
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

     Objecteering/CORBA User Guide

                Version 5.2.2



Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software.  The software described in this document is
furnished under a license agreement.  The software may be used or copied only in accordance
with the terms of the agreement.  It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.  The purchaser may make one copy of
the software for backup purposes.  No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/001

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group.  Rational
ClearCase is a registered trademark of Rational Software.  CM Synergy is a registered
trademark of Telelogic.  PVCS Version Manager is a registered trademark  of Merant.  Visual
SourceSafe is a registered trademark of Microsoft.  All other company or product names are
trademarks or registered trademarks of their respective owners.



Contents

Chapter 1: Introduction
Overview of Objecteering/CORBA ................................................................1-3
Structure of the Objecteering/CORBA user guide ........................................1-4
Glossary .........................................................................................................1-5

Chapter 2: Working with the Objecteering/CORBA module
Installation information ...................................................................................2-3
Using the Objecteering/CORBA module in your UML modeling project.......2-4

Chapter 3: First Steps
Overview of First Steps..................................................................................3-3
Getting the example model............................................................................3-4
Creating an IDL generation work product .....................................................3-5
IDL generation work product menus .............................................................3-8
Generating IDL code....................................................................................3-10
Compiling .....................................................................................................3-13

Chapter 4: The UML Profile for CORBA module
Overview of the UML Profile for CORBA module .........................................4-3
Stereotypes ....................................................................................................4-6
Tagged values ...............................................................................................4-8
Notes............................................................................................................4-10
Mapping UML types into IDL types..............................................................4-11
Importing the CORBA package ...................................................................4-12

Chapter 5: Code generation
Overview of code generation .........................................................................5-3
Generating IDL elements...............................................................................5-5
Compatibility...................................................................................................5-8

Chapter 6: Calling module on-line commands
Calling on-line commands .............................................................................6-3

Index



Chapter 1: Introduction



Chapter 1: Introduction

Objecteering/CORBA User Guide 1-3

Overview of Objecteering/CORBA

Introduction
Welcome to Objecteering/CORBA!
Objecteering/CORBA consists of 2 modules: UML Profile for CORBA and CORBA
itself.  The UML Profile for CORBA module is not subject to a license, and is used
to model in accordance with the "UML Profile for CORBA V1.0" specification.  The
CORBA module is used to generate IDL in accordance with the CORBA 2.3
specification.
The Objecteering/CORBA modules allow the modeling, generation and
compilation of an IDL description from an Objecteering/UML model.

Functions
The Objecteering/CORBA module groups together the following features:

♦= IDL code generation

♦= generated code compilation

By working in conjunction with the reverse modules  (C++ or Java) available in the
Objecteering/UML range, the user can obtain client and server executables
through the following operations:

♦= reverse engineering C++ or Java skeletons of implementation classes
generated by the ORB

♦= entering code for implementation class operations previously reversed on the
server side

♦= generating C++ or Java code

♦= generating the production line and compiling



Chapter 1: Introduction

1-4 Objecteering/CORBA User Guide

Structure of the Objecteering/CORBA user guide

The Objecteering/CORBA user guide is intended for users of the
Objecteering/CORBA modules.  It guides you through the modeling and the
realization of an application, and constitutes a reference manual, which will help
you understand and use dedicated stereotypes, tagged values and notes.  This
user guide is divided into the following chapters:

♦= Chapter 2: This chapter describes how to prepare for working with the
Objecteering/CORBA modules.

♦= Chapter 3: This chapter provides the user with "First Steps", which
demonstrate how to obtain an IDL file.

♦= Chapter 4: This chapter details the UML Profile for CORBA module and
provides information on dedicated stereotypes, tagged values and notes.

♦= Chapter 5: This chapter describes IDL code generation.

♦= Chapter 6: This chapter explains how to generate IDL without opening
Objecteering/UML.



Chapter 1: Introduction

Objecteering/CORBA User Guide 1-5

Glossary

♦= IDL generation work product: object that can be created on a package and
which possesses Objecteering/CORBA code generation and compilation
features.

♦= External edition: operation which allows the entry of notes with an editor other
than the Objecteering/UML text editor.  The text entered between pre-
positioned markers is re-incorporated into the Objecteering/UML repository
when the editing is completed.



