
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

 Objecteering/Design Patterns
 for C++/Java User Guide

 Version 5.2.2

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/001

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents

Chapter 1: Overview
Overview of the Objecteering/Design Patterns for C++/Java module1-3
Structure of the Objecteering/Design Patterns for C++/Java module1-6
Patterns available ..1-9

Chapter 2: Using the Objecteering/Design Patterns modules
Presentation ...2-3
Selecting modules in a UML modeling project ..2-4
Configuring the module..2-6

Chapter 3: Details of different patterns
The Singleton pattern ..3-3
The State pattern ...3-9
The Prototype pattern ..3-19
The Memento pattern ..3-25
The Visitor pattern..3-34
The Proxy pattern...3-42
The Adapter pattern ...3-50
The Counted Pointer Idiom..3-64

Chapter 4: Bibliography
Bibliography ...4-3

Index

Chapter 1: Overview

Chapter 1: Overview

Objecteering/Design Patterns for Java/C++ User Guide 1-3

Overview of the Objecteering/Design Patterns for
C++/Java module

Introduction
Welcome to the Objecteering/Design Patterns for C++/Java user guide!
The Objecteering/Design Patterns for C++ and Objecteering/Design Patterns for
Java modules work in conjunction with the Objecteering/C++ and
Objecteering/Java code generation modules.
The Objecteering/Design Patterns for C++ and Objecteering/Design Patterns for
Java modules are intended for designers who are familiar with object oriented
design. They are made up of a group of "design patterns", each of which takes
advantage of automated assistance. The same patterns are provided for C++ and
Java. However, the related code generation modules also generate code specific
to the language in question.
The Objecteering/Design Patterns for C++ and Objecteering/Design Patterns for
Java modules are available in the "Professional" and "Enterprise" editions of
Objecteering/UML.

General characteristics
The Objecteering/Design Patterns for C++ and Objecteering/Design Patterns for
Java modules allow you to modify the model, in order to automatically apply the
design models described by Erich Gamma & Al. These design models describe
the structure and collaboration of a limited number of classes, so as to provide a
solution to a design problem which appears in a given context. Most of the time,
the problems dealt with are aimed at improving the adaptability and flexibility of an
underlying model.
In real terms, the application of a Design Pattern to a model is translated by:

♦= the creation of new classes, and new associations and attributes where
necessary

♦= the creation of new operations

♦= the implementation of operational code (C++ code and/or Java code) which
transposes the described collaboration

Chapter 1: Overview

1-4 Objecteering/Design Patterns for Java/C++ User Guide

When and why to use Design Patterns ?
Design Patterns are aimed at improving the adaptability of the model. This allows
you, amongst other things, to guarantee the present and future extensibility of your
model.
Extensibility of functions, such as:

♦= the subsequent addition of new functions independent of present functions
(Command pattern and Chain of Responsibility command)

♦= the adaptation of a sub-processing operation within an algorithm (Template
Method pattern)

♦= the possibility of modifying the algorithms which apply to elements of the Visitor
pattern

Extensibility of structures, such as:

♦= the grouping of elements in a recursive composition tree (Composite pattern)

♦= the possibility of connecting hierarchies of separated classes without interfering
in any of them (Adapter pattern)

♦= the delegation of the creation or grouping of instances (Prototype and
Singleton patterns).

Design Patterns are, in fact, recurrent design elements, independent of application
domains. As such, they are used during development, in the design phase, to
modify the analysis model. The application of Design Patterns to an analysis
model happens over two stages:
1 - Choice of pattern to be applied: This results from the analysis of motivations

and constraints (sometimes called forces) regarding the pattern which offers
an adequate solution. These motivations and constraints must be organized
in order of priority. Finally, for each candidate pattern, a parallel must be
established between the consequences of the application of the pattern and
the initial motivations and constraints. An incompatible consequence with a
priority constraint is a possible reason for the rejection of a candidate pattern.

2 - Implementation of the pattern: The model is modified in order to integrate the
selected pattern.

Chapter 1: Overview

Objecteering/Design Patterns for Java/C++ User Guide 1-5

The Objecteering/Design Patterns for C++ and Objecteering/Design Patterns for
Java modules allow you to automate this second phase. By doing this, they
eliminate the risk of errors inherent to the manual implementation of the pattern,
and allow the designer to concentrate on the important aspect of the use of
Design Patterns, in other words, the selection of the correct pattern.
Design Patterns provide an opportunity to communicate design choices, through a
common language. The documentation associated with each pattern serves as a
heritage common to the developers’ community, thus avoiding the need to re-
describe these recurring design elements in detail each time. For further
information, please refer to chapter of this user guide, the "Bibliography". Most of
the works cited in the bibliography are Design Pattern catalogues. Some of these
patterns are grouped into Pattern Languages, in other words, a complementary
family of models, which covers a particular area. These catalogues organize
design models into 3 categories:
1 - Idioms: Recurring constructions which are based on the specificities of a

programming language. As such, they cannot be transposed between
languages.

2 - Design Patterns: Characteristic constructions independent of programming
languages. Design Patterns formalize the occasional structural choices which
can be implemented independently of the realization environment. Idiomatic
implementations can be proposed for Patterns.

3 - Frameworks: These express the general form of an application or a sub-
system, by forming the infrastructure of the interaction. All or a part of a sub-
system based on a framework must do this, by deriving certain particular
classes of this framework, and by redefining the methods destined to be used.
The logic of the interaction of classes must not clash with that of the
framework, since this is what guides execution logic.

Chapter 1: Overview

1-6 Objecteering/Design Patterns for Java/C++ User Guide

Structure of the Objecteering/Design Patterns for
C++/Java module

Introduction
In this user guide, an individual section is dedicated to each design pattern.
Explanations are provided with regard to an example project, which can be
imported by creating a new UML modeling project, and by running the "Design
Patterns for .../Import Design Patterns Samples Project" command on the UML
model root.

Figure 1-1. The "Import Design Patterns Samples Project" command

Chapter 1: Overview

Objecteering/Design Patterns for Java/C++ User Guide 1-7

For each of the patterns, a different package is created. At the outset, each of the
packages contains the "before generation" structure of the pattern. You may then
apply the pattern, by following the documentation, in order to see what has been
generated.

Important!: All the vocabulary and the examples provided conform to the
corresponding vocabulary and the example (or to one of the
examples) described in the work from which the pattern has been
extracted. To understand the vocabulary used, and to have further
details on these examples, please refer to these specific works.

Command menu labels are prefixed with the abbreviation of the name of the work
from which the pattern has been extracted. The abbreviations used are:

♦= GOF: acronym for the Gang Of Four, a nickname given to the group of four
people who wrote the first "Design Patterns" work and from whom the vast
majority of the patterns in this module are taken.

♦= POSA: acronym for Pattern Oriented Software Architecture from which the
"Counted Pointer" idiom is taken.

Chapter 1: Overview

1-8 Objecteering/Design Patterns for Java/C++ User Guide

General principle
The examples project contains a package of examples per design pattern which
can be used for the First Steps. You should simply follow the instructions given
for each design pattern.
Activation of a design pattern consists of designating classes or packages to
which the pattern is to be applied, and of choosing a menu which corresponds to
the desired design pattern. The model will then be automatically transformed
according to the design pattern used.
For the "Proxy" and "Adapter" design patterns, the model has to be modified after
activation of the pattern, so that the example produces an executable. On the
package representing the design pattern, a "comment" note contains the
modifications to be made to the model.

Generation and compilation
Each package runs an executable.
In C++, it is necessary to:

♦= define the name of the type interpretation package in C++ module
configuration, with "ObjecteeringTypes" as its value

♦= compile the package with the "libO" library, found in the
<OBJING_PATH/gencxx/lib directory, and the includes found in the
<OBJING_PATH/gencxx/include directory

In C++, launch the following command in an MS-DOS console:
<PackageName>

In Java, launch the following command:
java -classpath <generation directory >;<jdk directory
>\lib\classes.zip <Name of Package>.<PrincipalClassName>

Chapter 1: Overview

Objecteering/Design Patterns for Java/C++ User Guide 1-9

Patterns available

The ... pattern is used to ...
Singleton manage a unique instance and to make it transparent.

