
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

 Objecteering/C++ Reverse User Guide

 Version 5.2.2

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/001

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents

Chapter 1: Overview
Principle ...1-3
Composition of the Reverse Engineering module ...1-5
The C++ Reverse Engineering problem..1-6

Chapter 2: Using the C++ Reverse Engineering module
Overview ..2-3
Selecting modules in a UML modeling project ..2-4

Chapter 3: Configuring SNiFF+ and Objecteering/UML
Configuring SNiFF+ ...3-3
Configuring Objecteering/UML ..3-8
Configuring basic type and collection translation ..3-9

Chapter 4: Reverse engineering functions provided by Objecteering/UML
Description of services on packages ...4-3
Description of services on classes ..4-8
Managing identifiers...4-10
Known bugs and restrictions ...4-11

Index

Chapter 1: Overview

Chapter 1: Overview

Objecteering/C++ Reverse Engineering User Guide 1-3

Principle

Overview
Welcome to the Objecteering/C++ Reverse Engineering user guide!
The Objecteering/C++ Reverse Engineering module is used to reconstruct a
model in Objecteering/UML, from the analysis of C++ code carried out using the
SNiFF+ tool.
The Objecteering/UML Reverse Engineering tool works in two distinct phases:

♦= The first phase analyzes the C++ code which is to be reversed. This first
phase is divided into two steps, the first of which consists of creating a SNiFF+
project (version 3.2) containing the C++ sources of the classes which are to be
reintroduced into Objecteering/UML, and the second of which is the launch, in
Objecteering/UML, of the code analysis phase itself.

♦= In the second phase, all or some of the classes identified by the code analysis
are imported, and the user chooses the mode which best suits his needs:

♦= the "complete import " mode retrieves the entire contents of classes.

♦= the "interface import" mode only retrieves the public parts of classes
(their interface).

♦= the "structural import" mode retrieves empty classes, with their links
(generalizations, associations, etc) to other classes.

Figure 1-1. Reconstructing a model

Chapter 1: Overview

1-4 Objecteering/C++ Reverse Engineering User Guide

Code reverse and model consistency checks
A model can be reversed from files external to Objecteering/UML regardless of
whether consistency checks are active or inactive. However, when the reverse is
launched, a message informs the user that consistency checks are active and that
construction of the model, which may potentially not conform to the UML modeling
rules checked by Objecteering/UML, may be refused (as shown in Figure 1-2).

Figure 1-2. Message informing the user that consistency checks are active

If the user wishes to keep consistency checks activated, he should simply
uncheck the "Remove consistency checks" box.

Note: It should be noted that code reversal in command line mode (please see
objingcl) is guaranteed, whatever the state of the consistency checks
when the reverse command is run.

Chapter 1: Overview

Objecteering/C++ Reverse Engineering User Guide 1-5

Composition of the Reverse Engineering module

The Objecteering/Reverse Engineering module is delivered in externalized form,
and contains the following elements:

♦= the "ReverseTool" binary (for Solaris) or the "ReverseTool.exe" binary (for
Windows NT/95/98/2000)

♦= HTML documentation (the present document)

♦= SNiFF format configuration files of the Reverse Engineering module

♦= Sets and types bindings description files

Chapter 1: Overview

1-6 Objecteering/C++ Reverse Engineering User Guide

The C++ Reverse Engineering problem

The mechanism which constantly checks consistency between the model and the
Objecteering/UML code means that unlike many CASE tools, C++ code generated
by Objecteering/UML must never be reversed in Objecteering/UML. If this is
done, all the benefit of permanent consistency checks is lost.
The Objecteering/UML reverse is dedicated to operations used to reverse existing
code developed in contexts other than Objecteering/UML, often manually, and
used for various ends, such as reverse documentation, code reversal and
development advancement, or the reverse of a library to be used from
Objecteering/UML. For example, MFCs (Microsoft Foundation Classes) are
provided in reversed form.
The task of reversing an existing C++ source resulting from external sources is not
an easy one. It can almost correspond to the transformation of sources, so as to
be able to compile and analyze them. The SNiFF tool (from the TakeFive
company) helps organize and analyze C++ sources, which is a preliminary step
essential to reverse engineering with the Objecteering/UML tool.