Chapter 2: Working with the
Objecteering/CORBA
module



Chapter 2: Working with the Objecteering/CORBA module

Objecteering/CORBA User Guide 2-3

Installation information

Prerequisites
The Objecteering/CORBA 2.0 module requires that Objecteering/UML already be
installed, and that the OBJING_PATH environment variable be positioned.
You must have the correct license in order to be able to use the
Objecteering/CORBA module.

Installation directories
Module data can be found in the $OBJING_PATH/modules/CorbaModule and
$OBJING_PATH/modules/CorbaProfileModule directories, which contain the
following elements respectively:

♦= res and FirstSteps

♦= res and CORBA

Using the module
In order to use the Objecteering/CORBA module, you simply have to select the
module for your UML modeling project (for further details on selecting modules in
UML modeling projects, please refer to the "Using the Objecteering/CORBA
module in your UML modeling " section in the current chapter of this user guide).



Chapter 2: Working with the Objecteering/CORBA module

2-4 Objecteering/CORBA User Guide

Using the Objecteering/CORBA module in your UML
modeling project

Introduction
Before the Objecteering/CORBA module can be used, the following steps must be
carried out:
1 -  Create a UML modeling project.
2 -  Select the module.

Creating a working UML modeling project
For information on how to create a UML modeling project, please refer to the
"Creating or opening a UML modeling project" section in chapter 3 of the
Objecteering/UML Modeler user guide.



Chapter 2: Working with the Objecteering/CORBA module

Objecteering/CORBA User Guide 2-5

Selecting the CORBAModule module for the new UML modeling
project

Launch the Objecteering/UML Modeler editor on your newly-created UML

modeling project.  The  "UML modeling project modules" icon launches the
window used to select the module (as shown in Figure 2-2).

Figure 2-1. Selecting the CORBA module



Chapter 2: Working with the Objecteering/CORBA module

2-6 Objecteering/CORBA User Guide

Steps:

1 -  Select the "CORBA" module from the available modules list on the left-hand
side of the screen.

2 -  Click on the "Add" button.  The "CORBA" module then appears in the right-
hand "Modules used" column.

3 -  Click on "OK" to confirm.  If the "Keep selection as default" box is checked, the
"CORBA" module will automatically be available during future
Objecteering/UML sessions.

For further information on this operation, please refer to the "Selecting modules in
the current UML modeling project" section in chapter 3 of the
Objecteering/Introduction user guide.



Chapter 3: First Steps



Chapter 3: First Steps

Objecteering/CORBA User Guide 3-3

Overview of First Steps

Introduction
By following an example of a UML modeling project, you will discover step by step
the different features of the Objecteering/CORBA module.

Sources
The example used is a climate control system application, extracted from
"Advanced CORBA Programming with C++", by Michi Henning and Steve Vinoski,
Addison-Wesley.

Initializing the First Steps UML modeling project
To initialize your First Steps UML modeling project, follow the steps described in
the "Using the Objecteering/CORBA module in your UML modeling project"
section in chapter 2 of this user guide.



Chapter 3: First Steps

3-4 Objecteering/CORBA User Guide

Getting the example model

Figure 3-1 shows the steps which should be carried out, in order to import the
"FirstSteps" UML modeling project.

Figure 3-1. Importing the "FirstSteps" UML modeling project

Steps:

1 -  Select the UML model root package using the right mouse button.
2 -  Select the "Corba/Import the First Steps project" commands from the context

menu which appears.



Chapter 3: First Steps

Objecteering/CORBA User Guide 3-5

Creating an IDL generation work product

Overview
In Objecteering/UML, the IDL generation work product provides commands for
generating code and compiling.  It can also be used to manage files which have
been produced.  Thus, if you destroy the generation work product, you will also
destroy the generated files.



Chapter 3: First Steps

3-6 Objecteering/CORBA User Guide

Creating an IDL generation work product
Using this example (shown in Figure 3-2), we are going to create an IDL
generation work product for the "NewProject" package.

Figure 3-2. Creating an IDL generation work product

Steps:

1 -  Select the "NewProject" package in the explorer.

2 -  Click on the  "IDL generation" icon in the "Items" tab of the properties
editor.

3 -  Press "Return" to confirm the details in the dialog box which then opens.



Chapter 3: First Steps

Objecteering/CORBA User Guide 3-7

Description of an IDL generation work product
Figure 3-3 shows the IDL generation work product dialog box.