State adapt the behavior of an object according to its internal state.

Prototype create an instance, by cloning a "prototype" instance.

Memento externalize the values of an object. This pattern is frequently
used for the "undo/redo" services.

Visitor apply a group of operations to a hierarchy of classes

Proxy define access by proxy to another object.

Adapter (two generation
modes)

adapt a class’ interface to that of a target class.

Counted Pointer manage referenced objects (specific to C++).

Chapter 2: Using the
Objecteering/Design
Patterns modules

Chapter 2: Using the Objecteering/Design Patterns modules

Objecteering/Design Patterns for Java/C++ User Guide 2-3

Presentation

In order to use the Objecteering/Design Patterns for C++ and Objecteering/Design
Patterns for Java modules, the following steps must be carried out:

♦= the selection of the module at user UML modeling project level

♦= the entry of information during configuration of the module
For further details on the selection of modules, please refer to the "Selecting
modules in a UML modeling project" section of the current chapter of this user
guide.

Chapter 2: Using the Objecteering/Design Patterns modules

2-4 Objecteering/Design Patterns for Java/C++ User Guide

Selecting modules in a UML modeling project

To use one of the two Design Patterns modules (or the two modules),
Objecteering/Design Patterns for C++ or Objecteering/Design Patterns for Java,
they must be selected in your UML modeling project, in order to have the pattern
generation menus and commands at your disposal.
This selection is made by transferring the Design Patterns module(s) chosen from
the left-hand list to the right hand list of the "Modules" dialog box (as shown in
Figure 2-1):

Figure 2-1. Selection of the Design Patterns for Java module

Chapter 2: Using the Objecteering/Design Patterns modules

Objecteering/Design Patterns for Java/C++ User Guide 2-5

Steps:

1 - Click on the "UML modeling project modules" icon or the
"Tools/Modules..." menu to open the "Modules" window.

2 - Click on the "JavaDesignPatterns" or "CppDesignPatterns" module in the left-
hand list.

3 - Click on the "Add" button. The selected module is then transferred into the
right-hand "Modules used" list.

4 - Click on "OK" to confirm.

Chapter 2: Using the Objecteering/Design Patterns modules

2-6 Objecteering/Design Patterns for Java/C++ User Guide

Configuring the module

Presentation
The configuration of the chosen module is an essential operation, which must be
carried out for all UML modeling projects.

Chapter 2: Using the Objecteering/Design Patterns modules

Objecteering/Design Patterns for Java/C++ User Guide 2-7

The "Edit configuration" dialog box

The "Edit configuration" dialog box is opened by clicking on the ("Modify
module parameter configuration") icon, or through the "Tools/modify
configuration..." menu. The two modules (Objecteering/Design Patterns for C++
and Objecteering/Design Patterns for Java) are configured separately.
To proceed with module configuration, select the name of the module (either
Design Patterns for C++ or Design Patterns for Java) in the configuration module
tree. You will see that each module has a set of sub-options:

♦= A "General" sub-option

♦= Seven sub-options (six for Java) which correspond to each of the patterns
available in the module. Their related parameters will be explained in the
different sections dealing with each of the patterns in detail. These seven
sub-options are as follows:

♦= the Singleton pattern

♦= the State pattern

♦= the Prototype pattern

♦= the Memento pattern

♦= the Visitor pattern

♦= the Proxy pattern

♦= the Counted Pointer pattern (C++ only)

Note: There is no specific configuration for the Adapter pattern.

The "General" sub-option contains general module parameters, used to
determine:

♦= the code generation module name, used in conjunction with the Design
Patterns

♦= the body mark beginning and the body mark end used in code generation

Chapter 2: Using the Objecteering/Design Patterns modules

2-8 Objecteering/Design Patterns for Java/C++ User Guide

Figure 2-2. Configuring the Design Patterns for Java module

Figure 2-3. Configuring the Design Patterns for Java module

Chapter 2: Using the Objecteering/Design Patterns modules

Objecteering/Design Patterns for Java/C++ User Guide 2-9

The "General" sub-option: Body mark beginning parameter
This parameter corresponds to the flag inserted at the beginning of text generated
by the Objecteering/Design Patterns modules. This flag is inserted at the
beginning of typed text, which is associated with different module elements. The
presence of this flag, as well as that of the body mark end flag, allows you to mix
code generated by the module and code written by yourself within the same text
zone, without running the risk of seeing the code written by yourself cut during
subsequent pattern re-application.
This flag must correspond to a commentary and must be sufficiently
"recognizable" (in other words, it must not clash with other commentaries).

The "General" sub-option: Body mark end parameter
This parameter corresponds to the flag inserted at the end of generated code, in
order to implement a design pattern. It represents the Design Patterns body mark
end flag, and is the opposite of the parameter described in the previous
paragraph. You may add your own code after it.
This flag must correspond to a commentary and must be sufficiently
"recognizable" (in other words, it must not clash with other commentaries, in
particular with the body mark beginning flags).

Chapter 3: Details of different patterns

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-3

The Singleton pattern

Presentation
The Singleton pattern guarantees the uniqueness of an instance of a given class,
through a single access point. The creation and initialization of this instance
occurs late, during the initial accessing of this instance.

Motivations for choice
♦= You wish to create a unique instance class, to which access is both simple and

secure. You require, amongst other things, a level of security superior to that
of the simple declaration of a local variable.

♦= You wish to ask for details of the creation of an instance. The instance must
be created as late as possible, so as to economize on cost, if the singleton is
never referred to. This instantiation must be carried out in a transparent
fashion.

Chapter 3: Details of different patterns

3-4 Objecteering/Design Patterns for Java/C++ User Guide

Singleton configuration parameters

Figure 3-1. Configuration parameters for the Singleton pattern

♦= "Singleton role name": The unique instance of the Singleton is accessible via a
private class relation of 0..1 multiplicity which is generated. Via this parameter,
the name of the relation’s role, which allows access to this unique instance, is
defined. Modify this parameter if, for example, you have to make your code
conform to certain naming rules. The configuration of this role name may only
be accessed through parameterization. No entry dialog box allowing this name
to be modified is proposed at the moment of generation.

♦= "Singleton accessor name": This parameter allows you to define the name
which will be given to a generated class operation, which gives access to the
unique instance. Modify this parameter if you have to make the naming
respect certain rules. As for the previous parameter, the configuration of this
name may only be carried out through parameterization.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-5

Singleton structure before pattern application

Figure 3-2. The "Singleton" class before pattern application

♦= One single class (the class on which generation will take place) is necessary.

♦= This class must not be abstract.

♦= This class can have sub-classes, but generation will in no way take these into
account.

♦= This class must have a default constructor, either an implicit one (the class has
no constructor) or an explicit one (the class has one or several constructors,
one of which must be the default constructor). The initial visibility of this
constructor is not important; it will be modified later, in order to become
"private".

♦= This class can have components, but must NOT be the component of another
class.

♦= This class must not already have a operation of the same signature as the
instance access operation (for example, Instance()). If the opposite is true,
this operation must correspond to the criteria expected by the pattern: Class
operation which returns (after instantiation, if necessary) the unique instance.

♦= The class must not already have an association with a role name which
corresponds to the role name parameterized for the reflexive association of the
Singleton. If the opposite is true, this association must correspond to expected
criteria: reflexive class association of 0..1 multiplicity, with private visibility.

Chapter 3: Details of different patterns

3-6 Objecteering/Design Patterns for Java/C++ User Guide

Singleton pattern operating mode

Figure 3-3. Selection of the GOF - Singleton pattern for the "Singleton" class

Steps:
1 - In the explorer, select the class which is to become a Singleton and right-click

to open the context menu.
2 - Select the "Design Patterns for C++" or "Design Patterns for Java" menu item.
3 - Select the "GOF - Singleton" pattern.

