searched for. If a basic class is
concerned (int, float, boolean, String, enumerate), an identical value is searched
for.

Object:remove (in Object pElement)

Chapter 4: J sets

Objecteering/The J Language User Guide 4-7

Removes all references of pElement in the set for metamodel objects, and
removes all basic classes (int, float, boolean, String, enumerate) of the same
value for a set of basic classes.

Note: To remove a modeling element from a relationship, the "erase" service
should be used (please refer to the "Model transformation primitives" in
chapter 2 of the Objecteering/J Libraries user guide).

Object:clear
Empties the set in question.

"Size" message
The "size" or "length" operator is used to find out the number of elements in the
current set.

Example:

Here, we are displaying a text according to the number of methods of the current
class:
if (PartOperation.size() != 0)
{

StdOut.write("The current class is composed of ",
PartOperation.size(), " operations ");

else
StdOut.write("The current class has no operation ");

}

"addElement" message
"addElement" is used to insert elements into a set. When a set is being scanned
(diffusion, anonymous method, etc.), elements are scanned in their initial order of
insertion. The example below shows another way to create the E set of public
operations of a class.
PartOperation.<select(Visibility == Public)
{

E.addElement (this);
}

Chapter 4: J sets

4-8 Objecteering/The J Language User Guide

"Add" message
The "add" operator is used to cumulate two sets by concatenating the operating
set with the receiver of the message:
E1.add(E2); // the elements of E2 are added to E1.

"Retract" message
When the "retract" message is applied to a set, the last element of this set is
withdrawn from it.
E1.retract();//the last element is retracted from the
set

"Select" message
The "select" operator is used to carry out a selection amongst the occurrences of
a set, according to the boolean expression supplied in the parameter. The result
is a sub-set of the initial set. On this result, it is possible to apply either an
anonymous method, or a new "select" operator, or to carry out a message
diffusion.
When the boolean expression is evaluated, the current object is the set's current
element to which "select" is applied.
"select" filters the set before passing the resulting set to the rest of the expression;
the filter boolean expression must not contain any term modified in the part of
expression that follows the "select".

Chapter 4: J sets

Objecteering/The J Language User Guide 4-9

"Select" message: Example
You will find displayed here three different techniques for displaying a class's
public operations.
//1: Anonymous method
PartOperation.<select(Visibility == Public)
{

display ();
}
//2: Message diffusion (method "display")
PartOperation.<select(Visibility == Public).<display
();
//3: Passing by an intermediary variable
Operation [] E;
E = PartOperation.<select(Visibility == Public);
E.<display();

"While" message
The "while" operator is used to scan a set, while a certain condition is fulfilled. It
scans all the occurrences until the stop scanning condition occurs.
When the boolean expression is evaluated, the current object is the set's current
element to which "while" is applied.
The boolean expression is evaluated for each element. If it equals "true", the part
of expression that follows "while" is evaluated. It is, therefore, possible to change
a term of the boolean expression in the part that follows the "while".

Chapter 4: J sets

4-10 Objecteering/The J Language User Guide

"While" message: Example
In the example below, the attributes of a class are displayed until an attribute
named "Size" is found or until all the attributes have been scanned.
PartAttribute.<while(Name != "Size")
{

StdOut.write(Name);
}

Another way of writing it shows the modification of the boolean expression term in
the anonymous method that follows.
boolean found;
PartAttribute.<while(found)
{

found = Name == "Size";
if (not(found))
{

StdOut.write(Name);
}

}

Generalization of while and select
The "while" and "select" messages are not only applied to sets, but may also be
used with simple objects.
So the following example:
Operation: printIfPublic()
{

if (Visibility == Public)
{

printMethod();
}

}

can be written with a select (or a while):
Operation: printIfPublic()
{

this.select(Visibility == Public).<printMethod();
}

Chapter 5: Statements

Chapter 5: Statements

Objecteering/The J Language User Guide 5-3

Flow of control

Overview
The J language has very few control structures. Those it does have are as
follows:

♦= the conditional structure (if)

♦= the sending of a message structure

♦= set structures (select, while, diffusion and anonymous methods)

Chapter 5: Statements

5-4 Objecteering/The J Language User Guide

Conditional structure (if)
Conditional structure syntax takes a classic form:
if (condition1)
{
// instructions
}

or with the "else" instruction:
if (condition1)
{
// instructions
}
else
{
// instructions
}

or with the "else if" instruction:
if (condition1)
{
// instructions
}
else if (condition2)
{
// instructions
}
else
{
// instructions
}

Chapter 5: Statements

Objecteering/The J Language User Guide 5-5

Example
For any class of a given package and for any navigable association from this
class, the example below is used to generate a descriptive sentence for document
purposes. The sentence built depends especially on the multiplicity of the
associations.

Note: The "describeAssociations" command on packages executes this
program.

