
www.objecteering.com

Taking object development one step further

bjecteering
Software

Objecteering/UML

Objecteering/C++ Developer User Guide

 Version 5.2.2

Information in this document is subject to change without notice and does not represent a
commitment on the part of Objecteering Software. The software described in this document is
furnished under a license agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement. The purchaser may make one copy of
the software for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal
use, without the express written consent of Objecteering Software.

© 2003 Objecteering Software

Objecteering/UML version 5.2.2 - CODOBJ 001/003

Objecteering/UML is a registered trademark of Objecteering Software.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

UML and OMG are registered trademarks of the Object Management Group. Rational
ClearCase is a registered trademark of Rational Software. CM Synergy is a registered
trademark of Telelogic. PVCS Version Manager is a registered trademark of Merant. Visual
SourceSafe is a registered trademark of Microsoft. All other company or product names are
trademarks or registered trademarks of their respective owners.

Contents

Chapter 1: Introduction
Overview of the Objecteering/C++ module ...1-3
Structure of the Objecteering/C++ user guide...1-4
Overview of C++ development steps ..1-5
Modeling...1-6
Generating files..1-7
Generating makefiles and compiling ...1-8
Parameterizing the Objecteering/C++ generator ..1-9
The properties editor for C++ ..1-10

Chapter 2: Using the Objecteering/C++ module
Working with the Objecteering/C++ module..2-3
The properties editor and the Objecteering/C++ module2-5

Chapter 3: First Steps
Prerequisites ..3-3
Creating a generation work product ..3-6
Visualizing the generated code ...3-11
Creating a compilation work product ...3-16
Generating a makefile..3-20
Visualizing the makefile ...3-22
Executing the makefile...3-25

Chapter 4: Compilation and generation work products
The two work products in the Objecteering/C++ module4-3
The attributes of a generation work product..4-5
The attributes of a compilation work product ..4-7
The context menus of generation and compilation work products4-16
Generating C++ ...4-22
Editing the code file ...4-23
Updating the repository..4-26
Analyzing the compilation ..4-28
Visualizing the file ..4-30

Chapter 5: Tagged values and notes specific to C++
Overview of tagged values and notes specific to C++5-3
Tagged values ...5-4
Notes..5-7

Chapter 6: Calling module commands in batch mode
Calling the module's commands in batch mode - Overview6-3
Calling commands ...6-4
Invocable commands ...6-5

Chapter 7: Module parameters
Definition of module parameters..7-3
Detailed description of parameters..7-5

Chapter 8: Generating code for a package
Overview of code generation on a package ..8-3
Tagged values for a package ..8-6

Chapter 9: Generating code for a class
Overview of code generation on a class ...9-3
Class generalization ..9-5
Class invariant ...9-7
Main class ..9-9
Generic class: Template ..9-11
Tagged values on a class ..9-13
Notes on a class ..9-15

Chapter 10: Generating code for an attribute
Overview of code generation on an attribute ..10-3
Declaration and initialization ..10-6
Access methods...10-9
Tagged values on an attribute ...10-11
Notes on an attribute ...10-17

Chapter 11: Generating code for associations
Overview of code generation on an association ...11-3
Generation ...11-5
Handling instances ..11-8
Tagged values on an association ..11-9

Chapter 12: Generating code for an operation
Overview of code generation on an operation ..12-3
Operation ...12-4
Parameter ..12-7
Detailed tagged values on an operation ..12-10
Notes on an operation: Detailed description ...12-12
Constraints on an operation: Detailed description12-14
Detailed tagged values on a parameter ..12-16
Notes on a parameter: Detailed description ..12-20

Chapter 13: Generating code for a generalization, an enumerate and basic types
Introduction ..13-3
Generating basic types ..13-4
Generating a new type...13-6
Generating an enumerate..13-7
Generating a generalization ..13-9
Creating an instance ..13-11

Chapter 14: Parameterizing basic types
Parameterizing basic types..14-3
Package structure ..14-6
BaseTypes ...14-7
Translating set type associations, parameters and attributes.....................14-9
The translation class typeAttribute or typeAssociation14-11
The translation class type IOParameter or typeReturnParameter14-13
DefaultTranslations ..14-14

Chapter 15: Adapting C++ code generation
Overview of C++ generation adaptation ..15-3
Generation constant ..15-6
Naming and filtering constants ..15-7
Parameterizing the generation of different units15-16
Package ...15-17
Class ..15-19
Attributes ..15-24
Associations ...15-30
Operations..15-37
Parameters...15-45
DataType..15-48
Header ...15-49
ModelElement ..15-50
Enumeration...15-52
Generalization..15-54
Member ..15-56
Examples ...15-58

Chapter 16: Adapting makefile generation
Adapting the makefile ..16-3
Accessing the compilation work product ...16-7
Compilation work product attributes ..16-8
Module parameters ..16-9
Packages - part 1...16-11
Packages - part 2...16-12

Chapter 17: The Objecteering/UML library
Overview of the Objecteering/UML library...17-3
CR_Boolean...17-5
CR_String...17-6
Set of primitive objects...17-8
Set of non-primitive objects ...17-11

Chapter 18: Coverage of C++ by Objecteering/UML
Objecteering/UML coverage of C++ ..18-3
Basic types...18-5
Built types...18-6
Nested declarations ...18-8
Features ...18-10
Friendly operators ..18-12
Generalization between classes..18-14

Index

Chapter 1: Introduction

Chapter 1: Introduction

Objecteering/C++ User Guide 1-3

Overview of the Objecteering/C++ module

Welcome to the Objecteering/C++ user guide!
The Objecteering/C++ module covers the entire development process, from the
modeling design phase right up to the final application (executable or library).
Using the Objecteering/C++ module, it is possible to:

♦ create texts (notes) and annotations (tagged values) specific to C++

♦ generate C++ code from the model

♦ enter C++ code either in the model or directly in the files

♦ create "makefiles" that can be parameterized by the user

♦ compile
The Objecteering/C++ module constantly guarantees the consistency between the
generated C++ source, the binary and the model. It can also assist you during the
development cycle, by helping you to correct the compilation errors in a graphic
environment.
One major strength of the Objecteering/C++ module is its powerful
parameterization feature. The implementation of certain modeling elements can
be defined through tagged values, and generation rules can even be enriched or
redefined, in order to adapt the generated code to your style of programming.

Chapter 1: Introduction

1-4 Objecteering/C++ User Guide

Structure of the Objecteering/C++ user guide

This user guide has been designed for users of the Objecteering/C++ module. It
will guide you through the modeling and the realization of an application, and
constitutes a reference manual for understanding and using dedicated tagged
values or notes.
The Objecteering/C++ user guide is divided into the following chapters:

♦ Chapter 1: Introduction

♦ Chapter 2: Using the Objecteering/C++ module

♦ Chapter 3: First Steps, providing a step by step insight into the workings of the
Objecteering/C++ module

♦ Chapter 4: Overview of generation and compilation work products

♦ Chapter 5: Overview of the available notes and tagged values

♦ Chapter 6: Calling module commands

♦ Chapter 7: Module parameters

♦ Chapters 8 to 13: Generation of C++ code

♦ Chapters 14 to 16: Adapting C++ generation

♦ Chapter 17: The Objecteering/UML library

♦ Chapter 18: Coverage of C++ by Objecteering/UML

Chapter 1: Introduction

Objecteering/C++ User Guide 1-5

Overview of C++ development steps

Presentation
Objecteering/UML is a graphic design tool, used to carry out C++ code generation.
This tool is based on two essential elements: the generation work product and the
compilation work product. The former maintains consistency between the
generated code and the model, whilst the latter aims at compiling code to obtain
the application. For further information on these work products, please refer to
chapter 4, "Compilation and generation work products", of this user guide.
The development steps are shown in Figure 1-1.

Figure 1-1. Development steps

Chapter 1: Introduction

1-6 Objecteering/C++ User Guide

Modeling

Modeling an application consists of:

♦ creating a UML model

♦ annotating the elements of this model according to the selected types of
implementation

The Objecteering/C++ module provides a set of notes and tagged values specific
to C++, which can be used to annotate model elements. For further information
on these notes and tagged values, please refer to chapter 4, "Tagged values and
notes specific to C++", of this user guide.
Notes are used to enter the text that will be inserted in the generated code. For
example, a C++ note attached to a method's body will contain the code of an
algorithm for the function; the "C++BodyHeader" note inserts the "include" code
into the header file.
Tagged values inform the generator of the implementation rules. For example,
{array} on an association means that the implementation is a kind of array and
{virtual} on an operation means that the operation will be a virtual function, etc.

Note: User assessments show that over 70% of the generated C++ code comes
from the model, whilst the remaining 30% comes from additional "notes".

Chapter 1: Introduction

Objecteering/C++ User Guide 1-7

Generating files

The Objecteering/C++ module generates a pair of files (header and body) for each
package and its classes.
When modeling, it is not necessary to supply all the C++ notes for each model
element. The Objecteering/C++ module can deduce them from the model and
add the necessary markers in the generated code file. This means that the user
can edit the generated file using the editor of his choice. The Objecteering/UML
repository is then updated automatically.
Editing can be carried out inside or outside the tool. In both modes, the update of
Objecteering/UML's repository is guaranteed. Cases such as simultaneous
modification of the same file following two different modes are no longer
ambiguous, as the user can choose which code must be taken into account,
through a dedicated graphic editor. In this way, the generation work product
guarantees the consistency between the model and code files.
Figure 1-2 shows when the user intervenes during the modeling and development
phases.

Figure 1-2. The generation produces comprehensive sources

Chapter 1: Introduction

1-8 Objecteering/C++ User Guide

Generating makefiles and compiling

The compilation work product generates a makefile for each package, calls the
compiler and displays the results of the compilation in a dialog box. This dialog
box is divided into two parts. The upper part displays incorrect code, whilst the
lower part presents the error message emitted by the compiler. This graphic
environment guides you intuitively to correct errors in the model and code. Your
corrections are taken into account in the Objecteering/UML repository so that the
final work product will be consistent with the model.

Chapter 1: Introduction

Objecteering/C++ User Guide 1-9

Parameterizing the Objecteering/C++ generator

The Objecteering/C++ module provides various ways to parameterize the
generated code in order to adapt it to your programming style.

♦ Parameterizing through tagged values: by annotating the model with tagged
values, the user can specify code generation. The default case contains no
annotations.

♦ Parameterizing basic types (Enterprise version only): the code generated for
attributes, associations and parameters is produced by the C++ generator
which is associated to the basic types project: ObjecteeringTypes and
STLTypes (Standard Template Library) and MFC Types (Microsoft Foundation
Classes).

♦ Parameterization of basic type default selection according to the modelit is
possible to edit the basic types project, in order to modify the default selection,
in order to implement attributes and associations according to their multiplicity.

♦ Parameterizing by creating a type project: any user can use the basic types
library of his choice in the generated code. This feature is obtained by creating
and editing a specific types project. Respecting certain rules, the type project
is then used by the basic generator to produce C++ code. (For further
information, please refer to chapter 12, "Parameterizing basic types", of this
user guide).

♦ Parameterizing using the UML Profile Builder tool: the generated code can be
adapted by redefining the J methods in charge of producing zones of C++
code. Design patterns can be automated and redefined using this feature.

Chapter 1: Introduction

1-10 Objecteering/C++ User Guide

The properties editor for C++

The properties editor is essentially a window designed to aid the user in his
modeling, by providing rapid access to various information and services he may
need to use.
The properties editor contains a number of tabs, including a "C++" tab when the
Objecteering/C++ module has been selected for the current UML modeling
project. This tab is used to enter or modify certain information relevant to C++
generation on the element selected in the explorer, such as notes, tagged values
or stereotypes.
For further general information on the properties editor, please refer to the "The
Properties editor" section in chapter 3 of the Objecteering/UML Modeler user
guide.
For further information on the "C++" tab of the properties editor, please refer to the
"The properties editor and the Objecteering/C++ module" section in chapter 2 of
this user guide.

Chapter 2: Using the Objecteering/C++
module

Chapter 2: Using the Objecteering/C++ module

Objecteering/C++ User Guide 2-3

Working with the Objecteering/C++ module

Installing the Objecteering/C++ module
The Objecteering/C++ module is delivered to and installed on your
Objecteering/UML site automatically during the Objecteering/UML installation
procedure. For further information, please refer to chapter 2 of the
Objecteering/Introduction user guide.

Note: The complete module delivery and installation procedure is fully explained
in the "Detailed view of the Configuration menu" in chapter 3 of the
Objecteering/Administrating Objecteering Sites user guide.

Selecting the Objecteering/C++ module
The only operation the user has to carry out in order to be able to use the
Objecteering/C++ module is the actual selection of the module itself for the current
UML modeling project. This operation is described in the "Selecting modules in
the current project" section in chapter 3 of the Objecteering/Introduction user
guide.

Note: It should be noted that it the user wishes to compile, he is obliged to go
into the module parameters, in order to enter the compiler path, libraries,
and so on.

Please note that because installation of the Objecteering/C++ module is carried
out automatically during installation of the Objecteering/UML tool itself, module
parameters are standard. To customize these module parameters, simply edit the
"Modify module parameter configuration" window. For further information on
modifying module parameters, please refer to the "Configuration window" section
in chapter 16 of this user guide.

Chapter 2: Using the Objecteering/C++ module

2-4 Objecteering/C++ User Guide

The properties editor for C++
It should be noted that where a version of the Objecteering/C++ module which
adds a tab to the properties editor is selected in place of an earlier version of the
module which did not provide this service, you should quit and restart
Objecteering/UML, in order for the properties editor to be correctly displayed.

Selecting the C++ model type
When creating a new UML modeling project, it is possible to select the
"DefaultCpp" UML model type in the "UML model type" field. By doing this, the
Objecteering/C++ module is automatically selected for use in your new UML
modeling project.

Chapter 2: Using the Objecteering/C++ module

Objecteering/C++ User Guide 2-5

The properties editor and the Objecteering/C++ module

The "C++" tab of the properties editor on a package

Figure 2-1. The "C++" tab of the properties editor on a package

Key:
1 - This provides the name of the package selected in the explorer.
2 - This field is used to add the {C++Name} tagged value.
3 - This field is used to add the {extern} tagged value.
4 - This field is used to add the {nocode} tagged value.
5 - This field is used toadd the {C++NoNameSpace} tagged value.
6 - This field is used toadd the {C++Root} tagged value.
7 - This field is used to add the "C++BodyHeader" note.
8 - This field is used to add the "C++InterfaceHeader " note.
9 - This field is used to add the "C++Invariant" constraint.

Chapter 2: Using the Objecteering/C++ module

2-6 Objecteering/C++ User Guide

The "C++" tab of the properties editor on a class

Figure 2-2. The "C++" tab of the properties editor on a class

Key:
1 - This provides the name of the class selected in the explorer.
2 - This field is used to add the {C++Name} tagged value.
3 - This field is used to add the {extern} tagged value.
4 - The "Visibility" radio buttons are used to select the visibility of the class.
5 - The tickboxes which appear here are used to indicate the nature of the class:

♦ "Abstract": This means that the class is abstract.

♦ "Main class": This defines the class as being main.

♦ "Primitive": This means that the class is primitive.

♦ The "No C++ code" tickbox is used to add the {nocode} tagged value.
6 - This field is used to add the "C++BodyHeader" note.
7 - This field is used to add the "C++InterfaceHeader " note.
8 - This field is used to add the "C++Invariant" constraint.

Chapter 2: Using the Objecteering/C++ module

Objecteering/C++ User Guide 2-7

The "C++" tab of the properties editor on an operation

Figure 2-3. The "C++" tab of the properties editor on an operation

Chapter 2: Using the Objecteering/C++ module

2-8 Objecteering/C++ User Guide

Key:
1 - This provides the name of the operation selected in the explorer.
2 - This field is used to add the {C++Name} tagged value.
3 - The "Visibility" radio buttons are used to select the visibility of the class.
4 - The "Operation type" buttons which appear here are used to indicate the

operation type:

♦ "None": This means that the operation has no special type.

♦ "Constructor": This adds the <<create>> stereotype to the operation,
and means that it is a constructor of its class.

♦ "Destructor": This adds the <<destroy>> stereotype to the operation.
5 - These tickboxes are used as follows:

♦ "Const": This generates "const" operations.

♦ "Static": This defines operations as being class.

♦ "virtual": This adds the {virtual} tagged value to the operation.

♦ "Abstract": This defines the operation as being abstract.

♦ "inline": This adds the {inline} tagged value to the operation.
6 - This field is used to add the "C++PreCondition" note.
7 - This field is used to add the "C++" note. .
8 - This field is used to add the "C++PostCondition" note. .

Note: For operations with return parameters, an additional field is available, "C++
return code", which is used to add the "C++Returned" note.

Chapter 2: Using the Objecteering/C++ module

Objecteering/C++ User Guide 2-9

The "C++" tab of the properties editor on an attribute

Figure 2-4. The "C++" tab of the properties editor on an attribute

Chapter 2: Using the Objecteering/C++ module

2-10 Objecteering/C++ User Guide

Key:
1 - This provides the name of the attribute selected in the explorer.
2 - This field is used to add the {C++Name} tagged value.
3 - The "Visibility" radio buttons are used to select the visibility of the attribute.
4 - The buttons which appear here are used indicate the attribute's access mode.
5 - These tickboxes are used as follows:

♦ "Static": This defines the attribute as being class.

♦ "public": This adds the {public} tagged value.

♦ "own": This adds the {own} tagged value.

♦ "No C++ code": This adds the {nocode} tagged value.

♦ "*": This adds the {*} tagged value.

♦ "&": This adds the {&} tagged value.

♦ "const": This adds the {const} tagged value.
6 - The "Multiplicity" field is used to enter the attribute's multiplicity.
7 - This field is used to add the {type(...)} tagged value.
8 - This field is used to define the default value of the attribute.
9 - This field is used to add the "C++TypeExpr" note.

Chapter 2: Using the Objecteering/C++ module

Objecteering/C++ User Guide 2-11

The "C++" tab of the properties editor on an association

Figure 2-5. The "C++" tab of the properties editor on an association

Key:
1 - This provides the name of the association selected in the explorer.
2 - This field is used to add the {C++Name} tagged value.
3 - The "Visibility" radio buttons are used to select the visibility of the association.
4 - These tickbuttons are used as follows:

♦ "Static": This defines the association as being class.

♦ "public": This adds the {public} tagged value.

♦ "own": This adds the {own} tagged value.

♦ "No C++ code": This adds the {nocode} tagged value.
5 - This field is used to add the {type(...)} tagged value.
6 - These fields are used to define the minimum and maximum multiplicities of the

association.

Chapter 2: Using the Objecteering/C++ module

2-12 Objecteering/C++ User Guide

The "C++" tab of the properties editor on a parameter

Figure 2-6. The "C++" tab of the properties editor on a parameter

Key:
1 - This provides the name of the parameter selected in the explorer.
2 - This field is used to add the {C++Name} tagged value.
3 - This field is used to set the parameter passing mode.
4 - These tickboxes are used to add the {const}, {*} and {&} tagged values.
5 - This field is used to add the {type(...)} tagged value.
6 - The "Multiplicity" field is used to define the multiplicity of the parameter.
7 - This field is used to set the default value of the parameter.
8 - This field is used to add the "C++TypeExpr" note.

Note: The same fields are displayed in the C++ tab of the properties editor on
return parameters, except that the "Parameter passing" and "Default
value" fields are not present.

Chapter 3: First Steps

Chapter 3: First Steps

Objecteering/C++ User Guide 3-3

Prerequisites

Getting started
In these first steps, we are going to be using the "VendingMachine" demonstration
UML modeling project to generate C++ code and produce an executable. By
following this example, you will discover, step by step, the different features of the
Objecteering/C++ module.
We recommend that before starting, every user carry out the general
Objecteering/UML first steps in the Objecteering/Introduction user guide.

Note: <$OBJING_PATH> designates the Objecteering/UML installation
directory.

Chapter 3: First Steps

3-4 Objecteering/C++ User Guide

Initializing the First Steps UML modeling project
A First Steps UML modeling project is delivered along with the Objecteering/First
Steps module. It is located in <$OBJING_PATH>/modules/CxxModule/FirstSteps.
Before starting, you must:
1 - Create a UML modeling project (for example, "VendingMachine") (for further

details, please refer to the "Creating or opening a UML modeling project"
section in chapter 3 of the Objecteering/UML Modeler user guide).

2 - Select the C++ module for your UML modeling project. This selection is made

using the "UML modeling project modules" icon.
3 - Import the contents of the "FirstSteps" UML modeling project (as shown in

Figure 3-1), by following the steps explained below:

Chapter 3: First Steps

Objecteering/C++ User Guide 3-5

Figure 3-1. Importing the "FirstSteps" UML modeling project

Steps:
1 - Select the model root, and click on the right mouse button to display the

associated context menu.
2 - Run the "C++ Generation/Import of the first steps project" options from the

context menu.

Chapter 3: First Steps

3-6 Objecteering/C++ User Guide

Creating a generation work product

Procedure
Taking this example as a starting point, we will begin by creating a generation
work product for a package (figure 3-2).

Figure 3-2. Creating a generation work product in the "VendingMachine" package

Chapter 3: First Steps

Objecteering/C++ User Guide 3-7

Steps:
1 - Select the "VendingMachine" package.

2 - Click on the "Create a generation work product" button in the "Items" tab
of the properties editor.

Note: The purpose of the generation work product is to define the generation
options for the associated model element.

Chapter 3: First Steps

3-8 Objecteering/C++ User Guide

Creating a generation work product
The dialog box for a generation work product (figure 3-3) is used to specify the
information linked to a generation. The dialog box's field values are described in
chapter 3 of this user guide.

Figure 3-3. The "Generation work product" dialog box

After confirmation, generation is launched automatically if the "Automatic
generation after modification" box is checked.

Note: The default values of this dialog box are parameterized at UML modeling
project level (for further information, please refer to chapter 7, "Module
parameters", of this user guide).

Chapter 3: First Steps

Objecteering/C++ User Guide 3-9

Generating code
We will now generate the code corresponding to the package in the explorer
(figure 3-4).

Figure 3-4. Generating code for the "VendingMachine" package

Chapter 3: First Steps

3-10 Objecteering/C++ User Guide

Steps:
1 - Click on the generation work product in the "'Items" tab of the properties editor

with the right mouse-button to display the context menu.
2 - Run the "C++ Generation/Generate" commands.

Note: Double-clicking on the generation work product executes the "Generate"
command for this work product.

Chapter 3: First Steps

Objecteering/C++ User Guide 3-11

Visualizing the generated code

Visualizing the header of the generated code
Code has now been generated for the "VendingMachine" package and all its
packages and classes. Visualizing the header of the generated code is possible
from the explorer (figure 3-5).

Figure 3-5. Visualizing the generated code header for the " ElementsDispensed " package

Chapter 3: First Steps

3-12 Objecteering/C++ User Guide

Steps:
1 - Select the "ElementsDispensed" package in the explorer and click on the

associated generation work product in the "Items" tab of the properties editor
with the right mouse-button to activate the context menu.

2 - Run the "C++ Generation/Visualize the header" commands.

Chapter 3: First Steps

Objecteering/C++ User Guide 3-13

Generated code header
The "Editing the generated file" window (figure 3-6) allows you to visualize the
elements of the header's generated code .

Figure 3-6. Generated code for the header for the "ElementsDispensed" package

Note: Double-clicking on the blue text opens a corresponding dialog box to
modify the model. This corresponds to the Objecteering/UML mechanism
of dynamic administration of the code/model traceability.

Chapter 3: First Steps

3-14 Objecteering/C++ User Guide

Visualizing the body of the generated code
The generated body file (figure 3-7) can be visualized from the explorer.

Figure 3-7. Visualizing the generated body code

Steps:
1 - Click on the generation work product in the "Items" tab of the properties editor

with the right mouse-button to activate the context menu.
2 - Select the "C++ Generation/Visualize the body" options.

Chapter 3: First Steps

Objecteering/C++ User Guide 3-15

Body class
You can visualize the generated body code in the "Editing the generated file"
window (figure 3-8).

Figure 3-8. Generated body code for the "ElementsDispensed" package

Chapter 3: First Steps

3-16 Objecteering/C++ User Guide

Creating a compilation work product

Procedure
We will now create the compilation work product (figure 3-9) that contains all the
information related to the compilation options for the previously generated code.

Figure 3-9. Generating a compilation work product for the "VendingMachine" package

Chapter 3: First Steps

Objecteering/C++ User Guide 3-17

Steps:
1 - Select the "VendingMachine" package in the explorer.

2 - Click on the "Create a compilation work product" button in the "Items" tab
of the properties editor.

Note 1: In order for compilation to be correctly carried out, certain C++ module
parameters must already have been correctly defined, notably "Systems
"include" files" (in the "Directories" group of parameters), "Libraries" (in the
"Directories" group of parameters), and all the parameters in the "Attached
tools" group, if the compiler used is not the default system compiler (MS
Visual C++ for Windows, CC for Solaris and CC for HP). For further
information on these module parameters, please refer to the "Detailed
description of parameters" section in chapter 7 of this user guide.

Note 2:For Visual C++ for PC, include file and library path parameters are
initialized by default, assuming that Visual C++ has been installed in
C:\Program Files\Microsoft Visual Studio\Vc98.

Chapter 3: First Steps

3-18 Objecteering/C++ User Guide

Entering a compilation work product
The dialog box's field values are described in chapter 4 of this user guide.

Figure 3-10. Entering a compilation work product

Chapter 3: First Steps

Objecteering/C++ User Guide 3-19

Steps:
1 - Enter the name of the compilation work product.
2 - Enter the directory where the makefile will be generated.
3 - Select the "executable" type.
4 - Confirm.

Note: After confirmation, the compilation work product is generated
automatically.

Chapter 3: First Steps

3-20 Objecteering/C++ User Guide

Generating a makefile

Procedure
From the compilation work product, we are now going to generate the Makefile
necessary to compile the package.

Figure 3-11. Generating a compilation work product for the "VendingMachine" package

Chapter 3: First Steps

Objecteering/C++ User Guide 3-21

Steps:
1 - Select the compilation work product in the "Items" tab of the properties editor

with the right mouse-button to activate the context menu.
2 - Run the "C++ Generation/Generate the makefile" commands.

Chapter 3: First Steps

3-22 Objecteering/C++ User Guide

Visualizing the makefile

Visualizing the Makefile
Visualizing the generated Makefile file header is possible from the explorer (figure
3-12).

Figure 3-12. Visualizing the "VendingMachine_Make" makefile

Chapter 3: First Steps

Objecteering/C++ User Guide 3-23

Steps:
1 - Select the compilation work product in the "Items" tab of the properties editor

with the right mouse-button to activate the context menu.
2 - Run the "C++ Generation/Visualize the makefile" commands.

Chapter 3: First Steps

3-24 Objecteering/C++ User Guide

The Makefile
The Makefile generated from the "VendingMachine" package is visible in the
"Editing the generated file" window (figure 3-13).

Figure 3-13. The Makefile of the "VendingMachine" package

Chapter 3: First Steps

Objecteering/C++ User Guide 3-25

Executing the makefile

Compiling the generated file
The compilation, or in other words, the command associated with the work
product, will make it possible to produce the binary it specifies (i.e. the library,
executable, etc.), and to analyze and correct the errors.
From the compilation work product, run the "compile" option. Objecteering/UML
carries out the compilation automatically (execution of the Makefile), and opens a
"Compilation analysis" window (Figure 3-14) containing 2 fields:

♦ a text field, in which you can visualize the text extracts containing possible
errors

♦ a text field named "List of errors", that displays the errors and their gravity

Result
An executable binary is generated in the compilation work product directory, with
the same name as the work product ("Application_mak" by default). Run the
binary in this directory (DOS or UNIX window).

Chapter 3: First Steps

3-26 Objecteering/C++ User Guide

Compilation analysis
It is possible to analyze compilation errors directly from the tool. The "Compilation
analysis" command opens a window containing the compilation results, as shown
in Figure 3-14. In the case of an error during the compilation phase, the
"Compilation analysis" window appears automatically.