Note: A message in the console informs you that processing is complete. The
class is then modified, as shown below (Figure 3-4).

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-7

Singleton structure after pattern application

Figure 3-4. Modification of the "Singleton" class

♦= All the class’ constructors have now changed to private visibility.

♦= A private class relation 0..1 from the class towards itself is generated. The role
name used to access this relation corresponds to the name specified during
module parameterization.

♦= A public class operation is generated to allow access to the Singleton’s unique
instance. The name of this access operation is fixed during parameterization.
The code of this operation is also generated, and refers to the class’ default
constructor.

Chapter 3: Details of different patterns

3-8 Objecteering/Design Patterns for Java/C++ User Guide

Consequences - Advantages
Access to the Singleton is precisely controlled within the instance access
operation. It is, therefore, easy to allow exclusive access to this unique instance
between several threads of the same application by applying, for example, the
Double Check Locking Pattern. The necessary code can be added before and
after the code marks generated by the Objecteering/Design Patterns module,
without it being necessary to modify the generated code.
A supplementary degree of upgradeability is given to the application. If the
original Singleton is derived, it is easy to modify the access operation in order to
instantiate and send back an instance of this sub-class. This may be carried out
in a transparent manner towards the Singleton’s clients. However, this
necessitates slight modifications to the code generated by the
Objecteering/Design Patterns module, in order to refer to the instantiation of the
sub-class. If the Singleton is a manager, and this manager then evolves into a
distributed manager, the access operation can be modified, in order to send back
a proxy on the distributed object. Once again, this is carried out in a transparent
manner for the client.
The best naming space management is provided. The global naming space is not
cluttered with global variables.

Consequences - Drawbacks
Arguments cannot be passed to the Singleton’s instantiation. This is a direct
consequence of the fact that the Singleton is instantiated in a transparent manner.
There is no explicit destruction of the Singleton. It is simply destroyed at the end
of execution.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-9

The State pattern

Presentation
The State pattern allows an object to adapt itself to the behavior of certain of its
operations, according to its internal state. These states, as well as the transitions
between these states, are determined by the corresponding control state chart.

Motivations for choice
♦= You wish to modify the behavior of all or some of the services proposed by an

object during execution. The behavior chosen for this or these service(s)
depends directly on the control state chart.

♦= You wish to integrate an operation control based on the verification of the
control state chart, which allows you to ensure the applicability of operations,
according to the current state.

Chapter 3: Details of different patterns

3-10 Objecteering/Design Patterns for Java/C++ User Guide

State configuration parameters

Figure 3-5. Configuration parameters for the State pattern

♦= "Current state role name": Role name allocated to the 1..1 association, which
points to the object and which represents the current state of the object.

♦= "State list role name": Role name of the 1..n relation which records all the state
objects representing all the potential states of the class, as they are stipulated
by the control state chart.

♦= "Change state operation name": Operation name which allows you to change
the current state of the object. This operation, generated by the
Objecteering/Design Patterns module, is referred to by operations which cause
transitions between states. As a parameter, it takes a whole, which must be a
value of the enumerate representing all the possible states of a class.

♦= "Abstract state class suffix": Suffix which determines the name of the base
class from the generated state classes (see the "Structure after pattern
application" paragraph below). This base class takes the name of the context
class + suffix. Classes which represent concrete states take the name of the
context class + state name (as it is specified in the control state chart).

♦= "State enumerate accessor name": Accessor which allows you to find out the
current state.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-11

State structure before pattern application

Figure 3-6. The "TCPConnection" class before pattern application

♦= One single class (the class on which generation is to take place) is necessary.
This class cannot be named "State", because if it is named "State", the code
generated will not compile.

♦= One single control state chart must be defined on the class.

Chapter 3: Details of different patterns

3-12 Objecteering/Design Patterns for Java/C++ User Guide

Figure 3-7. State chart of the "TCPConnection" class

♦= The operations whose implementation or applicability depends on the current
state must figure as control state chart transitions.

♦= The state chart must contain one single transition resulting from the initial state
(non-named). This transition must be carried out by the "create" operation.

♦= The state chart must not be redefined in a sub-class.

♦= Transitions which originate from or arrive in an abstract state are not
authorized.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-13

For a given origin state, an operation can only make the state chart transit to one
single state. In other words, the state chart below is forbidden, since the "Close
()" operation leaves the "TCPEstablished" state twice, and heads towards two
different states.

Figure 3-8. Incorrect state chart

Chapter 3: Details of different patterns

3-14 Objecteering/Design Patterns for Java/C++ User Guide

State pattern operating mode

Figure 3-9. Application of the State pattern to the "TCPConnection" class

Steps:
1 - In the explorer, select the class on which the State pattern is to be applied and

right-click to open the context menu.
2 - Select the "Design Patterns for C++" or "Design Patterns for Java" menu item.
3 - Select the "GOF - State" pattern.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-15

State structure after pattern application

Figure 3-10. Modification of the "TCPConnection" class

The Context class (here "TCPConnection") on which the pattern has been applied
is transformed as follows:

♦= Addition of a private visibility 1..n association, in which the instances of all the
possible states of the class will be recorded. The role name of this association
can be parameterized.

♦= Addition of a private visibility 1..1 association, which references a state object
representing the current state of the Context object. The role name of this
association can be parameterized at module level.

♦= Addition of an "initStates" operation, which instantiates all the possible states
of the Context object, and which records these state objects in the association
which lists all the states.

♦= Addition of a state change operation, whose name is configured at module
level.

♦= For operations involved in transitions between states, the C++ or Java code
which redirects this call towards the corresponding operation of the "State"
class is generated. If code already exists in these operations, it is copied into
the concrete state classes.

Chapter 3: Details of different patterns

3-16 Objecteering/Design Patterns for Java/C++ User Guide

An "abstract state" class is created. This class bears the name of the Context
class, to which a suffix is added. This name can be configured at module level. If,
before pattern application, there already exists an association bearing the name
defined by the "Current State Role Name" parameter, the class linked by this
association serves as base class for the concrete states.

♦= This class defines the operations which correspond to (and which have the
same name as) the Context class’ operations implicated in the transitions
between states. By default, all these operations provoke a constantly false
pre-condition lifting, since they should be abstract.

Note: These operations are not generated as abstract, since they are not all
redefined in all the sub-classes.

♦= This class defines whole type class constants. These constants bear the same
names as the states defined in the control state chart, and are attributed values
ranging from 0 to n-1 (number of state charts less one).

♦= It defines a state change operation, whose name can be configured at module
level, and whose role is to refer, in turn, to the state change on the Context
class (the corresponding code is generated).

If the abstract states have been defined, they figure in the form of abstract
intermediary state classes.
Concrete state classes, which are derived from the abstract state class, are
created. These classes bear the name of the Context class suffixed with the state
names described in the control state chart of the Context class. In this way, as
many concrete state classes are created, as there are states in the control state
chart.

♦= Each concrete state class redefines the operations for which it is the starting
state of the transition.

♦= These operations' code is initialized with the correct state change. The user
must add the applicable code before this code.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-17

Consequences - Advantages
Transitions between states become explicit.
Control structures (tests or switch-cases), destined to determine which processing
must be applied according to the internal state of the object, are removed from the
body of operations. These control structures, which depend on the current state
of the object, are often repeated identically on several operations. The application
of the State pattern reduces the complexity of these operations.
Operational control is managed and consistency with the control state chart
maintained. It follows the modifications made to this control state chart during re-
application of the pattern. Invariants specific to each state can be specified after
pattern application.
The classes which correspond to destroyed or renamed states and the operations
which correspond to destroyed transitions are not deleted, in order to avoid the
untimely loss of code. The destruction of these classes and/or these operations is
left up to the user.
In the same way, if the interface (name or parameters) of operations which
correspond to transitions is modified after pattern application, then the operations
previously created are not destroyed. To reapply this pattern after one of these
modifications, you should:

♦= copy the operations' code from the abstract class into the Context class

♦= destroy all the operations generated in the abstract class and all the concrete
classes

Consequences - Drawbacks
The number of classes and the structural complexity increases.
Efficiency is slightly reduced, following the introduction of a supplementary
indirection level.