Chapter 2: Using the C++ Reverse
Engineering module

Chapter 2: Using the C++ Reverse Engineering module

Objecteering/C++ Reverse Engineering User Guide 2-3

Overview

To be able to use the Objecteering/C++ Reverse Engineering module, the
following operations should be carried out:

♦= the selection of the module

♦= the configuration of the module
For further details on selecting the Objecteering/C++ Reverse Engineering
module, please refer to the "Selecting modules in a UML modeling project" section
in the current chapter of this user guide.

Chapter 2: Using the C++ Reverse Engineering module

2-4 Objecteering/C++ Reverse Engineering User Guide

Selecting modules in a UML modeling project

In order to be able to use the Objecteering/C++ Reverse Engineering module, it
must be selected for the current UML modeling project. This selection is made by
transferring the C++ Reverse Engineering module into the right-hand "Modules
used" column of the "Modules" dialog box (as shown in Figure 2-1).

Figure 2-1. Selecting the Reverse Engineering module

Chapter 2: Using the C++ Reverse Engineering module

Objecteering/C++ Reverse Engineering User Guide 2-5

Steps:

1 - To open the "Modules" window, either click on the "UML modeling project
modules" icon or click on "Tools/Modules...".

2 - Select the "C++ Reverse Engineering" module in the left-hand "Available
modules" column.

3 - Click on the "Add" button. The module is then transferred into the right-hand
"Modules used" column.

4 - Confirm by clicking on "OK".

Chapter 3: Configuring SNiFF+ and
Objecteering/UML

Chapter 3: Configuring SNiFF+ and Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 3-3

Configuring SNiFF+

After having installed the tool, a SNiFF+ project which integrates all the C++ files
which are to be taken into account must be created. To do this, carry out the
following steps.
In the SNiFF+ main window, open the "Project/New Project.../with Template..."
window (as shown in Figure 3-1):

Figure 3-1. The "Project/NewProject... with Template"... menu

Chapter 3: Configuring SNiFF+ and Objecteering/UML

3-4 Objecteering/C++ Reverse Engineering User Guide

The following window then opens (as shown in Figure 3-2). Select the "template
04Reverse.ptmppl" option, and then click on the "Change Directory..." button.

Figure 3-2. The "Project Template Dialog" window

Select the directory which contains the sources which are to be reversed, and
then click on the "Select" button.
At the bottom of the project window, each sub-directory is represented by a nested
project. Each sub-project must be checked, if you wish to reverse it. By checking
it, you will see the corresponding directory files appear in the top window.

Warning:All sources must be located in the same directory!

Chapter 3: Configuring SNiFF+ and Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 3-5

Figure 3-3. Window for the selection of the directory containing the sources which are to be
reversed

Once the project has been created, the default attributes have to be modified
through the following window (as shown in Figure 3-4). On the right, select the
"Parser" item. Be sure that the "Extended Symtab API Positioning" tickbox is
checked.
If you wish your code to be pre-processed before reverse, check the "Preprocess
Source Code before Parsing" tickbox and then select the "Directives" tab in the
right window. Continue by providing the directives and includes necessary to the
correct parsing of the code.

Chapter 3: Configuring SNiFF+ and Objecteering/UML

3-6 Objecteering/C++ Reverse Engineering User Guide

Figure 3-4. Window for modifying the attributes of the new project

Chapter 3: Configuring SNiFF+ and Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 3-7

Remarks

Note 1: It can be useful not to provide SNiFF+ with include directories, in order to
limit the number of classes to be "reversed". If your application uses MFCs in
Windows, for example, it is not necessary to provide the path of the MFC
includes, in order to avoid completely "reversing" the MFCs, which is not
the usual aim of this operation. All the classes used by your application
and whose definition has not been found by SNiFF+ will be reversed in the
form of empty classes.

Note 2:Certain environment add new key words (for example, _export by Visual
C++). These key words interfere with SNiFF+ parsing, and SNiFF+
therefore provides a means of ignoring them. In the "Parser Configuration
File(s)" field, enter one or several configuration file names. The standard
files are provided in the SNiFF+ "config" directory. In particular, in order to
avoid problems with MFCs, use the "winapi_ignore" file.

Note 3: In UNIX, remember to define in your environment the SNiFF+
"SNiFF_DIR" variable and to add access to the SNiFF+ "bin" directory to
your PATH variable.

Note 4:Pre-processing your code before reversing (by checking the "Preprocess"
tickbox, as described above) will slow down the reverse process and may
give warnings in the SNiFF+ log windows, if all the include paths (see
Note 1) have not been given. However, if code is not pre-processed,
certain constructs will not be reversed. For example, classes defined in
macros (often done for collections) will not be reversed.