Figure 3-14. The "Compilation analysis" window displaying the error that must be corrected

Chapter 3: First Steps

Objecteering/C++ User Guide 3-27

This window is divided into two sections:
1 - The generated sources which present the errors. If you double-click on the

blue text, a dialog box for the generation elements, used to generate this zone,
will open.

2 - The lower section called "Compilation results" displays the errors prefixed by

the icon. The other lines are prefixed by the icon. If you select a
line of errors, the file containing the incorrect code will be displayed in the
upper section of the window. If you double-click on this code, the model
element which generated it will be displayed.

To correct the error, simply double-click on the error mentioned in red in the text
field, and correct the inserted error in the dialog box.

Chapter 4: Compilation and generation
work products

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-3

The two work products in the Objecteering/C++ module

Overview
To obtain a binary from a model, you must create a generation work product for
the highest level package, generate C++ code and then create a compilation work
product. If you want to generate more than one executable from your model (for
example, a client executable and a server executable), you have to organize your
classes into two major packages. Work products should then be created for each
package, with specific options for the client side and the server side.
The generation work product represents the C++ sources. The compilation work
product represents the production process (Makefile) and the results of the
compilation (libraries, error files, executables).
These two work products follow the UML modeling project’s composition structure
(UML modeling project/package/class logic). If you create a work product on a
package during the first generation, a work product will be created on each
component (sub-package or class), which can have such a work product. If you
add components after the last generation, the following generation will create work
products on the new components, which can have the work products. In this way,
these work products will maintain consistency with the model.

Defining a generation work product

 A pair of C++ sources (interface and body) are associated with each
package or class.
A generation work product can:

♦ group together certain generation attributes (path and extensions of the C++
files for generation, generation UML profiles...)

♦ run C++ code generation

♦ maintain consistency between C++ files generated and the model

♦ offer the file services related to the model element

Chapter 4: Compilation and generation work products

4-4 Objecteering/C++ User Guide

Defining a compilation work product

 A file (makefile) is associated to each package.
A compilation work product can:

♦ group together compilation attributes, used to constitute the "makefile"

♦ run the compilation and produce an executable and a static or a dynamic
library

♦ maintain consistency between the makefiles and the model

♦ provide file services related to makefile and compilation error analysis

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-5

The attributes of a generation work product

Description
The dialog box for modifying a generation work product is shown in Figure 4-1.

Figure 4-1. The "Generation work product" dialog box

Chapter 4: Compilation and generation work products

4-6 Objecteering/C++ User Guide

The attributes are defined in the table below:

The ... field is used to specify ...
Name the name of the generation work product. By default, this

name is "Cxx". The names of the generation work products
of sub-packages and classes, created during propagation,
are the same as the name of the original work product.

Generation path the location of the files created by the generation. If you
want to separate the generated header and body files into
two different directories, you can specify paths for them
here. The first is the path for header files, and the second is
the path for body files. They are separated by ";".

Suffix of header files suffix the header file extension.

Suffix of body files the body file extension.

UML profile the generation UML profile. It allows you to distinguish
several possible generation parameterizations.

Automatic generation after
modification

whether to run the generation immediately after clicking on
the OK button.

Add a stereotype the semantics of a given existing class. Stereotypes are
defined at UML profiling project level.

Note: Only one C++ generation work product can be created per model element.

Here the "Name" field provides the name of the generation work product. This
name is not the same as the name of those associated files. The name of a
generated code file is always the same as that of the model element (for a class)
followed by the extension, header file suffix and body file suffix in that order.
For a package, the name of the generated file is equal to the model element name
prefix with the string "p_". This component is useful to avoid collision file names in
the case of a package and one of its classes having the same name.
The "Automatic generation after modification" box is used to indicate whether to
run generation automatically after the work product's parameters have been
modified.

Note: Generation path: If you want to separate the generated header and body
files into 2 different directories, you can indicate their paths here. The first
one is the path for header files, the second for body files. They are
separated by ";".

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-7

The attributes of a compilation work product

Overview
The attributes of a compilation work product are classified into six groups:

♦ Properties

♦ Tagged values

♦ Definition

♦ Headers

♦ Libraries to be linked

♦ Excluded classes

Chapter 4: Compilation and generation work products

4-8 Objecteering/C++ User Guide

The "Properties" tab
This tab defines essential values and options.

Figure 4-2. The "Properties" tab of the compilation work product dialog box

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-9

The ... field is used to specify ...
Name the name of the compilation work product. By default, this

name is "Make". The compilation work products belonging
to sub-packages and classes all have the same name as
the original compilation work product.

Directory the location of the targeted files and makefile.

Intermediary directory the location of the intermediary files, such as the object
files.

Type the type of file targeted, i.e., object, and static or dynamic
library.

Debug whether or not to produce debug symbols.

Compilation options compiling options.

UML Profile the Makefile generation profile. This is used to select the
Makefile generation parameterization.

Production options the options for editing links.

Automatic generation after
modification

whether or not to regenerate the Makefile automatically
just after the work product has been modified.

Skip errors on compiling whether or not to continue generating, in spite of errors.

Document template the document template which will generate a Makefile for a
package.

Add a stereotype the semantics of a given existing class. Stereotypes are
defined at UML profiling project level.

Note: A model element can have several C++ compilation work products (for
example, one for debugging, one for releases, and so on. If this is the
case, each compilation work product must have a different name.

The name of the Makefile generated takes the following form:
WorkProductName_WorkProductPackageName.mak.

Chapter 4: Compilation and generation work products

4-10 Objecteering/C++ User Guide

The "Definition" tab
This tab is used to provide definitions in the makefile's line of compilation. It
corresponds to the /D option for some C++ compilers.

Figure 4-3. The "Definition" tab of the compilation work product dialog box

The ... button is used to ...
Modify modify the selected variable.

Add add a variable.

Remove remove the selected variable.

Remove all remove all the variables.

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-11

The "Header" tab
This tab is used to define the paths used when searching for header files during
compilation. They correspond to the -I option for some C++ compilers.

Figure 4-4. The "Headers" tab of the compilation work product dialog box

The ... button is used to ...
Modify modify the selected path.

Add add a path used when searching for header files.

Remove remove the selected path.

Remove all remove all the paths for searching for the header files.

Chapter 4: Compilation and generation work products

4-12 Objecteering/C++ User Guide

The "Libraries to be linked" tab
This tab is used to add the libraries to be linked, as well as the paths used to
search for the libraries in the Makefile.

Figure 4-5. The "Libraries" tab of the compilation work product dialog box

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-13

Libraries that must be linked:

The ... button is used to ...
Modify modify the selected library.

Add add a library.

Remove remove the selected library.

Remove all remove all the libraries.

Search paths:

The ... button is used to ...
Modify modify the selected path used to search for the libraries.

Add add a path used to search for the libraries.

Remove remove the selected path used to search for the libraries.

Remove all remove all the paths used to search for the libraries.

Note: The format of the entered strings depends on the system on which the
compilation is run.

The two lists in the above window are initialized from module parameters when the
compilation work product is created. If module parameters are modified after the
creation of the work product, these modifications will not be taken into account by
the work product.

Chapter 4: Compilation and generation work products

4-14 Objecteering/C++ User Guide

In UNIX, the library format is as follows:

The ... string with the format produces the inclusion of the ... library
my_lib libmy_lib.a (static) or libmy_lib.so (dynamic)

-lmy_lib libmy_lib.a (static) or libmy_lib.so (dynamic)

my_lib.a my_lib.a

my_lib.so my_lib.so

In Windows, the file format is as follows:

The ... string with the format produces the inclusion of the ... library
my_lib my_lib.lib

my_lib.lib my_lib.lib

my_lib.dll my_lib.dll

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-15

The "Excluded classes" tab
This tab allows you to exclude classes from the Makefile, i.e. the classes which
are not taken into account during compilation.

Figure 4-6. The "Excluded classes" tab of the compilation work product dialog

The ... button is used to ...
Search search for the classes that can be excluded.

Add add the selected class(es) to the right-hand side (classes to be
excluded).

Remove remove the selected classes from the right-hand side.

Remove all remove all the classes from the right-hand list.

Chapter 4: Compilation and generation work products

4-16 Objecteering/C++ User Guide

The context menus of generation and compilation work
products

The context menu of a generation work product
Selecting a work product (generation or compilation), by clicking on the right
button, opens a pop-up menu called a context menu (Figure 4-7).

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-17

The context menu of a generation work product

Figure 4-7. Context menu of a generation work product

The ... command is used to ...
Modify modify the generation work product attributes.

Consult consult the generation work product attributes.

Delete children suppress the child work products.

C++ generation display the generation sub-menu.

Chapter 4: Compilation and generation work products

4-18 Objecteering/C++ User Guide

The context menu of a compilation work product
Selecting a compilation work product, by clicking on the right mouse-button, opens
a pop-up menu called a context menu (Figure 4-8).

Figure 4-8. Context menu of a compilation work product

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-19

The ... command is used to ...
Modify modify the compilation work product attributes.

Consult consult the compilation work product attributes.

Delete children suppress the child work products.

C++ generation display the generation sub-menu.

The available functions in the context menu of a work product can be classified
into three groups: attribute management, propagation action and file related
services.

Managing a work product's attributes
Each work product has a set of attributes related to its function. Both context
menus of the products contain a pair of menu items, "Modify" and "Consult".
The attributes of each work product are described in the following sections of this
chapter, and can be modified or consulted by the user.
When creating the generation work product and compilation work product, the
related dialog boxes provide certain default values. These default values can be
modified by changing the parameters of the module. For a detailed description,
please refer to chapter 7, "Module parameters", of this user guide.

The action of propagation
A UML modeling project is organized in a structure of packages and classes. For
certain product functions, if processing is run from an element, the action is also
carried out on all its component elements. This function is called propagation.
For a generation work product, propagation actions are "Generate" and "Update
the repository".
For a compilation work product, propagation actions are "Compile", "Generate the
makefile", "Generate the code and compile" and "Delete the binaries".
The "Delete child work products" command, available on both work products,
successively deletes those work products created by a propagation action.

Chapter 4: Compilation and generation work products

4-20 Objecteering/C++ User Guide

Features related to associated files
Work products provide features related to the files associated with a work product.

The ... provides the ... services
generation work product visualize (body or header)

edit (body or header)

compilation work product visualize the "makefile"

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-21

Generating C++

Code generation
You can run C++ code generation by selecting the generation work product
context menu, or simply by double clicking on the generation work product.
Code generation is a propagation action. If the generation work product of the
sub-elements does not exist, it is created first.

Note: By properly organizing your model into packages, code generation on all
parts of the model can be carried out in one go.

Code generation and model consistency checks
Code may be generated from the UML model regardless of whether consistency
checks are active or inactive. However, when generation is launched, a message
informs the user that he is in the process of generating code on a model which
may potentially not conform to the UML modeling rules checked by
Objecteering/UML (as shown in Figure 4-9).

Figure 4-9. Message informing the user that consistency checks have been removed

Note: It should be noted that code generation in command line mode (please
see objingcl) is assured, whatever the state of the consistency checks at
the time of code generation.

Generating the makefile
A makefile is only generated for a package. This is a propagation action.

Chapter 4: Compilation and generation work products

4-22 Objecteering/C++ User Guide

Editing the code file

External editor
Selecting the item edit (the header or body) from the context menu of the
generation work product opens an editor called external editor.
In the external editor, code can be freely entered, but this code must always be
between the following two markers:
// BEGINNING OF ZONE WHICH CAN BE MODIFIED @OBJID@...
// END OF ZONE WHICH CAN BE MODIFIED @OBJID@...

Any modification made outside these zones will not be retrieved by the
Objecteering/C++ module.

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-23

The zones you can modify correspond to the C++ notes presented in the table
below.

The ... note on the
... file

concerning
the ... class

is retrieved ...

C++BodyHeader body Class at the beginning of the class
body.

C++InterfaceHeader header Class at the beginning of the class
header.

C++PrivateMember header Class as free declarations with
private visibility.

C++ProtectedMember header Class as free declarations with
protected visibility.

C++PublicMember header Class as free declarations with public
visibility.

C++ body or
header

Operation as method body.

C++ConstructorTransmission body or
header

Operation
(constructor)

as instructions for passing
information between
constructors.

C++Returned body or
header

Operation as a method’s return value.

C++BodyHeader body Package at the beginning of a package
body.

C++InterfaceHeader header Package at the beginning of a package
header.

Chapter 4: Compilation and generation work products

4-24 Objecteering/C++ User Guide

Retrieving edited code
Modifications made to a generated file are retrieved when the external editor
closes. The file is scanned to find concerned zones within a pair of markers. For
each zone that is not empty, Objecteering/UML checks the model. It automatically
creates the C++ notes corresponding to the said zones, if they do not already
exist. The code in the zones is then copied into the content of the notes.

Note: Retrieving does not control or compare C++ syntax. The code of the
edited file is, therefore, simply retrieved and placed in the corresponding
C++ note.

In this way it is possible, while editing the generated files, to create the C++ notes
automatically in the model, by entering code into empty notes (between markers).

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-25

Updating the repository

When should updating be launched?
Objecteering/UML can retrieve the modifications made in the generated files,
without going through the external editor in Objecteering/UML. In this case, it is
necessary to update the repository.
The generation work product keeps track of your work. Each time you generate
code for an element, the generation work product checks the registered time of
the code file. If the file is more recent than the last generation, the update is run
before generating the new code.
Updating the repository is an action of propagation.

What happens during updating?
During the retrieval, each file is scanned to collect the code zones between the
pair of markers as explained in the previous section. The generation work product
identifies the corresponding C++ note in the model.

♦ if the zone is not empty, but no C++ note in the model corresponds to this
zone, a C++ note is created containing the code in the zone

♦ if the code in the zone differs from the content of the corresponding C++ note
in the model, generation history is reviewed

If... then...
generation occurred after this model
element was created or modified

the content of the C++ note is updated with the
zone's code.

the C++ note is created or modified
after the last generation

a dialog box comparing the C++ note and the
code of the zone opens , and the user decides
which text version should be kept.

Chapter 4: Compilation and generation work products

4-26 Objecteering/C++ User Guide

The comparison window
When both the file and the text in the repository, associated with a modified zone
in the file, are more recent than the last code generation, a comparison window
will open.
The upper section presents the text as it is in the model. The lower section
contains the text zone corresponding to the file.
The user then chooses one of the following actions:

♦ Retrieve: the code presented in the lower section is placed into the repository
and replaces the code presented in the upper section.

♦ Keep: the code presented in the upper section is kept.
In both cases the window will then close. If another similar case arises during the
rest of the retrieval, the window will open again.

Figure 4-10. The window used to resolve differences between the model and the generated file

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-27

Analyzing the compilation

Overview
Selecting the "Compilation Analysis" item from the compilation work product's
context menu will open the window used to analyze compilation. The window is
divided into two parts. The upper section contains the code file, the lower section
contains the result of the compilation (Figure 4-11).

Figure 4-11. The "Compilation analysis" window

Chapter 4: Compilation and generation work products

4-28 Objecteering/C++ User Guide

The result of the compilation contains three different message categories: error,
warning and information.

They are represented respectively by the , and icons.
The code file is displayed in blue or black. The blue zone corresponds to a C++
note or a model element. A line of code may, however, be in red. This means
that this line of code may be the one containing the error selected in the lower part
of the window.

Correcting errors
This window makes it possible to correct the compilation error by modifying the
model element directly. Double-clicking on the blue zone in the upper section of
the window opens a C++ note edition window or a model element definition dialog
box, in which you can carry out the required modifications. You may then run the
"Generate and compile" command from the compilation work product context
menu. This development cycle eventually produces the final target file that will be
consistent with the model.

Chapter 4: Compilation and generation work products

Objecteering/C++ User Guide 4-29

Visualizing the file

Overview
When the following commands are run, the generated C++ or makefile files are
displayed in read only mode:

♦ "Visualize the makefile" for a compilation work product

♦ "Visualize the header" for a generation work product

♦ "Visualize the body" for a generation work product

Figure 4-12. Window for visualizing the "Makefile" file

Chapter 5: Tagged values and notes
specific to C++

Chapter 5: Tagged values and notes specific to C++

Objecteering/C++ User Guide 5-3

Overview of tagged values and notes specific to C++

Objecteering/UML is a multi-target workshop used to model a large quantity of
application elements, whatever the computing language used.
However, during the technical designing and programming phases,
implementation details expressed in target language have to be specified and
added to the model, such as the body methods or the exact type of method
parameters.
This information is entered either with:

♦ "Tagged values" (also called "directives"), which provide implementation rules
for the generator

♦ "Notes", which correspond to the zones inserted directly in the generated code

♦ "Stereotypes", which provide implementation rules for the generator, different
to those of a non "stereotyped" element

♦ "Constraints", which provide the code inserted in pre-condition and post-
condition zones

Tagged values and notes specific to C++ can be created for a model element only
if the Objecteering/C++ module has been selected.

Chapter 5: Tagged values and notes specific to C++

5-4 Objecteering/C++ User Guide

Tagged values

Creating a tagged value
Tagged values are used to express very specific C++ properties (for example the
"inline" method, "virtual" method, "const" attribute, etc.).
They can be added to model elements:

♦ in the element’s dialog box, by selecting the "Tagged values" tab (Figure 4-1).

♦ for elements appearing in the explorer, by clicking on the "Associate a
tagged value" icon in the "Items" tab of the properties editor.

Chapter 5: Tagged values and notes specific to C++

Objecteering/C++ User Guide 5-5

In figure 5-1 for example, the {virtual} tagged value is added to an operation, to
express that it is a C++ virtual method.

Figure 5-1. Entering a {virtual} tagged value on an operation

Steps:
1 - After having opened the "Operation" dialog box, select the "Tagged values"

tab.
2 - Click on "Add".
3 - Select the {virtual} tagged value.
4 - Add parameters and qualifiers where necessary.
5 - Confirm.

Chapter 5: Tagged values and notes specific to C++

5-6 Objecteering/C++ User Guide

Entering a tagged value
A tagged value is characterized by:

♦ its type (or specification), chosen from the list in the dialog box's "Properties"
section

♦ possible parameters, entered in the dialog box's "Parameters" section

Note: The "Qualifier" section of this dialog box serves no purpose for a C++
tagged value.

Information on the full set of tagged values provided by the Objecteering/C++
module can be found in the chapters on code generation, contained further on in
this user guide.

Chapter 5: Tagged values and notes specific to C++

Objecteering/C++ User Guide 5-7

Notes

Usual case
C++ code added by hand is entered via specific C++ notes. These notes can be
entered in C++ external editors, directly in the "Items" tab of the properties editor
or in the model element’s entry dialog box.
C++ notes can be added to:

♦ all elements which can have notes, via the element’s dialog box, by selecting
the "Notes" tab

♦ those elements which appear in the explorer, by clicking on the "Add a
note" icon in the "Items" tab of the properties editor and thus creating a new
note

Note: To add a C++ note to an operation, select the "Implementation" tab in the
element's dialog box.

Chapter 5: Tagged values and notes specific to C++

5-8 Objecteering/C++ User Guide

For example, specific "includes", headers of a C++ class body, will be entered in
the "C++BodyHeader" text zone (Figure 5-2) on a class.

Figure 5-2. Entering a C++ note for a class

Steps:
1 - Select the "Notes" tab.
2 - Click on "Add".
3 - Select the "C++BodyHeader " type.
4 - Enter the code.
5 - Confirm.

Chapter 5: Tagged values and notes specific to C++

Objecteering/C++ User Guide 5-9

Entering a C++ note
A note is characterized by:

♦ its type, which determines the meaning of the text for the C++ language. This
is chosen only from the suggested list.

♦ its content, which consists of information that will be inserted into the code, at
the location determined in the generator, depending on the type of note. This
information must be entered in the corresponding text field.

Chapter 5: Tagged values and notes specific to C++

5-10 Objecteering/C++ User Guide

Operation implementation
The implementation of an operation is defined with a C++ note. This note is
created by selecting the "Implementation" tab of the "Operation" dialog box, or by
directly creating a note in the explorer.

Figure 5-3. The "Implementation'" tab of the "Operation" dialog box

The note called "C++" for an operation contains its implementation. The note
named "C++Returned" contains the expression of a returned value. The note
entitled "C++ConstructorTransmission" provides construction parameter values for
the parent class.
Operation pre-conditions and post-conditions can be entered in the explorer by

creating a constraint stereotyped "C++ precondition" or "C++ postcondition".
The same process is used to create " invariant".

Information on the full set of notes provided by the Objecteering/C++ module can
be found in the chapters on code generation, contained further on in this user
guide.

Chapter 6: Calling module commands
in batch mode

Chapter 6: Calling module commands in batch mode

Objecteering/C++ User Guide 6-3

Calling the module's commands in batch mode -
Overview

Presentation
This chapter only applies to the Objecteering/Enterprise Edition version.
Module commands which do not necessitate a graphic interface can be run on line
command using the objincl executable delivered with Objecteering/UML.
This "command on line" mode is very useful for, for example, regenerating a whole
application as a background task, or for carrying out other administrative actions.

Chapter 6: Calling module commands in batch mode

6-4 Objecteering/C++ User Guide

Calling commands

Syntax
An online command is called with the following type of instruction:

objingcl -db <database>
-prj <project_name>
-mdl <module_name>
-cmd <command_name>
<metaclass>:<object_name>

The name of the module for the C++ code generation and the constitution of the
production process is CxxModule.

Chapter 6: Calling module commands in batch mode

Objecteering/C++ User Guide 6-5

Invocable commands

Command ... Metaclass .. Action ...
generate MpcCodeCxx C++ code generation

generateMakefile MpcMakeCxx generates the Makefile files

compile MpcMakeCxx compiles the generated sources

deleteBinaries MpcMakeCxx destroys the binaries

Example
We want to generate C++ code for the "P1" package in the "my_project" UML
modeling project, contained in the "my_database" database.
This code to be generated corresponds to the C++ generation work product.
The command line is as follows:
objingcl -db my_database -prj my_project -mdl CxxModule
-cmd generate MpcCodeCxx::my_project::P1::Sources

If the name of the project is the same as the name of the database, the following
command line is used:
objingcl -db my_database -mdl CxxModule -cmd generate
MpcCodeCxx::my_database::P1::Sources

For a class, C1, belonging to the P1 package, the following command line is used:
objingcl -db my_database -mdl CxxModule -cmd generate
MpcCodeCxx::my_database::P1::C1::Sources

Chapter 7: Module parameters

Chapter 7: Module parameters

Objecteering/C++ User Guide 7-3

Definition of module parameters

Introduction
You can parameterize the generated C++ code and makefile, by changing the

values in the "Edit configuration". By clicking on the "Modify module
parameter configuration" icon in Objecteering/UML's toolbar, the "Edit
configuration" window, as shown in Figure 7-1, is displayed.

Figure 7-1. Editing the configuration of the Objecteering/C++ module

Steps:
1 - Click on the "C++ Generation " sub-section.
2 - Choose the "Directories" option, to display all the required parameters.

Chapter 7: Module parameters

7-4 Objecteering/C++ User Guide

Parameterizing
In the "C++ generation" sub-section, there are more than 30 parameters used to
parameterize the generation and compilation work products. They are divided into
eleven groups:

♦ external edition

♦ code generation options

♦ directories for saving the generated files, and for searching for inclusions and
libraries

♦ suffixes for the generated files

♦ UML profiles

♦ Visibility declarations for attributes and associations

♦ Visibility for accessors

♦ libraries to be linked

♦ production options

♦ the tools used to compile and edit links

♦ MFC specific parameters
Each group contains parameters for work products. In the following section, we
shall present a detailed description of each parameter and its work product.

Chapter 7: Module parameters

Objecteering/C++ User Guide 7-5

Detailed description of parameters

External editor

Figure 7-2. The "External edition" sub-section of the "Edit configuration" dialog box

The ... field is used to ...
Generate identifiers insert the markers in the generated code files. We

recommend that it remain selected, in order to take
advantage of the code/model consistency management
system.

Command for invoking
external editor

specify the name of editor used to edit the generated files
from Objecteering/UML.

Both parameters concern generation work products, and the second also
concerns compilation work products.

Chapter 7: Module parameters

7-6 Objecteering/C++ User Guide

Generation options

Figure 7-3. The "Generation options" sub-section of the "Edit configuration" dialog box

Chapter 7: Module parameters

Objecteering/C++ User Guide 7-7

The ... field is used to ...
Generate attribute access methods generate modification methods for the attributes:

set_Attribute()

Generate association access
methods

generate modification methods for the association:

append_role()

erase_role()

Access methods prefixed by "_" generate the name of the access method prefixed by
"_", instead of "get_" by default.

Generate "const" for "in" elements generate the "const" keyword for the "entry"
elements.

Name of the types interpretation
project

indicate the project to be used within the generator to
translate basic types.

Compatibility from version 4.2.0 keep the C++ module compatible with the version
previous to 4.2.0.

Generate the passing mode for
parameters

generate string (for example, In Out InOut) to indicate
the parameter passing mode.

Generate the code for instances generate C++ code on instances.

Traces generation invalidate the generation of the CR_TRACE macro.

Do not generate accessors as inline generate accessors as being non-inline.

Generate a package as a
namespace

generate a namespace for a package.

Take the following note as an
operation comment

define the type of the note whose contents should be
taken into account as the operation comment.

Generate the code for platform generate the code necessary to the platform
specified.

Generate DLL macro for all classes generate all classes as if they were tagged {C++DLL}
(PC/Visual C++).

Take the following string as macro
definition for DLL

define the string which will be generated in the macro,
in place of "MSVC_DLL" for all the classes not tagged
{C++DLL} or tagged {C++DLL} but with no
parameters.

Generate create/delete methods as
constructors/destructors

generate create and delete functions as accessors
and destructors.

Chapter 7: Module parameters

7-8 Objecteering/C++ User Guide

These parameters concern the generation work product.

Note: "access methods" have prefixes, such as "set_", which can be
parameterized.

Chapter 7: Module parameters

Objecteering/C++ User Guide 7-9

Directories
For Objecteering/UML on a UNIX type operating system, it is possible to use the
UNIX system environment variables when specifying directories.
Where several directories can be specified, you must specify the paths using the
";" character.

Figure 7-4. The "Directories" sub-section of the "Edit configuration" dialog box

Chapter 7: Module parameters

7-10 Objecteering/C++ User Guide

The ... field concerning the
... work product

specifies ...

Generation of
source files

generation the directory containing the generated code
files

Generation of
compilation files

compilation the directory containing the Makefiles, the final
target files and the compilation error files

Generation of
intermediary
compilation files

compilation the directory containing the compiled object
files

"include" files compilation the search path for the "include" files

System "include"
files

compilation the search path to find the system's header
files

Compiler implicit
"include" files

compilation the search path to find the header files

Objecteering
"include" files

compilation the search path to find the library supplied by
Objecteering/UML

Libraries compilation the search path to find the libraries.

Chapter 7: Module parameters

Objecteering/C++ User Guide 7-11

Suffixes

Figure 7-5. The "Suffixes" sub-section of the "Edit configuration" dialog box

The ... field concerning the ...
work product

specifies ...

Interface files generation the header file suffix

Body files generation the body file suffix

Generation work
products

generation the complete default name of the generation
work product visible in the explorer

Compilation work
products

compilation the complete default name of the compilation
work product visible in the explorer

Chapter 7: Module parameters

7-12 Objecteering/C++ User Guide

UML profiles
You must specify UML profiles (that can be defined by the Objecteering/C++
module) by supplying their absolute path (default#...).

Figure 7-6. The "UML profiles" sub-section of the "Edit configuration" dialog box

The ... field concerning the ...
work product

specifies ...

Code generation generation the UML profile used for producing J code

Compilation compilation the UML profile used for producing
the"Makefile" files

Platform compilation the UML profile defining the platform’s
characteristics (description of the target)

Chapter 7: Module parameters

Objecteering/C++ User Guide 7-13

"Libraries"
Libraries are specified by supplying their access path on the current system.
When several libraries are specified, you must separate them using the ";"
character.

Figure 7-7. The "Libraries" sub-section of the "Edit configuration" dialog box

The ... field displays ...
Objecteering the Objecteering/UML base types library

Others the other libraries used for developing

Both parameters concern only the compilation work product.

Note: If the "ObjecteeringTypes" types package is used, the name of the
Objecteering/UML library has to be entered (for example, "libO.lib" for
Windows).