Chapter 3: Details of different patterns

3-18 Objecteering/Design Patterns for Java/C++ User Guide

The Prototype pattern

Presentation
The Prototype pattern creates new instances, by cloning an existing instance
called prototype. The object obtained is initialized in exactly the same way as the
current state of the prototype. The Prototype pattern is applied to a class
hierarchy, and in this way, the duplication of any sub-classes may be referred to,
simply by manipulating them at their most abstract level, without having to worry
about their real type.

Motivations for choice
♦= You wish to be able to vary the products to be instantiated and/or the initial

values of these products at execution. This is made possible by adding,
withdrawing and modifying prototypes, where necessary.

♦= The quantity of different products which can be instantiated, and their possible
initial states, is very large. You wish to avoid reproducing an instance
fabrication structure which is parallel to the hierarchy of the products, and
which mimics it, in order to preempt future maintenance problems.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-19

Prototype configuration parameters

Figure 3-11. Configuration parameters for the Prototype pattern

♦= "Prototype clone operation name": This parameter allows you to attribute a
particular name to the operation which will duplicate the object. The choice of
name for this operation can only be made via this parameterization, and may
not be modified during pattern application.

Chapter 3: Details of different patterns

3-20 Objecteering/Design Patterns for Java/C++ User Guide

Prototype structure before pattern application

Figure 3-12. Classes before pattern application

♦= A hierarchy of classes is available.

♦= In C++, you must check that the copied semantics of these classes is correct.

♦= In Java, adequate copy constructors have to be created.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-21

Prototype pattern operating mode

Figure 3-13. Application of the Prototype pattern to a root class

Steps:
1 - In the explorer, select the class on which the Prototype pattern is to be applied

and right-click to open the context menu.
2 - Select the "Design Patterns for C++" or "Design Patterns for Java" menu item.
3 - Select the "GOF - Prototype" pattern.

Chapter 3: Details of different patterns

3-22 Objecteering/Design Patterns for Java/C++ User Guide

Prototype structure after pattern application

Figure 3-14. Modification of classes

An object duplication operation, bearing the name specified during module
configuration, is created in the class to which the pattern has been applied. This
operation is redefined on all the sub-classes of the class to which the pattern has
been applied.

♦= On abstract classes, the duplication operation is defined as abstract.

♦= On non-abstract classes, the code associated with this duplication operation
refers to the constructor by copy of the class, in C++. In Java, the copy
constructor not being taken into account by the compiler, the implementation of
the duplication operation is left to the developer’s discretion. It must be written
for all classes.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-23

Consequences - Advantages
It is now possible to vary the products created at execution, simply by recording or
detaching the adequate prototypes. In the same way, the modification of these
products’ initial values is carried out by modifying the values which correspond to
the prototypes.
For products created which are derived from an abstract Prototype class, it is
possible to subsequently expand the range of these products, by creating new
classes, which are derived from the abstract Prototype class, without client
modification.
It is becoming possible to define new objects, by modifying the values of an
object, instead of defining new classes. In as much as the Prototype pattern
allows the initialization of newly created objects with values which can be
dynamically configured, it is possible, in certain cases, to replace the definition of
new sub-classes by the definition of new state values in a single class. Thus, the
proliferation of classes is reduced, where this aspect appears crucial. In the same
way, instead of new values, we can define a prototype as being made up of sub-
parts, i.e., as being an aggregate. The operation which ensures the cloning must,
in this case, simply realize a "deep copy", that is to say, also guarantee the
copying of all the sub-parts.

Consequences - Drawbacks
The constructor by copy must be implemented for each sub-class of the Prototype,
implementation which can be non trivial.
In as much as the products to be created are dynamically determined, product
creation dependencies do not structurally appear.
In C++, it is possible to annotate a generalization as being private or protected.
These two annotations transform the generalization into an implementation
generalization. Sub-classes defined in this way are not polymorphs of the base
class. The application of the Prototype pattern does not take into account these
annotations, and produces a code which is accepted by the compiler. In any
case, the behavior of such a structure will not conform to the Prototype pattern.

Chapter 3: Details of different patterns

3-24 Objecteering/Design Patterns for Java/C++ User Guide

The Memento pattern

Presentation
The Memento pattern externalizes the values of an object, called Originator, in a
Memento object. This Memento object is created by the Originator, and initialized
with the current values of the former. When you wish to restore the Originator
object to its original state, you need simply re-read the values retained by the
Memento. The Memento is a non-dynamic object, whose only objective is to store
data.

Motivations for choice
♦= The Memento pattern allows the externalization of an object’s state, without

violating its encapsulation.

♦= The Memento pattern allows you to keep values associated with an object
before modification in the memory, in order to be able to subsequently restore
the object to its original state. This can be useful when you have to provide
such functions as transactions, or an "undo/redo" mechanism.

Read-write accessors
In order for the Memento pattern to be applied, accessors must be in read-write
mode, which means that the "ReadWrite" radio button in the C++ and/or Java tabs
of the properties editor for the attribute must be checked.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-25

Memento configuration parameters

Figure 3-15. Configuration parameters for the Memento pattern

♦= "Memento create operation": Operation name to be generated on the
Originator, in order to ensure the instantiation of a Memento.

♦= "Memento set operation": Operation name to be generated on the Originator, in
order to read the Memento.

Chapter 3: Details of different patterns

3-26 Objecteering/Design Patterns for Java/C++ User Guide

Memento structure before pattern application

Figure 3-16. The "Originator" class before pattern application

An "Originator" class to which the Memento pattern will be applied.

♦= This class has one or several attributes, whose values you wish to memorize
for subsequent restorations.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-27

Memento pattern operating mode

Figure 3-17. Application of the Memento pattern to a class

Steps:
1 - In the explorer, select the class which will play the role of Originator, and right-

click to open the context menu.
2 - Select the "Design Patterns for C++" or "Design Patterns for Java" menu item.
3 - Select the "GOF - Memento" pattern. A dialog box (as shown in Figure 3-18)

then appears.

Chapter 3: Details of different patterns

3-28 Objecteering/Design Patterns for Java/C++ User Guide

Figure 3-18. First dialog box for the application of the Memento pattern

♦= The first entry field, "Memento class name", allows you to choose a name for
the Memento class.

♦= Its default value is made up of the Originator class name suffixed with the
Memento. This class will generally be created by the Design Patterns
generator. In this case, its name must not clash with an already existing class
name.

♦= If you wish to assign the Memento role to an existing class, be sure that the
class is accessible from the Originator class (same package or package
accessible from the Originator package), then enter the name of this class in
the "Memento class name" field.

♦= The "Memento attributes" list presents the list of all public attributes, both
protected and private, of all base classes. In this list, you may make multiple
selections of attributes which you wish to see figure in the Memento. If you
wish to go further, it is imperative that you select at least one attribute before
the generation of the Memento pattern.

♦= If you click on the "Cancel" key, generation is interrupted.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-29

♦= If you click on "OK", the dialog box disappears and the values entered are
checked. A second dialog box then appears (as shown in Figure 3-19).

Figure 3-19. Second dialog box for the application of the Memento pattern

All the boxes to be checked under the "Fully managed attributes" label allow you
to specify, attribute by attribute, for each of the attributes that you have chosen
above, the elements which must be taken completely into account by the
generator. When you check this option for an attribute:

♦= A corresponding parameter is added to the Memento constructor. The code
which corresponds to the initialization of the attribute to which the parameter
refers is generated in the constructor.

♦= The code which corresponds to the re-reading of the value which is taken into
account is also generated in the "SetMemento" operation.