Figure 3-3. The IDL generation work product dialog box

Key:

♦= "Name": This entry field indicates the name of the generation work product as it
appears in the "Items" tab of the Objecteering/UML properties editor.

♦= "Generation path": This entry field indicates the positioning of the IDL file
generation directory.

♦= "Generation file": This entry field indicates the name of the generated file.  The
".idl" extension is automatically added.



Chapter 3: First Steps

3-8 Objecteering/CORBA User Guide

IDL generation work product menus

Overview
The IDL generation work product has commands for generating IDL code and
compiling the generated files (see Figure 3-4).

Figure 3-4. Generation work product services

All the commands used to edit and generate IDL are grouped together in the
"Corba" menu.  We will look at these commands one after another.



Chapter 3: First Steps

Objecteering/CORBA User Guide 3-9

Contents of the services
The ... menu is used to ...

Generate generate the IDL code for root package components.

Visualize visualize the generated IDL code.

IDL compilation run the IDL compilation of the generated file.  The
"Command for invoking IDL compilation" parameter in the
"IDL compilation" module parameterization item is used to
specify the IDL compiler.

Edit the IDL file edit the generated code.  The editor used is the one defined
by the "External editor" parameter in the CORBA generation
module.



Chapter 3: First Steps

3-10 Objecteering/CORBA User Guide

Generating IDL code

Launching IDL code generation
To launch IDL code generation, simply click on the generation work product using
the right mouse button, and run the "Corba/Generate" commands from the context
menu which appears.
An .idl file is generated for the package referenced by the IDL work product on
which the "Generate" command is run.  The code of inner packages is
incorporated in the same file.  However, work products can also be created for
inner packages, and separate idl generated for them.  In this case, the .idl file for
the enclosing package contains the necessary include clause.



Chapter 3: First Steps

Objecteering/CORBA User Guide 3-11

Visualizing the generated IDL code
Generated IDL code can also be visualized (as shown in Figure 3-5).  This
command can only be launched on a work product to which an IDL file is
associated, that is to say, on a work product of a package for which code has
been generated.
To visualize generated IDL code, simply click on the generation work product
belonging to the "ClimateControlDistributed" class using the right mouse button,
and run the "Corba/Visualize" commands from the context menu which appears.
This command opens a window containing the generated IDL code.  It is not
possible to modify the code directly in this window.  You can, however, easily
modify notes on certain model elements, by clicking on the blue code sections.

Figure 3-5. Window displaying the IDL code of the "ClimateControlDistributed" package



Chapter 3: First Steps

3-12 Objecteering/CORBA User Guide

Editing the generated code
The generated IDL code for a package can be edited using the editor chosen, as
shown in Figure 3-6 (see the "External editor" parameter in the "External edition"
group).  Zones represented between markers can be modified.  Modifications are
directly incorporated into the model when the editor is closed.

Figure 3-6. Editing the generated code using an external editor



Chapter 3: First Steps

Objecteering/CORBA User Guide 3-13

Compiling

Parameterizing the IDL compilation command
Once the file has been generated, the user may call the IDL compiler, in order to
check IDL syntax and generate C++ or Java classes from IDL interfaces
generated by Objecteering/UML.  Options available when calling the compiler (for
example, the interface implementation mode or generation paths) must be
specified in the "Command for invoking IDL compilation" parameter entry field.
Example: idl –B ClimateControlDistributed.idl (as shown in Figure 3-7).

Figure 3-7. IDL compilation command parameter



Chapter 3: First Steps

3-14 Objecteering/CORBA User Guide

Triggering compilation
To compile, simply run the "Corba/IDL Compilation" commands from the
generation work product context menu on the "ClimateControlDistributed"
package (as shown in Figure 3-8).

Figure 3-8. Running IDL compilation

Steps:

1 -  Select the "ClimateControlDistributed" generation work product in the "Items"
tab of the properties editor, by clicking on the right mouse button.

2 -  Run the "Corba/IDL compilation" commands from the context menu which
appears.



Chapter 3: First Steps

Objecteering/CORBA User Guide 3-15

Visualizing the result of the compilation
Where there are no compilation errors, a window similar to that shown in Figure
3-9 is displayed, to indicate that IDL compilation command has been correctly run.