Chapter 7: Module parameters

7-14 Objecteering/C++ User Guide

Production options

Figure 7-8. The "Production options" sub-section of the "Edit configuration" dialog box

Chapter 7: Module parameters

Objecteering/C++ User Guide 7-15

The ... field displays ...
Compilation type the definition of the type of result expected from

compilation (executable, relocatable, ...)

Definition of variables the variables transmitted by default to the Makefile for
pre-compilation

Options relocatable object the compilation options for constituting a relocatable.

Options for dynamic library the compilation options for constituting a dynamic library

Options for static library the compilation options for constituting a static library

Options for executable the compilation options for constituting an executable.

Compilation options the default compilation options

Link edition options the default options when editing links

Chapter 7: Module parameters

7-16 Objecteering/C++ User Guide

Attached tools

Figure 7-9. The "Attached tools" sub-section of the "Edit configuration" dialog box

The ... field displays ...
Compiler the compilation command

Executable producer the command for generating executables

Static library producer the command for producing static libraries

Dynamic library producer the command for producing dynamic libraries

Program "make" tool used to interpret the "Makefile file

Chapter 7: Module parameters

Objecteering/C++ User Guide 7-17

MFC
This applies only if you are using Microsoft Foundation Classes in a Windows
environment.

Figure 7-10. The "MFC" sub-section of the "Edit configuration" dialog box

The ... field is used to ...
Visual Naming Rules specify the use of MFC naming rules for attribute and

relationship accessors (for example, GetCount, AddTail)

Microsoft Visual C++ Version display the current version of Microsoft Visual C++ used
in conjunction with Objecteering/UML

Chapter 7: Module parameters

7-18 Objecteering/C++ User Guide

Visibility for attributes and associations

Figure 7-11. The "Declaration visibility for Attribute and Association" sub-section of the "Edit
configuration" dialog box

The ... field is used to ...
For elements with "Public"
visibility

declare the visibility of the C++ instance variable
generated for public attributes.

For elements with "Protected"
visibility

declare the visibility of the C++ instance variable
generated for protected attributes.

For elements with "Private"
visibility

declare the visibility of the C++ instance variable
generated for private attributes.

For {public} tagged elements declare the visibility of the C++ instance variable
generated for attributes annotated {public}.

Chapter 7: Module parameters

Objecteering/C++ User Guide 7-19

Visibility for accessors

Figure 7-12. The "Visibility for accessors" sub-section of the "Edit configuration" dialog box

Chapter 7: Module parameters

7-20 Objecteering/C++ User Guide

The ... field is used to ...
Accessors for "Public" elements declare the visibility of "get" type accessors for all public

attributes.

Modifiers for "Public" elements declare the visibility of "set" type accessors for all public
attributes.

Accessors for "Protected"
elements

declare the visibility of "get" type accessors for all
protected attributes.

Modifiers for "Protected"
elements

declare the visibility of "set" type accessors for all
protected attributes.

Accessors for "Private"
elements

declare the visibility of "get" type accessors for all private
attributes.

Modifiers for "Private" elem
ents

declare the visibility of "set" type accessors for all private
attributes.

Accessors for elements tagged
{public}

declare the visibility of "get" type accessors for all
attributes annotated {public}.

Modifiers for elements tagged
{public}

declare the visibility of "set" type accessors for all
attributes annotated {public}.

Chapter 8: Generating code for a
package

Chapter 8: Generating code for a package

Objecteering/C++ User Guide 8-3

Overview of code generation on a package

The purpose of a package
A package is used to structure classes. The equivalent notion in C++ is a
namespace. A package is used for:

♦ documentation

♦ production (development unit, library, test unit, etc.)

♦ coding: it is possible to define the information (new data types, constants)
shared by all the classes of a package. The invariant of the package provides
the general rules for the package which are followed by all its classes.

Correspondence
A C++ namespace with the same name as the package is generated from a
package. All the package's classes are defined in the context of the associated
namespace, except where the package is annotated {C++NoNameSpace} or
{C++Root}.

Package invariant
A package invariant is checked each time the invariant of a contained class is
valid. A package invariant accesses all the members of the package’s contained
classes.
A constraint stereotype C++ "invariant" on the package defines an invariant on the
package.
For example, if the S package contains the classes C1 and C2, an invariant rule
can be defined as follows : "C1::card_instance()> C2::card_instance()".

Chapter 8: Generating code for a package

8-4 Objecteering/C++ User Guide

Initializing instances

: Button for creating an object
Objects created as instances in a package are generated as variables in the
namespace of the package. These objects are implemented in their order of
declaration.

Generalization and use
When a package S1 inherits from a package S2, we generate using a namespace
of S2 in S1. The invariant of a derived package proves true the invariant of its
base package.

Tagged values
Specific C++ tagged values available for a package are:

The ... tagged
value

Role

{noinclude} No generation of the "include".

{extern} External package. A file name is supplied as a parameter.

{nocode} No code generation for the package.

{MFCInclude} Generation MFC specifically concerning include.

{C++NoNameSpace} No generation of namespaces on packages and no generation of
a sub-directory in the file structure.

{C++Root}} Namespace and directory structure starts from this package, as
if it were the root package.

{C++Name} Name to take in acount to generate nameSpace and file.

Chapter 8: Generating code for a package

Objecteering/C++ User Guide 8-5

Notes
Specific C++ notes available for a package are:

The ... note Role
C++ InterfaceHeader text inserted at the beginning of the header file (.hxx)

C++ BodyHeader text inserted at the beginning of the body file (.cxx).)

Constraint stereotypes
The C++ stereotypes applicable on a constraint and available for a package are:

The ... constraint
stereotype

Role

C++Invariant code used to generate the package invariant

Chapter 8: Generating code for a package

8-6 Objecteering/C++ User Guide

Tagged values for a package

The {extern} tagged value
The {extern} tagged value on a package indicates that the content of this package
is not modeled in Objecteering/UML, but is part of an external library.
The parameter of this tagged value is the header file in which the package is
declared.
If the {extern} tagged value is placed on a package, it must equally be placed on
all the classes belonging to this package.
Example:

The {extern}
tagged value
on...

with the ...
parameter

is translated by ...

an "S" package fics.h a header file on the S package containing only:
#include "fics.h"
and an empty body file

The {noinclude} tagged value
The {noinclude} tagged value on a package indicates that the inclusion of files
usually generated by Objecteering/UML should be ignored. This obliges the
developer to declare them manually.

The {nocode} tagged value
The {nocode} tagged value on a package prevents this package from being
generated. No C++ file is generated for the package.
If the {nocode} tagged value is added to a package, it must also be added to all
the classes belonging to this package.

Chapter 8: Generating code for a package

Objecteering/C++ User Guide 8-7

The {noCodeForAll} tagged value
The {noCodeForAll} tagged value is used to not generate files for the package, or
for its component elements. No use links or associations are generated to or from
the package or the classes it contains.

The {MFCInclude} tagged value
The {MFCInclude} tagged value on a package generates includes specific to
MFC. These includes are related to MFC components and collections.

The {C++Name} tagged value
The parameter of the {C++Name} tagged value takes precedence over the
modeling name during the generation phase.

The {C++NoNameSpace} tagged value
This tagged value generates no namespace or sub-directories for the package it
annotates. However, namespaces for sub-packages are generated.

The {C++Root} tagged value
The structure of namespaces and directories starts from the package annotated
with the {C++Root} tagged value.

Chapter 9: Generating code for a class

Chapter 9: Generating code for a class

Objecteering/C++ User Guide 9-3

Overview of code generation on a class

Translating a model's class
A "C" class in a model corresponds to a C++ class with the same name,
generated as:

♦ an interface file (e.g. C.hxx)

♦ a body file (e.g. C.cxx)
This chapter will only deal with the generation of a class generalization, a class
invariant, a main class and a template class. For the other component elements
of a class, such as attributes, associations and methods, please refer to their
corresponding chapters.

Tagged values
The specific C++ tagged values available for a class are:

The ... tagged
values

Parameters ... Is used to ...

{C++Name} name to generate indicate the name to be taken into account to
generate the class name and the file
associated.

{extern} external file name indicate a C++ class outside the
Objecteering/UML repository.

{MFCDynamicMacro} specify MFC macro generation.

{nocode} indicate no code generation for the class.

{noinclude} indicate no generation of the "include".

{structure} indicate generation of a C structure

{C++DLL} the name of the
DLL macro
("MSVC_DLL" if
blank)

generate the definition of the export/import
macro needed to compile ".dll" libraries.

Chapter 9: Generating code for a class

9-4 Objecteering/C++ User Guide

Notes
Specific C++ notes available for a package are:

The ... note type Is used to ...
C++BodyHeader provide text to be inserted at the beginning of the body file

(.cxx).

C++Inheritance provide text of the declaration of a generalization

C++InterfaceHeader provide text to be inserted at the beginning of the header file
(.hxx)

C++PrivateMember provide text to be inserted at the beginning of the private
declaration zone.

C++ProtectedMember provide text to be inserted at the beginning of the protected
declaration zone

C++PublicMember provide text to be inserted at the beginning of the pubic
declaration zone

MFCMessageMacro provide the text of the declaration of the callbacks function

Note : It is possible to have several notes of the same type for the same class;
these are then generated one after the other.

Chapter 9: Generating code for a class

Objecteering/C++ User Guide 9-5

Class generalization

Generalization

 The "Specialize" icon
A generalization between classes can be modeled using the icon in the "Items"
tab of the properties editor. The appropriate inclusion is then generated.
You can add generalization text using a C++ note, but the "#include" instruction is
not generated by the Objecteering/C++ module. Developers have to add the
necessary inclusion with C++InterfaceHeader or C++BodyHeader.

Virtual generalization
"Virtual" C++ generalization is not systematically deduced by Objecteering/UML. It
is necessary in the cases below.

Figure 9-1. Virtual C++ generalization necessary in the case of repeated generalization from C1
to C4

To generate a virtual generalization, you must apply the {virtual} tagged value on
the object representing the generalization in the model.

Chapter 9: Generating code for a class

9-6 Objecteering/C++ User Guide

Private and protected generalization
"Private" or "protected" C++ generalization is generated if the tagged value
{private} or {protected} is presented on the generalization.
For a complete description of the tagged values available for generalizations,
please refer to chapter 13, "Generating code for a generalization, an enumerate
and basic types", of this user guide.

Chapter 9: Generating code for a class

Objecteering/C++ User Guide 9-7

Class invariant

Clauses
Objecteering/UML allows you to express clauses, Boolean conditions which must,
in all cases, be verified.
Example:
For a "Policeman" class, two invariant clauses can be defined either as:

♦ age >= 18

♦ height >= 1.75
or as:

♦ (age >= 18)&&(height >= 1.75)

Controlling an invariant clause
Invariant clauses are controlled during the running of a program, if the program
has been compiled with the "CR_CHECK" compilation option.
A class invariant:

♦ always expresses true properties for each of the instances

♦ must be verified systematically from the end of the running of the constructor
until the start of the running of the destructor (if the case arises)

♦ is controlled in a dynamic way at the start and at the end of each actived
method

Recommendation
It is recommended that you always place the "-DCR_CHECK" option during:

♦ the test and debugging phases of a program

♦ the final confirmation
This option introduces an overload during the running of a program and must be
deactivated when the program is valid. The application must be tested again after
the suppression of the invariant controls.

Chapter 9: Generating code for a class

9-8 Objecteering/C++ User Guide

Faulty clauses
When a clause is not verified (for example, if a policeman is aged 16):

♦ an error message is generated with the associated line number indicated

♦ for applications in UNIX, a "core dump" is provoked. The program thus comes
to a stop upon detection of a bug and it is possible for you to analyze a "core"
file with a debugger

♦ for applications in PC, you can stop the application by calling the abort
function, and a window then displays a message indicating the error

Construction
To create an invariant clause attached to a class, you have to create a constraint,
using the "Create a constraint" icon in the "Items" tab of the properties editor.
In the constraint dialog box, add a stereotype, by selecting "C++Invariant" in the
"Add a stereotype" field at the bottom of this dialog box.

Chapter 9: Generating code for a class

Objecteering/C++ User Guide 9-9

Main class

Introduction
This section is only relevant if you are using the ObjecteeringTypes UML modeling
project.

Definition
In a model aiming to generate a binary executable, there must be one and only
one class defined as the "main" class (for this, check the "main" check box in the
class’s dialog box). The class must contain an operation called "start".
This class is declared in C++ as specializing the "application" class. It therefore
makes it possible to own operations which allow access to the "argv" and "argc"
parameters of the main function.
The "main" class will have one unique instance. The "start" operation is called to
start running the application.

Handling
Any class specializing the "main" class is also a main class. The terminal class of
this generalization graph is the class representing the application.
An instance of this class is automatically declared by Objecteering/UML. This
instance is "static" from the C++ viewpoint. The programmer can declare no other
instance.
The compulsory method, "void start()" in this case, is activated automatically after
the construction of all the static instances of the application's classes.
It is possible to define the information (notes, constants) shared by all the
package's classes.

Chapter 9: Generating code for a class

9-10 Objecteering/C++ User Guide

Example
If a class called "my_application" is a "main" class:

♦ a unique instance of "my_application" is declared

♦ the application starts running when the "start()"method coded in
"my_application" is called

The instance access is carried out in C++ using the
"my_application:: get_instance()" instruction.

Chapter 9: Generating code for a class

Objecteering/C++ User Guide 9-11

Generic class: Template

Implementation
The generic class involves the declaration and instantiation of a template class. A

template class is modeled using the "Create a template parameter" icon,
through a relationship with Template Parameter class.
The declaration of a template class is modeled by adding template parameters to
a class. Instantiation takes place at Attribute, Association, Parameter,
Generalization or Instance level. The parameters of the {bind} tagged value give
different information to instantiate a template class.

Declaring a template class
A template class is declared by an association with the Template Parameter class.
The class must be primitive.
Example:
On a C class, modeling with TemplateParameter, its Template parameter value is:
T, int s2
The generated code is as follows :
template<class T, int S2>
class C{
...
} ;

Chapter 9: Generating code for a class

9-12 Objecteering/C++ User Guide

Instantiating a template class
A class template can be instantiated wherever a class can be mentioned:

♦ attributes

♦ associations

♦ parameters

♦ generalization

♦ instances
by the {bind} tagged value with the parameters to instantiate the template. The
type of model element is equal to a Template class.
Example:
If the C class in the above example is to be an association Role in an A class, at
the association you must annotate with the tagged value as follows:
{bind ("myClass", "20")}

The generated code is as follows:
class A :
..

inline int card_cRole() const;
inline class C<maClass, 20>* _cRole (int) const;
inline void append_cRole(const class C<maClasse, 20>*

);
inline void erase_cRole(const class C<maClasse,20> *);

..
} ;

where "myClass" can be a general class, that is a class, a type or an enumerate.

Chapter 9: Generating code for a class

Objecteering/C++ User Guide 9-13

Tagged values on a class

The {extern} tagged value
The {extern} tagged value on a class indicates that the content of the class is not
modeled in Objecteering/UML, but is part of an external library.
The parameter of this tagged value is the header file in which the class is
declared.
Example:

The {extern}
tagged value on...

with the ...
parameter

is translated by ...

a "C" class ficc.h a header file on the C class containing
only:
#include "ficc.h"
and an empty body file

The {noinclude} tagged value
The {noinclude} tagged value on a class indicates that the inclusions of files
usually generated by Objecteering/UML (during the use of a class for example)
must be ignored. The user must then use the "C++InterfaceHeader" zone to
declare his own inclusions.

The {structure} tagged value
The {structure} tagged value on a class indicates that the class model element is
to generate a C structure.

The {MFCDynamicMacro} tagged value
The {MFCDynamicMacro} tagged value on a class indicates that MFC specific
macros are to be generated. These macros are as follows:

♦ DECLARE_DYNCREATE (className)

♦ IMPLEMENT_DYNCREATE (className, parentClassName)

Chapter 9: Generating code for a class

9-14 Objecteering/C++ User Guide

The {nocode} tagged value
The {nocode} tagged value on a class prevents this class from being generated.
No C++ file is generated for this class.

The {noCodeForAll} tagged value
The {noCodeForAll} tagged value is used to not generate any code either for the
class and the associations for which the class is the destination, or for use links
towards the class.

The {C++Name} tagged value
The parameter of the {C++Name} tagged value takes precedence over the
modeling name during the generation phase.

The {C++DLL} tagged value
This tagged value only applies to Visual C++/PC.
For a class A annotated {C++DLL()} without parameters, the generated code is as
follows:

#ifdef ObjingDLL
#ifdef MSVC_DLL_EXPORT
#define MSVC_DLL_declspec(dllexport)
#else
#define MSVC_DLL_declspec(dllimport)
#endif

#else
#define MSVC_DLL
#endif

class MSVC_DLL A {
...
};

If the {C++DLL} tagged value has a parameter (for example,
{C++DLL(myDLLMacro)}, the code generated is the same as the code above,
except that "MSVC_DLL" is replaced throughout by "myDLLMacro".

Chapter 9: Generating code for a class

Objecteering/C++ User Guide 9-15

Notes on a class

The C++BodyHeader note
The "C++BodyHeader" note on a class is used to express a section of code to be
inserted at the beginning of a body file.
Example:

A "C++BodyHeader" note
containing ...

is translated ...

extern void fonc(); at the beginning of a body file, after the inclusions
generated by Objecteering/UML, by:
extern void fonc();

The C++InterfaceHeader note
The "C++InterfaceHeader" note on a class is used to express a section of code to
be inserted in the header file, before the class declaration.
Example:

A "C++InterfaceHeader" note
containing...

is translated ...

#include "myincl.h" at the beginning of the header file, just before the
class declaration , by:
#include "myincl.h"

Chapter 9: Generating code for a class

9-16 Objecteering/C++ User Guide

The C++Inheritance note
The "C++Inheritance" note on a class allows the expression of a generalization in
a free manner, without modeling it in Objecteering/UML.
The use of this C++ note should be limited to complex cases of generalization.
Example:

A "C++Inheritance" note
containing...

is translated ...

public T in the header file, to declare the class , by:

class C : public T

Note: You must add the necessary inclusion concerning the related
generalization.

The C++PrivateMember note
The "C++PrivateMember" note on a class allows the addition of free C++ code in
the private declaration section.
Example:

A "C++PrivateMember" note
containing...

is translated ...

friend class C; in the declaration of the class, by:
private:

friend class C;

Chapter 9: Generating code for a class

Objecteering/C++ User Guide 9-17

The C++ProtectedMember note
The "C++ProtectedMember" note on a class allows the free addition of C++ code
in the protected declaration section.
Example:

A "C++ProtectedMember" note
containing...

is translated ...

mutable int count; in the class declaration, by:
protected:

mutable int count;

The C++PublicMember note
The "C++PublicMember" note on a class allows the free addition of C++ code in
the public declaration section.
Example:

A "C++PublicMember" note
containing...

is translated ...

void f() throw; in the class declaration, by:
public:

void f() throw;

Chapter 9: Generating code for a class

9-18 Objecteering/C++ User Guide

The MFCMessageMacro note
The "MFCMessageMacro" note on a class allows MFC messages, which are used
to map instructions in the protected declaration section, to be added.
Example:

An "MFCMessageMacro" note
containing...

is translated ...

ON_BN_CLICKED(IDOX,ONOK) in the class declaration, by:
protected:

DECLARE_MESSAGE_MAP ()
ON_BN_CLICKED(IDOX,ONOK) in the class implementation, by:

BEGIN_MESSAGE_MAP (className,
parentClassName
{
ON_BN_CLICKED(IDOX,ONOK)

}
END_MESSAGE_MAP ()()

Chapter 10: Generating code for an
attribute

Chapter 10: Generating code for an attribute

Objecteering/C++ User Guide 10-3

Overview of code generation on an attribute

Definition
An attribute is a member of a class. Its type can be:

♦ a base type (int, real, char, string, etc)

♦ an enumerate

♦ a primitive class (the "Primitive" check box is checked in the class dialog box)
An attribute can also have a type that the model does not know, but defined in
C++ form by the programmer. In this case, you must use a specific C++ note.
An attribute can be a single object or a set of objects of the same type.

Generation
The generation of an attribute involves declaration, initialization, access methods
and inclusion.
Access methods are divided into three groups: read methods, modification
methods and full access methods.

Chapter 10: Generating code for an attribute

10-4 Objecteering/C++ User Guide

Tagged values
Tagged values specific to C++ available for an attribute are:

The ... tagged
value

Purpose

{&} Generation of a reference

{*} Generation of a pointer

{access} Generation of the attribute’s modification methods

{array} Generating a table

{bind} Instantiation of a template class

{const} Generation of a constant

{create} Initialization of the attribute in the constructor initializer-list

{fullaccess} Generation of the full access methods if it consists in a set

{long} Long integer or double real

{nocode} No code generation for the attribute

{noconst} No const string for access methods

{public} Generation of the modification methods as being public

{short} Short integer

{type} Generation of some special implementation

{unsigned} Unsigned integer

{own} No automatic generation of accessors.

{mutable} Generation of the "mutable" attribute. "mutable" is a key word in
C++.

{noInline} Non-inline attribute access methods.

Chapter 10: Generating code for an attribute

Objecteering/C++ User Guide 10-5

Notes
C++ specific notes available for an attribute are:

The ... note type Purpose
C++TypeExpr C++ expression of the attribute declaration. It replaces the usual

generation.

C++Value Initializing an attribute. This expression replaces the default value.

C++AccessDecl C++ code for declaring the attribute, only if the attribute is
annotated {own}.

C++AccessDef C++ code for defining the attribute, only if the attribute is annotated
{own}.

Chapter 10: Generating code for an attribute

10-6 Objecteering/C++ User Guide

Declaration and initialization

The "Attribute" dialog box

Figure 10-1. The "Attribute" dialog box

Chapter 10: Generating code for an attribute

Objecteering/C++ User Guide 10-7

Visibility
In the "Attribute" dialog box, there appears a field used to define the visibility of the
attribute. The {public} tagged value on an attribute also concerns visibility.
Visibility generated by default is as follows:

Visibility field in the dialog box
or the {public} tagged value on
the ... attribute

defines the visibility of the attribute
declaration as being...

public protected

protected protected

private private

{public} public

Note: Visibility can be modified through module parameters (for further
information, please refer to the "Detailed description of parameters"
section in chapter 7 of this user guide).

Class attribute
The "Target is class" checkbox in the dialog box is used to define whether or not
the attribute is a class attribute. A class attribute is translated in C++ as a "static"
attribute. Initialization of a static attribute is carried out in the body files of its own
class.

Chapter 10: Generating code for an attribute

10-8 Objecteering/C++ User Guide

Initialization
The "Expression of value" field in the dialog box and the C++Value note on the
attribute have the same function, allowing you to define the initial value for an
attribute or to enter the C++ code for a dependent attribute (see the following
section).
An attribute is initialized in the constructor(s). By default, the initialization is in the
body of the constructor(s). If you annotate the attribute with the {create} tagged
value, the initialization is inserted in the constructor initializer-list.
If there is no constructor defined in the class, a default constructor is created to
initialize attributes.
Attributes are initialized in their order of declaration in the class.

Dynamic dependent attribute
In the "Attribute" dialog box, there is a check box named "dynamic dependency".
An attribute with this tickbox checked means that the attribute is decided by the
state of the class object. Only one access method (get_Attribute_x()) is
generated. The method allows you to get the value of the attribute.
You need to define the code, calculating the attribute, in the "Expression of value"
field or through the C++Value note. This code is inserted into the body of the only
access method.

Chapter 10: Generating code for an attribute

Objecteering/C++ User Guide 10-9

Access methods

Encapsulation
To protect direct access to an attribute, several access methods are generated,
except for attributes annotated {own}. They are divided into three groups:

The ... group for example ...
Read methods get_Attribute_x()

card_Attribute_x()

Modification methods set_Attribute_x()

append_Attribute_x()

erase_Attribute_x()

Full access methods get_all_Attribute_x()

set_all_Attribute_x()

Note : The two full access methods correspond, respectively, to the read and
modification categories.

In the MFC context, the naming of access methods conforms to the MFC naming
rules (for example, AddTail, GetCount).

Chapter 10: Generating code for an attribute

10-10 Objecteering/C++ User Guide

Visibility of access methods
The visibility of the access methods generated by default is determined by the
visibility field in the dialog box or the tagged value on the attribute (referring to the
above section on the visibility of the attribute declaration). The visibility is as
follows:

Visibility field in the dialog
box or the {public} tagged
value on the ... attribute

The visibility of the
... read methods

The visibility of the ...
modification
methods

public public protected

protected protected protected

private private private

{public} public public

Chapter 10: Generating code for an attribute

Objecteering/C++ User Guide 10-11

Tagged values on an attribute

The {&} tagged value
The {&} tagged value on an attribute is used to generate the attribute in a
reference form.
Example:

The {&} tagged value on ... is translated by ...
an attribute "Att" of integer type int & Att;

The {*} tagged value
The {*} tagged value on an attribute is used to generate the attribute in the form of
a pointer.
Example:

The {*} tagged value on ... is translated by ...
an attribute "Att" of integer type int * Att;

The {access} tagged value
The {access} tagged value on an attribute generates modification method(s) for
the attribute.
As far as parameterization of the Objecteering/C++ module is concerned, the
"Generate the access methods to the attributes" option determines whether to
globally generate the modification methods for all the attributes.
Example:

The {access} tagged value
on ...

is translated by ...

an attribute "Att" of integer type adding methods:
void set_Att(int);

Chapter 10: Generating code for an attribute

10-12 Objecteering/C++ User Guide

The {array} tagged value
The {array} tagged value on an attribute with the "set" type allows the generation
of the member data representing the attribute in the form of an array.
Example:

The {array} tagged value on ... is translated by ...
a attribute "Att" of type : set of integers with 10
elements

int Att[10];

an attribute "Att" of type : set of integers type with an
undefined number of elements

cr_array <int> Att;

The {const} tagged value
The {const} tagged value on an attribute allows the generation of the attribute as
constant member data.
Example:

The {const} tagged value on ... is translated by ...
an attribute "Att" of integer type const int Att;

The {create} tagged value
The {create} tagged value on an attribute generates the attribute initialization in
the constructor’s initializer-list (instead of in the constructor’s body).
Example:

The {create} tagged value on ... is translated...
an attribute "Att" of integer type with "2" for
default value

in the initialization list of the class
constructor by:
Att(2)

Chapter 10: Generating code for an attribute

Objecteering/C++ User Guide 10-13

The {fullaccess} tagged value
The {fullaccess} tagged value on an attribute of set type generates access
methods to the set itself.
Example:

The {fullaccess} tagged value
on ...

is translated by ...

an attribute "Att" with the integer set
type

adding methods:
void set_all_Att(const
list_int&);
const list_int& get_all_Att()
const;

The {long} tagged value
The {long} tagged value on an attribute with the integer type is used to indicate
that it has the "long int" type.
Example:

The {long} tagged value on ... is translated by ...
an attribute "Att" of integer type long Att;

The {short} tagged value
The {short} tagged value on an attribute of integer type allows you to indicate that
it is of "short int" type.
Example:

The {short} tagged value on ... is translated by ...
an attribute "Att" of integer type short Att;

Chapter 10: Generating code for an attribute

10-14 Objecteering/C++ User Guide

The {unsigned} tagged value
The {unsigned} tagged value on an attribute of integer type allows you to indicate
that the attribute is of "unsigned int" type.
Example:

The {unsigned} tagged value
on ...

is translated by ...

an attribute "Att" of integer type unsigned Att;

The {public} tagged value
The {public} tagged value on an attribute generates the attribute's declaration and
its access methods with the public visisbility. By default, the methods that modify
the attribute and the declaration of the attribute itself are generated in the
protected part of the class's definition.
Example:

The {public} tagged value
on ...

is translated by ...

an attribute "Att" of integer type
with public visibility

public:
int get_Att() const;
void set_Att(int);
int Att;

instead of:
public:

int get_Att() const;
protected:

void set_Att(int);
int Att;

The visibility generated can be modified through module parameters (for further
information, please refer to the "Detailed description of parameters" section in
chapter 7 of this user guide).