Chapter 3: Details of different patterns

3-30 Objecteering/Design Patterns for Java/C++ User Guide

If the box is not checked for an attribute, it is added to the memento’s attributes
and its accessors are generated. However, the code corresponding to the
Originator’s and the Memento constructor’s "SetMemento" operation is not
generated and should be carried out by the developer. This allows you to handle
cases where you wish to implement an incremental save.

♦= The "Target package" list allows you to specify a particular package to
welcome the Memento class which will be created. This package is chosen
from amongst the packages accessible from the originator package, which is
also included. If you have specified an existing class name, be sure to select
the package where it is located. If this is not done, generation will fail.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-31

Memento structure after pattern application

Figure 3-20.Modifications after pattern application

Creation of a "Memento" class which ensures the memorization of attributes
selected on the "Originator" class:

♦= The Memento attributes are identical to those of the Originator selected in the
HMI of the pattern generation.

♦= The Originator attributes marked as "fully managed" also make up a part of the
Memento constructor signature. This guarantees that for these attributes, the
Memento cannot be created without the initialization of the above attributes.

Creation of the "SetMemento" operation on the Originator. This operation takes a
Memento in parameter, and uses the values which are contained therein, in order
to update itself. The C++ code necessary to the re-reading of attributes marked
as "fully managed" is generated.
In C++, the Memento attributes change to protected and the Originator is declared
the "friend" of the Memento.

Chapter 3: Details of different patterns

3-32 Objecteering/Design Patterns for Java/C++ User Guide

Consequences - Advantages
The encapsulation of the Originator is preserved. You do not run the risk of
creating dependencies built on the internal data structure of the Originator by
exposing them.
A slim and intelligent interface on the Originator: only two services are necessary
for externalization. Access to the Memento interface, through which data may be
retrieved, is limited to the Originator.

Consequences - Drawbacks
Significant data copying costs may be entailed. In such cases, it is necessary to
envisage the implementation of a variant, which will call an incremental update.

Note: In Java, the encapsulation rupture is shifted from the Originator to the
Memento. The former remains vulnerable, since it exposes its accessors
and mutators to public visibility.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-33

The Visitor pattern

Presentation
The Visitor pattern allows you to define a group of operations, organized into a
hierarchy of classes called Visitors, on a group of classes called "Elements", also
organized into a hierarchy. These operations are applied to elements using a
"double dispatching" mechanism, or a calls reflection, which allows you to
precisely adapt the realization of each of the visitors’ hierarchy operations to each
of the elements’ hierarchy classes.

Motivations for choice
♦= You wish to apply a group of operations to a class structure. The concrete

classes on which the operation is applied differ in their interface and/or by the
way in which this operation must be applied.

♦= You wish to separate a group of operations, which is applied to a class
structure, from the classes to which they are applied.

♦= The group of operations applied to the Elements is likely to evolve, and you
would like this to happen, without questioning the "Elements" classes.

Chapter 3: Details of different patterns

3-34 Objecteering/Design Patterns for Java/C++ User Guide

Visitor configuration parameters

Figure 3-21. Configuration parameters for the Visitor pattern

♦= "Visitor accept operation name": Name of the dispatching operation which must
be generated on the visited elements structure.

♦= "Visitor concrete visit prefix": Prefixed with the name of the second dispatching
operations to be generated on a class hierarchy Visitor, which applies its
operations to the elements structure. The definitive name of these operations
is prefix + "Element" concrete class name, on which the visit is operated.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-35

Visitor structure before pattern application

Figure 3-22. Structure before pattern application

♦= A hierarchy of classes called "Elements" (here, the hierarchy in "Node"), to
which you wish to apply the operations.

♦= A hierarchy of classes called "Visitors" (here, the hierarchy in "NodeVisitor")
which organizes a class hierarchy of operations which will apply to "Elements".

♦= No prior relationship between the two hierarchies is necessary.

Chapter 3: Details of different patterns

3-36 Objecteering/Design Patterns for Java/C++ User Guide

Visitor pattern operating mode

Figure 3-23. Application of the Visitor pattern

Steps:
1 - In the explorer, select the class to which the Visitor pattern is to be applied,

and right-click to open the context menu.
2 - Select the "Design Patterns for C++" or "Design Patterns for Java" menu item.
3 - Select the "GOF - Visitor" menu item. The following dialog box (shown in

Figure 3-24) then appears.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-37

Figure 3-24. The parameters of the Visitor pattern

♦= The first entry field allows you to give a name to the acceptance operation
which will be added to the classes of the "Elements" hierarchy. By default, the
name which figures in this field is the name of the default operation set during
parameterization.

♦= "Root of Element Hierarchy": This list proposes all the classes accessible from
the selected visitor root. You must select one class only, which will constitute
the root class of the "Elements" hierarchy.

♦= Once this entry and this selection have been carried out, and once the group
has been confirmed, the following dialog box will appear (as shown in Figure
3-25).

Chapter 3: Details of different patterns

3-38 Objecteering/Design Patterns for Java/C++ User Guide

Figure 3-25. Parameters of the Visitor pattern

♦= "Visit operation name for xxx": For each of the classes which make up the
hierarchy of the "Elements" classes, an entry field proposes a name for the
operations which will be generated on the Visitors hierarchy. The Visitors
group will support all these operations.

The code specific to the acceptance operations situated on the "Elements"
hierarchy is entirely undertaken and generated by the Objecteering/Design
Patterns for C++ and Objecteering/Design Patterns for Java modules. It calls the
visitor operations which are specific to them.
The code specific to visitor operations must be written by the user.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-39

Visitor structure after pattern application

Figure 3-26. Structure after pattern application

♦= A visitor acceptance operation is generated on each of the element classes in
the hierarchy.

♦= A visit operation specific to each of the element hierarchy classes is generated
on each of the Visitors classes.

♦= The code, which allows each of the acceptance operations of each of the
elements to call the visit operation which corresponds to this element, is
generated.

Chapter 3: Details of different patterns

3-40 Objecteering/Design Patterns for Java/C++ User Guide

Consequences - Advantages
The addition of new operations is straightforward. In as much as the elementary
services necessary to the realization of operations to come already exist, new
operations may be added simply by adding new Visitor classes, without modifying
the "Element" classes. Nevertheless, if the "Elements" classes are numerous,
each new operation will have to support just as many realization operations. It is,
therefore, recommended that you reapply the pattern via the Objecteering/Design
Patterns module even in this case, in order to systematize the implementation of
these operations and to avoid realization errors.

Consequences - Drawbacks
The addition of new "Element" classes necessitates the modification of all the
Visitor classes. This classic negative consequence of the Visitor design pattern is
widely offset by the possibility of reapplying the pattern. In any case, do not forget
that the coding of new operations generated in this way on "Visitor" classes is left
up to you.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-41

The Proxy pattern

Presentation
The Proxy Pattern defines access by proxy towards another object. A class called
"Proxy" presents the same interface as a "RealSubject" class. In this way, a client
object of "RealSubject", which wishes to refer to its services, can identically
address a Proxy instance. The Proxy redirects calls destined for it towards the
"RealSubject", but offers services, according to its nature, which may be:

♦= Reference counting, in order to free the "RealSubject" as soon as possible
(smart reference/smart pointer).

♦= Locking, in order to ensure synchronization between several threads or several
processes. In this case, proxies are situated in separate execution spaces,
which implement a mechanism, which in turn allows operation calls (towards
"RealSubject") beyond these boundaries (smart reference/lock).

♦= Calling "RealSubject" services between machines on the same network in the
case of distributed objects (remote proxy).

♦= To allow the tardy instantiation of a "RealSubject", where this is greedy in terms
of resources (virtual proxy).

♦= To carry out security checks before accessing the "RealSubject" (proxy
protection).

Motivations for choice
The motivations which can lead to the implementation of a proxy are described in
the presentation above. In general, proxies allow access to a service, by inserting
an "added value" into the service, whose nature depends on the nature of the
proxy: remote access, locking, security.