Package:describeAssociations()
{

OwnedElementClass Scanning of all the package's classes
{

PartAssociationEnd.<describeAssociation(Name);
}

} End of example method

AssociationEnd:describeAssociation (in String className)
{
AssociationEnd currentAssociation = this;
String oppositeClassName;

// Describe only navigable associations
if (! IsNavigable()) return;

RelatedAssociation.<ConnectionAssociationEnd
{

if (currentAssociation != this)
{

oppositeClassName = OwnerClass.Name;
}

}
StdOut.write(NL, "Thanks to the", Name, "association, a
representative of", className, "is linked");
if (MultiplicityMin == "0")
{

StdOut.write(" optionally to");
}
else if (MultiplicityMin == "1")
{

if (MultiplicityMax != "1")
StdOut.write ("to at least one representative and to

at most");
}

Chapter 5: Statements

5-6 Objecteering/The J Language User Guide

else
StdOut.write(" to at least ", MultiplicityMin,
"representatives and to at most");

if (MultiplicityMax == "1")
if (MultiplicityMin == "1")

StdOut.write ("to one and only one representative
of",

oppositeClassName,".");
else

StdOut.write ("at most one representative of",
oppositeClassName,".");
else if (MultiplicityMax == "*")

StdOut.write("an unlimited number of representatives
of",

oppositeClassName,".");
else

StdOut.write(" ",MultiplicityMax, "representatives of",
oppositeClassName,".");

Result
When this processing is applied to the classes of a package, the following
sentences are produced.
Thanks to the ContractualLink association, a
representative of Insurance is linked to one and only
one representative of Man.
Thanks to the Direction association, a representative
of Man is linked optionally to an unlimited number of
representatives.
etc.

Boolean expressions
Boolean expressions are all sorts of expressions combining boolean values
(variables, attributes, or a method's return value).
For more details on the boolean class, please refer to the "Basic classes" section
of chapter 3 of this user guide.

Chapter 5: Statements

Objecteering/The J Language User Guide 5-7

Assignments

Simple assignment
Assignment is used to change the value of a variable (local variable, parameters,
class attributes). Syntax is as follows:
variable = evaluated_ expression;

The type of the term on the right must be the same as the type of the variable, in
other words:

♦= it is identical to the type of the variable, or

♦= it is the variable child class, or

♦= there is an implicit conversion of the type of term on the right to the variable
type.

The effect of an assignment depends on the variable class type:

♦= for primitive or basic classes (int, String, etc.), the assignment copies the value
of the origin in the destination.

♦= for non primitive classes, (classes of the metamodel, stream, etc.), the
assignment only references the same object.

int i= 23;
int j;
Object[] E1;
Object[] E2;
Class CurrentClass;
Class MainClass;
j = i;
// Assignment of the content of i to j. i and j
reference two
// different objects
MainClass = CurrentClass;
// These two variables reference the same object, which
is
// one of the classes of the processed model.
E2 = E1;
// E2 contains all the elements of E1. They are copied
// if they are primitive objects, otherwise they are
referenced.

Chapter 5: Statements

5-8 Objecteering/The J Language User Guide

Assignment attempt
Simple assignment does not allow the assignment of a variable with a reference to
a type that is parent to the variable's type without risking errors, even if the
referenced object has a compatible type. To carry out this type of assignment
safely, J provides an operator that attempts assignments. Syntax is as follows:
variable ?= evaluated_ expression;

With this operator, the variable takes the value of the term on the right if the type
of this term is compatible with those of the variable. If there is type incompatibility,
the variable is empty.

Example of an assignment attempt
In this example, we are in the context of a ModelElement and if the current object
is a class, we want to display its features by calling the "Class:printFeature"
method of the previous example.
ModelElement:printFeature()
{

Class c ?= this; // 'c' is assigned if 'this' is
// a 'Class'

c.<printFeature(); // 'printFeature' is only called
// if 'c' is a class.

}

Figure 5-1. Extract of the metamodel used

Chapter 5: Statements

Objecteering/The J Language User Guide 5-9

Message sending and diffusion

Message sending
J methods are executed when messages are sent to managed objects.
Messages are sent in the following way:
Object_name.method_Name();

We are going to send, for example, the "print" message to an instance of "Class".
Class c= ...
c.print();

Diffusion
Diffusion is a special case of message sending. It has the following
characteristics:

♦= syntactic representation is ".<"

♦= the diffusion of a message to an empty reference or to an empty set is
equivalent to a null operation (noop)

♦= the diffusion of a message to a set provokes the sending of a message to all its
elements, instead of the destination set when a message is sent

♦= an expression containing a diffusion has the empty value (convertible into all
types) if the diffusion cannot be carried out

Diffusion and sending a message to a non empty reference on a simple object are
equivalent.
This mechanism avoids using "for" loops and empty reference tests.

Chapter 5: Statements

5-10 Objecteering/The J Language User Guide

Example of diffusion
We are going to create a specific "print" method, on the Feature class and then
diffuse it to the features (members) of a class in the "printFeature" method. The
"print" method uses a "format" method to format the name of the feature.

Note: This example can be executed on the classes using the "printFeature"
command.

Class:printFeature()
{

PartFeature.<print();
}

Feature:print();
{

// The current object is a Feature
StdOut.write("Feature : ", format(), NL);

}

String Feature:format () return
{

return Name; // Very simple formatting...
}
Diffusion can also be used in simple expressions:
String n = c.<Name; // n is worth "" if c is an empty
reference

General view of the "message concept"
A message can be generalized in anything that can provide a result:

♦= getting an attribute value (for example, "Name")

♦= getting associated elements (for example, "PartAttribute")

♦= calling a J method
As a result, a J method call, or access to an attribute or to a related element, can
be used uniformly in the same kind of expressions.

Chapter 5: Statements

Objecteering/The J Language User Guide 5-11

"eval" statement

Overview
Certain J services provide control functions on the J interpreter. The "eval"
service is a powerful feature of an interpreted language.
Other services exist, which can help debug a J program, stop the execution of a J
program or obtain information on the current execution context.

eval
The "eval" service is used to calculate a character String dynamically, by
considering its contents as being composed of J instructions.
When the String is evaluated, the current object does not change, it is the one in
use when the eval is called.

Note 1: Declarations of local variables are authorized in the String which is to be
evaluated.

Note 2: A return statement in the evaluated String provokes a return from the
method (non anonymous) which contains the eval statement.