Chapter 10: Generating code for an attribute

Objecteering/C++ User Guide 10-15

The {bind} tagged value
The {bind} tagged value is used to define an attribute in the form of a class
template.
The parameters of this tagged value are the data used to instantiate the
"template".
Example:

The {bind} tagged
value on ...

with the
parameters ...

is translated by ...

an attribute of a type
template class "C"

anyClass
20

the type of the attribute is an instantiation
of the template class C with the
parameters:
class C <anyClass, 20> Att ;

Please refer to the template generic class section in chapter 8 of this user guide
for a description of template class generation.

The {noconst} tagged value
By default, the Objecteering/C++ module generates "const" for certain parameters
belonging to the attribute’s access methods. It also generates "const" for read
access methods.
This tagged value prevents the generation of "const".

The {type} tagged value
The {type} tagged value is used to enter the type of collection used if it exists in
the predefined types.
For the advanced Objecteering/C++ module user, you can modify or create a new
type interpreting project and add new basic types implementations. This tagged
value is used to generate the attribute with the new implementation.
Please refer to chapter 15 of this user guide for a detailed description of
adaptation and parameterization.

Chapter 10: Generating code for an attribute

10-16 Objecteering/C++ User Guide

The {nocode} tagged value
The {nocode} tagged value on an attribute prevents this attribute from being
generated.

The {C++Name} tagged value
The parameter of the {C++Name} tagged value takes precedence over the
modeling name during the generation phase.

The {own} tagged value
The {own} tagged value generates the declaration of the attribute, but does not
generate accessors. The user can declare and define his own accessors using
the "C++AccessDecl" and "C++AccessDef" notes (for further information on these
notes, please refer to the "Notes on an attribute" section in the current chapter of
this user guide).

The {noInline} tagged value
The {noInline} tagged value is used not to generate accessors as being "inline".
Their body is generated in the body (.cxx) instead of the header (.hxx).

The {mutable} tagged value
The {mutable} tagged value is used to generate the attribute as a "mutable"
member data.

Chapter 10: Generating code for an attribute

Objecteering/C++ User Guide 10-17

Notes on an attribute

C++TypeExpr
The "C++TypeExpr" note on an attribute allows the declaration of the attribute
type.
 If the attribute owns a "C++TypeExpr" note, it is used during the C++ generation.
This allows the specification of a kind of C++ implementation.
The use of "C++TypeExpr" must be limited to the complex cases of declarations,
which are impossible to express by any other means.
Example:

A "C++TypeExpr" note containing ... is translated ...
void **
on an attribute named "Att"

to declare the attribute, by:
void ** Att;

C++Value
The "C++Value" note on an attribute allows the declaration of an initialization
value for the attribute.
If the attribute owns both an initialization value in the zone provided for it and a
"C++Value" note, this note is used during C++ generation.
Example:

A "C++Value " note containing... is translated ...
X:get_c()
on an attribute named "Att"

in the class constructor by:
set_Att(X::get());

Chapter 10: Generating code for an attribute

10-18 Objecteering/C++ User Guide

C++AccessDecl
The "C++AccessDecl" note is used to declare {own} attribute accessors. To
define the visibility of the accessor, a line "public:"/"protected:"/... must be inserted
into the body of the note.

C++AccessDef
The "C++AccessDef" note is used to define accessors, to enter the C++ code in
the body of the access methods declared in the "C++AccessDecl" note.

Chapter 11: Generating code for
associations

Chapter 11: Generating code for associations

Objecteering/C++ User Guide 11-3

Overview of code generation on an association

Definition
An association describes a relation between two classes. These classes cannot
be primitive classes.
Modeling an association involves defining the name, deciding the multiplicity and
orientation. Please refer to the "Binary association dialog box" section of chapter
3 of the Objecteering/Model Dialog Boxes user guide for further information.
The C++ generation of an association is described in this section.

Tagged values
The C++ specific tagged values available for an association are as follows:

The ... tagged value Role ...
{access} Generating modification methods

{array} Generating a table

{C++Name} Name to be taken into account to generate attribute name.

{create} Initializing the association in the initializer-list of the
constructor.

{fullaccess} Generating the "set" methods.

{generic} Instantiation of a template class.

{instanceHandling} Generation of an instance handling association.

{nocode} Generates no code for the association

{noconst} No const string for the access methods

{noinit} Prevents generation of the initialization of the associations

{own} Implementation of accessors by the user

{noInline} Non-inline accessors

{public} Generating the public modification methods

{type} Generating a special implementation

{mutable} Generation of the "mutable" association. "mutable" is a key
word in C++.

{virtual} Creation of virtual access methods

Chapter 11: Generating code for associations

11-4 Objecteering/C++ User Guide

Notes
C++ specific notes available for an association are:

The ... note type Purpose
C++AccessDecl C++ code for declaring the association, only if the association is

annotated {own}.

C++AccessDef C++ code for defining the association, only if the association is
annotated {own}.

Chapter 11: Generating code for associations

Objecteering/C++ User Guide 11-5

Generation

Overview
Generation for an association involves:

♦ generating a variable member, which references the objects associated with
the association; by default, the name of the variable is the same as that of the
association's class role.

♦ generating access methods

♦ generating the inclusion
A class association is translated in C++ as a "static" member variable. In this
case, all the access methods for the association are static member functions.

Multiplicity
The generation of an association depends on the multiplicity, which is defined as
follows:

If the multiplicity is equal to... then...
"0-1" or "1-1" the variable is a pointer

its initial value is "NULL".

"0-n" (n1) ou "0-*" the variable is a set of pointers

its initial value is an empty set.

Chapter 11: Generating code for associations

11-6 Objecteering/C++ User Guide

Access methods
To protect against direct accessing of the member variable which corresponds to
an association, several access methods are generated, except for associations
annotated {own}. They are divided into three groups:

The ... group for example ...
Read methods get_Role_x()

card_Role_x()

Modification methods append_Role_x()

erase_Role_x()

Complete access methods get_all_Role_x()

set_all_Role_x()

Note: The two complete access methods correspond, respectively, to the read
and modification categories.

The "append_Role_x()" and "erase_Role_x()"methods apply the following rule,
which must be respected: any non null address passed as a parameter
corresponds to currently linked objects.
In the MFC context, the naming of access methods conforms to MFC naming
rules (for example, Add Fail).

Chapter 11: Generating code for associations

Objecteering/C++ User Guide 11-7

Visibility
The visibility of the variable and the access methods, generated by default, is
decided by the visibility field in the dialog box, or the tagged value on the
association. The visibility is as follows:

Dialog box visibility field or
the {public} tagged value
on the association ...

Visibility
of variable

Visibility of
read
methods

Visibility of
modification
methods

public protected public protected

protected protected protected protected

private private private private

{public} public public public

Note: Visibility can be modified through the module parameters (for further
information, please refer to the "Detailed description of parameters"
section in chapter 7 of this user guide).

Chapter 11: Generating code for associations

11-8 Objecteering/C++ User Guide

Handling instances

Definition
Instance handling is a special association defined in the class, which implies:

♦ that the class handles all its instances

♦ that the maximum number of instances at any given moment may be limited
In terms of programming, this means that the class can at any time supply the list
of its instances. It implies that the instance association must be an association of
class. The manipulation of this set is governed by the visibility declared for it.

Modeling
Modeling an instance handling association requires:

♦ the creation of an association towards the class itself

♦ making sure that the association is "class"

♦ defining the multiplicity that represents the number of possible instances for the
class

♦ making sure that the name of the association's object role is "instance", or that
the association is annotated with the {instanceHandling} tagged value

Generation
Generating code for an instance handling association is carried out in the usual
way. Generation requires:

♦ the generation of a static member variable corresponding to the association

♦ the generation of the static access methods according to the multiplicity

♦ the generation of the necessary inclusion

 Moreover:

♦ in the constructor(s), the "append_instance(this)" method is called. This means
that each time a new instance of the class is created, it is added to the set of
instances.

♦ in the destructor(s), the "erase_instance(this)" method is called. This means
that each time an instance disappears, it is removed from the set of instances.

Chapter 11: Generating code for associations

Objecteering/C++ User Guide 11-9

Tagged values on an association

The {access} tagged value
The {access} tagged value allows the generation of modification methods for the
association.
As far as parameterization of the Objecteering/C++ module is concerned, the
"Generate relationship access methods" option avoids having to place this tagged
value.
Example:

The {access} tagged value on ... is translated by ...
a "Role" association towards a "C" class adding the methods:

void append_Role(const C*);
void erase_Role(const C*);

The {array} tagged value
The {array} tagged value on an association with a multiplicity that is higher than 1
generates the member data representing the association in the form of an array.
Example:

The {array} tagged value on ... is translated by ...
an association "Role" towards a class "C",
with the multiplicity "0-9"

C * Role[10];

an association "Role" towards a class "C",
with the multiplicity "0-"

ext_array_C Role;

The {array} tagged value generates C++ arrays instead of ("set_of") sets.
Their implementation is less costly (memory usage, performance), but can be less
flexible.

Chapter 11: Generating code for associations

11-10 Objecteering/C++ User Guide

The {fullaccess} tagged value
The {fullaccess} tagged value on an association with a multiplicity higher than 1
generates access methods to the association itself.
Example:

The {fullaccess} tagged value
on ...

is translated by ...

a "Role" association towards a "C"
class, with the multiplicity "0-*"

adding the methods :
void set_all_Role(const set_of_C&);
const set_of_C& get_all_Role()
const;

The {bind} tagged value
The {bind} tagged value indicates that it corresponds to a C++ template class.
This tagged value has, as parameters, the data which allows the instantiation of
the template class.
Example:

The {bind} tagged value on ... with the
parameter...

is translated by ...

an association "Role" with the
multiplicity "0-1" towards a class "C"
(generic itself)

anyClass
20

C<anyClass,20>
*Role;

Please refer to the "Generic class: Template"section in chapter 8 of this user
guide for a description of template class generation.

The {noinit} tagged value
The {noinit} tagged value indicates that the association should not be initialized
(NULL, or empty list).

Chapter 11: Generating code for associations

Objecteering/C++ User Guide 11-11

The {public} tagged value
The {public} tagged value generates the declaration of the association and of its
access methods with public visibility (by default, the modification methods and the
declaration of the association are generated in the protected section).
Example:

The {public} tagged value on ... is translated by ...
a "Role" association with the multiplicity
"0-1" towards a class "C"

public:
C* get_Role() const;
int card_Role() const;
void append_Role(C*);
void erase_Role(C*);
C * Role;

The {virtual} tagged value
The {virtual} tagged value specifies that the access methods for the association
must be virtual.
Example:

The {virtual} tagged value on ... is translated by ...
an association "Role" with the multiplicity
"0-1" towards a class "C"

virtual C* get_Role() const;
virtual int card_Role() const;
virtual void append_Role(C*);
virtual void erase_Role(C*);
C * Role;

The {nocode} tagged value
The {nocode} tagged value prevents the generation of code for the association.

Chapter 11: Generating code for associations

11-12 Objecteering/C++ User Guide

The {type} tagged value
The {type} tagged value is used to enter the type of collection used if it exists in
the predefined types.
If you are familiar with the Objecteering/C++ module, you can modify or create a
new type interpreting project and add new set implementations. This tagged value
is used to generate the association with the new implementation.
Please refer to chapter 14 of this user guide for a detailed description of
adaptation and parameterization.

The{create} tagged value
The {create} tagged value generates the initialization of the member variable
corresponding to the association in the constructor’s initializer-list (instead of in the
constructor’s body).

The {instanceHandling} tagged value
The {instanceHandling} tagged value indicates that the association is an instance
handling for the class. Please refer to the "Handling instances" section for how to
model an instance handling association.
This tagged value allows the user to choose the name of an instance handling
association, other than "instance", which is the default name.

The {noconst} tagged value
By default, the Objecteering/C++ module generates "const" for some parameters
of the association’s access methods. It also generates "const" for read only
access methods.
The {noconst} tagged value prevents the generation of "const".

The {C++Name} tagged value
The parameter of the {C++Name} tagged value takes precedence over the
modeling name during the generation phase.

Chapter 11: Generating code for associations

Objecteering/C++ User Guide 11-13

The {own} tagged value
The {own} tagged value does not generate access methods. The user can declare
and define his own accessors using the "C++AccessDecl" and "C++AccessDef"
notes.

The {noInline} tagged value
The {noInline} tagged value is used not to generate accessors as being "inline".
Their body is generated in the body (.cxx) instead of the header (.hxx).

The {mutable} tagged value
The {mutable} tagged value is used to generate the association as a "mutable"
member data.

Chapter 12: Generating code for an
operation

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-3

Overview of code generation on an operation

Definition
Operations and parameters are the two main UML model elements used to
generate C++ model functions.
An operation corresponds to a member function in a C++ class. The generation of
an operation requires a C++ programmer to:

♦ declare the prototype of a member function

♦ define a member function

♦ generate the inclusion
This is done automatically by Objecteering/C++.

Different kinds of member functions
A member function in C++ may be a constructor, a destructor, a conversion
operator or an operator for the owner class and a method. The name of the UML
operation determines which kind of member function should be generated. They
are reviewed in the following table:

The ... UML operation generates a C++ member function
create constructor

delete destructor

operator associated with a type name
(for example "operator double()")

conversion operator
operator double()

operator and a C++ operator symbol

for example the name "operator++()"

operator
int operator ++()

myMethod void myMethod ()

Note: The difference between a conversion operator and an operator is that a
conversion operator does not have a return in the declaration, but must
have a return in the member function’s definition.

Chapter 12: Generating code for an operation

12-4 Objecteering/C++ User Guide

Operation

Information entered in the "Operation" dialog box will be interpreted, in order to
generate all cases of function members in C++ (virtual, pure virtual, static, etc).

Figure 12-1. The "Operation" dialog box

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-5

Declaration (abstract, static, inline, in/out)
Three fields in the dialog box and two tagged values of an operation, {inline} and
{virtual}, are taken into account for generating the declaration of a member
function.

Checking the box or
annotating with the ... tagged
value

generates a ... function

{Abstract} virtual pure

{Class} static

{in} const

{inline} inline

{virtual} virtual

Tagged values on an operation
The C++ specific tagged values available for an operation are:

The ... tagged value Role ...
{C++Name} Name to be taken into account to generate operation name.

{inline} Generation of a C++ "inline" method.

{nocode} No code generation for the method.

{noconst}} No "const " string for the method.

{noinvariant}} Inhibiting the call for an invariant.

{virtual} Generation of a "virtual" C++ method.

Chapter 12: Generating code for an operation

12-6 Objecteering/C++ User Guide

Notes on an operation
The C++ specific notes available for an operation are:

The ... note type Role
C++ text to be inserted as the body of the C++ method

C++ConstructorTransmission text to be inserted in the constructor’s initializer-list

C++Returned text to be inserted between "return " brackets.

Note: The "C++" note is the most widely used. The operation's processing is
declared therein.

Use links on an operation
If the user models a dependency link from an operation to a class, and
stereotypes this link <<throw>>, the following code is generated:

In the header file:
/*METHODS*/
void f() throw (x1, x2, x3, x4);

In the body file:
void A::f() throw (x1, x2, x3, x4)
{
&
}

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-7

Parameter

Definition
A parameter is used to represent both the parameter and the returned parameter
of an operation.
The type of a parameter can be a general class, in other words:

♦ a basic type (int, real, char, string, etc)

♦ an enumerate

♦ a class
A parameter can also be a type that is unknown to the model, but defined in C++
by the programmer. In this case, you must use C++ specific notes
("C++TypeExpr" or "C++ParamExpr") for the parameter of an operation; and use
"C++TypeExpr" for the returned parameter of an operation.
A parameter can be a single object or a set of objects of the same type.

Passing mode
In the model, the parameter is defined with a passing mode, in other words:

♦ IN: the content of the parameter will not be changed

♦ OUT: the content of the parameter can be changed

♦ INOUT: the content of the parameter can be changed
These passing modes are converted into C++ by Objecteering/UML, which takes
into account implementation notions, such as pointers, references or passing
values. The generation of passing mode strings can be invalidated by selecting
the "Generate the passing mode for parameters" check box in the C++ module
parameters (for further information on module parameters, please refer to chapter
7 of this user guide).

Chapter 12: Generating code for an operation

12-8 Objecteering/C++ User Guide

Default generation
For a parameter of the simple type (except for string, whose generation rule is the
same as for class), its argument is transmitted by value in mode IN and by
reference in mode INOUT or OUT.
For a parameter with a class or a set type, its argument is always transmitted
through reference. Indeed, it is a C++ programming rule to avoid passing the
argument by value when the type is a complex class. To protect the argument
with the IN passing mode from being modified, the "const" string is generated.
Of course, you may change this default generation rule by annotating the
parameter with one of the following tagged values

♦ {*} to generate a pointer argument

♦ {noconst} to inhibit the generation of the "const" string for the IN argument.

Tagged values on a parameter
C++ specific tagged values available for a parameter are:

The ... tagged value Role ...
{*} Passing by pointer

{&} Passing by reference

{array} Set of "array" type

{bind} Definition of the instantiation parameters of a template

{C++Name} Name to be taken into account to generate parameter name

{const} Generation of the "const" keyword

{long} Long integer or double real

{noconst} Non generation of the "const" keyword

{short} Short integer

{type} Generating a special implementation

{unsigned} Unsigned integer

{val} Passing by value

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-9

Notes on a parameter
C++ specific notes available for a parameter are:

The ... note type Role
C++DefaultValue default value

C++ParamExpr expression of the complete type (including the parameter name
)

C++TypeExpr expression of the type not including the parameter name

Chapter 12: Generating code for an operation

12-10 Objecteering/C++ User Guide

Detailed tagged values on an operation

The {C++Name} tagged value
The parameter of the {C++Name} tagged value takes precedence over the
modeling name during the generation phase.

The {inline} tagged value
The {inline} tagged value generates the operation as an inline function member in
the C++ sense.
The operation declaration is generated with the "inline" keyword. Its definition is
inserted after the declaration of the class, in the header file.

The {nocode} tagged value
The {nocode} tagged value on an operation inhibits operation generation.

The {noconst} tagged value
This tagged value inhibits the generation of "const" string for the method, even if
the mode has the IN mode.

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-11

The {noinvariant} tagged value
In the generated operation definition code, there are certain zones contained by
the pair of CR_CHECK macros. By default, the invariant call and the pre-post
conditions are inserted in the macro, to control the state of the class object and
the conditions in a dynamic way.
#ifdef CR_CHECK
....
#endif

Pre or post conditions are put after the class and package invariant.
The {noinvariant} tagged value inhibits the call for the invariant for this operation.
Pre and post-conditions, entered at the method level, are nonetheless verified.

The {virtual} tagged value
The {virtual} tagged value on a method specifies that the method must be virtual in
the C++ sense.
Example:

The {virtual} tagged value on ... is translated by ...
an "m" method without parameters virtual void m();

Chapter 12: Generating code for an operation

12-12 Objecteering/C++ User Guide

Notes on an operation: Detailed description

Generation
Generation of the definition of a member function inserts some of the following
C++ specific notes into the generated code, according to the category of the
function.

♦ C++ConstructorTransmission in the initializer-list for the constructor

♦ C++Returned

♦ C++

The "C++ConstructorTransmission" note
The "C++ConstructorTransmission" note on a method is taken into account only if
the method name is "create", meaning that it is a constructor.
The note allows you to carry out the call for the constructors of the basic class of
the current class.
Example:

A "C++ConstructorTransmission"
note containing...

is translated ...

: Cbase(2,5) in the body file, by:
C::C(...)

: Cbase (2,5)
{

...
}

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-13

The "C++Returned" note
The "C++Returned" note on an operation defines the return value of the operation
and should enter the note only if the operation owns a return parameter.
For an operation which has a return parameter, "return ()" C++ code is always
generated. The code in brackets is the content of the "C++Returned" note on the
operation or the "C++DefaultValue" note on the return parameter. If none of these
notes are present in the model, a marker allowing you to enter the code while
editing the generated file is generated.
Example:

A "C++Returned" note containing ... is translated ...
TRUE at the end of the method definition, by:

return (TRUE);
}

Note: The "return" instructions in the method's body are not advised. The
"C++Returned" note should thus be the only exit point of the method. It is
inserted after the invariant and the post-condition.

The "C++" note
This note contains the procedural instructions of the C++ program. The text is
simply inserted between the { } of the generated member function.

Chapter 12: Generating code for an operation

12-14 Objecteering/C++ User Guide

Constraints on an operation: Detailed description

Constraints available on operations
The Objecteering/C++ module provides two C++ specific constraints available for
use with operations:

♦ C++PreCondition

♦ C++PostCondition

C++PreCondition
A constraint entered as a pre-condition stereotyped <<C++PreCondition>>,
associated with an operation, represents the list of clauses which represent the
pre-condition of the associated operation.

Entering a pre-condition constraint is done in the browser palette, using the
"Create a constraint" button. The stereotype is selected via the "Add a
stereotype" field.
The syntax is the same as for class invariants.
Example:

Constraint stereotyped
<<C++PreCondition>>
containing ...

is translated ...

x_i > 0
y_i > 0

in the body of the operation, before the
implementation code section, by:
if (!(x_i > 0))

::error(...)
if (!(x_i > 0))

::error(...)

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-15

C++PostCondition
A constraint entered as a pre-condition stereotyped <<C++PostCondition>>,
associated with an operation, represents the list of the clauses, which represent
the post-condition of the associated operation.

A pre-condition constraint is entered in the browser palette, using the "Create
a constraint" button. The stereotype is selected via the "Add a stereotype" field.
The syntax is the same as for class invariants.
Example:

Constraint stereotyped
<<C++PostCondition>>
containing ...

is translated ...

x_i == 0
y_i == 0

in the body of the operation, after the
implementation of the code section, by:
if (!(x_i > 0))

::error(...)
if (!(y_i == 0))

::error(...)

Chapter 12: Generating code for an operation

12-16 Objecteering/C++ User Guide

Detailed tagged values on a parameter

The {&} tagged value
The {&} tagged value on a parameter is used to generate the parameter in the
form of a reference.
Example:

The {&} tagged value on ... is translated by ...
a parameter "p" with the integer type on a
method "m"

void m(int & p);

The {*} tagged value
The {*} tagged value on a parameter allows you to generate it in the form of a
pointer.
Example:

The {*} tagged value on ... is translated by ...
a parameter "p" with the integer type on a
method "m"

void m(int * p);

The {array} tagged value
The {array} tagged value on a parameter with the "set" type is used to generate
this parameter in the form of an array.
Example:

The {array} tagged value on ... is translated by ...
a parameter "p" with the integer set type on
a method "m"

const cr_array <int> & p

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-17

The {C++Name} tagged value
The parameter of the {C++Name} tagged value takes precedence over the
modeling name during the generation phase.

The {bind} tagged value
The {bind} tagged value indicates that the type of the parameter corresponds to a
C++ template class. The parameters of this tagged value are the data allowing
you to instantiate the "template" class.
Example:

The {bind} tagged value
on ...

with the ...
parameter

is translated by ...

a parameter "p" with a class "C"
(generic itself) on a method "m"

anyClass
20

void
m(C<anyClass,20>&p) ;

Please refer to the "Generic class: Template" section in chapter 8 of this user
guide for the description of the template class generation.

The {const} tagged value
The {const} tagged value on a parameter allows you to generate the tagged value
as a constant parameter.
If the corresponding option is chosen at Objecteering/UML parameterization level,
the tagged value is useless, as all the "in" parameters are generated with the
"const" keyword.
Example:

The {const} tagged value on ... is translated by ...
a parameter "p" with the string type
("string") on a method "m"

void m (const CR_string & p);

Chapter 12: Generating code for an operation

12-18 Objecteering/C++ User Guide

The{long} tagged value
The {long} tagged value on a parameter with the integer type allows you to
indicate that it has the "long int" type.
Example:

The {long} tagged value on ... is translated by ...
a parameter "p" with the integer type on a
method "m"

void m (long p);

The {noconst} tagged value
The {noconst} tagged value on a parameter inhibits the generation of "const"
string for the parameter even if it has the passing mode IN.
Example:

The {noconst} tagged value on ... is translated by ...
a parameter "p" of string type ("string") on
a method "m"

void m (CR_string & p);

The {short} tagged value
The {short} tagged value on a parameter with the integer type is used to indicate
that it has the "short int" type.
Example:

The {short} tagged value on ... is translated by ...
a parameter "p" with the integer type on
a method "m"

void m (short p);

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-19

The {type} tagged value
If you are familiar with the Objecteering/C++ module, you can modify or create a
new type interpreting project and add new set implementations. The tagged value
allows you to generate the parameter with the new implementation.
Please refer to chapter 15 of this user guide for a detailed description of the
adaptation and parameterization.

The {unsigned} tagged value
The {unsigned} tagged value on a parameter with the integer type is used to
indicate that this parameter has the "unsigned int" type.
Example:

The {unsigned} tagged value on ... is translated by ...
a parameter "p" with the integer type on a
method "m"

void m (unsigned p);

The {val} tagged value
The {val} tagged value on a parameter indicates that it is passed by value and not
by reference.

Chapter 12: Generating code for an operation

12-20 Objecteering/C++ User Guide

Notes on a parameter: Detailed description

C++DefaultValue
The "C++DefaultValue" note on a parameter presents the default value for this
parameter. You can also define a default value for the parameter in the
parameter's dialog box (not for the return parameter).
If the parameter owns both a default value in the field provided and a
"C++DefaultValue" note, the note is used during C++ generation. In the case of a
return parameter, the "C++DefaultValue" note is used if no return value has been
defined on the associated method ("C+Returned" note on the method).
Example:

A "C++DefaultValue" note containing... is translated ...
aValue

on a method named "m" for a parameter "p" with
the integer type

in the method declaration by:
void m(int p=aValue);

C++TypeExpr
The "C++TypeExpr" note represents the declaration, in C++, of the parameter
type.
It is useful for very tricky C++ parameter syntax cases, which cannot easily be
included in UML.
If you define a "C++TypeExpr" note for a parameter, it is taken into account for
generating the type of argument. The generator ignores anything entered in the
parameter’s dialog box concerning the type of the argument.
Example:

A "C++TypeExpr" note containing ... is translated ...
void **
on a method named "f", for a parameter named "by"

in the method declaration by:
void f(void ** by);

Note: If a parameter owns both a "C++TypeExpr" and a "C++ParamExpr" note,
the generation will stop, with an error message displayed in the console.

Chapter 12: Generating code for an operation

Objecteering/C++ User Guide 12-21

C++ParamExpr
The "C++ParamExpr" note allows you to enter the complete declaration, in C++, of
the parameter type.
If you define a "C++ParamExpr" for a parameter, it is taken into account when
generating the argument. The generator ignores anything entered in the
parameter’s dialog box concerning the type, the name and the default value of the
argument.
Example:

A "C++ParamExpr" note containing ... is translated ...
char ** p[20]
on a method named "f", for a parameter named "by"

in the method declaration by:
void f(char** by [20]);

Note 1: If a parameter owns both a "C++TypeExpr" and a "C++ParamExpr" note,
the generation will stop, with an error message displayed on the console.

Note 2:You must not define the "C++ParamExpr" note on a return parameter.

Chapter 13: Generating code for a
generalization, an
enumerate and basic types

Chapter 13: Generating code for a generalization, an enumerate and basic types

Objecteering/C++ User Guide 13-3

Introduction

Overview
This chapter describes C++ code generation for model elements which have not
yet been presented in the previous chapters. These elements are:

♦ basic types

♦ type creation

♦ enumerates

♦ generalization

♦ object instance

Chapter 13: Generating code for a generalization, an enumerate and basic types

13-4 Objecteering/C++ User Guide

Generating basic types

Definition
In the "_predefinedTypes" UML modeling project, there are several types:
boolean, char, integer, real and string. These are basic types.
The type of an attribute, a parameter, or an instance (see the following section for
the description of an instance) can be a basic type. The type can be selected in a
text field present in the attribute, parameter or instance dialog boxes. The
suggested list contains these basic types. If you add a new type in the
"_predefinedTypes" UML modeling project, it will appear in the suggested list.

Default correspondence
By default, the following correspondence is defined. The types in italics come
from the basic types UML modeling project, such as MFCTypes,
ObjecteeringTypes or STLTypes.