Chapter 3: Configuring SNiFF+ and Objecteering/UML

3-8 Objecteering/C++ Reverse Engineering User Guide

Configuring Objecteering/UML

When the Objecteering/ReverseEngineering module has been selected in your
UML modeling project, a certain amount of information must then be defined (as
shown in Figure 3-5).

♦= Centralize Reverse Data: Check this box, in order to have all reverse data
centralized in one directory. If this tickbox is not checked, reverse data is
stored in a sub-directory of the SNiFF+ project.

♦= Centralized Data Directory: This is the directory where reverse data is stored, if
the above tickbox is not checked.

♦= Create Diagrams: If this box is checked, reversed class diagrams are created
and opened at the end of the reverse process.

♦= SNiFF+ Project: This is the name of the SNiFF+ project which you created
during the previous reverse action.

♦= Console command (UNIX only): This is the console launch command, which
allows you to follow the progress of the process. This command is only
necessary in UNIX, since the standard console is used for Windows.

Figure 3-5.Objecteering/UML configuration window

Chapter 3: Configuring SNiFF+ and Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 3-9

Configuring basic type and collection translation

The Objecteering/UML reverse tool is configured to translate most basic types and
collections to their correct UML equivalent. Where specific types or collections
are used, Objecteering/UML can be configured to provide the correct translation.

Chapter 3: Configuring SNiFF+ and Objecteering/UML

3-10 Objecteering/C++ Reverse Engineering User Guide

Basic type translation
To configure basic type translations, edit the file named "TypeModelBindings.ini"
in your reverse data directory (for further details, please refer to the "Managing
identifiers" section in chapter 4 of this user guide).

Note: This file is copied into this directory during the first reverse. If no reverse
operations have yet been carried out, it can be copied from the
<OBJING_PATH>/modules/ReverseEngineering/res directory.

The basic file has the following contents:
Type<>Model Bindings

void types

void undefined

any undefined

char types

char char

character char

integer types

integer integer

int integer

short integertags=short

long integertags=long

unsigned integertags=unsigned

real types

real real

double realtags=long

float real

Chapter 3: Configuring SNiFF+ and Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 3-11

boolean types

boolean boolean

CR_boolean boolean

bool boolean

BOOL boolean

string types

string string

CR_string string

RWCString string

Cstring string

As you can see, these contents simply consist of pairs made up of the C++ type
name and the corresponding UML basic type. Where necessary, you can add
tagged values to the elements using the following syntax:

C++Type UMLType tags=UMLTag1,UMLTag2,...

For example, the C++ "short" type is mapped to the UML "integer" type using the
{short} tagged value. If you have defined the "PositiveNumber" type as being an
"unsigned int", you can define it here as follows:

PositiveNumber integertags=unsigned

Please note that in this case, the "PositiveNumber" type will no longer be used.

Chapter 3: Configuring SNiFF+ and Objecteering/UML

3-12 Objecteering/C++ Reverse Engineering User Guide

Collections
To configure collection translations, edit the "SetBindings.ini" file in your reverse
data directory (for further details, please refer to the "Managing identifiers" section
of chapter 4 of this user guide).

Note: This file is copied into this directory when the first reverse is carried out. If
you have not yet performed a reverse operation, it can be copied here
from the <OBJING_PATH>/modules/ReverseEngineering/res directory.

The basic file has the following contents:
#########
arrays
#########

@T[] size=*tags=array

@T[@S] size=@Stags=array

#####################
Objecteering types
#####################

sets

set_of_@T size=*

lists

list_@T size=*

cr_list<@T> size=*

Chapter 3: Configuring SNiFF+ and Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 3-13

##################################
Standard Template Library (STL)
##################################

vector

vector<@T,@A> size=*type=vector,@A

vector<@T> size=*

map

map<@K,@T,@P,@A> size=*type=map,@K,@P,@A

map<@K,@T,@P> size=*type=map,@K,@P

map<@K,@T> size=*type=map,@K

multimap

multimap<@K,@T,@P,@A> size=*type=multimap,@K,@P,@A

multimap<@K,@T,@P> size=*type=multimap,@K,@P

multimap<@K,@T> size=*type=multimap,@K

set

set<@T,@P,@A> size=*type=set,@P,@A

set<@T,@P> size=*type=set,@P

set<@T> size=*type=set

not implemented in Objecteering

multiset<@T,@P,@A> size=*type=multiset,@P,@A

multiset<@T,@P> size=*type=multiset,@P

multiset<@T> size=*type=multiset

list

list<@T,@A> size=*type=list,@A

Chapter 3: Configuring SNiFF+ and Objecteering/UML

3-14 Objecteering/C++ Reverse Engineering User Guide

list<@T> size=*type=list

not implemented in Objecteering

deque<@T,@A> size=*type=deque,@A

deque<@T> size=*type=deque

#####################################
Microsoft Foundation Classes (MFC)
#####################################