Figure 3-9. Result of error-free compilation



Chapter 3: First Steps

3-16 Objecteering/CORBA User Guide

Where errors have occurred, a window like the one shown in Figure 3-10 is
displayed, indicating those lines which include syntax errors and an indication with
regard to the error in question.

Figure 3-10. Result of compilation indicating syntax errors

The information presented in this screen differs according to the IDL compiler
used.



Chapter 4: The UML Profile for
CORBA module



Chapter 4: The UML Profile for CORBA module

Objecteering/CORBA User Guide 4-3

Overview of the UML Profile for CORBA module

The "UML Profile for CORBA" module defines all the stereotypes, tagged values
and notes available on certain metaclasses, and a "CORBA" package containing
some basic classes, as detailed in the "UML Profile for CORBA specification"
document.
This module is free of charge and allows the user to model his application
according to OMG specifications.  The CorbaModule IDL generator takes into
account most of the afore-mentioned notations.



Chapter 4: The UML Profile for CORBA module

4-4 Objecteering/CORBA User Guide

The CORBA package
The CORBA package contains the following classes stereotyped
<<CORBAPrimitive>>:

♦= short

♦= long

♦= long long

♦= double

♦= unsigned short

♦= unsigned long

♦= unsigned long long

♦= any

♦= Boolean

♦= String

♦= octet

♦= void

♦= char

♦= wchar

♦= float

♦= wstring

♦= typecode

♦= native

These classes are required when modeling a "typedef" or "sequence" etc.  The
following examples will provide further details.
The CORBA package also contains a template class, "fixed", which has two
template parameters.  This class is used to model the instantiation of CORBA
fixed template.



Chapter 4: The UML Profile for CORBA module

Objecteering/CORBA User Guide 4-5

Examples
The "UML Profile for CORBA specification" indicates that in order to obtain the
following idl code:

typedef sequence<short> mySeqShort;

you should create a class named "mySeqShort" and stereotyped
<<CORBASequence>>, and then create an association (with multiplicity of 1) from
this class to the "CORBA::short" class.

The "UML Profile for CORBA specification" indicates that in order to obtain the
following idl code:

typedef unsigned long ulong;

you should create a class named "ulong" and stereotyped <<CORBATypedef>>,
and then make this class specialize the "CORBA::unsigned long long" class.
In Objecteering/UML, this association and this generalization require that "short"
and "unsigned long long" be classes.  To distinguish them from ordinary classes,
they are stereotyped <<CORBAPrimitive>>.



Chapter 4: The UML Profile for CORBA module

4-6 Objecteering/CORBA User Guide

Stereotypes

The table below provides details on those stereotypes which exist in the
Objecteering/UML Profile for CORBA module.

The ... stereotype on the ... metaclass is used to ...
CORBAModel Package generate a module

CORBAInterface Class generate an interface

CORBAEnum Class generate an enum

CORBAStruct Class generate a struct

CORBAUnion Class generate a union

CORBAException Class generate an exception

CORBASequence Class generate a typedef
sequence <...>

CORBAArray Class generate a typedef type
Name [...]

CORBATypedef Class generate a typedef type
typeName

CORBAConstants Class generate constants in the
module

CORBAAnonymousSequence Class generate the sequence
<...> used in
struct/exception

CORBAAnonymousArray Class generate the array used in
struct/exception

CORBAFixed Class instantiate the fixed

CORBAValue Class generate the value*



Chapter 4: The UML Profile for CORBA module

Objecteering/CORBA User Guide 4-7

The ... stereotype on the ... metaclass is used to ...
CORBACustomValue Class generate the

CustomValue*

CORBABoxedValue Class generate the BoxedValue*

CORBAReadonlyEnd AssociationEnd generate the read only
attribute

CORBAReadonly Attribute generate the read only
attribute

CORBAConstant Attribute generate a constant in a
UserDefinedType

CORBAOneway Operation generate a one way
operation

CORBAValueFactory Operation generate a ValueFactory*

CORBAValueSupports Generalization generate a ValueSupports*

CORBATruncatable Generalization generate a truncatable*

*Not taken into account for IDL generation in the current version of the module.



Chapter 4: The UML Profile for CORBA module

4-8 Objecteering/CORBA User Guide

Tagged values

The table below provides details on those tagged values which exist in the
Objecteering/UML Profile for CORBA module.