Chapter 5: Statements

5-12 Objecteering/The J Language User Guide

eval example
We are going to use "eval" to read the variable values previously stored in a file
(Storage example):

Object:Storage();
{
outStream Fic;
Fic.open ("Example");
Fic.write ("i1 = 15; s1 = "hello";

b1=false");
Fic.close();
Recover();
} – End of Storage

Object:Recover();
{
String read_buffer;

inStream Fic;
int i1;
String s1;
boolean b1;

Fic.open ("Example");
Fic.read (read_buffer);
eval (read_buffer);
//at this stage, the variables i1, s1, b1 are assigned.

StdOut.write ("i1=",i1,NL,
"s1=",s1,NL
"b1=",b1,NL);

}

Chapter 5: Statements

Objecteering/The J Language User Guide 5-13

Other services

J provides services which deal with the interpreter status or its invocation context.

The ... service is used to...
Object : exit(in int status) Exit the program execution underway. "status"

indicates the output code and may only be
recovered in "batch" mode.

boolean Object:setTrace (in
boolean mode)

Activate or inhibit the J trace mode according
to the "mode" value. Return the previous
mode. The trace mode consists of displaying
called methods and line numbers executed in
the console, or in the execution window in
"batch" mode.

boolean
Object:isStandaloneInvocation()

Indicate whether or not the interpreter is
launched from the command line (objingcl).

Project
Object:getCurrentProject()

Return the current UML modeling project.

String
Object:getCurrentProfileName()

Return the complete name of the interpreter's
current UML profile.

String
Object:getStartUpProfileName()

Return the complete name of the UML profile
initially used upon the launching of the
interpreter.

Object
Object:getStartUpObject()

Return the destination object of the first
message of the J program which is being
interpreted.

String
Object:getCurrentModuleName ()

Return the name of the module that the
launching command belongs to may be empty.

Chapter 6: UML profiles

Chapter 6: UML profiles

Objecteering/The J Language User Guide 6-3

Overview of UML profiles

Definition
UML profiles allow you to consider just one part of the J class methods, according
to your field of interest. They appear as prefixes of the methods which limit their
visibility space. These prefixes are defined in the Objecteering/UML Profile
Builder tool. They are never textually declared by the user.

Organizing J methods
The classes provided with the J language have a great number of methods, which
all provide different features. These J methods allow you to produce C++ program
generation of relational databases, documentation, etc. UML profiles are used to
organize these methods, by taking into account their specific objectives.

First example
"documentation" and "GenCpp" are two UML profiles, to which the "generate()"
methods belong. According to the UML profile in question, "generate()" indicates
a different action:
Package:default#documentation#generate()
{ ...
}
Package:default#Cxx#generate()
{ ...
}

UML profile hierarchy
UML profiles are organized hierarchically, the root of the hierarchy being the
"default" UML profile. This hierarchy is used to define a new UML profile,
"UMLprofile2", which specifies a previously defined UML profile "UMLprofile1".
UML profiles are, in fact, described in the form of a path which takes the following
form:
default#UMLProfile1#UMLProfile2

Chapter 6: UML profiles

6-4 Objecteering/The J Language User Guide

Generation adaptation mechanism
Applied to all Objecteering/UML generation provided with the tool (C++, Java,
etc.), the UML profile mechanism is used to redefine generation methods, in order
to adapt them to a specific requirement. Here are the steps to follow:
1 - Define a UML profile in the UML profile dedicated to the generation in question

(for example, Cxx#Specific).
2 - Redefine the method you wish to adapt (for example, Attribute:Generate) in

the new UML profile.
3 - Run generation from this new UML profile.

Note: The Objecteering/UML Profile Builder module is required to run these
actions.

Chapter 6: UML profiles

Objecteering/The J Language User Guide 6-5

Usage

Declaring UML profiles
UML profiles are declared in the Objecteering/UML Profile Builder tool.

Absolute or relative UML profile notation in programming
Absolute UML profile notation is carried out independently of the current UML
profile. It starts from the root (default), either with a notation written
"default#P1#P2", or by using the "#" character (#P1#P2). Relative UML profile
notation can use the "-" symbol to move up the UML profile hierarchy, starting
from the current UML profile.

Redefining methods
By default, a "child" UML profile owns all the features that are defined for its
"parent" UML profiles. However, it is also possible to redefine in the child UML
profile features present in the parent UML profile. In this case, the child's features
mask those of the parent. For example, "V3_2" uses the "Cxx" generation rules,
but redefines some of its methods.

Navigation example
In the "Cxx" UML profile, the "generate" method in "V3_2" can be accessed in
several ways:
#external#Code#Cxx#V3_2#generate(); //Absolute notation
or
V3_2#generate(); // Relative notation

The "generate" method in "design" can be accessed in several ways:
#documentation#design#generate(); //Absolute notation
//or (Relative notation)
-#-#documentation#design#generate();

Chapter 6: UML profiles

6-6 Objecteering/The J Language User Guide

Current UML profile
The current UML profile is evaluated during execution. It corresponds to the last
explicitly specified UML profile and can be:

♦= the UML profile that triggers the J program (that of the program's user).

♦= a UML profile explicitly specified, in an absolute or relative way during the
method call. When the method returns, the previous UML profile becomes
current again.

Relative UML profile
A relative UML profile is evaluated according to the declaration UML profile of the
embedding method. UML profiles expressed in a relative way are not evaluated
according to the current UML profile, which is known dynamically. This does not
allow you to know, during the writing of the J method, the UML profile which is
finally chosen.