Objecteering/UML
type

ObjecteeringTypes STLTypes MFCTypes

integer int int int

char char char char

boolean CR_boolean bool Bool

real float float float

string CR_String string CString

Chapter 13: Generating code for a generalization, an enumerate and basic types

Objecteering/C++ User Guide 13-5

Tagged values
It is possible to adapt this default correspondence to the tagged values, as
follows:

Type The ... tagged value Default correspondence ...
char {unsigned} unsigned char

integer {long} long

integer {short} short

integer {unsigned} unsigned

integer {unsigned} {long} unsigned long

integer {unsigned} {short} unsigned short

real {long} double

These tagged values are available on attributes and parameters.

Chapter 13: Generating code for a generalization, an enumerate and basic types

13-6 Objecteering/C++ User Guide

Generating a new type

Overview
While modeling your application in the Explorer, you can create a new type (Type)
on the model elements Package or Class, by selecting the "Add a note" icon.
The new type defined on a package is visible for all the classes contained in the
package. The new type defined on a class can be visualized by the class and its
derived classes.
Here visible means that the new type appears in the list of types of the attribute's
dialog box of an attribute, parameter or instance.

The "C++" note on a Type
The "C++" note on a type contains the complete code used to declare the type in
C++ (declaration of the "typedef").
Example:

A "C++" note containing ... is translated ...
typedef char ** PPCHAR;
for a type named "myType"

in the header file of the corresponding class or
package, by:
typedef char ** PPCHAR;

Chapter 13: Generating code for a generalization, an enumerate and basic types

Objecteering/C++ User Guide 13-7

Generating an enumerate

Overview
While modeling your application with the explorer, you may create an enumerate
corresponding to the enum in C++, on the Package or Class model elements

using the icon .
The enumerate type defined on a package can be visualized by all the classes
contained in the package. T he enumerate type defined on a class can be
visualized by the class and its derived classes.
In this context, visible means that the enumerate type appears in the list of types in
the attribute, parameter or instance dialog boxes.

Chapter 13: Generating code for a generalization, an enumerate and basic types

13-8 Objecteering/C++ User Guide

The enumeration type dialog box
Enter an enumerate as shown in figure 13-1:

Figure 13-1. The "Enumeration type" dialog box

The generated code is as follows:
enum colors { red=10, green, blue } ;

Chapter 13: Generating code for a generalization, an enumerate and basic types

Objecteering/C++ User Guide 13-9

Generating a generalization

Definition
One package can specialize another package; one class can specialize another
class.
By default, generalization is generated as "public".
Example:
class A : public B { ... };

By annotating the generalization with the tagged values, you can change this
default generation rule.
If the base class is a template class, use {bind} to instantiate the template class.

The {bind} tagged value
When a class specializes a template class, you must annotate the generalization
using the {bind} tagged value. The parameters of this tagged value are the data
used to instantiate the template class.
Example:

The {bind} tagged
value on ...

with the
parameter...

is translated by ...

a generalization of "A"
towards "B"

("B" being itself a
generic class)

anyClass, 20 the following declaration:
class A : public B<anyClass,20>{

...
};

Refer to the "Generic class: Template" section in chapter 9 of this user guide for a
description of template class generation.
You must not annotate a generalization between packages with this tagged value.

Chapter 13: Generating code for a generalization, an enumerate and basic types

13-10 Objecteering/C++ User Guide

The {private} tagged value
The {private} tagged value on a generalization specifies that the generalization
must be private in the C++ sense.
Example:

The {private} tagged value on ... is translated by ...
a generalization of "A" towards "B" class A : private B{

...
}

The {protected} tagged value
The {protected} tagged value on a generalization specifies that the generalization
must be protected in the C++ sense.
Example:

The {protected} tagged value on ... is translated by ...
a generalization of "A" towards "B" class A : protected B{

...
}

The {virtual} tagged value
The {virtual} tagged value on a generalization specifies that the generalization
must be virtual in the C++ sense.
Example:

The {virtual} tagged value on ... is translated by ...
a generalization of "A" towards "B" class A : public virtual B{

...
}

Chapter 13: Generating code for a generalization, an enumerate and basic types

Objecteering/C++ User Guide 13-11

Creating an instance

Definition
While modeling in the explorer, you may create objects corresponding to global
variables, in the C++ sense of the term. An object instantiation can be declared

using the "Create an instance" icon.

Figure 13-2. The "Instance" dialog box

Note: In order to carry out generation from instances, the "Generate the code for
instances" tickbox in the "Generation options" parameter set must be
checked at module parameter configuration level. For further details on
this module parameter, please refer to the "Detailed description of
parameters" section in chapter 7 of this user guide.

Chapter 13: Generating code for a generalization, an enumerate and basic types

13-12 Objecteering/C++ User Guide

C++TypeExpr
The "C++TypeExpr" note on an instance is used to declare the instance's type.
If you define a "C++TypeExpr" note on an instance, it is taken into account during
generation of the type of the instance. The generator ignores anything entered in
the instance’s dialog box concerning the type of the instance.
The use of "C++TypeExpr" must be limited to the complex cases of declaration,
which are impossible to express in a different way.
Example:

A "C++TypeExpr" note containing... is translated ...
void **
on an instance named "Inst"

in the header file, to declare the instance,
with:
void ** Inst;

C++Value
The "C++Value" note on an instance is used to declare an initialization value for
this instance.
If a "C++Value" note is defined on an instance, it is taken into account for the
generation. The generator ignores anything entered in the instance’s dialog box
concerning the initialization value.
Example:

A "C++Value" note containing... is translated ...
sizeof(T)
on an instance named "Inst" of "integer"
type

in the header file, to declare the instance, with:
int Inst = sizeof(T);

Chapter 13: Generating code for a generalization, an enumerate and basic types

Objecteering/C++ User Guide 13-13

The {bind} tagged value
The {bind} tagged value indicates that the type of the parameter corresponds to a
C++ template class. The parameters of this tagged value are the data used to
instanciate the "template" class.
Example:

The {bind} tagged value
on ...

with the
parameter...

is translated by ...

an instance "p" of a class "C"
(generic itself)

anyClass
20

C<anyClass,20> p;

Please refer to the "Generic class: Template" section in chapter 9 of this user
guide for a description of the template class generation.

Chapter 14: Parameterizing basic
types

Chapter 14: Parameterizing basic types

Objecteering/C++ User Guide 14-3

Parameterizing basic types

Overview
The C++ code generator provides the possibility of using the basic types library of
your choice in the generated code. These basic types can be defined outside the
generator using a typed package. The generator can be broken down into two
parts: one part as a basic generator in charge of producing the structure of the
C++ code files and the other part in the form of a package (e.g.
ObjecteeringTypes) in charge of generating C++ code according to the chosen
basic types. This code is scanned by the basic generator for insertion in the
generated files. This association is defined with the "Name of the types
interpretation project" parameter.
All the basic types packages are defined in the "predefinedTypes" UML modeling
project.

Chapter 14: Parameterizing basic types

14-4 Objecteering/C++ User Guide

Figure 14-1. Dialog box for selecting a type package

Chapter 14: Parameterizing basic types

Objecteering/C++ User Guide 14-5

Packages for translating types and generating accessors
The Objecteering/C++ module delivery includes the "ObjecteeringTypes",
"STLTypes" and "MFCTypes" packages defined in the "predefinedTypes" UML
modeling project, which are type translation and accessor generation packages.
These packages can be modified. Furthermore, it is possible to create another
type translation and accessor generation package.
The "ObjecteeringTypes" package groups together types developed by
Objecteering Software and which are absent from the C++ language. The
sources of these basic types are delivered with Objecteering/UML, and are
presented in chapter 18.
The "STLTypes" package groups one part of the types, defined in the C++
Standard Template Library, where the container types are stored. This library has
the ANSI/ISO norm and is part of the C++ language definition. Only a recent
version of C++ compiler supports STL.
The "MFC Types" package is available only the platform PC it uses the classes of
MFC as type translation and accessor generation.

Content
A type package supports:

♦ the translation of model element base type

♦ the generation of attribute(s) owned by a class; the code concerns the
declaration and its accessors

♦ the generation of associations, which exist between the classes, the
declaration and their accessors

♦ the generation of operation parameters

Chapter 14: Parameterizing basic types

14-6 Objecteering/C++ User Guide

Package structure

To work on the type package, edit the "_predefinedType" UML modeling project.
This UML modeling project must reference the TypesEditor module.
In the UML modeling project, you will find several type packages with a similar
structure.
Each package contains:

♦ BaseTypes to give the translation of the basic type, such as int or string

♦ DefaultTranslations to guide default generation

♦ TranslationClasses to define every element used by the basic generator

Figure 14-2. The "STLTypes" package in the "_predefinedType" UML modeling project

Chapter 14: Parameterizing basic types

Objecteering/C++ User Guide 14-7

BaseTypes

The "BaseTypes" package is used for translating the basic types declared in the
"_S_predefinedTypes", for example integer and string. As it is not possible to
create a type with exactly the same name as a UML modeling project type, the aim
is to look for a type in this package, whose name contains the name of the
modeled type.

Figure 14-3. The "BaseTypes" package

Chapter 14: Parameterizing basic types

14-8 Objecteering/C++ User Guide

On this associated type, the aim is to look for its "targetType" text. If this text does
not carry the {Jeval} tagged value, then the C++ type is the content of the text
itself. If it carries this tagged value, the type is the J evaluation of the text content.
The text is then evaluated in the context of the modeled class.
A communication protocole exists in the generator. The C++ targetType must be
placed in the hContent of J type "string" variable.

Example: Translation of the modeled "boolean" type for ObjecteeringTypes.

The translation of this type is given by the boolean type. Its targetType text does
not carry the {Jeval} tagged value. The C++ type is, therefore, the content of the
text itself, i.e. "CR_boolean".
In this package, there are some notes associated with _class and the package
itself, which indicate the elements to be inserted concerning the generation for
every class and every package.

Package
The ... note to generate ...

hxxInclude include to be inserted into the header file of each package

namespace to insert using namespace in the header file of the package

Class
The ... note to generate the code for ...

hxxInclude the include to be inserted into the header file

cxx Include the include to be inserted into the body file

mainInstance the main class instanciation (used only by "ObjecteeringTypes")

mainInclude the include to inserted into the main class (used only by
"ObjecteeringTypes")

mainInheritance the inheritance for main class (used only by "ObjecteeringTypes")

Chapter 14: Parameterizing basic types

Objecteering/C++ User Guide 14-9

Translating set type associations, parameters and
attributes

The classes in the package support the generation of declarations and accessors
for associations and attributes, and the code concerning the parameters. When
the generator has to process these modeling cases, it firstly determines the class
that will be used to support the translation of the type, the declarations and its
features. The zones of code for inserting into the generated C++ file are then
obtained, according to the type of texts attached to this class.
By default, the link between a modeling case such as associations, attributes or
parameters and the class defined in the "TranslationClasses" follows a naming
rule to be presented below.
It is possible to indicate explicitly the type to be used for the translation using the
{type} tagged value.
When this tagged value is present, the code generator takes the name of the
class passed on as the parameter for "TranslationClass".
It is also possible to specify a translation class contained in a type package
different from that chosen in the current parameter of the module, "Name of the
types interpreting package".

Example for an association annotated with a
{type(<STLTypes:vector>)} tagged value

In this case, whatever the value of the "Types interpreting project name"
parameter, the generator will load the STLTypes UML modeling project to search
for the Vector class (ie vectorAssociation).
Then, according to the existence of the tagged value {Jeval}, it will assess or copy
the content of the texts attached to it to obtain the C++ code to be generated.

Chapter 14: Parameterizing basic types

14-10 Objecteering/C++ User Guide

Translation class naming rules
The name of class must be the type name, which is to be used as the parameter
of {type}, suffixed by Attribute, Association, IOParameter or ReturnParameter.

Figure 14-4. The "TranslationClasses" package

Chapter 14: Parameterizing basic types

Objecteering/C++ User Guide 14-11

The translation class typeAttribute or typeAssociation

The content of a translation class for Attribute or Association must include:

♦ a method call "declare"

♦ accessor methods, which are grouped into access, modified or fullaccess
methods indicated by {access}, {modify}, {fullaccess} or {fullmodify}

♦ notes associated with the class, containing the rule to generate the code
needed, such as "hxxInclude", "cxxInclude", "type"

Notes associated with a translation class

The ... note to generate the code for ...
type the type of attribute or association

typedef the typedef in public part of the class, to simplify the use of type.

hxxInclude the include to be inserted into header file

cxxInclude the include to be inserted into body file

forward the forward declaration needed

setInstanciation the set of instantiation (used only by "ObjecteeringTypes")

cardMethod the clause used for invariants concerning the multiplicity control

appendMethod the code inserted into constructor, needed by class instance
handling (only for Association)

eraseMethod the code inserted into destructor, needed by class instance handling
(only for Association)

Chapter 14: Parameterizing basic types

14-12 Objecteering/C++ User Guide

The J note on different elements of a method of the translation class allows you to
define the code which is to be inserted. They are summed up in the following
table.

On the ... element to generate the code for ...
method "declare" the declaration of the Attribute and Association

accessor method the content of the method

parameter the type of the parameter

Each accessor method has a Jname note to define its name.

Chapter 14: Parameterizing basic types

Objecteering/C++ User Guide 14-13

The translation class type IOParameter or
typeReturnParameter

The content of a translation class for an operation's parameter or its return
parameter must include:

♦ a method called "declare"

♦ notes associated with the class, containing the rule to generate the code
needed

Notes for a translation class

Note ... to generate the code for ...
type the type of parameter

hxxInclude the include to be inserted into header file

cxxInclude the include to be inserted into body file

forward the forward declaration

setInstantiation the set of instantiation (used only by "ObjecteeringTypes").

Chapter 14: Parameterizing basic types

14-14 Objecteering/C++ User Guide

DefaultTranslations

This package contains a group of packages, whose names conform to the naming
rule used by the basic generator. Each package refers to a translation class that
is used to generate the code.
If there are no tagged values on the modeling element, the basic generator finds
the translation class through the "DefaultTranslations" package.

Figure 14-5. The "DefaultTranslations" package

Chapter 14: Parameterizing basic types

Objecteering/C++ User Guide 14-15

Name ... Default generation of ...
SimpleAttribute declaration and accessors for a size 1 attribute

FiniteAttribute declaration and accessors for a size n>1 attribute

MultipleAttribute declaration and accessors for a size* attribute

MandatorySimpleAssociation declaration and accessors for an association with the 1
multiplicity

OptionalSimpleAssociation declaration and accessors for an association with the 0-
1 multiplicity

FiniteAssociation declaration and accessors for an association with the 0-
n, n multiplicity value >1

MandatoryMultipleAssociation declaration and accessors for an association with the
multiplicity1-*

OptionalMultipleAssociation declaration and accessors for an association with the
multiplicity0-*

SimpleIOParameter declaration for a parameter with size 1

FiniteIOParameter declaration for a parameter with size n>1

MultipleIOParameter declaration for a parameter with size *

SimpleReturnParameter declaration for a return parameter with size 1

FiniteReturnParameter declaration for a return parameter with size n>1

MultipleReturnParameter declaration for a return parameter with size *

Note: Classes that represent the model cases can reference the same type
class. In other words, the same type can be used for an association
with 0-1 or 0-* multiplicity.

Chapter 15: Adapting C++ code
generation

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-3

Overview of C++ generation adaptation

Overview
In order to parameterize C++ code generation in a more highly defined way than is
possible through the module parameters, you must have the Objecteering/UML
Profile Builder module in the Objecteering/Enterprise edition. The J language
allows generation parameterization. This parameterization is carried out:

♦ by creating a child "default#external#Code#Cxx" UML profile

♦ by redefining J methods accessible from the Objecteering/C++ module
For each type of model element (metaclass), one or more methods can be
adapted according to your needs. Parameterization can be carried out to a very
fine degree. For example, it is possible to modify the generation of the instance
management without changing the generation of the associations.

Possible adaptations
The Objecteering C++ code generation can be adapted by:

♦ defining specific new notes (code, pre-condition, etc.)

♦ adding new project parameters

♦ specialization of some generation behavior (J methods)

♦ adding new commands (entries, menu) for the generator

♦ defining the basic types project to be used in C++ code generation
The first three services are described in detail in the Objecteering/UML Profile
Builder module.
The creation and modification of the type package are described in chapter 14 of
this user guide ("Parameterizing basic types").

Chapter 15: Adapting C++ code generation

15-4 Objecteering/C++ User Guide

The "C++" UML profile
The "default#external#Code#Cxx" UML profile supplies all the J methods that are
accessible to the user.

Figure 15-1. Access to the methods that can be parameterized

Steps:
1 - Create a child UML profile under the Cxx generation UML profile.
2 - Reference the metaclasses you wish to define.
3 - Redefine a parent J method.
4 - Indicate the method that is going to be redefined.
5 - Confirm.

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-5

Procedure for adapting the C++ code generation module
1 - Edit a UML profiling project.
2 - Import the standard Objecteering/C++ module.
3 - Create a child UML profile in "default#external#Code#Cxx".
4 - Create in this child UML profile redefined J methods, tagged values,

constraints and notes of your choice to be used when redefining the methods.
5 - Create a module.
6 - Make this module specialize the C++ module.
7 - Reference the new UML profile from this new module.

Procedure for using parameterization in a UML modeling project
1 - Install the new module.
2 - Select the module. (For further information, please refer to the "Selecting

modules in the current UML modeling project" section in chapter 3 of the
Objecteering/Introduction user guide).

Chapter 15: Adapting C++ code generation

15-6 Objecteering/C++ User Guide

Generation constant

J methods
C++ code generation initializes, when it is run, a set of constants used later. At
the end of this initialization phase, a user method is activated to allow the
modification of these generation constants. The methods activated according to
the class or package units are:
Package:userInitialization() return boolean;
Class:userInitialization() return boolean;

Example:
boolean Package:default#Code#Cxx#User#userInitialization ()
{

// redefining the name of the "invariant" methods
ClassInvariantCheckMethodName = "_MyInvariant";
SchemaInvariantCheckMethodName = "_MyInvariant";
return=true;

}

All the constants are attributes defined on the "object" metaclass , with the "string"
type.

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-7

Naming and filtering constants

Overview
Naming constants allow the modification of the names of the methods generated
automatically by Objecteering/UML. Constants and their default values are
presented in the following tables.

The name of "invariant" methods
The name of the methods for calculating invariants can be parameterized by
redefining constants.

The ... constant defines ... by default
SchemaInvariantCheckMethodName the name of the method that

implements the class invariant
"_invariant"

ClassInvariantCheckMethodName the name of the method that
implements the package invariant

"_invariant"

Chapter 15: Adapting C++ code generation

15-8 Objecteering/C++ User Guide

Prefix of the accessors to attributes and associations
Code generation masks the implementation of relations and methods, through
accessors. The names of the accessors are deduced from those of roles or
attributes, by concatenating prefixes that can be parameterized.

The ... constant defines ... by default ...
AccessMethodPrefix the access methods' prefix. "_"

SetMethodPrefix the allocation methods' prefix. "set_"

AppendMethodPrefix the prefix of the methods for adding in a set "append_"

EraseMethodPrefix the prefix of the methods for deleting in a set "erase_"

CardinalMethodPrefix the prefix of the methods that return the
multiplicity

"card_"

FullAccessMethodPrefix the prefix of the methods that return the sets "get_all_"

FullSetMethodPrefix the prefix of the methods that allocate the
sets

"set_all_"

AttributePrefix the prefix of the C++ attributes for the
generated attributes and relations.

""

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-9

Basic types name

The ... constant defines ... by default ...
CxxString the C++ type corresponding to the string type. "CR_string"

CxxChar the C++ type corresponding to the char type. "char"

CxxBoolean the C++ type corresponding to the boolean type. "CR_boolean"

CxxInteger the C++ type corresponding to the integer type. "int"

CxxReal the C++ type corresponding to the real type. "float"

Name of the generated suffix files
The generated C++ files can be called according to the targets and preferences:

♦ for the body: ".cxx", ".cpp", ".c"

♦ for the interface: ".hxx", ".hpp", ".h"

The ... constant defines ... by default ...
CxxFileSuffix the suffix of the C++ body file ".cxx"

HxxFileSuffix the suffix of the produced interface file. ".hxx"

All the constants in this table have the "string" type.

Chapter 15: Adapting C++ code generation

15-10 Objecteering/C++ User Guide

Name of the comment zones
Different comments are inserted in the generated C++ code files. These can be
modified by re-defining the following variables:

The ...
constant

Defined on
the ...
metaclass

is used to redefine
the comment ...

with the ... default
value

InterfaceBeginning
Comment

Class located before the
declaration of the class
in the header file.

/*INTERFACE OF THE
xx CLASS */

InterfaceEndComm
ent

Class located after the
declaration of the class
in the header file.

/*END INTERFACE OF
THE xx CLASS*/

BodyBeginningCom
ment

Class located before the class
definition in the
generated code file.

/*BODY OF xx CLASS*/

BodyEndComment Class located before the class
definition in the
generated code file.

/*END OF xx
CLASS BODY*/

EnumerateDeclarati
onsComment

Class located before the
declaration of an
enumerate

/*ENUMERATE
DECLARATIONS*/

ConstantDefinitions
Comment

Class located before the
definition of the C++
constants.

/*CONSTANTS
DEFINITIONS*/

FreeCodeComment Class located before the
insertion of the
"CxxInterfaceHeader"
type notes

/*FREE C++
PROGRAMMER’S
CODE*/

ForwardClassDecla
rationsComment

Class located before the
"forward" declarations

/*FORWARD CLASS
DECLARATION*/

SetInstantiationsCo
mment

Class located before the
instantiation of the
CR_SET macro

/*INSTANCE SET
DECLARATION */

TypeDeclarationsC
omment

Class located before the
declaration of the types

/*TYPE
DECLARATIONS*/

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-11

The ...
constant

Defined on
the ...
metaclass

is used to redefine
the comment ...

with the ... default
value

MethodDeclarations
Comment

Class located before the
declaration of the class
methods.

/* METHODS*/

MethodComment Class located before the
definition of each class
method.

/*METHOD xx OF
yy CLASS*/

RelationshipDeclar
ationsComment

Class located before the
declaration of the
implementation of the
class associations.

/*RELATIONSHIP*/

AttributeDeclaration
sComment

Class located before the
declaration of the class
attributes.

/*ATTRIBUTE*/

InvariantDeclaratio
nsComment

Class located before the
declaration of an
invariant

/*INVARIANT*/

InvariantDefinitions
Comment

Class located before the
definition of an invariant

/*INVARIANT OF THE
xx CLASS*/

InterfaceBeginning
Comment

Package located before the
declaration of the class
associated to a package
in the header file.

/*INTERFACE OF
THE xx PACKAGE

InterfaceEndComm
ent

Package located after the
declaration of the class
associated to a package
in the header file.

/*END INTERFACE
OF THE xx
PACKAGE*/

BodyBeginningCom
ment

Package located before the
definition of the class
associated to a package
in the generated body
file.

/*BODY OF xx
PACKAGE*/

BodyEndComment Package located after the
definition of the class
associated to a package
in the generated body
file.

/*END OF xx
PACKAGE*/

Chapter 15: Adapting C++ code generation

15-12 Objecteering/C++ User Guide

The ...
constant

Defined on
the ...
metaclass

is used to redefine
the comment ...

with the ... default
value

InheritedSchemaIn
cludesComment

Package located before the
inclusion of the header
files of the parent
packages.

/*INCLUDES OF
INHERITED
PACKAGE*/

FreeCodeComment Package located before the
insertion of the
"CxxInterfaceHeader"
type notes

/*FREE C++
PROGRAMMER’S
CODE*/

ConstantDefinitions
Comment

Package located before the
definition of C++
constants.

/*CONSTANTS
DEFINITIONS*/

EnumerateDeclarati
onsComment

Package located before the
declaration of an
enumerate

/*ENUMERATE
DECLARATIONS*/

TypeDeclarationsC
omment

Package located before the
declaration of the types

/*TYPE
DECLARATIONS*/

InvariantDefinitionC
omment

Package located before the
definition of an invariant

/*INVARIANT OF THE
xx CLASS*/

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-13

Pre-compilation tagged values
Pre-compilation tagged values can be adapted by re-defining the following
variables:

The ... constant Defined on
the ...
metaclass

defines ... by default ...

CxxObj_CR_Check Object the pre-compilation tagged
value concerning the "Check"
mode with the calling of the
invariants.

#ifdef CR_CHECK

CxxObj_CR_Endif Object the end of a pre-compilation
tagged value

#endif

CxxObj_CR_Trace Object the pre-compilation tagged
value concerning the "Trace"
mode in the adjustment
phase.

#ifdef CR_TRACE

Chapter 15: Adapting C++ code generation

15-14 Objecteering/C++ User Guide

Size of the line indents in the generated C++ code
To make it more clear, the generated lines are indented, in order to put forward
the scope of the variables. However, to respect a programming norm specific to
the user, it is possible to modify the size of the indents by re-defining the following
variables:

The ... constant Defined on the
... metaclass

defines the indents ...

indentHeaderMember Object of the lines of code concerning the
declaration of a class's members.

indentCode Object of the lines of code of a method's body.

indentClass Object of the lines of code of a class's declaration.

indentVisibility Object of the "private", "protected" and "public"
keywords.

indentBodyMember Object of the lines of code of a method's
declaration.

indentPreprocessor Object of the lines of code surrounded by a pre-
compilation tagged value.

indentBeginEnd Object opening and closing curly brackets of a
method's body.

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-15

Passing mode of operation parameters

The ...constant Defined on the
... metaclass

defines ... by default ...

CxxAtt_ConstReturnString ModelElement the const mode
for a method's
return parameter.

const

CxxAtt_RefReturnString ModelElement the passing mode
for a method's
return parameter.

&

CxxDCR_ConstMethodString Attribute the const mode
for a read only
access method

const

CxxDCR_IndexMethodString Attribute the string passed
as the "set" type
access methods'
parameter

(cr_index)

Chapter 15: Adapting C++ code generation

15-16 Objecteering/C++ User Guide

Parameterizing the generation of different units

Mechanism
When a unit (class, operation, attribute, parameter, etc.) has finished being
generated, one or more methods are then activated with the C++ translations of
the characteristics specific to the unit. Each parameterization method linked to the
object to be generated (the C++ class, operation, etc.), and all the information
necessary for generation are immediately accessible. For example, the J
parameterization method "UserGeneration" on a parameter will simply obtain the
name of the parameter through the "Name" attribute of the current parameter.

Return value
The parameterization method returns a "true" value, if no processing error
occurred. If a "false" value is returned, code generation is stopped. This allows
possible errors to be diagnosed, depending on what has been added by
generation.

Global parameterization
Certain methods of parameterization provide parameters, which allow the
complete overloading of the C++ generation specific to the current unit. C++ code
generation then checks that the parameter is not empty, and replaces its
generation with the one produced by the parameterization.

Note: In the following sections, the J methods flagged with * are not called when
the "Ascending compatibility since version 4.2.0" parameter is not
selected.

Parameterization is made possible by the types package.

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-17

Package

Parameterization
At the end of the generation of a package, the parameterization method is run with
the C++ translations of the different package characteristics:

♦ expression tagged value at the beginning of the interface file

♦ public and private members

♦ expression tagged value at the end of the interface file

♦ expression tagged value at the beginning of the body file

♦ package body
When the method is returned, the formatting of the "interface" and "body" files is
carried out, taking into account the possible modifications of the C++ code.

Set of generated code zones
The signature of the parameterization method is as follows:

Package:userGeneration (
interfaceHeader_io : inout string,
publicMembers_io : inout string,
protectedMembers_io : inout string,
privateMembers_io : inout string,
interfaceBottom_io : inout string,
bodyHeader_io : inout string,
schemaBody_io : inout string) return boolean

The ... parameter contains in C++ ...
interfaceHeader_io the code at the beginning of the interface file.

publicMembers_io the code of the public members.

protectedMembers_io the code of the protected members.

privateMembers_io the code of the private members.

interfaceBottom_io the code at the end of the interface file.

bodyHeader_io the code at the beginning of the body file.

packageBody_io the code in the body file and deduced from the package's
characteristics.