The ... tagged value on the ... metaclass is used to ...
CORBAIDLOrder Package generate the element

order in the model.

CORBATypeId Package choose a repository ID.

CORBATypePrefix Package choose a repository ID
prefix.

CORBATypeId Class choose a repository ID

CORBATypePrefix Class choose a repository ID
prefix

CORBABind Class give the parameters used
to instantiate fixed. .

CORBAName ModelElement represent the generated
name for the element. .

CORBACase Parameter,
AssociationEnd,
Attribute

generate the case in
Union.

CORBAArray Parameter,
AssociationEnd,
Attribute

generate the use array for
the attribute of n
multiplicity.

CORBATypeName Parameter,
AssociationEnd,
Attribute

suggest the name in
typedef for the attribute of
* multiplicity.

CORBABind Parameter,
AssociationEnd

give the parameters used
to instantiate an
association end or
parameter, which has fixed
as opposite/parameter
type.



Chapter 4: The UML Profile for CORBA module

Objecteering/CORBA User Guide 4-9

The ... tagged value on the ... metaclass is used to ...
CORBAIDLOrder Feature, DataType,

Enumeration
generate the element order
in the user defined type.

CORBANocode Feature generate no IDL code. .

CORBAContext Operation combine with "int", "float",
"char" in mapping to the
corresponding C.ORBA
basic types.

CORBAUnsigned Attribute, Parameter combine with "int", "float",
"char" in mapping to the
corresponding CORBA
basic types. .

CORBALong Attribute, Parameter combine with "int", "float",
"char" in mapping to the
corresponding CORBA
basic types. .

CORBALongLong Attribute, Parameter combine with "int", "float",
"char" in mapping to the
corresponding CORBA
basic types. .

CORBAOctet Attribute, Parameter combine with "int", "float",
"char" in mapping to the
corresponding CORBA
basic types. .

CORBAAny Attribute, Parameter combine with "int", "float",
"char" in mapping to the
corresponding CORBA
basic types. .



Chapter 4: The UML Profile for CORBA module

4-10 Objecteering/CORBA User Guide

Notes

The table below provides details on those notes which exist in the
Objecteering/UML Profile for CORBA module.

The ... note on the ... metaclass is used to ...
CORBAInheritance Class insert free text as parent

class.

CORBAHeader Package insert free text at the
beginning of the idl file. .

CORBAIDL Datatype insert free text associated
with a UML type. .



Chapter 4: The UML Profile for CORBA module

Objecteering/CORBA User Guide 4-11

Mapping UML types into IDL types

The mapping of Objecteering/UML base types in IDL is shown in the following
table:

Objecteering/UML
type

Tagged value IDL type

Integer short

Integer {CORBAUnsigned} unsigned short

Integer {CORBALong} long

Integer {CORBALongLong} long long

Integer {CORBAUnsigned},
{CORBALong}

unsigned long

Integer {CORBAUnsigned},
{CORBALongLong}

unsigned long long

real float

real {CORBALong} double

Char char

Boolean boolean

Integer {CORBAOctet} octet

Integer {CORBAAny} any

String string



Chapter 4: The UML Profile for CORBA module

4-12 Objecteering/CORBA User Guide

Importing the CORBA package

To import the "CORBA" package, carry out the steps illustrated below (Figure 4-1).

Figure 4-1. Importing the "CORBA" package

Steps:
1 -  Select the UML model root package using the right-mouse button.
2 -  Select the "Corba/Import CORBA package" command from the context menu

which then appears.



Chapter 5: Code generation



Chapter 5: Code generation

Objecteering/CORBA User Guide 5-3

Overview of code generation

Code generation and model consistency checks
Code may be generated from the UML model regardless of whether consistency
checks are active or inactive.  However, when generation is launched, a message
informs the user that he is in the process of generating code on a model which
may potentially not conform to the UML modeling rules checked by
Objecteering/UML (as shown in Figure 5-1).

Figure 5-1. Message informing the user that consistency checks have been removed

Note: It should be noted that code generation in command line mode is assured,
whatever the state of the consistency checks at the time of code
generation.



Chapter 5: Code generation

5-4 Objecteering/CORBA User Guide

The generation work product
Before generating IDL code, an IDL generation work product must be created (see
Figure 5-2).  This object is created in a package.

Figure 5-2. Dialog box for an IDL generation work product

An IDL work product has the following properties:

The ... property is used to ...
Name display the name of the work product.