Chapter 3: Details of different patterns

3-42 Objecteering/Design Patterns for Java/C++ User Guide

Proxy configuration parameters

Figure 3-27. Configuration parameters for the Proxy pattern

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-43

"Proxy role name": Role name of the association linking the Proxy and its
"RealSubject".
"Proxy suffix": The suffix specified here, added to the name of the class to which
the pattern is applied, allows you to propose a default class name for the Proxy.
"Which proxy class should be renamed?": The possible choices are "Real
Subject" and "Subject".

♦= If "Real Subject" is chosen, it is the class on which the Pattern, which is
renamed, is applied. The base class (interface) of the implementation class
then takes the name which was previously attributed to it. By doing this, the
previous operational references to "RealSubject" will become references to
"Subject", since these are based on the name. Structural references are also
modified and follow the name change. Thus, the Proxy and the level of
abstraction procured by the "Subject" are set up at the same time. However,
this often necessitates some manual adjustments in certain parts of the code.

♦= If "Subject" is chosen, it is the base class of RealSubject and of the Proxy,
which takes a newly created name. This choice allows you to retain the
previous function after application of the pattern. The use of the Proxy can be
put in place later, but only manually.

"Proxy (Real) subject suffix": This suffix, added to the class name, allows you to
propose a default name which may be used either for the Subject or for the Real
Subject, according to the choice of parameter implemented for "Which proxy class
should be renamed?".
"Proxy instantiation operation name": This allows you to parameterize the class
operation name of "Subject", which will instantiate the proxy and send it back in
the form of a "Subject", which allows you to mask the use (or possibly the non-use
according to a context defined by the developer) proxies from the client.

Chapter 3: Details of different patterns

3-44 Objecteering/Design Patterns for Java/C++ User Guide

Proxy structure before pattern application

Figure 3-28. Structure before pattern application

♦= The proxy pattern is applied to a class which then constitutes the
"RealSubject". No other class or association is necessary.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-45

Proxy pattern operating mode

Figure 3-29. Application of the Proxy pattern to a class

Steps:
1 - In the explorer, select the class for which you wish to generate a proxy and

right-click to display the context menu.
2 - Select the "Design Patterns for C++" or "Design Patterns for Java" menu item.
3 - Select the "GOF - Proxy" menu item.

Chapter 3: Details of different patterns

3-46 Objecteering/Design Patterns for Java/C++ User Guide

The following dialog box is then displayed (as shown in Figure 3-30).

Figure 3-30. Parameters of the Proxy pattern

♦= The "Package" entry field allows you to specify in which package "Subject" and
"Proxy" are to be generated. By default, this is the package which contains
"RealSubject".

♦= The "Select operations that you DON'T want in your interface" list allows you to
specify the "Real Subject" operation which do not have to be redirected from
the Proxy, but instead will remain local to "Real Subject". This list only
presents the "Real Subject" public operations, which are the only ones
concerned by a definition on the Proxy. This parameter allows the creation of
proxies, which only offer their clients a part of the "RealSubject" interface (re-
encapsulation).

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-47

Proxy structure after pattern application

Figure 3-31. Structure after pattern application

A "Subject" class has been created. According to the option chosen, either it
bears the name previously attributed to "RealSubject" or a new name.

♦= This class is abstract and defines a virtual destroyer.

♦= This class bears the definitions of the "RealSubject" public operations, which
have not been previously excluded. These operations are defined as being
abstract.

Chapter 3: Details of different patterns

3-48 Objecteering/Design Patterns for Java/C++ User Guide

A proxy class has been created. This class is derived from the abstract "Subject"
class, and has an association towards the "RealSubject" class (the class on which
pattern generation has been carried out). This class redefines the entirety of the
operations present on "Subject", and the corresponding implementation consists
of a redirection of these calls towards the "RealSubject" via the association which
links these two classes.
The "Real Subject" class is modified in order to specialize the "Subject" class.

♦= According to the configuration of the parameters, the name of this class is
either changed or left unchanged.

♦= Non-excluded public operations are modified, in order that they become
operations redefined from those presented on the "Subject".

All use of the "RealSubject" class (associations, operational use), with the
exception of parameter types, are redirected to the "Subject" class.
A class instantiation operation (by default "Instantiate()") is created on the
"Subject" class. It sends back a "Subject" and serves as the manufacturer (please
see the Factory pattern) for the "Subject" class. Its implementation by default
instantiates a proxy and sends it back.
A "Get<NameAssociation>" operation is created on the "Proxy" class, in order to
define the proxy type on the "RealSubject" class. The code of this operation is left
up to the user.
By default, the returned parameter type is "<ClassName RealSubject>" in C++,
and "< ClassName RealSubject>" in Java. This type may be modified by the user.

Consequences - Advantages
Indirect access to the "Real Subject" through the Proxy occurs in a transparent
manner, without it being necessary to introduce code modifications, in order to
take this indirect nature into account.
New services, which will come in between the "Real Subject" and the Proxy
(distant access, unlocking, protection), may be implemented, after the
implementation of the "Real Subject" itself and the client who is using it.

Consequences - Drawbacks
An extra level of indirection is introduced, as well as an increase in structural
complexity, due to the introduction of new classes.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-49

The Adapter pattern

Presentation
The Adapter pattern is used to convert the interface of an "Adapter" class towards
the interface of a "Target" class, with these two classes having no relation. This
allows the "Target" class to use the services of an existing class, in order to
realize one or several functions.
There exist two types of adapter:

♦= The class adapter is obtained by simultaneously deriving a class from the
"Target" and "Adapted" classes.

♦= The object adapter is derived from the "Target" class and is associated with an
"Adapted" class object.

Motivations for choice
♦= You wish to put in place a reusable class, but one which is based on diverse

existing or future classes, which have been developed by third parties, and
which do not necessarily have an interface which is compatible with our
reusable class.

♦= You wish to unify the use of diverse non-related classes within a structure,
which presents a unique manipulation interface.

♦= You wish to mask the interface of a service behind a proprietary interface, in
order to limit the impact of future evolution of this service's interface.

Chapter 3: Details of different patterns

3-50 Objecteering/Design Patterns for Java/C++ User Guide

Adapter structure before applying the pattern

Figure 3-32. Structure before pattern application

The Adapter pattern can be generated in two ways:
1 - Generation from the "Target" class (represented here by the "Shape" class).

This is the "Create class on target" mode:

♦= In this scenario, the class which plays the role of Adapter is generated,
whether a class adapter or an object adapter is created . The preliminary
structure, then, consists of 2 classes:

♦= A "Target" class, which will be the class from which the desired
services will be referred to by clients.

♦= An "Adapted" class, which represents the realization of the service,
whose interface does not correspond to the interface of the
"Target" class. This class has no link to the previous one.

2 - Generation from the "Adapter" class. This is the "Update existing class"
mode. This option does not produce any new classes, and allows you either
to use an existing class, such as "Adapter", or simply to re-apply the pattern to
an "Adapter" class.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-51

The "Create class on target" operating mode

Figure 3-33. Application of the Adapter pattern to a class

Steps:
1 - In the explorer, select the class which will play the role of Target, and right-

click to open the context menu.
2 - Select the "Design Patterns for C++" or "Design Patterns for Java" menu item.
3 - Select the "GOF - Adapter (create class on target)" menu item.

Chapter 3: Details of different patterns

3-52 Objecteering/Design Patterns for Java/C++ User Guide

For the Objecteering/Design patterns for C++ module, the following dialog box
(Figure 3-34) then appears:

Figure 3-34. Parameters of the Adapter pattern

♦= If the "Class adapting" box is checked, you may refer to the creation of a class
adapter. Where it is not checked, an object adapter is put in place.