Chapter 15: Adapting C++ code generation

15-18 Objecteering/C++ User Guide

Initialization before generating code
The signature of the parameterization method is as follows:

Package:userInitialisation () return boolean

The user can use this method to update the variables documented in the previous
section so they be taken into account in the generated code. Preliminary
processing, such as consistency checks specific to the user, may be inserted into
the body of this method.

Producing code
The signature of the parameterization method is as follows:

Package:userIsCode () return boolean

When the method returns FALSE, code is not generated for the current package.

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-19

Class

Parameterizing
After a class is generated, the parameterization method is launched, with the C++
translations of the different class characteristics:

♦ expression tagged values at the beginning of the interface file

♦ class generalization

♦ public, protected and private members

♦ expression tagged value at the end of the interface file

♦ expression tagged value at the beginning of the body file

♦ class body
When the method is returned, the formatting of the "interface" and "body" files is
carried out, taking into account the modifications that may have been made to the
C++ code.

Chapter 15: Adapting C++ code generation

15-20 Objecteering/C++ User Guide

Set of generated code zones
The signature of the parameterization method is as follows:

Class:userGeneration (
interfaceInclude_io : inout string,
interfaceHeader_io : inout string,
inheritedClasses_io : inout string,
publicMembers_io : inout string,
protectedMembers_io : inout string,
privateMembers_io : inout string,
inlineMethods_io : inout string,
interfaceBottom_io : inout string,
bodyIncludes_io : inout string,
bodyHeader_io : inout string,
classBody_io : inout string) return boolean

The ... parameter contains in C++ the code ...
interfaceIncludes_io inclusion of the classes in the interface file

interfaceHeader_io at the beginning of the interface file

InheritedClasses_io that declares the generalized classes

PublicMembers_io public members

ProtectedMembers_io protected members

PrivateMembers_io private members

inlineMethods_io corresponding to the non included "inline" methods

interfaceBottom_io at the end of the interface file

bodyIncludes_io class inclusion in the body file

bodyHeader_io at the beginning of the body file

classBody_io placed in the body file corresponding to the methods

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-21

Initialization before generating code
The signature of the parameterization method is as follows:

Class:userInitialisation() return boolean

The user can use this method to update the variables documented in the previous
section so they be taken into account in the generated code. Preliminary
processing, such as consistency checks specific to the user, may be inserted into
the body of this method.

Redefining the CR_Set macro
The signature of the parameterization method is as follows:

Class:userCRSetGeneration (
typeName_io : inout string) return boolean

The ... parameter contains in C++ the code ...
typeName_io_io the name of the class to instanciate the CR_Set macro.

When the "typeName_io" parameter is equal to an empty character string, the
macro is not called.
This method is not called when the parameter "Ascending compatibility since
version 4.2" is not selected.

Processing specific to the classes annotated {extern}
The signature of the parameterization method is as follows:

Class:userExternClassGeneration () return boolean

By default, no code is generated for a class annotated with the {extern} tagged
value. By re-defining this method, it is possible to launch specific processing
associated to these classes.

Chapter 15: Adapting C++ code generation

15-22 Objecteering/C++ User Guide

"forward" inclusions and declarations
The signature of the parameterization method is as follows:

Class:userForwardIncludeGeneration (
hxxInclude_io : inout string
hxxIncludeSuffix_io : inout string
cxxInclude_io : inout string
cxxIncludeSuffix_io : inout string
forward_io : inout string
forwardPrefix_io : inout string) return boolean

The ... parameter contains in C++ the code ...
hxxInclud_io the name of the files to be included for primitive class type

attributes in the class's header file

hxxIncludeSuffix_io the suffix of the inclusion files to insert them in the class's header
file

cxxInclude_io the name of the files to be included for primitive class type
attributes in the class's body file

cxxIncludeSuffix_io the suffix of the inclusion files to insert them in the class's body file

forward_io the name of the classes to be added in the "forward" declarations
zone

forwardPrefix_io the prefix of the classes in "forward" declaration

Producing code
The signature of the parameterization method is as follows:

Class:userIsCode () return boolean

When the method returns FALSE, code is not generated for the current class.

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-23

Declaration
The signature of the parameterization method is as follows:

Class:userPrefixDeclarationClassGeneration (
declarationClass_io : inout string) return boolean

The ...parameter contains in C++ the code ...
declarationClass_io the class declaration

Encapsulation
The signature of the parameterization method is as follows:

Class:userFriendsGeneration (
hxxFriends_io : inout string) return boolean

The ... parameter contains in C++ the code ...
hxxFriends_io the string containing the declaration of the "friend" classes

Invariant
The signature of the parameterization method is as follows:

Class:userInvariantGeneration (
methodsDeclarations_io : inout string
methodsCxxDefinition_io : inout string) return boolean

The ...parameter contains in C++ the code ...
methodsDeclarations_io the declaration of the class invariant.

methodsCxxDefinition_io the definition of the class invariant.

Chapter 15: Adapting C++ code generation

15-24 Objecteering/C++ User Guide

Attributes

Parameterizing
After an attribute is generated, a parameterization method is launched, with the
C++ translations of the different attribute characteristics:

♦ C++ name

♦ C++ type

♦ initial value

♦ attribute access
According to the kind of attribute (list, table or scalar), the appropriate
parameterization method is activated.
When the method is returned, the final C++ formatting of the attribute is carried
out, taking into account the modifications that may have been made to the C++
code.
In the following sections, the J methods flagged with * are not called when the
"Ascending compatibility since version 4.2.0" parameter is not selected.

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-25

Set of generated code zones for a simple attribute
For a simple attribute, the signature of the parameterization method is as follows:

*Attribute:userAtomicGeneration (
cxxName_io : inout string,
cxxType_io : inout string,
cxxExternal_tpe_io : inut string,,
initialValue_io : inout string,
cxxGetLine_io : inout string,
cxxSetLine_io : inout string,
cxxCardLine_io : inout string,
cxxIndexLine_io : inout string,
hxxIncludeType_io : inout string) return boolean

The ... parameter contains in C++ ...
cxxName_io the name of the attribute

cxxType_io the name of the attribute's type

cxxExternalType_io the name of the type used by the access methods

initialValue_io the attribute's initial value

cxxGetLine_io the line for obtaining the attribute

cxxSetLine_io the line for allocating the attribute

cxxCardLine_io the line for obtaining the multiplicity of the list

cxxIndexLine_io the line for obtaining the nth element of the list

hxxIncludeType_io the type to be included

Chapter 15: Adapting C++ code generation

15-26 Objecteering/C++ User Guide

Set of generated code zones for a list type attribute
For an attribute translated in the form of a list, the signature of the
parameterization method is as follows:

*Attribut:userListGeneration (
cxxName : inout string,
cxxType : inout string,
cxxExternalType : inout string,
cxxAtomicType : inout string,
isReturnedByValue : inout boolean,
initialValue : inout string,
cxxGetLine : inout string,
cxxSetLine : inout string,
cxxCardLine : inout string,
cxxIndexLine : inout string,
cxxAppendLine : inout string,
cxxEraseLine : inout string,
hxxIncludeType : inout string) return boolean

The ... parameter contains in C++ ...
cxxName the name of the attribute

cxxType the name of the attribute's type

cxxExternalType the name of the type used by the access methods

cxxAtomicType the primitive type in the list

isReturnedByValue an indicator specifying whether the return is by value or through
reference

initialValue the attribute's initial value

cxxGetLine the line for obtaining the attribute

cxxSetLine the line for allocating the attribute

cxxCardLine the line for obtaining the multiplicity of the list

cxxIndexLine the line for obtaining the nth element of the list

cxxAppendLine the line for adding an element in the list

cxxEraseLine the line for suppressing an element in the list

hxxIncludeType the type to be included

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-27

Set of generated code zones for an attribute annotated {array}
For an attribute translated in the form of a table, the signature of the
parameterization method is as follows:

*Attribute:userArrayGeneration (
cxxName : inout string,
cxxType : inout string,
cxxExternalType : inout string,
initialValue : inout string,
cxxGetLine : inout string,
cxxSetLine : inout string,
cxxCardLine : inout string,
cxxIndexLine : inout string,
hxxIncludeType : inout string : return boolean

The ... parameter contains in C++ ...
cxxName the name of the attribute

cxxType the name of the attribute's type

cxxExternalType the name of the type used by access methods

initialValue the attribute's initial value

cxxGetLine the line for obtaining the attribute

cxxSetLine the line for allocating the attribute

cxxCardLine the line for obtaining the multiplicity of a set

cxxIndexLine the line for obtaining the nth element of a set

hxxIncludeType the type to be included

Chapter 15: Adapting C++ code generation

15-28 Objecteering/C++ User Guide

Redefining the CR_Set macro
The signature of the parameterization method is as follows:

*Attribute : userCRSetGeneration (
typeName_io : inout string

The ... parameter contains in C++ the code ...
typeName_io the name of the class to instantiate the CR_Set macro.

When the "typeName_io" parameter is equal to an empty character string, the
macro is not called.

"forward" inclusions and declarations
The signature of the parameterization method is as follows:

*Attribute:userForwardIncludeGeneration (
hxxInclude_io : inout string
hxxIncludeSuffix_io : inout string
cxxInclude_io : inout string
cxxIncludeSuffix_io : inout string
forward_io : inout string
forwardPrefix_io : inout string) return boolean

The ... parameter contains in C++ the code ...
hxxInclude_io the name of the files to be included for primitive class type

attributes in the class's header file

hxxInlcudeSuffix_io the suffix of the inclusion files to insert them in the class's header
file

cxxInclude_io the name of the files to be included for primitive class type
attributes in the class's body file

cxxIncludeSuffix_io the suffix of the inclusion files to insert them in the class's body file

forward_io the name of the classes to be added in the "forward" declarations
zone

forwardPrefix_io the prefix of the classes in "forward" declaration

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-29

Producing code
The signature of the parameterization method is as follows:

Attribute:userIsCode () return boolean

When the method returns FALSE, code is not generated for the current package.

Name of the access methods
The signature of the parameterization method is as follows:

*Attribute:userAccessMethodName () return string

This method allows the definition of a rule used to name the "get_" type attribute
accessors.

Name of the method used to obtain multiplicity
The signature of the parameterization method is as follows:

*Attribute:userCardinalMethodName () return string

This method allows the definition of a rule used to name the "card_" type methods.

Chapter 15: Adapting C++ code generation

15-30 Objecteering/C++ User Guide

Associations

Parameterizing
The AssociationEnd metaclass has parameterization methods. This metaclass
represents one end of the association link.
After an association is generated, a parameterization method is launched, with
C++ translations of the different association characteristics:

♦ C++ name

♦ C++ type

♦ initial value

♦ access to the association elements
When the method is returned, the final C++ formatting of the association is carried
out, taking into account the possible modifications to the C++ code.
In the following sections, the J methods flagged with * are not called when the
"Ascending compatibility since version 4.2.0" parameter is not selected.

Set of generated code zones for an association
The signature of the parameterization method is as follows:

*Association:userGeneration (
cxxName_io : inout string,
cxxType_io : inout string,
cxxInit_io : inout string
cxxGetLine_io : inout string,
cxxCardLine_io : inout string,
cxxAppendLine_io : inout string,
cxxEraseLIne_io : inout string,
cxxFullGetLIne_io : inout string,
cxxFullSetLine_io : inout string) return boolean

The ...parameter contains in C++ ...
cxxName_io the name of the attribute that implements the association

cxxType_io the name of the type that implements the association

cxxInit_io the deduced initialization code

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-31

cxxGetLine_io the line for obtaining the nth element of the association

cxxCardLine_io the line for obtaining the multiplicity of the association

cxxAppendLine_io the line for adding an element to the association

cxxEraseLine_io the line for deleting an element of the association

cxxFullGetLine_io the line for obtaining the association set

cxxFullSetLine_io the line for allocating the association set

Parameter type for operations used to access associations
The signature of the parameterization method is as follows:

*AssociationEnd:userGenerationRelationArgument -
argType_io : inout string) return boolean

The ... parameter contains in C++ ...
argType_io the name of the parameters used in the services for accessing

associations (ex. : append_role()

Return parameter type for operations used to access associations
The signature of the parameterization method is as follows:

*AssociationEnd:userGenerationRelationReturn (
retType_io : inout string) return boolean

The ... parameter contains in C++ ...
retType_io the name of the return parameter used in the services for

accessing the associations

Chapter 15: Adapting C++ code generation

15-32 Objecteering/C++ User Guide

Redefining the CR_Set macro
The signature of the parameterization method is as follows:

*AssociationEnd:userCRSetGeneration (
typeName_io : inout string) return boolean

The ...parameter contains in C++ ...
typeName_io the name of the class to instanciate the CR_Set macro.

When the "typeName_io" parameter is equal to an empty character string, the
macro is not called.

"forward" inclusions and declarations
The signature of the parameterization method is as follows:

*AssociationEnd:userForwardIncludeGeneration (
hxxInlcude_io : inout string
hxxInlcudeSuffix_io : inout string
cxxInlcude_io : inout string
forward_io : inout string
forwardPrefix_io : inout string) return boolean

The ...parameter contains in C++ ...
hxxInclude_io the name of the files to be included for primitive class type

attributes in the class's header file

hxxInlcudeSuffix_io the suffix of the inclusion files to insert them in the class's header
file

cxxInlcude_io the name of the files to be included for primitive class type
attributes in the class's body file

forward_io the name of the classes to add in the "forward" declarations zone

forwardPrefix_io the prefix of the classes in "forward" declaration

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-33

Parameter type for operations used to access associated objects
The signature of the parameterization method is as follows:

*AssociationEnd:userGenerationRelationFullArgument -
argType_io : inout string) return boolean

The ... parameter contains in C++ ...
argType_io the name of the parameters used in the services for accessing

associations

Return parameter type for operations used to access associated
objects

The signature of the parameterization method is as follows:
*AssociationEnd:userGenerationRelationFullReturn (

retType_io : inout string) return boolean

The ... parameter contains in C++ ...
retType_io the name of the return parameter used in the services for

accessing the associations

Producing code
The signature of the parameterization method is as follows:

*AssociationEnd:userIsCode () : return boolean

When the method returns FALSE, code is not generated for the current package.

Chapter 15: Adapting C++ code generation

15-34 Objecteering/C++ User Guide

Name of the class member that implements the association
The signature of the parameterization method is as follows:

*AssociationEnd:userVariableName (
varName : inout string) return boolean

The ... parameter contains in C++ ...
varName the name of the attribute for implementing the association

Names of access methods
The signature of the parameterization method is as follows:

*AssociationEnd:userAccessMethodName () return string

This method allows the definition of a rule used to name the "get_" type attribute
accessors.

Name of the method for obtaining the multiplicity
The signature of the parameterization method is as follows:

*AssociationEnd:userCardinalMethodName () return string

This method allows the definition of a rule used to name the "card_" type methods.

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-35

Instance management
After the generation that is related to the instance management ("instance"
keyword), the parameterization method is launched with the C++ translations of
the different characteristics:

♦ C++ name

♦ C++ type

♦ initial value

♦ access to the instance management elements.
When the method is returned, the final C++ formatting of the attribute is carried
out taking into account the modifications that may have occurred to the C++ code.

Chapter 15: Adapting C++ code generation

15-36 Objecteering/C++ User Guide

Set of generated code zones for an association
The signature of the parameterization method is as follows:

*AssociationEnd:userInstanceGeneration (
cxxName_io : inout string
cxxType_io : inout string
cxxInitialisation_io : inout string
cxxGetLine_io : inout string
cxxCardLink_io : inout string
cxxAppendLine_io : inout string
cxxEraseLIne_io : inout string
cxxFullGetLine_io : inout string
cxxFullSetLine_io : inout string

The ... parameter contains in C++ ...
cxxName_io the name of the attribute that implements the instance

management

cxxType_io the name of the type that implements the instance management

cxxInitialisation_io the deduced initialization code

cxxGetLine_io the line for obtaining the nth element of the instance management

cxxCardLine_io the line for obtaining the multiplicity of the instance management

cxxAppendLine_io the line for adding an element to the instance management

cxxEraseLIne_io the line for deleting an element of the instance management

cxxFullGetLIne_io the line for obtaining the instance management set

cxxFullSetLine_io the line for allocating the instance management set

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-37

Operations

Parameterizing
After a method is generated, one or more parameterization methods are launched
with the C++ translations of the different method characteristics:

♦ C++ name

♦ C++ return

♦ C++ parameter list

♦ pre-condition

♦ the method's C++ code

♦ post-condition

♦ actual return
When the method is returned, the final C++ formatting of the attribute is carried
out, taking into account the modifications that may have been made to the C++
code.

Chapter 15: Adapting C++ code generation

15-38 Objecteering/C++ User Guide

Set of code zones generated for an operation
The signature of the parameterization method is as follows:

Operation:userGeneration (
cxxName_io : inout string,
cxxReturnDecl_io : inout string
parameterList_io : inout SetOfstring,
cxxPre_io : inout string,
cxxCode_io : inout string,
cxxPost_io : inout string,
cxxReturn_io : inout string) return boolean

The ... parameter contains in C++ ...
cxxName_io the method's name

cxxReturnDecl_io the method's return declaration

parameterList_io the list of parameters

cxxPre_io the pre-conditions

cxxCode_io the method's code

cxxPost_io the post-conditions

cxxReturn_io the returned actual expression

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-39

Constructor
In the case of the constructors, another operation is activated in order to take into
account specific parts of generation. The signature of the parameterization
method is as follows:

Operation:userCreateGeneration -
deduceConstruction : inout string
deducInitialisation : inout string,
instanceHandling : inout string) return boolean

The ... parameter contains in C++ ...
deducConstruction the deduced constructions

deduceInitialisation the deduced initializations

instanceHandling the insertion of the object into the instance management

Destroyer
In the case of the constructors, another method is activated in order to take into
account specific parts of generation. The signature of the parameterization
method is as follows:

Operation:userDeleteGeneration (
instanceHandling : inout string) return boolean

The "instanceHandling" parameter contains, in C++, the deletion of the instance
management object.

Chapter 15: Adapting C++ code generation

15-40 Objecteering/C++ User Guide

Return parameter
The signature of the parameterization method is as follows:

Operation:userconfReturnGeneration (
typeName_io : inout string
passingMode_io : inout string
constSuffix_io : inout string
) return boolean

The ... parameter contains in C++ ...
typeName_io the name of the return parameter

pasingMode_io the return parameter's passing mode

constSuffix_io the suffix of the return parameter

"forward" inclusions and declarations
The signature of the parameterization method is as follows:

Operation:userForwardIncludeGeneration -
hxxInclude_io : inout string
hxxIncludeSuffix_io : inout string
cxxInclude_io : inout string
cxxIncludeSuffix_io : inout string
forward_io : inout string
forwardPrefix_io : inout string) return boolean

The ... parameter contains in C++ ...
hxxinclude_io the names of the files to be included in the class's header file

hxxInlcudeSuffix_io the suffix of the inclusion files to insert them in the class's header
file

cxxInclude_io the names of the files to be included in the class's body file

cxxIncludeSuffix_io the suffix of the inclusion files to insert them in the class's body file

Forward_io the name of the classes to be added in the "forward" declarations
zone

forwardPrefix_io the prefix of the classes in "forward" declaration

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-41

Producing code
The signature of the parameterization method is as follows:

Operation:userIscode () return boolean

When this method returns FALSE, code is not generated for the current package.

Adding a prefix to the operation's declaration
The signature of the parameterization method is as follows:

Operation:userPrefixMethodGeneration (
prefix_io : inout string) return boolean

The ... parameter contains in C++ ...
prefix_io the character string to be added as prefix to the class's methods

Return parameter
The signature of the parameterization method is as follows:

Operation:userReturnGeneration -
hxxReturn_io : inout string
cxxReturn_io : inout string) return boolean

The ... parameter contains in C++ ...
hxxReturn_io declaration of the method's return parameter in the class's header

file

cxxReturn_io declaration of the method's return parameter in the class's body
file

Chapter 15: Adapting C++ code generation

15-42 Objecteering/C++ User Guide

Return parameter type
The signature of the parameterization method is as follows:

Operation:userReturnTypeGenration -
typeName_io : inout string) return boolean

The ... parameter contains in C++ ...
typeName_io the declaration of the method return type

Free text zones to be inserted
The signature of the parameterization method is as follows:

Operation:userBeforeAfterGeneration -
beforeDeclaration_io :inout string
afterDeclaration_io :inout string
beforeImplementation_io : inout string
afterImplementation_io : inout string) return boolean

The ... parameter contains in C++ ...
beforeDeclaration_io the text to be inserted before the method's declaration

afterDeclaration_io the text to be inserted before the method's declaration

beforeImplementation_io the text to be inserted before the method's body

afterImplementation_io the text to be inserted before the method's body

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-43

Parameters
The signature of the parameterization method is as follows:

Operation:userHeaderParamListGeneration -
parametersHeader_io : inout string,
initValues_io : inout string,
ids_io : inout string) return boolean

The ... parameter contains in C++ ...
parametersHeader_io the set of the method's parameters

initValues_io the set of the default values of the method's parameters

ids_io the set of the identifiers of the method's parameters

Trace starting message
The signature of the parameterization method is as follows:

Operation:userGenerateBeginningTrace (
preTrace_io : inout string) return boolean

The ... parameter contains in C++ ...
preTrace_io the character string displayed in Trace mode at the beginning of

the method's execution

Chapter 15: Adapting C++ code generation

15-44 Objecteering/C++ User Guide

Trace end message
The signature of the parameterization method is as follows:

Operation:userGenreatedEndingTrace (
postTrace_io : inout string) return boolean

The ... parameter contains in C++ ...
postTrace_io the character string displayed in Trace mode at the end of the

method's execution

Virtual destructor
The signature of the parameterization method is as follows:

Operation:userVirtualDestructor -
virtualStr_io : inout string) return boolean

The ... parameter contains in C++ ...
virtualStr_io the declaration of the class destructor

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-45

Parameters

Parameterization
After a parameter is generated, a parameterization method is launched with the
C++ translations of the different attribute characteristics:

♦ C++ name

♦ C++ type

♦ initial value

♦ passing mode
When the method is returned, the final C++ formatting of the parameter is carried
out, taking into account the possible modifications to the C++ code.
In the following sections, the J methods flagged with * are not called when the
"Ascending compatibility since version 4.2.0" parameter is not selected.

Set of code zones generated for a parameter
The signature of the parameterization method is as follows:

*Parameter:userGeneration (
cxxName_io : inout string,
cxxType_io : inout string,
initialValue_io : inout string,
cxxPassing_io : inout string,
cxxConst_io : inout string,
userCxx_io : inout string) return boolean

The ... parameter contains in C++ ...
cxxName_io the name of the parameter

cxxType_io the name of the parameter type

initialValue_io the parameter's initial value

cxxPassing_io the parameter's passing mode

cxxConst_io the keyword const or empty

userCxx_io a complete declaration specific to the user

Chapter 15: Adapting C++ code generation

15-46 Objecteering/C++ User Guide

Re-defining the CR_Set macro
The signature of the parameterization method is as follows:

*Parameter:userCRSetGeneration (
typeName_io : inout string,
) return boolean

The ... parameter contains in C++ ...
typeName_io the name of the class to instantiate the CR_Set macro

When the "typeName_io" parameter is equal to an empty character string, the
macro is not called.

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-47

Inclusions and declarations "forward"
The signature of the parameterization method is as follows:

*Parameter:userForwardIncludeGeneration (
hxxInclude_io : inout string
hxxIncludeSuffix_io : inout string
cxxInclude_io : inout string
cxxIncludeSuffix_io : string
forward_io : inout string
forwardPrefix_io : inout string,
) return boolean

The ... parameter contains in C++ ...
hxxInclude_io the names of the files to be included in the class's header file

hxxIncludeSuffix_io the suffix of the inclusion files to insert in the class's header
file

cxxInclude_io the names of the files to be included in the class's body file.

cxxIncludeSuffix_io the suffix of the inclusions files to insert in the class's body
file

forward_io the name of the classes to be added in the "forward"
declarations zone

forwardPrefix_io the prefix of the classes in "forward" declaration

Chapter 15: Adapting C++ code generation

15-48 Objecteering/C++ User Guide

DataType

Parameterization
At the end of basic type generation, two parameterization methods are activated to
define the type (typedef).
When the method is returned, the final C++ formatting of the type is carried out,
taking into account the possible modifications made to the C++ code.

Name
The signature of the parameterization method is as follows:

DataType:userGenerateClassCRType (
typeName_io : inout string,
) return boolean

The ... parameter contains in C++ ...
typeName_io the name of the type to be defined

Prefix
The signature of the parameterization method is as follows:
DataType:userGenerateSchemaCRType (

hxxPrefix_io : inout string,
) return boolean

The ... parameter contains in C++ ...
hxxPrefix_io the name of the prefix to use for the type to be defined

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-49

Header

Parameterization
After a class is generated, a parameterization method is activated for the
redefinition of a header inserted at the beginning of the class' header and body
file.
When the method is returned, the final C++ formatting of the file is carried out,
taking into account the possible modifications.

Method
The signature of the parameterization method is as follows:

Unit:generateUserHeader (
hxxUserHeader_io : inout string
cxxUserHeader_io : inout string,

The ... parameter contains in C++ ...
hxxUserHeader_io the comment zone inserted at the beginning of the class's

header file

cxxUserHeader_io the comment zone inserted at the beginning of the class's
body file

Chapter 15: Adapting C++ code generation

15-50 Objecteering/C++ User Guide

ModelElement

Parameterization
The parameterization available on a model element applies to:

♦ attributes

♦ associations

♦ parameters

Class to be used in a types package
The signature of the parameterization method is as follows:

ModelElement:userFilterDirective (
label_o : inout string,
) return boolean

The ... parameter contains in C++ ...
label_o the name of the class for implementing the type

According to the tagged values present on an attribute, an association or a
parameter, the user must explicitly specify the type to be used in the type
package. The name of this type must be given to the "label_o" parameter.

Name of the parameter
The signature of the parameterization method is as follows:
ModelElement:userParameterName (

name_io : inout string,
) return boolean

The ... parameter contains in C++ ...
name_io the name of the class for implementing the type

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-51

Pre-condition
The signature of the parameterization method is as follows:
ModelElement:userGeneratePreConditions (

preCheck_io : inout string,
) return boolean

The ... parameter contains in C++ ...
preCheck_io the pre-condition code

Post-condition
The signature of the parameterization method is as follows:
ModelElement:userGeneratePostConditions (

postCheck_io : inout string,
) return boolean

The ... parameter contains in C++ ...
preCheck_io the post-condition code

Chapter 15: Adapting C++ code generation

15-52 Objecteering/C++ User Guide

Enumeration

Parameterization
After an enumeration has been generated, a parameterization method is
launched, with the C++ translations for adding a prefix to the different enumerate
values.

Prefix to be added to the enumeration defined on a class
The signature of the parameterization method is as follows:

Enumeration:userGenerateClassEnumerate (
hxxPrefix_io : inout string,
) return boolean

The ... parameter contains in C++ ...
hxxPrefix_io the value of the prefix of the enumeration values

Prefix to be added to the enumeration defined on a package
The signature of the parameterization method is as follows:
Enumeration:userGenerateSchemaEnumerate (

hxxPrefix_io : inout string,
) return boolean

The ... parameter contains in C++ ...
hxxPrefix_io the value of the prefix of the enumeration values

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-53

Enumeration values
The signature of the parameterization method is as follows:
EnumerationLitteral:userEnumerateLitteral (

litteral_io : inout string,
) return boolean

The ... parameter contains in C++ ...
litteral_io the enumerate values

Chapter 15: Adapting C++ code generation

15-54 Objecteering/C++ User Guide

Generalization

Parameterization
At the end of C++ code generation dedicated to a generalization between classes,
a parameterization method is activated, with the C++ translations for modifying the
code generated by default.