CList<@T> size=*

CPtrList<@T> size=*

####################
Ilog Server (ILS)
####################

IlsSmartPointer<@T> size=*tags=*

IlsDictionary<@T> size=*type=map

IlsOwnsList<@@,@T> size=*type=own

IlsUsesList<@@,@T> size=*type=uses

IlsInvertedRelationList<@@,@T> size=*type=mutual

As you can see, it simply consists of triples composed of the C++ type name in the
form of a pattern, the multiplicity of the collection and the corresponding {type}
tagged value.
The syntax is as follows:

♦= To say vector<type> is an association 0..* to type, write:
vector<@T> size=* type=vector

♦= To say list_type is an association 0..* to type, write:
list_@T size=*

♦= To say typeP is an association 0..1 to type, write:
@TP size=1

Chapter 3: Configuring SNiFF+ and Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 3-15

Authorized separators are space and tab.

Note: Fields must contain no spaces.

Warning: Put more precise declarations first, e.g place.
vector<@T,@A> size=* type=vector,@A

before
vector<@T> size=*

The predefined symbols used in pattern matching are:

♦= @@: current class in which the association/attribute is declared

♦= @T: the referenced type:

♦= @A: the allocator (STL) :

♦= @K: the key (STL maps, for example) :

♦= @S: the size of the element:

♦= @P: the predecessor comparator (STL) :

Please note that some collections cannot be correctly reversed as their type is not
explicit. For example, an MFC CObArray written as follows:

class C {
CObArray elems ;
}

cannot be transformed into a type in a 0..* association as the type of the elements
stored in the array is not known at the time of compilation.

Chapter 4: Reverse engineering
functions provided by
Objecteering/UML

Chapter 4: Reverse engineering functions provided by Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 4-3

Description of services on packages

Figure 4-1. Application of "Reverse Engineering" to a package

Code analysis services are accessible from packages, as are import services on
analyzed classes. "Reversed" classes will be added to the package.
A package of the same name as the SNiFF+ project will be created and the
"reversed" classes will then be added to this new package. Each C++ namespace
will be transformed into a package.

Chapter 4: Reverse engineering functions provided by Objecteering/UML

4-4 Objecteering/C++ Reverse Engineering User Guide

The ... command triggers ...
Code analysis and import the automatic linking of the two reverse phases: "Code

analysis" and "Complete import". The import mode is
selected through a GUI.

Code analysis only the first phase of the reverse, which analyzes the C++ code
which is to be reversed.

Import only the second phase of the reverse, which imports a selection
of classes and/or packages found during code analysis.
The import mode is selected through a GUI.

List primitive classes the display of the list of the package's primitive classes in
the console.

List non-primitive classes the display of the list of the package's non-primitive classes
in the console. .

Change classes to non-
primitives

the transformation of selected primitive classes into non-
primitive classes. Classes are selected using a GUI which
presents primitive classes with at least one Operation and
one "extern" tag.

Change classes to type the transformation of selected primitive empty classes into
types. Classes are selected using a GUI which presents
primitive classes with no Features and no "extern" tags.

Update reverse the re-import of the contents of the selected package. This
command must be launched on a previously reversed
package. It does not re-launch code analysis, but simply
allows the readjustment of the import for each imported
element.

Create Diagrams the creation of diagrams on the reversed classes. This
menu can be used if the "Create diagrams" tickbox has not
be checked during module configuration (for further details,
please refer to the "Configuring Objecteering/UML " section
in chapter 3 of this user guide).

Chapter 4: Reverse engineering functions provided by Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 4-5

When Objecteering/UML cannot determine which SNiFF+ project file to use, the
dialog box shown in Figure 4-2 is displayed.

Figure 4-2. Selecting the SNiFF+ project

If you have already run a reverse operation, the last value will either be repeated
in the field or else the field itself will be empty. If this is not the case, you should
enter the full name of the SNiFF+ to be reversed.
When a reverse operation begins, the mode should be selected in the dialog box
shown in Figure 4-3.