Generation path display the directory for generating the .idl files

Generation file display the name of the file generated.  The ".idl"
extension is systematically concatenated with the
value of this entry field.



Chapter 5: Code generation

Objecteering/CORBA User Guide 5-5

Generating IDL elements

Generating an IDL module
An IDL module is deduced from a UML package.  To allow IDL generation, the
package must be stereotyped <<CORBAModule>>.  An empty UML package, that
is to say a package without classes, type definitions or enumerates, does not give
rise to IDL generation for module definition.
Embedded UML packages are mapped in the form of nested IDL module
definitions.

Generating an IDL interface
An IDL interface is deduced from a UML class with public visibility.  To allow IDL
generation, the class must be stereotyped <<CORBAInterface>>>>.  An IDL
interface cannot be embedded in an IDL interface.  Furthermore, UML classes
embedded in a class must include annotations, which allow them to be mapped in
the form of IDL exceptions or IDL structure.

Generating an IDL structure
An IDL structure is deduced from a UML class with public visibility and is
stereotyped <<CORBAStruct>>.  The UML class must not include operations.

Generating an enumerate
An IDL enumerate can be directly deduced from a UML enumerate.
An IDL enumerate can also be modeled as a class, stereotyped
<<CORBAEnum>>.  The enum item is modeled by an attribute.



Chapter 5: Code generation

5-6 Objecteering/CORBA User Guide

Generating an IDL constant
An IDL constant is modeled by an attribute stereotyped <<CORBAConstant>>,
with the constant value expression represented by the attribute's initial value
expression.  A class' attribute is generated as a constant, within the scope of the
IDL interface.  For constants defined within a module, the attribute must be
contained in a special class named Constants and stereotyped
<<CORBAConstants>>.

Generating an IDL union
An IDL union is defined by a "CORBAUnion" class.  This class must have one and
only one attribute or association.  Its name is the same name as the class, with the
"_switch" suffix added.  The other attribute or associationEnd must be annotated
with the {CORBACase(label)} tagged value.

Generating an IDL type definition
An IDL type definition can be modeled in two ways:

♦= through a UML type to which a "CORBAIDL" note is associated

♦= through a class stereotyped <<CORBATypedef>>
The definition of the type must be entered in its entirety by the user in the
"CORBAIDL" note.  Type definition which depends on another class must be
modeled through generalization.  The dependency decides the generation order.



Chapter 5: Code generation

Objecteering/CORBA User Guide 5-7

Generating an IDL exception
An exception is modeled in the form of a UML class stereotyped
<<CORBAException>>.  This class, which represents an exception, can be
embedded in an IDL interface. For a class stereotyped <<CORBAException>>, it
must not:

♦= be in a generalization graph

♦= have associations with other classes

♦= have operations
To specify that an operation can raise an exception, a use link from the operation
to the class representing the exception must be modeled.  This class is
stereotyped <<CORBAException>>.  An operation can raise several exceptions.

Generating an asynchronous IDL operation
A UML operation is transformed into an asynchronous operation when the
operation is stereotyped <<CORBAOneway>>.  For this type of operation:

♦= the parameters must all be in "In" mode

♦= the operation must not have return parameters

♦= the operation must not raise exceptions



Chapter 5: Code generation

5-8 Objecteering/CORBA User Guide

Compatibility

Version 2.0 of the Objecteering/CORBA module does not take into account the
following notes and tagged values defined in its previous versions.

The ... note on the ... metaclass
Corba::moduleMember Package

Corba::interfaceMember Class

Corba::structureMember Class

Corba::exceptionMember Class

Corba::idl Class

The ... tagged value on the ... metaclass
Corba::root Package

Corba::GlobalVariable Package



Chapter 6: Calling module on-line
commands



Chapter 6: Calling module on-line commands

Objecteering/CORBA User Guide 6-3

Calling on-line commands

Overview
Module commands which do not require an interface can be launched through a
command line, using the objingcl delivered with Objecteering/UML.