Parent class
The signature of the parameterization method is as follows:

Generalization:userClassInheritance (
className_io : inout string,
) return boolean

The ... parameter contains in C++ ...
className_io the name of the basic class for the current class

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-55

"forward" inclusions and declarations
The signature of the parameterization method is as follows:
Generalization:userForwardIncludeGeneration (

hxxInclude_io : inout string
hxxIncludeSuffix_io : inout string
cxxInclude_io : inout string
cxxIncludeSuffix_io : inout string
forward_io : inout string
forwardPrefix_io : inout string

The ... parameter contains in C++ ...
hxxInclude_io the names of the files to be included in the class's header

file

hxxIncludeSuffix_io the suffix of the files to be included in the class's header file

cxxInclude_io the names of the files to be included in the class's body file

cxxIncludeSuffix_io the suffix of the inclusions files to insert them in the class's
body file

forward_io the name of the classes to be added in the "forward"
declarations zone

forwardPrefix_io the prefix of the classes in "forward" declaration

Chapter 15: Adapting C++ code generation

15-56 Objecteering/C++ User Guide

Member

Parameterization
At the end of generation of a class's members, a parameterization method is
activated, together with the default C++ translations related to the visibility of each
class member.

Visibility of the class's attributes
The signature of the parameterization method is as follows:

Member:userAttributeVisibility (
vis_io : VisibilityMode,
) return boolean

The ... parameter contains in C++ ...
vis_io the C++ visibility of the class member

Visibility of an attribute's modification features
The signature of the parameterization method is as follows:

Member:userModifierVisibility (
vis_io : VisibilityMode,
) return boolean

The ... parameter contains in C++ ...
vis_io the C++ visibility of the modification access method

(set_<attributeName> of the current attribute)

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-57

Visibility of an attribute's accessors
The signature of the parameterization method is as follows:

Member:userAccessorVisibility (
vis_io : VisibilityMode,
) return boolean

The ... parameter contains in C++ ...
vis_io the C++ visibility of the read only access method

(set_<attributeName> of the current attribute)

Chapter 15: Adapting C++ code generation

15-58 Objecteering/C++ User Guide

Examples

Overview
This paragraph contains different examples of C++ generation parameterization at
class, attribute, association, operation and parameter levels, in a sub-UML profile,
"User".

Class: Modifying constants
This example presents the second definition of the header at the beginning of the
include file.
Class:default#Code#Cxx#User#userInitialization () return
boolean
{

InterfaceBeginningComment = "";
InterfaceBeginningComment.concat ("/*", Name, "*/");
Return:=true;

}

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-59

Class: Adding an inclusion
This example shows how to add the inclusion of a "userFile.hxx" file, according to
the presence of a specific "userDirective" tagged value.
Class:default#Code#Cxx#USer#userGeneration

(interfaceIncludes:inout string,
interfaceHeader:inout string,

inheritedClasses:inout string,
publicMembers:inout string,
protectedMember:inout string,
privateMember:inout string,
inlineMethods:inout string,
interfaceBottom:inout string,
bodyIncludes:inout string,
bodyHeader:inout string,

classBody:inout string) return boolean
{

cr : string = "
";

// Adding of an include if userDirective tagged value
{ (isTaggedValue ("userDirective")) then

interface_includes.concat (cr, "#include
<userFile.hxx>", cr);

}
return := true;

}

Chapter 15: Adapting C++ code generation

15-60 Objecteering/C++ User Guide

Attribute: Modifying the C++ name
This example shows how to modify the name of the attribute, according to the
presence of an {alias} tagged value, containing a parameter that indicates the
name that should be taken into account.
Attribute:default#Code#Cxx#User#userAtomicGeneration

(cxxName:inout string,
cxxType:inout string,

cxxExternalType:inout string,
initialValue:inout string,
cxxGet:inout string,
cxxSet:inout string,
cxxInclude:inout string) return boolean

{
aliasDir : TaggedValue;
paramDir : SetOfstring;

return = true;
// testing the existence of the alias tagged value
{ (isTaggedValue ("alias")) then

// recapturing of the tagged value and of the
parameter

aliasDir = getTaggedValue("alias");
paramDir = aliasDir.currentParameters();
{ (paramDir.card() != 1) then

// error in the usage of the tagged value
StdErr.write ("the use of alias on ", Name,

" is incorrect");
// stopping the C++ code generation
return = false;

else
// allocation of the C++ attribute name
paramDir

{
cxx_name = self;
}

}
}

}

Chapter 15: Adapting C++ code generation

Objecteering/C++ User Guide 15-61

Association: Initialization
This example shows the initialization of the association with a predefined static
object "userStaticObject", according to the existence of a {autoinit} tagged value
and the association's multiplicity.
RelationLink:default#Code#Cxx#User#userGeneration (

cxxName:inout string,
cxxType:inout string,
cxxInitialisation:inout string,
cxxIndexLine:inout string,
cxxCardLine:inout string,
cxxAppendLine:inout string,
cxxEraseLine:inout string,
cxxFullGetLine:inout string,
cxxFullSetLine:inout string) return boolean

{
{ (isTaggedValue ("autoinit")) then

{ (originMultiplicityMax() = 1) then
-- initialization with a predefined static object
cxxInitialization = "";
cxxInitialization.concat (Name, " =

&userStaticObject;");
}

}
return = true;

}

Chapter 15: Adapting C++ code generation

15-62 Objecteering/C++ User Guide

Method: Adding C++ code
This example shows the addition of C++ code at the end of a method, according
to the existence of the "addcode" characteristic on the current UML modeling
project.
Operation:default#Code#Cxx#User#userGeneration (

cxxName:inout string,
cxxReturnDecl:inout string,
parameterList:inout SetOfstring,
cxxPre:inout string,
cxxCode:inout string,
cxxPost:inout string,
cxxReturn:inout string) return boolean

{
{ (isProjectAttribute ("addcode")) then

// adds a call to a user function
cxxCode.concat ("userAddCodeFunction (); ");

}
return = true;

}

Parameter: Modifying the passing mode
This example shows how to modify a passing mode, according to a specific
{userpassing} tagged value and for a specific "usertype" type.
Parameter:default#Code#Cxx#User#userGeneration (

cxxName : inout string,
cxxRype : inout string,
initialValue : inout string,
cxxPassingPrefix : inout string,
cxxPassingSuffix : inout string,
cxxConst : inout string,
userCxx : inout string) return boolean

{
{ (isTaggedValue ("userpassing")) then

{ (cxxType = "usertype") then
//ffectation of passing mode
cxxPassingPrefix = "**&";
//eletion of the possible "const"
cxxConst = "";

}
}
return = true;

}

Chapter 16: Adapting makefile
generation

Chapter 16: Adapting makefile generation

Objecteering/C++ User Guide 16-3

Adapting the makefile

Overview
The standard generation of a makefile file is based on a document template. The
generator calls in turn each document template method, which then returns a
string. The resulting makefile is produced by concatenating these strings.
To adapt generation, there are three possible types of parameterization:

♦ changing the value of the standard module's parameters

♦ redefining certain methods of existing document templates

♦ redefining a document template
For the two latter cases, it is necessary to parameterize C++ makefile generation
in the Objecteering/UML Profile Builder module. We will give details below on the
second case, presenting the methods that can be redefined.
The services that are used for redefining modules are described in the
Objecteering/UML Profile Builder module.
The services that are used for redefining document templates are described in the
Objecteering/Document Template Editor module.

Chapter 16: Adapting makefile generation

16-4 Objecteering/C++ User Guide

Principle of the makefile generation document template
The document template is a recent and very useful technique, allowing you to
represent the structure of a target (in this case a makefile) in the form of a
hierarchy. Each type of note in a makefile is represented by an element with the
definition of the extracted information.
The Objecteering/Document Template Editor user guide explains how to handle
generation templates. The chapter on document rule parameterization describes
how to adapt a document template.

Figure 16-1. The Makefile document templates

Chapter 16: Adapting makefile generation

Objecteering/C++ User Guide 16-5

The detail of a document template
The document template defines each zone that must be located in a generated
makefile, for a given type of metaclass. Everything necessary for the creation of a
makefile in an orderly way is presented, for example compilation options, target
definition, or dependency calculations.

Figure 16-2. Detailed document template for the package

Chapter 16: Adapting makefile generation

16-6 Objecteering/C++ User Guide

Procedure to be followed to adapt makefile generation
1 - Edit a UML profiling project.
2 - Import the standard Objecteering/C++ module.
3 - Create a child profle in "default#external#Make#Cxx".
4 - In this sub-UML profile, redefine the desired methods, or create a new

document template.
5 - Create a module.
6 - Make this module specialize CxxModule, (Objecteering/C++ standard module).
7 - Reference the new UML profile from this module.

Procedure for using the parameterization in a UML modeling
project

1 - Install the new module in a UML modeling project.
2 - In this new UML modeling project, select the new module.

Chapter 16: Adapting makefile generation

Objecteering/C++ User Guide 16-7

Accessing the compilation work product

Procedure
Makefile document templates call the methods linked to the model objects, for
which a makefile is generated.
It is sometimes necessary to ask for the compilation work product, for which the
makefile is being generated. The compilation work product can be accessed
through the currentProduct variable.

Chapter 16: Adapting makefile generation

16-8 Objecteering/C++ User Guide

Compilation work product attributes

List of attributes
The information of the compilation work product dialog box is accessible in the J
language with the following attributes:

The ... attribute corresponds to ...
Name (string) the work product name

ProductPath (string) the production directory of the makefiles and the final binary
files

IntermediatePath (string) the production directory of the intermediary files

ProductType (enumerate) the type of binary to generate. It can be the MptExecutable,
MptStatccLib, MptDynamicLib or MptObject values

IsDebug (boolean) the Boolean indicating whether the compilation can be
executed in debug mode

ObjUserFlags (string) options for compiling the sources into objects

JumpThroughErrors (boolean) the Boolean indicating whether to continue running the
makefile in case of an error

UserDefVarsMpAssocRep
(SetOfMpAssocRep)

the list of variable definitions. An object with the type
MpAssocRep contains a field named Key. The field
represents the variable value that can be empty

IncPathMpStringRep
(SetOfMpStringRep)

the list of the search paths for the header files. An object
with the type MpStringRep contains a field named Value.
The field represents the path(s)

CompLibsMpStringRep
(SetOfMpStringRep)

the list of libraries to link to get the final binary. An object of
the type MpStringRep contains a field named Value. The
field represents the library

LibPathMpStringRep
(SetOfMpStringRep)

the list of paths for searching for libraries to be linked to the
final binary. An object with the type MpStringRep contains a
field named Value. The field represents the path

ExcludedClassesClass
(SetOfClass)

the list of classes to exclude from the final binary

Chapter 16: Adapting makefile generation

Objecteering/C++ User Guide 16-9

Module parameters

List of parameters
Any module which specializes the Objecteering/C++ standard module specializes
its parameters. The module can change the values of these parameters. The
parameters of the Objecteering/C++ standard module related to the makefile
generation are listed below.

The ... parameter corresponds ...
ObjecteeringLibraries to the Objecteering/UML libraries (separated by ";").

ObjecteeringIncludes to the files for searching the Objecteering/UML "include" files,
(separated by ";").

SysIncludes to the files for searching the Objecteering/UML "include" files,
(separated by ";").

DefaultCompilerIncludes to the files for searching the compiler's implicit "include" files,
(separated by ";").

CRDepend to the analyzer of dependencies between C++ sources

CppToObjFlag to the options to compile an object C++ source

ExecutableFlag to the options for producing an executable

StatLibFlag to the options for producing a static library

DynLibFlag to the options for producing a dynamic library

Compiler to the command for producing an executable

StatLibProducer to the command for producing a static library

DynLibProducer to the command for producing a dynamic library

Chapter 16: Adapting makefile generation

16-10 Objecteering/C++ User Guide

Access to a parameter
Any J method can get back a module parameter value, and, especially in the
present case, the value of a C++ generation module parameter, for which the work
product has been created.
For a parameter named "ParamName" and defined in the
default#external#code#Cxx#MyCxx profile, for the "MyCxxModule" module, the
call will have the following form:
String retVal;
boolean res = getParameterValue ("ParamName", "MyCxx",
"MyCxxModule", retVal);

At the end of this call, if "res" is "true", "retVal" will contain the module parameter’s
value. If "res" is "false", the "ParamName" parameter does not exist.

Modifying a parameter value
A module may have to modify a C++ generation module parameter value.
For a parameter named "ParamName", the call will have the following form:
module.setParameterValue("ParamName",
"default#external#Code#Cxx", "value")

Chapter 16: Adapting makefile generation

Objecteering/C++ User Guide 16-11

Packages - part 1

Introduction
The methods described below are defined in the default#external#Make#Cxx UML
profile for the metaclass NameSpace. They all return a string, have no
parameters and apply to all packages.

List of methods
The ... method offers the ... service example ...

getCppToObjOptionsPart returns the variable definition
that sums up the compilation
options

OBJ_Flags=¤(DEBUG_FLA
G) (USER_DEFVARS)
$(COMP_INC_PATHS)
$(OBJECTEERING_PATHS)
$(INC_PATHS)

getDebugPart returns the definition of the
variable containing the debug
options

(on UNIX)
DEBUG_FLAG=-g

getDefVarPart returns the definition of the
variable containing the
definitions of variables asked
by the user. Usually, this
method exploits the compilation
product ‘s
UserDefVarsMpAssocRep
attribute

(on UNIX)
USER_DEFVARS=-DVAR1 -
DVAR2=12

getIncludedLibrariesPart returns the definition of the
variable containing the library
to add to the link edition.
Typically, this method exploits
the attribute
CompLibsMpStringRep of the
compilation product

(on UNIX)
COMP_LIBS=IX11 -Ixm

getObjUserFlagsPart returns the definition of the
variable containing the user’s
compilation options. Usually,
this method uses the
compilation product’s
ObjUserFlags attribute and
allocates its value to the
OBJ_USER_FLAGS variable

Chapter 16: Adapting makefile generation

16-12 Objecteering/C++ User Guide

Packages - part 2

Introduction
The methods described below are defined in the "default#external#Make#Cxx"
UML profile for the "Package" metaclass. All return a "string" type and have no
parameters.

Chapter 16: Adapting makefile generation

Objecteering/C++ User Guide 16-13

List of methods
The ... method offers the ... service example ...

getCompilerPart returns the definition of the
variable containing the
compiler name (i.e. the
binary that produces the
objects from the C++
sources)

(on AIX)
CC=xIC

getCppToObjFlagPart returns the compilation
options for producing the
objects from the C++
sources

(on Solaris)
OBJ_FLAG=-c

getEraseTargetPart returns the cleaning target
of the files produced by the
makefile

clena :
$(REMOVE_COMMAND)
$(COMP_OBJS)
$(PRODUCT_NAME)

getHeaderPart returns the header of the
makefile file

getIntermediateFileFlagPart returns the flag to place in
front of the name of the file
resulting from a compilation,
i.e. the object file

(with Visual/C++)
INTERMEDIATE_FLAG=/o

getObjectFilesListPart returns the definition of the
variable containing the
objects that compose the
final binary

COMP_OBJS=Package1.cxx
Class1.cxx Class2.cxx
Class3.cxx with Class1,
Classe2, Class3 the
trois classes of the
package Package1

getObjsTargetsPart returns a compilation target
for the C++ package source
and for each of its classes

Chapter 17: The Objecteering/UML
library

Chapter 17: The Objecteering/UML library

Objecteering/C++ User Guide 17-3

Overview of the Objecteering/UML library

Overview
A library is supplied with Objecteering/UML in order to:

♦ provide types which are absent from the C++ language (boolean and string)

♦ facilitate the management of the sets deduced from the Objecteering/UML
model:

- classes
- relations
- "set(-) of"

Objecteering/UML generates their use automatically, according to implementation
requirements.

Example
Given a C1 class related to a C2 class, Objecteering/UML automatically
generates:

♦ a class called "list_of_C2" with the same level as C2

♦ a C1 attribute with this type

Sources
Library sources are supplied with Objecteering/UML. You thus continue to have
total control over the whole application generated by Objecteering/UML.

Primitive types
There are three primitive types:

♦ CR_boolean

♦ CR_String

♦ Set

Chapter 17: The Objecteering/UML library

17-4 Objecteering/C++ User Guide

Linking your application to the Objecteering/UML library
If you use Objecteering/UML types such as CR_boolean, you have to link your
application to the Objecteering/UML library. The name of this library is libo.a
(libo.lib on the PC platform), and it is located in the
$OBJECTEERING_PATH/gencxx/lib directory.

Chapter 17: The Objecteering/UML library

Objecteering/C++ User Guide 17-5

CR_Boolean

Description
A Boolean type variable can have TRUE or FALSE values.
Default value: FALSE.
The operators applied to this type are those of the Boole algebra. They:

♦ conform to C++ syntax

♦ are combined with the classical C++ Boolean expressions

♦ convert into integers, and can be converted conversely (cast), which allows you
to combine them in a transparent way within the C++ Boolean expressions

They can be displayed or read on C++ flows (streams), by providing or confirming
"TRUE" or "FALSE" values (upper or lower case).

Example
CR_boolean check1, check2, check3;
//their default value is FALSE
int old_style1, old_style2;
...
check1 = check1 && check2 ;
cout << check1; //prints the ASCII value TRUE or FALSE

if (check1 && old_style1 || old_style2)
//booleans may be mixed with integers in boolean expressions
{
...

}

cin >> check2;//read the ASCII value
//FALSE or TRUE (case insensitive)
if (check2 || check1)

Chapter 17: The Objecteering/UML library

17-6 Objecteering/C++ User Guide

CR_String

Description
The "CR_string" class replaces the classical and risky C "char *", as it constitutes
a specific type, that can be allocated and kept. This class has been built to
improve:

♦ efficiency (no disadvantage relative to the use of a char*)

♦ usage (allocation, comparison operators, etc...)

♦ reliability (errors checked by pre and post conditions)

♦ compatibility with the C++ language (combination and conversion with the
char*, usage with istream and ostream librairies)

A "CR_string" adapts its size according to its content. It increases in size
according to its needs, thus allowing the user not to worry about size problems.

Example 1: Traditional programming
char* my_string1 = "hello world", * my string2 ;

my_string1 [9] = 'k' ;
my_string1 [10] = ' ' ;

//It's certainly an error!
//These instructions modify the "hello world" constant

strcpy (my_string2, my_string_1) ;
// error! There is no defined room in my_string2

if (!strcmp (my_string2, "hello worker "))
{
...
}

sprintf (my_string1, "%d, %f", my_float, my_int) ;
// Gee! You mixed the types int and float!

strcat (my_string1, " I like debugging") ;
//Fine, you'll discover that there is no room for
//the added text

Chapter 17: The Objecteering/UML library

Objecteering/C++ User Guide 17-7

Example 2: Programming strings
CR_string my_string1 = "hello_world", my_string2 (10) ;
// You can give a size to my_string2

my_string1 [9] = 'k' ;
my_string1 [10] = ' ' ;
//this is OK, because my string has its own value
//which is different from the "hello_world" constant

my_string2 = my_string1 ;

if (my_string2 == "hello work ")
//you may mix char* and string types
{
...

}

my_string1 << my_int << my_float ;
//don't worry, the compiler chooses the right operators

my_string1 += " I like debugging" ;

Chapter 17: The Objecteering/UML library

17-8 Objecteering/C++ User Guide

Set of primitive objects

Overview
Primitive objects (integer, boolean, string, etc.) are always handled by value, and
not by pointer. They have a series of generic set libraries, which must be
instantiated for each new type.

General set libraries
Objecteering/UML supplies set handling libraries to avoid coding:

♦ expandable libraries

♦ lists

♦ other lists containing an order
The basic rule is that whatever the computing structure used (list, array, etc.), it
will always be considered as a discreet set of elements and will be handled in the
same way by the same operator "[]". Furthermore, the validity of the markers is
checked by the preconditions.

Chapter 17: The Objecteering/UML library

Objecteering/C++ User Guide 17-9

Sets: Structure
Sets have the following structure:

Figure 17-1. Graph representing the generalization of the general lists

Chapter 17: The Objecteering/UML library

17-10 Objecteering/C++ User Guide

Sets: Description
These structures are all generic. In the default Objecteering/UML version, sets
are instantiated on the classical types (cr_string, boolean,...).

Structure Description
array Represents a table in a general way.

Is handled by the operator [].

Cannot have direct instances since the implementation must be
determined by the programmer.

When accessing an element of the table and when the preconditions are
activated, the system checks that the markers are correct.

const_array Is a constraint table the size of which is limited by its declaration.

dyn_array Represents all the tables that have no size limit.

Cannot have any direct instance.

ext_array Increases according to the elements added to it.

list Is a traditional string list.

Owns an important number of operators :

-"<<" to insert an element

-">>" to delete an element

-"++", "--", "+", "-" to modify the current list index.

It is an expandable queue owning a first and last event.

ord_list Each new stored element is ranked according to its order. The elements in
this list must have the operators : "<", ">", "=", "<=", ">=", "!=".

Chapter 17: The Objecteering/UML library

Objecteering/C++ User Guide 17-11

Set of non-primitive objects

Overview
Non-primitive objects are objects which come from classes defined in the model,
which are always handled by reference. A library of object pointers set can thus
be used by the users of an Objecteering/UML class, each time it is necessary.
These lists are:

♦ expandable

♦ easy to use

♦ optimized.

Note: These lists have evolved since version 3.4, in order to optimize the access
time and memory usage.

Obtaining a set of objects
The C++ declaration is as follows:
CR_SET (class_name)

Objecteering/UML automatically proposes the class "set of objects of
class_name", whose name will always be "set_of_class_name".

Chapter 18: Coverage of C++ by
Objecteering/UML

Chapter 18: Coverage of C++ by Objecteering/UML

Objecteering/C++ User Guide 18-3

Objecteering/UML coverage of C++

Aim
This chapter lists all the forms of C++ language and specifies their
correspondence in Objecteering/UML.

C++ references used
Today, the C++ language version 3.0.1 is considered the language reference. It is
used as a base for the standardization proposal by the C++ANSI standardization
committee. We base our chapter on:

♦ [2nd] "The C++ programming Language", second edition (1991) by Bjarne
Stroustroup.

♦ [ARM] "The Annotated C++ Reference Manual" (1990), by Margaret A.Ellis and
Bjarne Stroustrup.

♦ [Stroustrup, 1994] "The Design and Evolution of C++" (1994), by Bjarne
Stroustrup.

Parts generated by Objecteering/UML
The C++ code generated by Objecteering/UML is divided into several sections:

♦ the declarative section (declaration of the classes, methods, attributes, etc.)

♦ specific mechanisms of the Objecteering/UML concepts (managing pre and
post conditions, managing associations, etc.).

♦ the method implementation section written out by the user (texts with the "C++"
types of local methods).

This chapter is exclusively dedicated to the C++ declarative section.

Chapter 18: Coverage of C++ by Objecteering/UML

18-4 Objecteering/C++ User Guide

Adapting C++ generation
Default C++ code generation can be adapted by the user in several ways:

♦ tagged values (example :"@virtual")

♦ typed texts

♦ the "J" parameterization of code generation
This chapter is dedicated to the use of the first two modes, with "J"
parameterization remaining available for:

♦ obtaining unexpected generation cases

♦ making the generation of cases which systematically concern the application

Methodology for defining the C++ coverage
It is not possible to determine, in an exhaustive way, the coverage of all the cases
which are syntactically possible in C++. The chosen approach is, therefore, to
study the different typical cases that put forward the concepts of the C++
language. The same approach has been used in [ARM] and [2nd].

Chapter 18: Coverage of C++ by Objecteering/UML

Objecteering/C++ User Guide 18-5

Basic types

The integer type

C++ language Objecteering/UML
int integer

long int @long integer

short int @short integer

unsigned int @unsigned integer

unsigned long int @unsigned @long integer

unsigned short int @unsigned @long integer

The float type

C++ language Objecteering/UML
float real

double @long real

The character type

C++ language Objecteering/UML
char char

unsigned char @unsigned char

Chapter 18: Coverage of C++ by Objecteering/UML

18-6 Objecteering/C++ User Guide

Built types

The "struct" type
The "struct" declaration is not supported by the Objecteering/UML method. In the
object context, the class replaces "struct". A typed text is provided for this case.

C++ language Objecteering/UML
struct ... Text typed "C++InterfaceHeader" on class or package

The "union" type
The declaration of "union" is not supported by the Objecteering/UML method. In
the object context, the classes and generalization replace this construction. Only
the "low level" needs still require "union". A typed text is provided for this case.

C++ language Objecteering/UML
union ... Text typed "C++InterfaceHeader" on class or package

The "class" type
The declaration of a named class is part of the Objecteering/UML method.

C++ language Objecteering/UML
class identifier class identifier

Templates
The Template parameter and the {bind} value is used to define the generic class
or instantiate them.

Chapter 18: Coverage of C++ by Objecteering/UML

Objecteering/C++ User Guide 18-7

The "enum" type
The declaration of a simple enumerate is part of the Objecteering/UML method.

C++ language Objecteering/UML
enum Color { Red, Green }; enumerate.

The "typedef" type
The C++ language is used to redefine a type giving it another name. Several
cases arise.
The definition of a type with C++ qualifications. In Objecteering/UML, this means
making an Objecteering/UML type correspond to a C++ type. The type
declaration is used to carry out this case.

C++ language Objecteering/UML
typedef char* const
const_char_ptr;

type declaration with "C++" typed text containing the
string "typedef char* const const_char_ptr;"

Chapter 18: Coverage of C++ by Objecteering/UML

18-8 Objecteering/C++ User Guide

Nested declarations

Overview
The C++ language is used to declare a new type while declaring a class or
structure. A nested type can only be accessed by prefixing its name with the name
of the class or the nested structure.

The "struct", "union" and "class" types
The nested declarations of a class, structure or union are not part of the
Objecteering/UML method.
Typed texts are provided for this case.

C++ language Objecteering/UML
class C{

 class Internal {...

C class with the text typed C++PublicMember (or with
C++PrivateMember)

Chapter 18: Coverage of C++ by Objecteering/UML

Objecteering/C++ User Guide 18-9

The "enum" type
The enumerate types are generated in "public" visibility within the C++ class.

C++ language Objecteering/UML
class C{

 public: enum Color { Red };

Enumerate on a C class annotated
@embeddedcontext

The C++ language can declare an enumeration in the protected or private part of
the class. A typed text is provided for this case.

C++ language Objecteering/UML
class C{

 protected

 protected:

 enum Color { Red };

C class with the text typed C++PublicMember (or with
C++PrivateMember or C++ProtectedMember)

Chapter 18: Coverage of C++ by Objecteering/UML

18-10 Objecteering/C++ User Guide

Features

Overview
The Objecteering/UML method does not know the function concept. There are
several possibilities to provide for this case:

♦ typed text use

♦ usage of the class methods

♦ definition of an adapted tagged value, and parameterization of the generation.

♦ parameterizing the generation for the cases of function use

Typed text

C++ language Objecteering/UML
int f (); "int f ();"in a text typed C++InterfaceHeader or

C++BodyHeader of package or class

Class methods
In C++, "static" methods are implemented as C functions. Objecteering/UML
class methods are provided for certain functional requirements.

C++ language Objecteering/UML
class C_Interface

{ static f (); }

class C_Interface with class method P()

Chapter 18: Coverage of C++ by Objecteering/UML

Objecteering/C++ User Guide 18-11

Defining a tagged value
It is possible to parameterize C++ code generation, by defining a new "@function"
tagged value, used to annotate a class method, in order to generate a function.
This function can simply be an "inline" function, which encapsulates the call to the
class method. Its role is to define a functional interface.

C++ language Objecteering/UML
f (); Example class annotated @function

In the current version of Objecteering/UML, the @function tagged value is not
implemented. The parameterization of code generation and the J rules must be
used to run this function.

Chapter 18: Coverage of C++ by Objecteering/UML

18-12 Objecteering/C++ User Guide

Friendly operators

Using friendly operators
The operator here is a C++ "function", but with much richer semantics.
It is important to note that the operators' declaration (the first argument being a
class type or a basic type) is a much used mechanism by C++. It allows
operations to be extended or enriched on a class, which has already been
defined. [Stroustrup, 1994]
The most widespread example is the “<<” operator on the osteam class:

ostream& operator << (ostream&, new_type);

This operator allows you to define how a new class is displayed on cost.