Figure 4-3. Selecting the import mode

Chapter 4: Reverse engineering functions provided by Objecteering/UML

4-6 Objecteering/C++ Reverse Engineering User Guide

Before importing elements into Objecteering/UML, the following dialog box (shown
in Figure 4-4) will appear:

Figure 4-4. Selecting those elements to be imported

The elements are displayed in a tree structure, with one element per line. Each
line displays the type, the name and the internal identification of the element.
Firstly, the outer package, which contains all the other elements, is found. If you
wish to import all reversed elements, you should simply select this package.
However, it is possible to import only one or certain reversed elements. It should
be noted that all sub-elements of those elements selected will also be imported.
For example, if you select the "xns" package, the "anEnum" enumeration, the
"INT" data type and the "C" and "Cabstr" classes, as well as the "xns" package
itself, will be imported.
In the complete and interface modes, "necessary" elements are also imported.
For example, if the "C" class specializes the "CParent" class in the "CPack"
package, then the structural versions of "CPack" and "Cparent" are also imported.
If you try to import only the "C" class, the structural versions of the "xns", "top" and
"mySNiFF" packages are also imported.

Chapter 4: Reverse engineering functions provided by Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 4-7

All reversed packages are annotated {extern} and "are directed" to the SNiFF+
project file from which they were reversed. Subsequent reverses on packages
annotated with this tagged value assume that the SNiFF+ project file to be used is
that stored in this tagged value. If you wish to use a different SNiFF+ project file,
you must delete this tagged value before running the reverse.

Chapter 4: Reverse engineering functions provided by Objecteering/UML

4-8 Objecteering/C++ Reverse Engineering User Guide

Description of services on classes

Figure 4-5. Application of the "Reverse Engineering" module to a class

Update services are accessible from classes which have already been reversed.
These services do not re-launch code analysis, but simply allow the readjustment
of the import for each imported class.

Chapter 4: Reverse engineering functions provided by Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 4-9

The ... command triggers ...
Who uses this element the display in the console of classes which use the selected

element

Update reverse the re-import of the class and its sub-elements

Change to non-primitive the transformation of the selected primitive class into a non-
primitive class

Change to type the transformation of the selected primitive class into a type

Change to enumeration the transformation of the selected primitive class into an
emumeration

All reversed classes are annotated {extern} and "are directed" to the include C++
file from which they were reversed.
Structures are reversed as classes annotated with the <<structure>> stereotype.
Unions are reversed as classes annotated with the <<union>> stereotype.

Chapter 4: Reverse engineering functions provided by Objecteering/UML

4-10 Objecteering/C++ Reverse Engineering User Guide

Managing identifiers

Objecteering/UML stores modeling elements in a database and every element has
a unique identifier attributed to it. During a reverse session, the module attributes
an identifier to each new element.
Reverse data can be stored either in a centralized or a non-centralized way,
depending on whether or not the "Centralize data" tickbox has been checked
(please refer to the "Configuring Objecteering/UML" section in chapter 3 of this
user guide for further details). This data is made up of intermediate files produced
by the code analysis and certain files used to manage identifiers. These files are
SPIdents.ini and ClassIdents.ini and contain the identifiers of each of the reversed
elements. Upon subsequent launches, these files are re-read and the identifiers
re-used in such a way as not to give several different identifiers to the same
object. A log file containing the contents of the console is also generated in the
reverse data directory.
In a centralized configuration, these files are re-used over different reverse of
different C++ projects. The reversed identifiers are thus shared between different
reverses. This is the best choice if you wish to reverse several different C++
projects which use the same classes. However, if two people reverse engineer
two different classes with the same name, there may be a collision resulting from
two different classes with the same identifier.
In a non-centralized configuration, reverse data is stored in the .o4reverse
directory in the SNiFF+ project directory. Identifiers are, therefore, not shared
between different SNiFF+ projects.
We recommend that you always use centralized data and different centralized
data directories, when reversed C++ projects do not use the same C++ classes.