Calling commands
An on-line command is called using the following instruction:
objingcl-prj <project_name>
-db base
-mdl CorbaModule
-cmd <command_Name>
<metaclass>:<object_name>

Commands which can be invoked
The ... command On the ... metaclass is used to ...

generate Idl Product generate code



Index



.idl file    3-10
{CORBAAny} tagged value    4-9, 4-11
{CORBAArray} tagged value    4-8
{CORBABind} tagged value    4-8
{CORBACase(label)} tagged value

5-6
{CORBACase} tagged value    4-8
{CORBAContext} tagged value    4-9
{CORBAIDLOrder} tagged value    4-8,

4-9
{CORBALong} tagged value    4-9, 4-

11
{CORBALongLong} tagged value    4-

9, 4-11
{CORBAName} tagged value    4-8
{CORBANocode} tagged value    4-9
{CORBAOctet} tagged value    4-9, 4-

11
{CORBATypeId} tagged value    4-8
{CORBATypeName} tagged value    4-

8
{CORBATypePrefix} tagged value    4-

8
{CORBAUnsigned} tagged value    4-

9, 4-11
<<CORBAAnonymousArray>>

stereotype    4-6
<<CORBAAnonymousSequence>>

stereotype    4-6
<<CORBAArray>> stereotype    4-6
<<CORBABoxedValue>> stereotype

4-7
<<CORBAConstant>> stereotype    4-

7, 5-6
<<CORBAConstants>> stereotype

4-6, 5-6
<<CORBACustomValue>> stereotype

4-7

<<CORBAEnum>> stereotype    4-6,
5-5

<<CORBAException>> stereotype
4-6, 5-7

<<CORBAFixed>> stereotype    4-6
<<CORBAInterface>> stereotype    4-

6, 5-5
<<CORBAModel>> stereotype    4-6
<<CORBAModule>> stereotype    5-5
<<CORBAOneway>> stereotype    4-

7, 5-7
<<CORBAPrimitive>> stereotype    4-

4, 4-5
<<CORBAReadonly>> stereotype    4-

7
<<CORBAReadonlyEnd>> stereotype

4-7
<<CORBASequence>> stereotype

4-5, 4-6
<<CORBAStruct>> stereotype    4-6,

5-5
<<CORBATruncatable>> stereotype

4-7
<<CORBATypedef>> stereotype    4-

5, 4-6, 5-6
<<CORBAUnion>> stereotype    4-6
<<CORBAValue>> stereotype    4-6
<<CORBAValueFactory>> stereotype

4-7
<<CORBAValueSupports>>

stereotype    4-7
AssociationEnd metaclass    4-7, 4-8
Attribute metaclass    4-7, 4-8
Available commands

Edit the IDL file    3-9
Generate    3-9
IDL compilation    3-9
Visualize    3-9



C++ code generation    1-3
C++ reverse module    1-3
Calling on-line commands    1-4, 6-3

Calling instruction    6-3
Commands which can be invoked

6-3
Class metaclass    4-6, 4-8, 4-10
Classes stereotyped

<<CORBAPrimitive>>    4-4
Code generation    5-3

Consistency checks    5-3
Code generation commands    3-5
Compilation    1-3
Compiling

Parameterizing the IDL compilation
command    3-13

Compiling an IDL description    1-3
CORBA fixed template    4-4
CORBA package    4-3, 4-4
CORBA package contents    4-4
CORBAHeader note    4-10
CORBAIDL note    4-10, 5-6
CORBAInheritance note    4-10
Creating a working UML modeling

project    2-4
Creating an IDL generation work

product    3-6
DataType metaclass    4-9, 4-10
Description of an IDL generation work

product    3-7
Design Patterns    1-3
Edit the IDL file command    3-9
Editing the generated code    3-12
Embedded UML packages    5-5
Enumeration metaclass    4-9
Exceptions    5-7
External edition    1-5

Feature metaclass    4-9
First steps    1-4

Compiling    3-13
Creating an IDL generation work

product    3-5
FirstSteps UML modeling project

3-4
Generating IDL code    3-10
IDL generation work product menus

3-8
Initializing the First Steps UML

modeling project    3-3
Sources    3-3

Generalization metaclass    4-7
Generate command    3-9
Generated code compilation    1-3
Generating an asynchronous IDL

operation    5-7
Generating an enumerate    5-5
Generating an IDL constant    5-6
Generating an IDL description    1-3
Generating an IDL exception    5-7
Generating an IDL interface    5-5
Generating an IDL module    5-5
Generating an IDL structure    5-5
Generating an IDL type definition    5-6
Generating an IDL union    5-6
Generating C++ classes    3-13
Generating IDL code    1-4
Generating IDL elements    5-5
Generating Java classes    3-13
Generation work product    3-5, 3-7, 3-