Example
#external#Code#Cxx#generate() package; (1)
#external#Code#generate() class; (2)
#external#Code#Cxx#V3_2#generate() class; (3)
#documentation#print() class; (4)
#documentation#generate() class; (5)

If a user in the "#external#Code#Cxx#V3_2#" UML profile calls "generate()" on a
package, (1) will be triggered. If the code of (1) triggers
"-#documentation#generate()" on a class, the (5) method is called (declaration
viewpoint = "Cxx"). If the code of (1) triggers "generate()" on a class, method (3)
is triggered (current UML profile = v3_2). If this last method explicitly calls
"#documentation#print()", then "print()" is called with the new current
"#documentation" UML profile. In this case, a call of "generate()" will trigger
method (5) available in this UML profile.

Chapter 6: UML profiles

Objecteering/The J Language User Guide 6-7

Accessing features of a UML profile without changing current UML
profile

The "##" notation, placed between the UML profile and the feature, is used to
specify a UML access profile, which allows access to the feature without changing
the current UML profile.

Example
In the external#Code#Cxx UML profile, the "init" method calls "init2". In the
#external#Code#Cxx#V3_2 UML profile, we want these methods to be redefined
and the redefined version of init2 to be called by init of the #external#Code#Cxx
UML profile.
//in the external#Code#Cxx UMLProfile
Class:#external#Code#Cxx#init()
{

...
init2();
...

}
Class:#external#Code#Cxx#init2();
{

...
}
// the redefinitions in #external#Code#Cxx#V3_2
Class:#external#Code#Cxx#V3_2#init2();
{

...
}
Class:#external#Code#Cxx#V3_2#init();
{

...
// Calling of init of the superior UML profile
// without changing the current UML profile so that
// the init2 of V3_2 be called by init of Cxx
-##init();
...

}

Chapter 6: UML profiles

6-8 Objecteering/The J Language User Guide

Navigation rule
If, for example, an M method is called without any specified UML profile, J will
search M firstly on:

♦= the current class and in the current UML profile

♦= a class parent to the current class and in the current UML profile

♦= the current class and in a parent UML profile

♦= a class parent to the current class and in a parent UML profile

Example
With the following method definitions:
Object:#default#Cxx#V3_2#generate();
Class:#default#Cxx#generate();

If the "generate()" message is sent to the "Class" class in the "V3_2" UML profile,
the following method will be called:
"Object:"#default#Cxx#V3_2#generate();"

Chapter 6: UML profiles

Objecteering/The J Language User Guide 6-9

Structuring UML profiles

Overview
For obvious reasons related to structure stability and backward compatibility,
Objecteering/UML is delivered with a preliminary fixed hierarchy of UML profiles.
This hierarchy will be developed when new UML profiles are created, but the
structure paradigm will be respected.

UML profile structure
Figure 6-1 presents the default UML profile hierarchy delivered with
Objecteering/UML.

Figure 6-1. The UML profiles delivered by default in a UML profiling project

Chapter 6: UML profiles

6-10 Objecteering/The J Language User Guide

UML profiles

The ... UML profile represents ...
internal J rules developed internally, not accessible by the user.

external generators and rules the user can access. The new user UML
profiles must be created in "external".

Code all code generators (C++, Java, SQL, etc.) which must be
defined in this UML profile. Tagged values of general interest
(NoCode, external) are defined at this level.

documentation documentation generation.

Make the generation of Makefiles (used with "Cxx" by the "GenC++"
module).

Cxx The C++ generator. The adaptation of the generator for new
rules must be in this UML profile.

Platform The characteristics of the platforms on which
Objecteering/UML is available. The production String
generation (Make) especially uses this UML profile. "PC",
"UNIX", etc. UML profiles are found there.

Chapter 7: Executing J online

Chapter 7: Executing J online

Objecteering/The J Language User Guide 7-3

Executing J online - Overview

Purpose
As a command line, J can be used to launch a J program, such as C++ generation
or documentation generation, directly from the operating system (a shell command
line, an MS-DOS window, etc.) without having to run "objing".
There are two different modes according to the different operations that can be
applied:
1 - The mode used to launch J, by running the UML Modeler tool. This mode is

used to launch J methods on a model in the context of a UML modeling
project, such as code generation, for example.

2 - The administration mode

End of execution
At the end of the execution of the J program, a backup is launched if:

♦= the interpreter has not encountered any errors in the J program

♦= the exit code has the value "0"

Administration services
The "J on line command" mode is useful for writing automated administration
scripts. Using the "baseadm" command, a script can, for example, configure a
database. Using a "J on line command", the script can then configure UML
modeling projects, or carry out data exchanges between UML modeling projects.

Chapter 7: Executing J online

7-4 Objecteering/The J Language User Guide

Command line syntax

"project" mode
Syntax is as follows:
objingcl [-display <display>][-noDisplay] -db <base>
[-prj <project> -mdl <module> -cmd <commandName>
[-delim <delim>] <metaClass::objectName>
[-- {parameter}]

"administration" mode
Syntax is as follows:
objingcl [-display<display>] [-noDisplay]-admin -db
<database> -mdl <module> -cmd <commandName> [--
{parameter}]

Example 1
To launch C++ generation ("generate"command) on the "A_cxx" work product, use
the following syntax:
objingcl -db myBase -prj myProject -mdl CxxModule -cmd
generate::*::MpcCodeCxx:A_cxx

Note: The recognized name of the C++ generation module is CxxModule. The
name of the metaclass which represents the C++ work product is
MpcCodeCxx.