Chapter 4: Reverse engineering functions provided by Objecteering/UML

Objecteering/C++ Reverse Engineering User Guide 4-11

Known bugs and restrictions

The reverse of some types (typedef, enum) is implemented by the transformation
of the model after reverse. A new reverse either destroys the previous
transformation or fails if an element of the same name and of a different type
already exists.
The reverse of the following elements is not implemented:

♦= forward declaration

♦= include files

♦= comments

♦= private, protected and virtual generalization

Typedefs and enumerations not nested either in a class or a namespace are
reversed as empty classes and only if they are used.
Classes that have no operations are reversed as primitive classes. The reverse of
certain pointer type elements (or reference types) on a "class" is wrong.
Conversely, all reversed elements are accompanied by a "Reverse" note. This
note, deliberately called "Reverse" in order not to interfere with Objecteering/UML
generation (documentation, C++ code), contains the information sent back by the
SNiFF+ tool. Non-named structures (for example, struct { int x, y; } pointA, pointB;
) are automatically named and are reversed under the following name:
unnamed_<name of the file where the declaration is
located>_<position of the declaration in this file>

Default values for parameters and enumerations are not reversed.
Generalization is not reversed when the super class does not belong to the
SNiFF+ project.
In Windows, if you cannot connect to SNiFF+ even though the tool is running, you
should look at the SNiFF+ session name in the SNiFF+ log window. If this name
is not "session0" (which might happen after a system crash, for example), you
must either delete the .sniffdir2 in the Windows temporary directory or set the
SNiFF_SESSION_ID variable (warning, small 'i') to the real session name and
restart the reverse.

Index

{extern} tagged value 4-7, 4-9
{short} tagged value 3-11
{type} tagged value 3-14
<<structure>> stereotype 4-9
<<union>> stereotype 4-9
Associations 1-3
Basic type translation 3-10
C++ code

Reverse 1-6
C++ code analysis 1-3
C++ namespace 4-3
C++ Reverse Engineering commands

4-3, 4-8
C++ sources 1-6
Centralized configuration 4-10
Change classes to non-primitive 4-4
Change classes to type 4-4
Change to enumeration 4-9
Change to non-primitive 4-9
Change to type 4-9
Classes

Services available 4-8
ClassIdents.ini files 4-10
CObArray 3-15
Code analysis 4-10
Code analysis and import 4-4
Code analysis only 4-4
Code analysis services 4-3
Collection translations 3-12
Collections 3-7, 3-12
Complete import mode 1-3, 4-6
Configuration

Centralize reverse data 3-8
Centralized data directory 3-8
Console command 3-8

Create diagrams 3-8
SNiFF+ project 3-8

Configuring the module 2-3
Consistency checks 1-4, 1-6
Constructs 3-7
Create diagrams 4-4
enum type 4-11
Generalizations 1-3
Import only 4-4
Importing reversed elements 4-6
Include directories 3-7
Interface import mode 1-3, 4-6
Key words 3-7
List non-primitive classes 4-4
List primitive classes 4-4
MFCs 1-6, 3-7
Microsoft Foundation Classes 1-6
Module commands

Change classes to non-primitive
4-4

Change classes to type 4-4
Change to enumeration 4-9
Change to non-primitive 4-9
Change to type 4-9
Code analysis and import 4-4
Code analysis only 4-4
Create diagrams 4-4
Import only 4-4
List non-primitive classes 4-4
List primitive classes 4-4
Update reverse 4-4, 4-9
Who uses this element 4-9

Non-centralized configuration 4-10
Objecteering/UML

Configuration 3-8

Packages
Services available 4-3

Parser 3-5
Parser configuration file 3-7
Parsing code 3-5
PATH variable 3-7
Pattern matching predefined symbols

@@ 3-15
@A 3-15
@K 3-15
@P 3-15
@S 3-15
@T 3-15

Pre-processing code 3-5, 3-7
Reverse

Consistency checks 1-4
Restrictions 4-11

Reverse data 4-10
Reverse documentation 1-6
Reverse engineering

Managing identifiers 4-10
Principles 1-3
The C++ Reverse Engineering

problem 1-6
Reverse engineering module

Composition 1-5
Reverse operations

SNiFF tool 1-6

Reverse phases 1-3
Selecting elements to be imported 4-

6
Selecting the import mode 4-5
Selecting the module 2-3
Selecting the SNiFF+ project 4-5
SetBindings.ini file 3-12
SNiFF tool 1-6
SNiFF+ 1-3
SNiFF+ main window 3-3
SNiFF+ parsing 3-7
SNiFF+ project 3-8
SPIdents.ini files 4-10
Stereotypes

<<structure>> stereotype 4-9
<<union>> stereotype 4-9

Structural import mode 1-3
Tagged values 3-11, 4-7

{extern} tagged value 4-7, 4-9
{short} tagged value 3-11
{type} tagged value 3-14

typedef type 4-11
TypeModelBindings.ini file 3-10
UML modeling rules 1-4
Unique identifier 4-10
Update reverse 4-4, 4-9
Who uses this element 4-9