10
Glossary    1-5
IDL code

Compiling IDL code    3-8
Editing generated IDL code    3-12



Generating IDL code    3-8
Modifying notes on generated code

3-11
Visualizing IDL code    3-11

IDL code generation    1-3
IDL compilation    3-9, 3-15
IDL compiler    3-13, 3-16
IDL file generation directory    3-7
IDL generation work product    1-5, 3-

5, 3-8, 5-4
Available commands    3-9

IDL generation work product dialog
box    5-4

IDL generation work product
properties    5-4

IDL interface    5-6
IDL interfaces    3-13
IDL syntax    3-13
Include clauses    3-10
Inner packages    3-10
Installation directories    2-3
Java code generation    1-3
Java reverse module    1-3
Launching IDL code generation    3-10
License    2-3
Mapping UML types into IDL types

4-11
Markers    3-12

Pre-positioned markers    1-5
Model consistency checks    5-3
ModelElement metaclass    4-8
Module commands    6-3
Nested IDL module definitions    5-5
Notes    1-4, 1-5, 4-3

CORBAHeader    4-10
CORBAIDL    4-10
CORBAInheritance    4-10

Notes no longer taken into account
5-8

Objecteering/Introduction    2-6
Objecteering/UML Modeler    2-4, 2-5
Objecteering/UML repository    1-5
OBJING_PATH environment variable

2-3
objingcl    6-3
Obtaining an IDL file    1-4
Operation metaclass    4-7, 4-9
ORB    1-3
Package    1-5
Package metaclass    4-6, 4-8, 4-10
Parameter metaclass    4-8
Parameterizing the IDL compilation

command    3-13
Prerequisites    2-3
Production line generation    1-3
Removable consistency checks    5-3
Return parameters    5-7
Selecting the CORBAModule for a

new UML modeling project    2-5
Skeletons of implementation classes

1-3
Stereotypes    1-4, 4-3

<<CORBAAnonymousArray>>
stereotype    4-6

<<CORBAAnonymousSequence>>
stereotype    4-6

<<CORBAArray>> stereotype    4-6
<<CORBABoxedValue>>

stereotype    4-7
<<CORBAConstant>> stereotype

4-7
<<CORBAConstants>> stereotype

4-6
<<CORBACustomValue>>

stereotype    4-7



<<CORBAEnum>> stereotype    4-6
<<CORBAException>> stereotype

4-6
<<CORBAFixed>> stereotype    4-6
<<CORBAInterface>> stereotype

4-6
<<CORBAModel>> stereotype    4-6
<<CORBAOneway>> stereotype

4-7
<<CORBAReadonly>> stereotype

4-7
<<CORBAReadonlyEnd>>

stereotype    4-7
<<CORBASequence>> stereotype

4-6
<<CORBAStruct>> stereotype    4-6
<<CORBATruncatable>> stereotype

4-7
<<CORBATypedef>> stereotype

4-6
<<CORBAUnion>> stereotype    4-6
<<CORBAValue>> stereotype    4-6
<<CORBAValueFactory>>

stereotype    4-7
<<CORBAValueSupports>>

stereotype    4-7
Tagged values    1-4, 4-3

{CORBAAny}    4-9
{CORBAArray}    4-8
{CORBABind}    4-8
{CORBACase}    4-8

{CORBAContext}    4-9
{CORBAIDLOrder}    4-8, 4-9
{CORBALong}    4-9
{CORBALongLong}    4-9
{CORBAName}    4-8
{CORBANocode}    4-9
{CORBAOctet}    4-9
{CORBATypeId}    4-8
{CORBATypeName}    4-8
{CORBATypePrefix}    4-8
{CORBAUnsigned}    4-9

Tagged values no longer taken into
account    5-8

Template class    4-4
"fixed"    4-4

The "generate" on-line command    6-3
Triggering compilation    3-14
typedef    4-4
UML Profile for CORBA    1-3
UML Profile for CORBA specification

4-3
Using the Objecteering/CORBA

module    2-3
Visualize command    3-9
Visualizing the generated IDL code

3-11
Visualizing the result of the

compilation    3-15
Working with the

Objecteering/CORBA module    1-4