Example 2
This example presents the "run" command in a "myModule" module, for a given
work product.
objincl -db myBase -prj myProjet -mdl myModule -cmd
default#external#mygenerator#run
MyTypeOfWorkProduct::*::foo -- -MyFileOption myFile.log

Chapter 7: Executing J online

Objecteering/The J Language User Guide 7-5

The -display/-noDisplay argument (UNIX only)
Some generation, such as documentation generation, require an X11 display to
produce graphics. By default objingcl opens the predefined display (:0.0 or
the content of DISPLAY environment variable) and fails if it cannot open it. The -
display argument indicates another display (for example, -display zeus:0)
and the -noDisplay argument indicates that objingcl will not open any
display. In the latter case, any graphical use will fail.

The -db database argument
This indicates the database name. The complete access path to the file is not
allowed.

The -prj project argument
This indicates the working UML modeling project. The UML modeling project
must exist in the database. If it is not specified, the J interpreter uses a UML
modeling project with the same name as the database.

The -mdl module argument
This indicates the module which owns the command. The module must be
present in the database and be selected in the UML modeling project. If required
by the module, a license token is reserved during the execution of J.
Example: For C++, the module name is CxxModule.

The -cmd commandName argument
This indicates the name of the command or the J method to be triggered. If this is
the name of a command, it must exist in the module. It is the name and not the
label which appears in the menus. If it is a J method, it must be prefixed by the
launching UML profile which respects the J syntax. The UML profile can be
derived from the definition UML profile of the J method. It must be referenced by
the module.

Chapter 7: Executing J online

7-6 Objecteering/The J Language User Guide

Example:
Considering the generate method defined in the UML profile:
default#external#Code#Cxx
for which a derived viewpoint exists:
default#external#Code#Cxx#MyCxx
For a generation which has this UML profile as the starting point, you simply have
to indicate:
default#external#Code#Cxx#MyCxx#generate

The -admin argument
This indicates the administration mode. In this case, no objects are required.

The metaClass::objectName argument
The indication of the object(s) on which the interpreter is launched (target objects).
MetaClass indicates the type of objects (Class for a class). It must not be a basic
class, but the object real type. (For example, ModelElement cannot be used as
Class instances).
Objects must all belong to the working UML modeling project. If several objects
(with the same type) have the same name, the J program is triggered on each
instance.
The object designation syntax can deal with nested and homonymous objects.
Syntax is as follows:
<metaClass>::<completeObjectName>
<metaClass> is the type of the object(s) (Class, Package, etc)
<completeObjectName> is the object access path followed by its name.

Example:
To designate the C1 class which belongs to P2 package, itself nested in the P1
package:
Class::P1::P2::C1
To shorten the designation, the whole or a part of the access path can be
replaced by the metacharacter '*'. It can only be placed just after the metaclass.

Chapter 7: Executing J online

Objecteering/The J Language User Guide 7-7

Example:
To designate C1 more quickly:
(1) Class::*::C1
(2) (2) Class::*::P2::C1
(3) (3) Class::P1::*::C1 (error : * is not just after

the metaclass)

A name containing '*' may indicate several objects ((1) all C1 classes, (2) all C1
classes belonging to all P2 packages). In this case, the J program is triggered for
each object. In (3) C1 class could be found, if it exists a package named '*' in P1
package.
The -delim argument indicates a separator other than '::'.

Example:
To designate C1::1 class belonging to P1 package, the default separator can be
replaced with '.':
objingcl ... -delim . Class.P1.C::1

Chapter 7: Executing J online

7-8 Objecteering/The J Language User Guide

Internal and external names of the modules
Modules are recognized by J through an internal name, which is different from the
external name. For example, the Objecteering/Documentation module has the
following internal name: "GenDocModule".

The ... module's external name has for internal name ...
Documentation GenDocModule

C++ CxxModule

Java JavaModule

Name of the work product metaclasses
Generation work products have a different metaclass according to the generators
and their types. For Objecteering/UML modules, the names are resumed in the
table below.

The ... work products correspond to the metaclass ...
Documentation Document

C++ MpcCodeCxx, MpcMakeCxx

Java Java

Parameters
It is possible to pass parameters to a J program from the command line. The list
of parameters is prefixed by --. They are accessible through
getInvocationParameters whose signature is:
String[] Object:getInvocationParameters()

Parameters generally appear in the same order as in the command line. They
have the character type, and are divided by the surrounding shell. If there is a call
from the modeler, the set is empty.

Chapter 7: Executing J online

Objecteering/The J Language User Guide 7-9

Example:
objingcl -db myBase -prj myProject -mdl myModule -cmd
myCommand Class::*::MyClass -- -verbose -tmp /var/tmp
'My result.log'

The example presents 4 parameters which are:
'-verbose', '-tmp', '/var/tmp', 'Myresult.log'

Chapter 8: J syntax

Chapter 8: J syntax

Objecteering/The J Language User Guide 8-3

BNF form

Overview
J syntax is presented in Backus Naur Form (BNF), by applying the characteristics
detailed below.

Case sensitive
Lower case characters are considered different from upper case characters.

Example: The "StArt" word is different from the "start" keyword.

Chapter 8: J syntax

8-4 Objecteering/The J Language User Guide

Essential syntactical elements

Element Description
Syntactic categories In lower case.

Linked by the underscore character (_).

Example: method_definition, attribute_definition.

Specific words In quotes.

Example: 'this'

Optional elements In brackets.

Example: [UML profile]

Repetitive elements In cokebottles ({}).

Can appear one or more times.

From left to right.

Alternatives They are separated by a vertical bar.

Example:
values:=
<name | figure name
| '('expression [','expression]')'>

Category name In italics.

Equivalent with the name of the categories not in italics.