Definition in Objecteering/UML
We know how to represent most C++ "member" operators in Objecteering/UML,
but this is not the case for "friendly" operators. Solutions for their representation
are as follows:

♦ Use a typed text to declare an operator

♦ Use the parameterization of code generation when operators are
systematically generated

♦ Define an adapted tagged value and generation

Expression tagged value

C++ language Objecteering/UML
ostream& operator <<
(ostream&, Example);

text typed "C++InterfaceHeader" on a class containing the
string "ostream& operator<<(ostream&, Example);"

ostream& operator <<
(ostream&, Example);

text typed "C++PublicMember"or"C++ProtectedMember" or
"C++PrivateMember"on a class containing the string"friend
ostream& operator<< (ostream&, Example);"

Chapter 18: Coverage of C++ by Objecteering/UML

Objecteering/C++ User Guide 18-13

Specific parameterization
It is possible to parameterize code generation, to allow the annotation of a class
method, in order to generate an operator. This operator can simply be an "inline"
operator, which encapsulates the call to the class method.

C++ language Objecteering/UML
ostream& operator <<
(ostream&, const &Example);

class method "display", annotated @operator(“<<”)

Note: In the current version of Objecteering/UML, the @operator tagged value is
not implemented. The parameterization of code generation and the J rules
must be used to run this function.

Chapter 18: Coverage of C++ by Objecteering/UML

18-14 Objecteering/C++ User Guide

Generalization between classes

Generalization
The Objecteering/UML method, like the C++ language, allows the definition of
generalization between classes, whether simple or multiple.

Virtual generalization
The @virtual tagged value is used to specify virtual generalization in the
Objecteering/UML model.

C++ language Objecteering/UML
Derive: class public virtual Base {/*...*/} generalization annotated @virtual

Generalization with public or protected visibility
The C++ language is used to specialize another class in a private or protected
way. The tagged values on the generalization allow this visibility to be expressed.

C++ language Objecteering/UML
Derive: class private Base {/*...*/} generalization annotated @private

Index

"class" type 18-6, 18-8
"enum" type 18-7, 18-9
"struct" type 18-6, 18-8
"typedef" type 18-7
"union" type 18-6, 18-8
{&} tagged value 2-10, 10-4, 10-11,

12-8, 12-16
{*} tagged value 2-10, 10-4, 10-11,

12-8, 12-16
{Abstract} tagged value 12-5
{access} tagged value 10-4, 10-11,

11-9
{alias} tagged value 15-60
{array} tagged value 10-4, 10-12, 11-

9, 12-8, 12-16
{array} tagged values 1-6
{bind} tagged value 9-11, 10-4, 10-

15, 11-10, 12-8, 12-17, 13-9, 13-13,
18-6

{C++DLL } tagged value 9-3
{C++DLL} tagged value 9-14
{C++Name} tagged value 2-5, 2-6,

2-8, 2-10, 2-11, 2-12, 8-4, 8-7, 9-3,
9-14, 10-16, 11-12, 12-5, 12-8, 12-
10, 12-17

{C++NoNameSpace} tagged value
2-5, 8-4, 8-7

{C++Root} tagged value 2-5, 8-4, 8-
7

{Class} tagged value 12-5
{const} tagged value 2-10, 10-4, 10-

12, 10-15, 12-8, 12-17
{create} tagged value 10-4, 10-8, 10-

12, 11-12
{extern} tagged value 2-5, 2-6, 8-4,

8-6, 9-3, 9-13, 15-21
{fullaccess} tagged value 10-4, 10-

13, 11-10

{in} tagged value 12-5
{inline} tagged value 2-8, 12-5, 12-

10
{instanceHandling} tagged value 11-

12
{Jeval} tagged value 14-8, 14-9
{long} tagged value 10-4, 10-13, 12-

8, 12-18, 13-5
{MFCDynamicMacro } tagged value

9-3
{MFCDynamicMacro} tagged value

9-13
{MFCInclude} tagged value 8-4, 8-7
{mutable} tagged value 10-4, 10-16,

11-3, 11-13
{nocode } tagged value 9-3
{nocode} tagged value 2-5, 2-6, 2-

10, 2-11, 8-4, 8-6, 9-14, 10-4, 10-16,
11-11, 12-5, 12-10

{noCodeForAll} tagged value 8-7, 9-
14

{noconst} tagged value 10-4, 11-12,
12-5, 12-8, 12-10, 12-18

{noinclude } tagged value 9-3
{noinclude} tagged value 8-4, 8-6, 9-

13
{noinit} tagged value 11-10
{noInline} tagged value 10-4, 10-16,

11-3, 11-13
{noinvariant} tagged value 12-5, 12-

11
{own} tagged value 2-10, 2-11, 10-4,

10-16, 11-13
{private} tagged value 9-6, 13-10
{protected} tagged value 9-6, 13-10
{public} tagged value 2-10, 2-11, 10-

4, 10-7, 10-14, 11-11

{short} tagged value 10-4, 10-13, 12-
8, 12-18, 13-5

{structure } tagged value 9-3
{structure} tagged value 9-13
{type(...)} tagged value 2-10, 2-11, 2-

12
{type} tagged value 10-4, 10-15, 11-

12, 12-8, 12-19, 14-9
{unsigned} tagged value 10-4, 10-

14, 12-8, 12-19, 13-5
{userpassing} tagged value 15-62
{val} tagged value 12-8, 12-19
{virtual} tagged value 2-8, 5-5, 9-5,

11-11, 12-5, 12-11, 13-10
{virtual} tagged values 1-6
<$OBJING_PATH> 3-3
<<create>> stereotype 2-8
<<destroy>> stereotype 2-8
<<throw>> stereotype 12-6
Access methods 11-5

Complete access methods 11-6
Full access methods 10-3, 10-9
Modification methods 10-3, 10-9,

11-6
Read methods 10-3, 10-9, 11-6

Accessing a parameter 16-10
Adapting C++ generation 18-4

J parameterization 18-4
Tagged values 18-4
Typed texts 18-4

Adapting makefile generation
Procedure 16-6

Adapting Objecteering C++ code
generation
Adding new commands 15-3
Adding new project parameters

15-3

Defining new C++ specific notes
15-3

Defining the basic types project
15-3

Specializing generation behavior
15-3

Adapting the makefile
Changing standard module

parameter values 16-3
Redefining a document template

16-3
Redefining existing document

template methods 16-3
Adding a C++ note to an operation

5-7
Analyzing compilation 4-27
Associated

Generated zones of code 15-36
Association

Access methods 11-6
Definition 11-3
Generation 11-5
Initialization 15-61
Multiplicity 11-5
Visibility 11-7

AssociationEnd metaclass 15-30
Associations 1-9

"forward" inclusions and
declarations 15-32

Generated zones of code 15-30
Instance management 15-35
Name of access methods 15-34
Parameter types 15-31
Parameterizing 15-30
Producing code 15-33
Redefining the CR_Set macro 15-

32
Return parameter types 15-31

Attached tools
Configuration 7-16

Attribute
Base type 10-3
Definition 10-3
Enumerate 10-3
Generation 10-3
Initialization 10-8
Modifying the C++ name 15-60
Primitive class 10-3

Attributes 1-9
"forward" inclusions and

declarations 15-28
Generated zones of code for a list

type attribute 15-26
Generated zones of code for a

simple attribute 15-25
Generated zones of code for an

attribute annotated {array} 15-27
Name of the access methods 15-

29
Name of the method used to obtain

multiplicity 15-29
Parameterizing 15-24
Producing code 15-29
Redefining the CR_Set macro 15-

28
Basic types 13-3

Boolean 13-4
Char 13-4
Character 18-5
Float 18-5
Integer 13-4, 18-5
Real 13-4
String 13-4

Body class 3-15
Body file 8-5, 9-3, 9-4, 10-7, 15-17,

15-19, 15-49

Body files 1-7
Boolean conditions 9-7
Built types

"class" type 18-6
"enum" type 18-7
"struct" type 18-6
"typedef" type 18-7
"union" type 18-6

C++ 12-12
C++ code generated by

Objecteering/UML 18-3
Method implementation 18-3
Specific Objecteering/UML concepts

18-3
The declarative section 18-3

C++ code generation 4-3, 4-21
C++ code generation and model

consistency checks 4-21
C++ namespace 8-3
C++ note 2-8, 12-13, 13-6

C++PublicMember 9-17
C++ note contents 5-9
C++ note types 5-9
C++ notes 4-25, 4-28, 5-3, 8-5, 9-4,

9-5, 10-3, 10-5, 11-4, 15-3
C++ 5-10
C++BodyHeader 9-15
C++ConstructorTransmission 5-10
C++Inheritance 9-16
C++InterfaceHeader 9-15
C++PrivateMember 9-16
C++ProtectedMember 9-17
C++Returned 5-10
MFCMessageMacro 9-18

C++ properties
Const attribute 5-4
Inline method 5-4

Virtual method 5-4
C++ references used 18-3
C++ sources 4-3
C++ stereotypes 8-5
C++ syntax 4-24
C++ tagged value

The {bind} tagged value 13-9
C++ tagged value types 5-6
C++ tagged values

The {nocode} tagged value 8-6
The {noCodeForAll} tagged value

8-7
C++ tagged values 5-3, 9-3, 10-4,

11-3
The {C++Name} tagged value 10-

16
The {mutable} tagged value 10-16,

11-13
The {noInline} tagged value 10-16
The {own} tagged value 10-16

C++ UML profile 16-6, 16-11, 16-12
C++AccessDecl note 10-5, 10-18,

11-4
C++AccessDef note 10-5, 10-18, 11-

4
C++BodyHeader 2-6
C++BodyHeader note 2-5, 8-5, 9-4,

9-5
C++ConstructorTransmission 12-12
C++ConstructorTransmission note

12-6, 12-12
C++DefaultValue note 12-9, 12-20
C++Inheritance note 9-4
C++InterfaceHeader 2-6
C++InterfaceHeader note 2-5, 8-5,

9-4, 9-5
C++Invariant 2-6
C++Invariant constraint 2-5

C++Invariant stereotype 8-5
C++ParamExpr note 12-9, 12-21
C++PostCondition 12-14
C++PostCondition note 2-8
C++PreCondition 12-14
C++PreCondition note 2-8
C++PrivateMember note 9-4
C++ProtectedMember note 9-4
C++PublicMember note 9-4
C++Returned 12-12
C++Returned note 2-8, 12-6, 12-13
C++TypeExpr note 2-10, 2-12, 10-5,

10-17, 12-9, 12-20, 13-12
C++Value note 10-5, 10-8, 10-17,

13-12
Calling commands

Syntax 6-4
Class

Adding an inclusion 15-59
Declaration 15-23
Encapsulation 15-23
forward inclusions and declarations

15-22
Generated zones of code 15-20
Initialization before generating code

15-21
Invariant 15-23
Modifying constants 15-58
Parameterizing 15-19
Producing code 15-22
Redefining the CR_Set macro 15-

21
void start method 9-9

Class attribute 10-7
Class generalization 9-3
Class invariant 9-3

Controlling an invariant clause 9-7

Class invariants 12-14
Class methods 18-10
Class template

Instantiation 9-12
Classes 1-7
Clauses 9-7
Code zones 4-25, 4-28
Code/model consistency 1-3
Command line mode 4-21
Comparison window 4-26
Compilation analysis 3-26
Compilation errors 1-3
Compilation results

Error messages 4-28
Information messages 4-28
Warning messages 4-28

Compilation work product 1-5, 1-8,
3-16, 3-20, 3-25, 4-3, 4-19, 4-29
Accessing the compilation work

product 16-7
Attributes 16-8
Context menu 4-18, 4-27
Creating a compilation work product

3-16
Definition 4-4
Detailed description 4-8
Dialog box 4-19
Entering a compilation work product

3-18
Compilation work product dialog box

Definition tab 4-10
Excluded classes tab 4-15
Header tab 4-11
Libraries to be linked tab 4-12
Properties tab 4-8

Compilation work products 7-4, 7-5
Compiling the generated file 3-25

Configuring the Objecteering/C++
module 7-3

Consistency checks 4-21
Constants

AccessMethodPrefix 15-8
AppendMethodPrefix 15-8
AttributeDeclarationsComment 15-

11
AttributePrefix 15-8
BodyBeginningComment 15-10,

15-11
BodyEndComment 15-10, 15-11
CardinalMethodPrefix 15-8
ClassInvariantCheckMethodName

15-7
ConstantDefinitionsComment 15-

10, 15-12
CxxAtt_ConstReturnString 15-15
CxxAtt_RefReturnString 15-15
CxxBoolean 15-9
CxxChar 15-9
CxxDCR_ConstMethodString 15-

15
CxxDCR_IndexMethodString 15-

15
CxxFileSuffix 15-9
CxxInteger 15-9
CxxObj_CR_Check 15-13
CxxObj_CR_Endif 15-13
CxxObj_CR_Trace 15-13
CxxReal 15-9
CxxString 15-9
EnumerateDeclarationsComment

15-10, 15-12
EraseMethodPrefix 15-8
ForwardClassDeclarationsComment

15-10
FreeCodeComment 15-10, 15-12

FullAccessMethodPrefix 15-8
FullSetMethodPrefix 15-8
HxxFileSuffix 15-9
indentBeginEnd 15-14
indentBodyMember 15-14
indentClass 15-14
indentCode 15-14
indentHeaderMember 15-14
indentPreprocessor 15-14
indentVisibility 15-14
InheritedSchemaIncludesComment

15-12
InterfaceBeginningComment 15-

10, 15-11
InterfaceEndComment 15-10, 15-

11
InvariantDeclarationsComment

15-11
InvariantDefinitionComment 15-12
InvariantDefinitionsComment 15-

11
MethodComment 15-11
MethodDeclarationsComment 15-

11
RelationshipDeclarationsComment

15-11
SchemaInvariantCheckMethodNam

e 15-7
SetInstantiationsComment 15-10
SetMethodPrefix 15-8
TypeDeclarationsComment 15-10,

15-12
Constraints 5-3, 15-5

C++Invariant 2-6
C++Invariant constraint 2-5
C++PostCondition 12-15
C++PreCondition 12-14

Constructors 10-8

Context menu 4-16
Context menu commands 4-17, 4-

18, 4-29
Context menu functions

Attribute management 4-19
File related services 4-19
Propagation action 4-19

Correcting errors 4-28
CR_Boolean

Description 17-5
Example 17-5

CR_string
Description 17-6
Example 17-6

Creating a compilation work product
3-16

Creating a generation work product
3-6

Creating a tagged value 5-4
Creating a UML modeling project 3-4
Creating an invariant clause 9-8
Creating constraints 5-10
CRType

Name 15-48
Parameterization 15-48
Prefix 15-48

currentProduct variable 16-7
Default model types 2-4
DefaultTranslations

FiniteAssociation 14-15
FiniteAttribute 14-15
FiniteIOParameter 14-15
FiniteReturnParameter 14-15
MandatoryMultipleAssociation 14-

15
MandatorySimpleAssociation 14-

15

MultipleAttribute 14-15
MultipleIOParameter 14-15
MultipleReturnParameter 14-15
OptionalMultipleAssociation 14-15
OptionalSimpleAssociation 14-15
SimpleAttribute 14-15
SimpleIOParameter 14-15
SimpleReturnParameter 14-15

Defining a tagged value 18-11
DescribedCRElement

Class to be used 15-50
Name of the parameter 15-50
Parameterization 15-50

DescribedCRElement
Post-condition 15-51
Pre-condition 15-51

Design patterns 1-9
Development steps

Annotating model elements 1-6
Creating a UML model 1-6

Different kinds of member functions
12-3

Directories
Configuration 7-9

Document template 16-3
Document templates

Details 16-5
Dynamic dependent attribute 10-8
Dynamic library 4-4
Encapsulation 10-9
Enterprise edition 1-9, 6-3, 15-3
Enumerate 13-3

Definition 13-7
Enumeration

Parameterization 15-52
Prefix 15-52

Values 15-53
Enumeration type dialog box 13-8
Error messages 12-20
Error messages in the compiler 1-8
Explorer 1-10
External edition

Configuration 7-5
External editor 4-22, 4-24, 4-25, 5-7
Faulty invariant clauses 9-8
Friendly operators

Definition in Objecteering/UML 18-
12

Specific parameterization 18-13
Using friendly operators 18-12

General set libraries 17-8
Generalization 9-4, 9-5, 13-3

"forward" inclusions and
declarations 15-55

Definition 13-9
Parameterization 15-54
Parent class 15-54
Public or protected visibility 18-14

Generated code header 3-13
Generating C++ code 3-9
Generating more than one executable

from your model 4-3
Generating the makefile 4-21
Generation attributes 4-3
Generation constant

J methods 15-6
Generation options

Configuration 7-6
Generation work product 1-5, 1-7, 3-

6, 4-3, 4-19, 4-21, 4-25, 4-29
Context menu 4-16, 4-17
Definition 4-3
Dialog box 4-19

Generation work product dialog box
4-5

Generation work products 7-4, 7-5
Grouping compilation attributes 4-4
Header

Method 15-49
Parameterization 15-49

Header file 8-5, 9-4, 15-49
Header files 1-7, 15-58
Importing the contents of the C++ first

steps project 3-4
Initializing the First Steps UML

modeling project 3-4
Installing the Objecteering/C++

module 2-3
Instance

Definition 13-11
Instance handling

Declaration 11-8
Definition 11-8
Generation 11-8

Interface file 9-3
Invariant clause controls 9-7
Invariant clauses

Creating an invariant clause 9-8
Faulty invariant clauses 9-8

Invariant rules 8-3
J language 15-3, 16-8
J methods 1-9, 15-3, 15-16, 15-24,

15-30, 15-45, 16-10
Libraries

Configuration 7-13
Linking an application to the

Objecteering/UML library 17-4
Main class 9-3
Maintaining code/model consistency

4-3

Makefile 3-20, 3-22, 3-24, 4-3, 4-4,
4-21, 4-29
Visualizing 3-22

Makefile generation document
template
Main principles 16-4

Makefiles 1-3, 1-8, 3-19
Managing a work product's attributes

4-19
Markers 4-24, 4-25
Member

Parameterization 15-56
Visibility of an attribute's accessors.

15-57
Visibility of an attribute's

modification features. 15-56
Visibility of the attributes 15-56

Method
Adding C++ code 15-62

MFC macro generation 9-3
MFC naming rules 10-9, 11-6
MFC specific macros 9-13
MFCMessageMacro note 9-4
MFCs 8-7, 9-3, 9-13, 11-6

Configuration 7-17
Microsoft foundation classes 1-9
Model dialog boxes 5-7
Model root 3-5
Modifying a parameter value 16-10
Modifying the configuration of module

parameters 2-3
Module configuration groups

Attached tools 7-4
Directories 7-4
External edition 7-4
Generation options 7-4
Libraries 7-4

MFC 7-4
Production options 7-4
Suffixes 7-4
UML profiles 7-4
Visibility declarations for attributes

and associations 7-4
Visibility for accessors 7-4

Module parameters 16-9
Accessing parameters 16-10
Modifying a parameter value 16-

10
NameSpace metaclass 16-11
Naming and filtering constants

Accessor prefixes 15-8
Basic types name 15-9
Comment zones 15-10
Invariant methods 15-7
Line indents 15-14
Passing modes for operation

parameters 15-15
Pre-compilation tagged values 15-

13
Suffix files 15-9

Naming rules 14-14
Non-primitive objects 17-11

Obtaining a set of objects 17-11
Notes 1-3, 1-4, 1-6, 1-10, 5-7, 15-5

C++ 4-22
C++ note 2-8, 12-6, 12-13, 13-6
C++AccessDecl note 10-18, 11-4
C++AccessDef note 10-18, 11-4
C++BodyHeader 1-6, 2-5, 2-6, 4-

22
C++BodyHeader note 8-5, 9-4, 9-

5
C++ConstructorTransmission 4-22
C++ConstructorTransmission note

12-6, 12-12

C++DefaultValue note 12-9, 12-20
C++Inheritance note 9-4
C++InterfaceHeader 2-5, 4-22
C++InterfaceHeader note 8-5, 9-4,

9-5
C++ParamExpr note 12-7, 12-9,

12-21
C++PostCondition note 2-8
C++PreCondition note 2-8
C++PrivateMember 4-22
C++PrivateMember note 9-4
C++ProtectedMember 4-22
C++PublicMember 4-22
C++PublicMember note 9-4
C++Returned 4-22
C++Returned note 2-8, 12-6, 12-

13
C++TypeExpr note 2-10, 2-12, 10-

5, 10-17, 12-7, 12-9, 12-20, 13-12
C++Value 10-17
C++Value note 10-5, 10-8, 13-12
Entry 5-7
MFCMessageMacro note 9-4

Notes associated with a translation
class 14-11

Notes for a translation class 14-13
Notes on a parameter 12-9
Notes on an instance 13-12
Notes on an operation 12-6
Object instance 13-3
Objecteering/Document Template

Editor 16-3, 16-4
Objecteering/Introduction 3-3, 15-5
Objecteering/UML console 12-20
Objecteering/UML explorer 3-9
Objecteering/UML Modeler 1-10
Objecteering/UML Profile Builder 1-

9, 15-3, 16-3

Objecteering/UML repository 1-7, 1-
8, 4-25

ObjecteeringTypes UML modeling
project 9-9

Objingcl 6-3
Obtaining a binary from a model 4-3
Operation

Declaration 12-5
Generation 12-12

Operation implementation 5-10
Operations

"forward" inclusions and
declarations 15-40

Adding a prefix to an operation's
declaration 15-41

Constructor 15-39
Destroyer 15-39
Free text zones to be inserted 15-

42
Generated zones of code 15-38
Parameterizing 15-37
Producing code 15-41
Return parameter 15-40
Trace end message 15-44
Trace starting message 15-43
Virtual destructor 15-44

Organizing classes 4-3
Organizing your model 4-21
Package

C++ constraint stereotypes 8-5
Initialization before generating code

15-18
Parameterizing 15-17
Producing code 15-18
Zones of generated code 15-17

Package metaclass 16-12
Packages 1-7

C++ notes 8-5
C++ tagged values 8-4
Correspondence 8-3
Definition 8-3
Generalization and use 8-4
Initializing instances 8-4
Invariant 8-3
Methods 16-11, 16-13

Parameter
"forward" inclusions and

declarations 15-47
Default generation 12-8
Definition 12-7
Generated zones of code 15-45
Modifying the passing mode 15-62
Passing mode 12-7
Re-defining the CR_Set macro 15-

46
Parameter implementation notions

Passing values 12-7
Pointers 12-7
References 12-7

Parameter types
Basic types 12-7
Classes 12-7
Enumerates 12-7

Parameterization
Mechanism 15-16
Return value 15-16

Parameterizing basic types 1-9
Parameterizing by creating a type

project 1-9
Parameterizing the Objecteering/C++

module 1-9
Parameterizing through tagged values

1-9

Parameterizing using
Objecteering/UML Profile Builder
1-9

Parameters 1-9
Parameterization 15-45

Post-conditions 5-3, 5-10, 12-11
Pre-conditions 5-3, 5-10, 12-11
Primitive objects 17-8

boolean 17-8
integer 17-8
string 17-8

Primitive types
CR_boolean 17-3
CR_String 17-3
Set 17-3

Private and protected generalization
9-6

Production options
Configuration 7-14

Propagation 4-19, 4-21, 4-25
Properties editor 3-7, 5-4, 9-5, 9-8

Adding notes 1-10
Adding stereotypes 1-10
Adding tagged values 1-10
C++ tab on a class 2-6
C++ tab on a package 2-5
C++ tab on a parameter 2-12
C++ tab on an association 2-11
C++ tab on an attribute 2-9
C++ tab on an operation 2-7
Overview 1-10
Tabs 1-10

Read only mode 4-29
Retrieving edited code 4-24
Running compilation 4-4
S package 8-3, 8-6

Selecting the C++ default model type
2-4

Selecting the Objecteering/C++
module 2-3, 3-4

Sets
Primitive objects 17-9

Standard template library 1-9
Static attributes 10-7
Static library 4-4
Static member variable 11-5
Stereotypes 1-10, 5-3

<<create>> stereotype 2-8
<<destroy>> stereotype 2-8
<<throw>> stereotype 12-6
C++Invariant stereotype 8-5

Suffixes
Configuration 7-11

Tagged values 1-3, 1-4, 1-6, 1-9, 1-
10, 5-4, 13-5, 15-5
{&} tagged value 2-10, 10-3, 10-

11, 12-8, 12-16
{*} tagged value 2-10, 10-3, 10-11,

12-8, 12-16
{access} tagged value 10-3, 10-

11, 11-9, 14-11
{alias} tagged value 15-60
{arr ay} tagged value 10-12
{array} tagged value 1-6, 10-3, 11-

3, 11-9, 12-8, 12-16
{autoinit} tagged value 15-61
{bind} tagged value 9-11, 10-3,

10-15, 11-10, 12-8, 12-17, 13-9,
13-13, 18-6

{C++DLL} tagged value 9-3, 9-14
{C++Name} tagged value 2-5, 2-6,

2-8, 2-10, 2-11, 2-12, 8-4, 8-7, 9-
3, 9-14, 11-3, 11-12, 12-5, 12-8,
12-10, 12-17

{C++NoNameSpace} tagged value
2-5, 8-4, 8-7

{C++Root} tagged value 2-5, 8-4,
8-7

{const} tagged value 2-10, 10-3,
10-12, 12-8, 12-17

{create} tagged value 10-3, 10-8,
10-12, 11-3, 11-12

{extern} tagged value 2-5, 2-6, 8-
4, 8-6, 9-3, 9-13

{fullaccess} tagged value 10-3,
10-13, 11-3, 11-10, 14-11

{fullmodify} tagged value 14-11
{generic} tagged value 11-3
{inline} tagged value 2-8, 12-5, 12-

10
{instanceHandling} tagged value

11-3, 11-8, 11-12
{Jeval} tagged value 14-8, 14-9
{long} tagged value 10-3, 10-13,

12-8, 12-18, 13-5
{MFCDynamicMacro} tagged value

9-3, 9-13
{MFCInclude} tagged value 8-4, 8-

7
{modify} tagged value 14-11
{nocode} tagged value 2-5, 2-6, 2-

10, 2-11, 8-4, 9-3, 9-14, 10-3, 10-
16, 11-3, 11-11, 12-5, 12-10

{noCodeForAll} tagged value 9-14
{noconst} tagged value 10-3, 10-

15, 11-3, 11-12, 12-5, 12-8, 12-
10, 12-18

{noinclude} tagged value 8-4, 8-6,
9-3, 9-13

{noinit} tagged value 11-3, 11-10
{noInline} tagged value 10-4, 11-3
{noinvariant} tagged value 12-5,

12-11

{own} tagged value 2-10, 2-11, 11-
3

{private} tagged value 9-6, 13-10
{protected} tagged value 9-6, 13-

10
{public} tagged value 2-10, 2-11,

10-3, 10-7, 10-14, 11-3, 11-11
{short} tagged value 10-3, 10-13,

12-8, 12-18, 13-5
{structure} tagged value 9-3, 9-13
{type(...)} tagged value 2-10, 2-11,

2-12
{type} tagged value 10-3, 10-15,

11-3, 11-12, 12-8, 12-19, 14-9
{unsigned} tagged value 10-3, 10-

14, 12-8, 12-19, 13-5
{userpassing} tagged value 15-62
{val} tagged value 12-8, 12-19
{virtual} tagged value 1-6, 2-8, 5-5,

9-5, 11-3, 11-11, 12-5, 12-11, 13-
10

The {noInline} tagged value 11-13
The {own} tagged value 11-13

Tagged values on a generalization
13-9

Tagged values on a parameter 12-8
Tagged values on an instance 13-13
Tagged values on an operation 12-5
Template class

Implementation 9-11
Template class 9-3, 9-11

Declaration 9-11
The C++ UML profile 15-4
The properties editor for C++ 2-4
Translation class naming rules 14-

10
Type

Correspondence 13-4

Typed text 18-10
UML model types 2-4
UML profiles 4-3, 15-3

Configuration 7-12
The C++ UML profile 15-4

Use links on an operation 12-6
Using the Objecteering/C++ module

Installing the module 2-3
Selecting the module 2-3

Virtual generalization 9-5, 18-14

Visibility for accessors
Configuration 7-19

Visibility for attributes and associations
Configuration 7-18

Visibility of access methods 10-10
Visualizing the body of the generated

code 3-14
Visualizing the header of the

generated code 3-11
Visualizing the makefile 4-29