♦= The "Adapted class" list allows you to select the "Adapted" class.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-53

For the Objecteering/Design Patterns for Java module, the following dialog box
(Figure 3-35) then appears:

Figure 3-35. Parameters of the Adapter pattern

This dialog box is identical to the previous one, except for the box to be checked,
which allows you to refer to the creation of a class adapter. Only the object
adapter is possible, since the class adapter is based on multiple generalization, a
function which is not available in Java.
Let us now look at the operating mode specific to each of these two variants.

Chapter 3: Details of different patterns

3-54 Objecteering/Design Patterns for Java/C++ User Guide

Operating mode for the implementation of a class adapter
When the "Class adapting" option has been selected (Objecteering/Design
Patterns for C++ module only), the following dialog box (Figure 3-36) appears:

Figure 3-36. Parameters of the Adapter pattern

♦= The "Adapter class name" field: This allows you to give a name to the
"Adapter" class, which will be created. Its default value is made of the
concatenation of the names of the "Adapted" and "Target" classes.

♦= The "Redefines operation" list: This allows you to select the services of the
"Target" class to be redefined in the "Adapter". These services are chosen
from the list of the "Target" class public operations.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-55

Operating mode for implementing an object adapter
Where the "Class adapting" option has been unchecked for the
Objecteering/Design Patterns for C++ module, and in all cases where the
Objecteering/Design Patterns for Java module is concerned, the following dialog
box appears:

Figure 3-37. Parameters of the Adapter pattern

Chapter 3: Details of different patterns

3-56 Objecteering/Design Patterns for Java/C++ User Guide

♦= The "Adapter class name" entry field allows you to attribute a name to the
"Adapter" class which will be created. Its default value is made up of the
concatenation of the names of the "Adapted" and "Target" classes.

♦= The "Association name" entry field allows you to specify the role name of the
protected visibility association which will be created between the "Adapter" and
the "Adapted". Its default value is the "Adapted" class name in lower case.

♦= The "Redefine operations" list allows you to select the services of the "Target"
class which must be redefined within the "Adapter" class. These services are
chosen from the list of the "Target" class public operations.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-57

The "Update existing class" operating mode

Figure 3-38. Application of the Adapter pattern to a class

Steps:
1 - In the explorer, select the class which will play the role of the "Adapter" (or

which is already playing that role), and right-click to open the context menu.
2 - Select the "Design Patterns for C++" or "Design Patterns for Java" sub-menu

and then select the "GOF - Adapter (update existing class)" item.

Chapter 3: Details of different patterns

3-58 Objecteering/Design Patterns for Java/C++ User Guide

For the Objecteering/Design Patterns for C++ module, the following dialog box
then appears:

Figure 2-39. Parameters of the Adapter pattern

This dialog box has previously been described in this section.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-59

The "Target" class, which serves as base class to the "Adapter", must now be
indicated. This is carried out via the following dialog box.

Figure 3-40. Parameters of the Adapter pattern

The list presented in this dialog box is that of the classes accessible from the
"Adapter" class. The "Target" class must be one of them. If this is not the case,
then a use link from the package in which the "Adapter" class is found towards the
package where the desired "Target" class is found must be missing.

Chapter 3: Details of different patterns

3-60 Objecteering/Design Patterns for Java/C++ User Guide

For the object adapter, all that remains is to specify the role name of the
association which links "Adapter" and "Adapted", and the "Target" class
operations, which must be redefined. The dialog box below is used to do this.

Figure 3-41. Parameters of the Adapter pattern

Adapter structure after applying the pattern
The final structure differs according to what was chosen to obtain a "Class
adapter" or an "Object adapter".

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-61

Structure after application of the Class Adapter pattern

Figure 3-42. Structure after application of the Class Adapter pattern

If the class adapter has been generated via the "GOF - Adapter (create class on
target)" menu item, the "Adapter" class (here "TextShape") is generated.
Whatever the class Adapter generation alternative:

♦= a generalization between the "Adapter" and the "Target" class has been
implemented.

♦= a generalization between the "Adapter" and the "Adapted" class has been
implemented.

♦= the operations redefined on the "Adapter" class have been implemented for all
the selected operations. The implementation of these operations, in other
words the reference to the "Adapted", remains up to the user.

Chapter 3: Details of different patterns

3-62 Objecteering/Design Patterns for Java/C++ User Guide

Consequences - Advantages
Class adapter: Other than the redefinition of the "Target" class "Request"
operation, the "Target" class can also redefine some of the "Adapted" class
operations, where necessary.
Class adapter: The adaptation is obtained with a good degree of efficiency, since
it is realized within one sole object which fuses the interface of the "Target" class
and the service provided by the "Adapted" class, without it being necessary to
refer to operations via indirections.
Object adapter: The interface of a class hierarchy can be adapted, without it being
necessary to create an adapter for each of them, simply by basing oneself on this
hierarchy parent class interface.

Consequences - Drawbacks
Class adapter: The language used must allow the use of multiple generalizations,
which excludes Java, and must allow you to specify generalization as an
implementation, which is indeed the case in C++ (private or protected
generalization). If this is not the case, the "Adapter" could be handled as if it were
the "Adapted" type, which it is not.
Class adapter: The adaptation of a class and all its sub-classes within a sole
"Adapter" class cannot be factorized, by basing oneself on the parent class
interface. You are obliged to create an "Adapter" per "Adapted" class concerned.
Object adapter: The public interface of the "Adapted" must expose services
sufficiently to allow adaptation, since the "Adapter" does not have access to the
protected interface.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-63

The Counted Pointer Idiom

Presentation
The Counted Pointer C++ idiom facilitates the management of memory spaces
allocated dynamically, by allowing the automatic destruction of these objects when
they are no longer referenced.
Instead of directly accessing dynamically allocated objects (called Body), a
"Handle" class, which allows access to the Body, is introduced.
The "Handle" class is an intelligent pointer type, and, in this sense, redefines the
"to" operator, but furthermore refers to reference counting situated in the Body:
this counter is incremented when a "Handle" instance is created, and
decremented when this instance is destroyed. Due to this, the "Handle" instances
must be allocated on the pile rather than on the heap.
The Counted Pointer idiom can be considered as a particular variant of the Proxy
pattern, although its implementation is completely different.

Motivations for choice
♦= You wish to integrate an automatic garbage collector mechanism into a C++

application, in order to ensure the destruction of objects which are no longer
referenced.

♦= Furthermore, you wish to ensure secure access (in terms of validity of
references) to objects allocated on the heap, in order not to undergo problems
linked to the use of gross pointers such as non-initialized pointers, or invalid
references (destroyed objects).

♦= You wish to share objects between different clients. Responsibility for the
management of these objects cannot be explicitly and definitively given to one
of these clients in particular, so you do not wish any of these clients to manage
these objects.

Chapter 3: Details of different patterns

3-64 Objecteering/Design Patterns for Java/C++ User Guide

Counted pointer configuration parameters

Figure 3-43. Configuration parameters for the Counted Pointer idiom

♦= "Counted pointer suffix": Allows you to specify a suffix which will be added to
the name of the Body class, on which the generation is run, to create the name
of the "Handle" class.

♦= "Counted pointer counter name": Allows you to specify the name which will be
given to the attribute which realizes the reference counting on the Body class.
This whole type attribute is generated on the Body class.

♦= "Counted pointer increment operation name": Name of the operation to be
generated on the Body class, in order to increment reference counting.

♦= Counted pointer decrement operation name": Name of the operation to be
generated on the Body class, in order to decrement reference counting.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-65

Structure before application of the idiom

Figure 3-44. Structure before application of the Counted Pointer idiom

Only the Body class is necessary before this generation. This class:

♦= must be allocated to the heap.

♦= must not already possess an attribute which has exactly the same name as
that parameterized in the "Counted pointer counter name" field, and a whole
different type.

♦= must not already possess operations whose names correspond to the names
of operations specified in the "Counted pointer increment operation name" or
"Counted pointer decrement operation name" fields, if they have not already
been generated by this pattern.

Note: There must not already exist a class whose name corresponds to the
name of the Body class + the suffix parameter in the "Counted pointer
suffix" field.