Note: BNF would be more legible if the key words (if, while, select) were in bold
instead of between inverted commas.

Chapter 8: J syntax

Objecteering/The J Language User Guide 8-5

J syntax

J program
With J syntax, UML profiles, class attributes and methods have to be declared in
the right order.
Program::=

{attribute_declaration}
{method_definition}

Class attributes
J class attributes can be declared with an initial value.
attribute_declaration::=

class ':' [profile] attribute_name ':'
class [assignment]';'

Method declaration
Method declaration is made up of the class which owns the method, its UML
profile and its name, followed by its parameters and its possible return value.
method_definition::=

class ':' [profile] method_specification
method_specification::=

method_name parameter_designation_list
[return class]

parameter_designation_list::=
'(' [<parameter_designation>
{',' <parameter_designation>}])'

parameter_designation::=
passing_mode class parameter_name

passing_mode::= 'in'|'inout'

Chapter 8: J syntax

8-6 Objecteering/The J Language User Guide

Designating UML profiles
The designation of the UML profile is useful, either to declare a method, or to
define explicitly the UML profile during the message sending. The designation of
the UML profile is in absolute mode (starting from "default" or "#"), or relative
mode (starting from the current UML profile and possibly using the moving up "-").
UML profile::=

[header_profile] [{profile_item}]
profile_name profile_mode

header_profile::= <default |'#'>;
profile item::= profile_name '#';
profile_name::= <name | '-'>;
profile_mode::= <'#' | '##' >;

Designating a class
Classes are predefined, and will be either basic classes (integer, etc.), or
metamodel classes (see class). The "[]" prefix is used to designate sets.
Class::= class | class'[]'

Defining blocks of instructions
Blocks of instructions appear either to define the content of the methods, or to
define anonymous methods, linked to the sets resulting from a "select" or "while"
command. At the head of each block, local variables can be defined.
Block::=

'{'
{variable_declaration}
{statement}

'}'

Declaring local variables
Local variables are declared at the head of each block. They can have an initial
value.
variable_declaration::=

class variable_name [assignment]

Chapter 8: J syntax

Objecteering/The J Language User Guide 8-7

Instructions
Instructions can be:

♦= a condition (if, else, etc.)

♦= an assignment (=, ?=)

♦= the sending of a message (object, method (parameter))

♦= a message diffusion (object.<method (parameter))

♦= the calling of an anonymous method
Statement::=

if_statement
| anonymous_statement
| message_call ';'
| [assign_statement] ';'

"if" Instruction
The "if" instruction owns the "else" or " else if" operators, which allow you to easily
combine several possible cases ("case" not being present).
if_statement::=

'if' '('expression')'
statement | compound_if_statement

['else' statement|compound_if_statement
compound_if_statement::=

'{'
{statement}

'}'

Assignment
assign_statement::= assignable assignment-operator
expression
assignable::=
variable_name|parameter_name|attribute_name
assignment operator::= '='|'?='

Chapter 8: J syntax

8-8 Objecteering/The J Language User Guide

Message sending/Message diffusion
The sending of a message consists of accessing an object, then designating a
method name and its parameters. Dynamic evaluation will launch the concerned
method for the given object.
message_call::=

instance_access call_operator
[UML profile] method_name argument_list

instance_access::=[message_call | instance | iterator]
{call_operator [message_call |

instance |
iterator]}

instance::= attribute_name | variable_name |
MetaModelInstance |
'this' | 'super' | 'StdOut' | 'StdErr'

iterator::= 'select' '(expression)' | 'while'
'('expression')'
call_operator::= '.' | '.<'
argument_list::=

'('[<argument> {','argument}]')'
argument::= instance_access | integer_value |
String_value
| boolean_value | method_statement | set_access |
'this'

Anonymous methods
An anonymous method always comes after an expression.
anonymous_statement::= message_call

Chapter 8: J syntax

Objecteering/The J Language User Guide 8-9

Expressions
expression::= argument | boolean_expression |
arithmetic_expression

| '('expression')'
boolean_expression::= expression '||' expression

| expression '&&' expression
| expression '==' expression
| expression '!=' expression
| expression relational_operator

expression
| '!' expression

relational_operator::= '<' | '<=' | '>' | '>='
arithmetic_expression::= expression arith_op expression
arith_op::= '+' | '-' | '/' | '*' | '%'

J classes
J classes are basic classes, "stream" utility classes and metamodel classes.
basic_class::=

MetaModelClass | 'Object' | 'String' | 'boolean' |
'int'

| 'float' | 'inStream' | 'outStream' | 'stream'

Basic values
boolean value::= 'true' | 'false'
String_value::= Any symbol between " and "
int_value::= Any integer value

Index

"add" message 4-8
"addElement" message 4-7
"administration" mode 7-4
"if" instruction 8-7
"NL" variable 3-7
"project" mode 7-4
"retract" message 4-8
"select" message 4-8
"size" message 4-7
"StdErr" variable 3-7
"StdFile" variable 3-7
"StdOut" variable 3-7
"super" pseudo-variable 3-5
"Tab" variable 3-7
"this" variable 3-7
"while" message 4-9
. operator 3-10
.< operator 3-10
: operator 3-10
+ operator 2-13
Accessing associations 2-19
Accessing attributes 2-18
Accessing features of UML profiles

6-7
Actual parameter types 3-8
Adapting Objecteering/UML

Adding model requests 1-3
Definition of additional consistency

checks 1-3
Model transformation 1-3
Specific code generation 1-3

add 4-8
addElement 4-7
-admin 7-6
-admin argument 7-6

Administration mode 7-3, 7-4
and 3-11
Anonymous method 4-4
Anonymous methods 1-6, 3-6, 4-3,

4-7, 5-3, 8-6, 8-8
Definition 3-11
Diffusion to an object 3-11

assign 2-12
Assignment 8-7
Attribute notion 1-3
Attributes 1-4, 3-3, 3-9

Access to attributes 3-10
Class attributes 3-9
Instance attributes 3-9
Overview 3-9

Backus Naur Form 8-3
baseadm 7-3
Basic classes 4-4
Basic J class types

boolean 2-7
enumerate 2-7
float 2-7
int 2-7
String 2-7

Basic J classes 2-7, 4-4, 5-6, 5-7, 8-
6, 8-9
boolean class 2-10
float class 2-9
int class 2-8
String class 2-11

Batch mode 1-8
BNF 8-3
BNF form

Essential syntactical elements 8-4
boolean class 2-10

Operators and methods 2-10
Boolean expressions 5-6
C++ generation 1-5, 7-3
Case sensitive 8-3
Class 1-4, 4-3

Designation 8-6
Class attributes 1-5, 2-18, 3-9, 8-5
Class notion 1-3
ClassOf 2-4
clear 4-7
close 2-15, 2-16
-cmd command Name argument 7-5
-cmd commandName 7-5
Code factorization 3-5
Code UML profile 6-10
Command line syntax 7-4
Commands 1-8
Comments 1-7
concat 2-12
Conditional control structures 1-7
contains 4-6
Context 1-6
Control messages 1-6, 1-7

The "select" message 1-7
The "while" message 1-7

Current UML profile 6-6
Cxx UML profile 6-10
-db database 7-5
-db database argument 7-5
Declaring local variables 8-6
Declaring UML profiles 6-5
default UML profile 6-3
Defining blocks of instructions 8-6
-delim argument 7-7
Designating UML profiles 8-6
Designation a class 8-6

Diffusing a message 1-6
Diffusion 1-6, 5-3
Diffusion characteristics 5-9
-display 7-5
-display/-noDisplay argument 7-5
Documentation generation 1-5, 7-3
documentation UML profile 6-10
Double look up mechanism 1-4
Editing a UML profiling project 1-8
Enumeration type 2-14
erase 2-12
eraseAfter 2-11
eraseBefore 2-11
Escape character 2-13
Escape character in a constant String

2-13
eval statement 1-4
Executing J

Administration services 7-3
Purpose 7-3

existFile 2-15, 2-16
exit 5-13
exp 2-9
external UML profile 6-10
Feature metaclass 5-10
findFirst 2-11
findLast 2-11
findToken 2-11
First example

Aims 1-12
Execution 1-13
J program 1-12
Realization principle 1-12
Terms used 1-13

float class 2-9
Operators and methods 2-9

Flow of control
Conditional structure (if) 5-4
Overview 5-3

Generalization notion 1-3
Generation adaptation mechanism

6-4
Generation parameterization 1-5
getCurrentModuleName 5-13
getCurrentProfileName 5-13
getCurrentProject 5-13
getFeature 2-5
getInvocationParameters 7-8
getItemSet 4-6
getStartUpObject 5-13
getStartUpProfileName 5-13
if 1-7, 5-3, 8-7
in 3-7, 3-8
inout 3-7, 3-8
Input/output classes 2-15

inStream class 2-16
outStream class 2-15
Stream class 2-15

insertStr 2-12
Instance attribute 2-18
Instance attributes 3-9
inStream 2-15
inStream class 2-16
Instructions 8-7
int class 2-8

Operators and methods 2-8
internal UML profile 6-10
isStandaloneInvocation 5-13
J and the metamodel

Handling rules 1-10
J blocks 3-6
J characteristics

Interpreted language 1-4
Java-like syntax 1-4
Language for handling the

metamodel 1-4
Syntax 1-4

J classes 3-4
Basic classes 1-5, 8-9
Objecteering/UML metamodel

classes 1-5
J interpreter 5-11
J language

Definition 1-3
Prerequisites 1-3
UML profiles 1-5

J language services
assign 2-12
ClassOf 2-4
clear 4-7
close 2-15, 2-16
concat 2-12
contains 4-6
erase 2-12
eraseAfter 2-11
eraseBefore 2-11
existFile 2-15, 2-16
exit 5-13
exp 2-9
findFirst 2-11
findLast 2-11
findToken 2-11
getCurrentModuleName 5-13
getCurrentProfileName 5-13
getCurrentProject 5-13
getFeature 2-5
getInvocationParameters 7-8
getItemSet 4-6

getStartUpObject 5-13
getStartUpProfileName 5-13
insertStr 2-12
isStandaloneInvocation 5-13
log 2-9
metaclassName 2-4
Name 2-4
open 2-15, 2-16
overwrite 2-12
ParentOf 2-6
pow 2-9
prepend 2-12
read 2-16
remove 4-6
segment 2-11
setItemSet 4-6
setTrace 5-13
size 2-11
sort 4-6
space 2-11
sqrt 2-9
strcat 2-12
strip 2-12
strncat 2-12
strncpy 2-12
strnequal 2-12
substitute 2-11
toBoolean 2-12
toFloat 2-12
toFoat 2-8
toInt 2-9, 2-12, 2-14
toLower 2-11
toString 2-8, 2-9, 2-10, 2-12, 2-14
toUpper 2-11
write 2-15

J methods 1-8, 1-12, 2-18, 3-4, 5-10,
6-3
Declaration 3-4
Definition 3-4
Example 3-4
Organization 6-3