Chapter 3: Details of different patterns

3-66 Objecteering/Design Patterns for Java/C++ User Guide

Counted pointer idiom operating mode

Figure 3-45. Application of the Counted Pointer idiom on a pointer class

Steps:
1 - In the explorer, select the class on which you wish to generate a pointer class

with reference counting, and right-click to open the context menu.
2 - Select the "Design Patterns for C++" menu item.
3 - Select the "POSA - Counted pointer" menu item.

Chapter 3: Details of different patterns

Objecteering/Design Patterns for Java/C++ User Guide 3-67

Structure after application of the idiom

Figure 3-46. Structure after application of the Counted Pointer idiom

A "Handle" class is generated, whose name is made up of the corresponding
Body class, to which the suffix specified in the module parameterization is added.
The "Body" class is modified as follows:

♦= Addition of an attribute which allows reference counting

♦= Addition of two operations to increment and decrement the counter

Consequences - Advantages
There is no longer any need to manage the destruction of objects for which
reference management has been installed for this purpose.
This strategy prevents "memory leaks".

Consequences - Drawbacks
Control over the destruction of objects is lost.
The co-existence of two strategies of control over objects' lifetimes is not really
possible, since confusion in manipulation will occur sooner or later. It is, therefore,
preferable to apply the "counted pointer" strategy to all objects allocated on the
heap, or to none at all.

Chapter 3: Details of different patterns

3-68 Objecteering/Design Patterns for Java/C++ User Guide

Other advantages
To apply this strategy to all the classes of a leaf package, you need simply use the
"Design patterns for C++/POSA - Counted pointer on each class" command. This
command will generate a "counted pointer" on each of the package's classes,
except for those classes which are themselves "counted pointers". These classes
are recognized through the suffix which was chosen during module
parameterization.

Figure 3-47. Application of the Counted Pointer on each class idiom to a package

Chapter 4: Bibliography

Chapter 4: Bibliography

Objecteering/Design Patterns for Java/C++ User Guide 4-3

Bibliography

♦= [Gamma+95] Design Patterns, Elements of Reusable Object Oriented Software
- Erich Gamma, Richard Helm, Ralph Johnson, John Vlissids - Addison Wesley
1995.

♦= [Buschmann+] Pattern Oriented Software Application - Frank Buschmann,
Regine Meunier, Hans Rohnert, Peter Sommerlad & Michael Stal - John Wiley
& sons 1996

♦= [PLoPD2] Pattern Languages of Program Design vol. 2 - John M. Vlissides,
James O. Coplien, Norman L. Kerth edt - Addison Wesley 1996

♦= [PLoPD3] Pattern Languages of Program Design vol. 3 - Robert Martin, Dirk
Riehle & Frank Bushmann edt. - Addison Wesley 1998.

Index

Activating a design pattern 1-8
Adapter pattern 1-4, 1-9, 2-7

"Create class on target" operating
mode 3-51

"Update existing class" operating
mode 3-57

Advantages 3-62
Drawbacks 3-62
Motivations for choice 3-49
Presentation 3-49
Structure after applying pattern 3-

60
Structure before applying pattern

3-50
Applying Design Patterns

Two stages 1-4
Association 1-3
Attribute 1-3
Body mark beginning parameter 2-9
Body mark end parameter 2-9
C++ code 1-3
Chain of Responsibility command 1-

4
Choosing the pattern to be applied

1-4
Class 1-3, 1-8, 3-3
Class adapter

Operating mode 3-54
Collaboration 1-3
Command pattern 1-4
Communicating design choices 1-5
Composite pattern 1-4
Configuring the Design Patterns for

Java module 2-8
Configuring the module 2-6

The Counted Pointer pattern sub-
option 2-7

The General sub-option 2-7
The Memento pattern sub-option

2-7
The Prototype pattern sub-option

2-7
The Proxy pattern sub-option 2-7
The Singleton pattern sub-option

2-7
The State pattern sub-option 2-7
The Visitor pattern sub-option 2-7

Console 3-6
Counted pointer idiom 1-7, 1-9, 2-7

Advantages 3-67
Configuration parameters 3-64
Drawbacks 3-67
Motivations for choice 3-63
Operating mode 3-66
Presentation 3-63
Structure after applying idiom 3-67
Structure before applying idiom 3-

65
Design Pattern catalogues 1-5
Design Pattern categories

Design Patterns 1-5
Frameworks 1-5
Idioms 1-5

Design Patterns
Available patterns 1-9
General characteristics 1-3
Installation of the module 2-3
Introduction 1-3
Model adaptability 1-4
Structure 1-6
When and why? 1-4

Design Patterns structure
General principle 1-8

Double check locking pattern 3-8
Double dispatching mechanism 3-33
Entering information during module

configuration 2-3
Enterprise Edition 1-3
Example project 1-6
Function extensibility 1-4

Adapting a sub-processing
operation within an algorithm 1-
4

Adding new functions independently
of present functions 1-4

Modifying algorithms 1-4
Gang of four 1-7
General characteristics of Design

Patterns 1-3
GOF 1-7
Gross pointers 3-63
Implementing the pattern 1-4
Instance 3-3
Java code 1-3
Memento pattern 1-9, 2-7

Advantages 3-32
Configuration parameters 3-25
Drawbacks 3-32
Motivations for choice 3-24
Operating mode 3-27
Presentation 3-24
Structure after applying pattern 3-

31
Structure before applying the

pattern 3-26
Mixing code generated by the module

and code written by the user 2-9
Model adaptability

Extensibility of structure 1-4
Model extensibility 1-4
Modules

Dialog box 2-4
Non-initialized pointers 3-63
Object adapter

Operating mode 3-55
Objecteering/C++ 1-3
Objecteering/Java 1-3
Operation 1-3, 3-9
Pattern languages 1-5
Pattern Oriented Software

Architecture 1-7
POSA 1-7
Professional Edition 1-3
Prototype pattern 1-4, 1-9, 2-7

Advantages 3-23
Configuration parameters 3-19
Drawbacks 3-23
Motivations for choice 3-18
Operating mode 3-21
Presentation 3-18
Structure after applying the pattern

3-22
Structure before applying the

pattern 3-20
Proxy pattern 1-9, 2-7, 3-63

Advantages 3-48
Configuration parameters 3-42
Drawbacks 3-48
Motivations for choice 3-41
Operating mode 3-45
Presentation 3-41
Structure after applying pattern 3-

47
Structure before applying pattern

3-44
Read-write accessors 3-24
Selecting the module at UML modeling

project level 2-3

Singleton pattern 1-4, 1-9, 2-7
Advantages 3-8
Configuration parameters 3-4
Drawbacks 3-8
Motivations for choice 3-3
Operating mode 3-6
Presentation 3-3
Structure after applying the pattern

3-7
Structure before applying the

pattern 3-5
State 3-9
State chart 3-9
State pattern 1-9, 2-7

Advantages 3-17
Configuration parameters 3-10
Drawbacks 3-17
Motivation for choice 3-9
Operating mode 3-14
Presentation 3-9
Structure after applying the pattern

3-15
Structure before applying the

pattern 3-11
Structure extensibility

Connecting hierarchies of separated
classes 1-4

Creating or grouping instances 1-
4

Grouping elements in a recursive
composition tree 1-4

Switch-cases 3-17
Template Method pattern 1-4
Tests 3-17
The Edit configuration dialog box 2-7
The General sub-option

Body mark beginning parameter
2-9

Body mark end parameter 2-9
Transition 3-9
Undo/redo mechanism 3-24
Visitor pattern 1-4, 1-9, 2-7

Advantages 3-40
Configuration parameters 3-34
Drawbacks 3-40
Motivations for choice 3-33
Operating mode 3-36
Presentation 3-33
Structure after applying pattern 3-

39
Structure before applying pattern

3-35
When to use Design Patterns 1-4
Why use Design Patterns 1-4