J on-line commands 7-3
J programs 1-5, 1-8, 4-3, 7-3

Composition 1-5
Conditional control structure 1-7

J services 5-11
J syntax

Basic values 8-9
Class attributes 8-5
J program 8-5
Method declaration 8-5

Java "wrappers" 3-7
Java features 1-4
Java introspection mechanism 2-4
Java libraries 1-4
Java wrappers 3-7
Java-like syntax 1-4
length 4-7
listClasses 1-13
Literal names 2-14
Local variables 1-5, 3-6, 8-6
log 2-9
Make UML profile 6-10
-mdl module 7-5
-mdl module argument 7-5
Message diffusion 5-9
Message sending 5-9
Message sending notion 1-3
Messages

Control messages 1-7
Diffusion 5-9

Overview 5-10
Sending 5-9
Sending and diffusing 1-6, 8-8
The "select" message 1-7
The "while" message 1-7

Messages to sets
"While" message 4-9
Access to the i element 4-6
Add message 4-8
addElement message 4-7
Retract message 4-8
Select message 4-8
Size message 4-7

Meta metamodel 2-4
Meta-association 1-9
Meta-attribute 1-9
Metaclass 1-9

objectName argument 7-6
Metaclass class 2-4

ClassOf 2-4
Name 2-4
ParentOf 2-6

metaclassName 2-4
Metamodel classes 2-18, 8-9

Accessing associations 2-19
Accessing attributes 2-18

Metamodel handling 1-4
Meta-role 1-9
Method body 3-6
Method declaration 8-5
Method parameters 1-5, 3-7
Methods 8-5
Modules

Internal and external names 7-8
MpGenProduct 2-18, 3-9
Name 1-13, 2-4

N-ary association 4-3
Navigation rules 6-8
NL 1-13, 3-7
-noDisplay 7-5
Non primitive classes 5-7
Notion of context 1-6
Notion of reference

Definition 3-3
notVoid 4-5
notVoid service 3-3
Object class 2-3
Object[] class 2-3
Objecteering/Documentation 7-8
Objecteering/J Libraries User Guide

1-3
Objecteering/Metamodel 1-3, 1-4
Objecteering/UML console 1-11
Objecteering/UML metamodel 1-9,

3-9, 4-3
Objecteering/UML Profile Builder 1-

3, 3-9, 6-3, 6-4, 6-5
Objecteering/UML work products 1-5
objing 7-3
open 2-15, 2-16
Operation 4-3
Operation notion 1-3
Operators

operator 3-10
. operator 3-10
.< operator 3-10

Order of set elements 4-3
outStream 2-15
outStream class 2-15
overwrite 2-12
OwnedElementClass 1-13
Package 1-6, 1-12, 1-13, 4-3
Parameter 3-3, 4-3

ParentOf 2-6
PartOperation 1-13
Passing modes 3-7
Platform UML profile 6-10
Polymorphism 3-5
pow 2-9
Predefined output 2-17
Predefined variables 3-7
prepend 2-12
Primitive classes 5-7
-prj project 7-5
-prj project argument 7-5
Project mode 7-4

parameters 7-8
read 2-16
References 3-3
Relative UML profile 6-6
remove 4-6
retract 4-8
return 3-8
Root classes 2-3

Metaclass class 2-4
Object class 2-3

Running J programs 1-8
segment 2-11
select 1-7, 4-8, 4-9, 5-3, 8-6
Sending a message 1-6, 5-3
Sending and diffusing messages 1-6
Set declaration 4-3
Set notation 4-3
setItemSet 4-6
Sets 1-6, 1-7, 2-3, 4-3

Assignment between sets 4-4
Empty set 4-5
Order of set elements 4-3

setTrace 5-13

Simple assignments
Overview 5-7

Simple attributes 1-5
size 2-11, 4-7
sort 4-6
space 2-11
Specific J services

eval 5-11
Symbolic access to metamodel

features 2-5
sqrt 2-9
stdErr 2-15, 2-17, 3-7
stdFile 2-15
StdOut 1-11, 1-13, 2-15, 2-17, 3-7
strcat 2-12
stream 2-15
Stream class 2-15
Stream classes 2-15
Stream utility classes 8-9
String 1-13
String class 2-11

Operators and methods 2-11
strip 2-12
strncat 2-12
strncpy 2-12
strnequal 2-12
substitute 2-11
super 3-5, 3-11
Symbolic access to metamodel

features 2-5
Tab 3-7
The "if" instruction 1-7
The "select" message 1-7

Generalization 4-10
The "while" message 1-7

Generalization 4-10

this 3-7
toBoolean 2-12
toFloat 2-8, 2-12
toInt 2-9, 2-12, 2-14
toLower 2-11
toString 2-8, 2-9, 2-10, 2-12, 2-14
toUpper 2-11
UML profile mechanism 1-4
UML profile structure 6-9
UML profiles 1-5, 3-4, 3-9, 6-3, 7-5,

8-5
Absolute notation 6-5
Declaration 6-5
default UML profile 6-3
Definition 6-3
Designation 8-6
Hierarchy 6-3
Navigation rule 6-8
Notation 6-5

Redefining methods 6-5
Relative notation 6-5
Structure 6-9

UML profiling projects 1-8
Variables 5-7

Initial values 3-6
Types 3-6

Variables and parameters
Actual parameter types 3-8
Local variables 3-6
Method parameters 3-7
Passing modes 3-7
Predefined variables 3-7
Return instruction 3-8

Visibility 1-13
while 1-7, 4-9, 4-10, 5-3, 8-6
Work products 1-5, 2-18, 3-9

Names of the metaclasses 7-8
write 1-13, 2-15

