
ORBacus
For C++ and Java

Version 4.0.4

2

Copyright (c) 2000 Object Oriented Concepts, Inc. All Rights Reserved.

“Object Oriented Concepts”, “ORBacus” and “JThreads/C++” are trademarks or regis-
tered trademarks of Object Oriented Concepts, Inc.

“OMG”, “CORBA”, and “Object Request Broker” are trademarks or registered trade-
marks of the Object Management Group.

“Java” is a trademark of Sun Microsystems, Inc.

“Netscape” is a registered trademark of Netscape Communications Corporation.

Other names, products, and services may be the trademarks or registered trademarks of
their respective holders.
ORBacus

CHAPTER 1 Introduction 15

What is ORBacus? 15
About this Document 16
Getting Help 16

CHAPTER 2 Getting Started 17

The “Hello World” Application 17
The IDL Code 18
Implementing the Example in C++ 18

Implementing the Server 18
Implementing the Client 22
Compiling and Linking 23
Running the Application 24

Implementing the Example in Java 24
Implementing the Server 24
Implementing the Client 27
Compiling 28
Running the Application 29

Summary 29
Where to go from here 30

CHAPTER 3 The ORBacus Code Generators 31

Overview 31
Synopsis 31
Description 32
Options for idl 32
Options for jidl 36
Options for hidl 37
Options for ridl 38
Options for irgen 39
The IDL-to-C++ Translator and the Interface Repository 40
Include Statements 40
Documenting IDL Files 41
Using javadoc 44
ORBacus 3

4

CHAPTER 4 ORB and Object Adapter Initialization 47

ORB Initialization 47
Initializing the C++ ORB 47
Initializing the Java ORB for Applications 47
Initializing the Java ORB in JDK 1.2/1.3 48

Object Adapter Initialization 48
Initialization of the Object Adapter 48

Configuring the ORB and Object Adapter 49
ORB Properties 49
OA Properties 53
IIOP Properties 55
Command-line Options 58
Using a Configuration File 59
Using the Windows NT Registry 60
Defining Properties 61
Precedence of Properties 63
Advanced Property Usage 63

Using POA Managers 65
Creating POA Managers 65
The Root POA Manager 67
Dispatching Requests 68
Callbacks 68
Advanced Configuration Example 68

ORB Destruction 70
Destroying the C++ ORB 70
Destroying the Java ORB 70

Server Event Loop 71
Applets 72

Compatibility with Netscape 72
Initializing the Java ORB for Applets 73
Adding ORBacus Applets to Web Pages 73
Defining ORB Options for an Applet 73
Defining the ORB Class Parameters 74
Security Issues 74

CHAPTER 5 CORBA Objects 75

Overview 75
ORBacus

Implementing Servants 76
Implementing Servants using Inheritance 77
Implementing Servants using Delegation 79

Creating Servants 83
Creating Servants using C++ 84
Creating Servants using Java 85

Activating Servants 86
Implicit Activation of Servants using C++ 86
Implicit Activation of Servants using Java 87
Explicit Activation of Servants using C++ 87
Explicit Activation of Servants using Java 88

Deactivating Servants 89
Deactivation of Servants using C++ 89
Deactivation of Servants using Java 89
Transient and Persistent Objects 89

Factory Objects 90
Factory Objects using C++ 91
Factory Objects using Java 93
Caveats 94
Obtaining the POA for a Servant 94
Getting the POA for a Currently Executing Request 95

CHAPTER 6 Locating Objects 97

Obtaining Object References 97
Lifetime of Object References 100

Hostname 100
Port Number 100
Object Key 101

Stringified Object References 101
Using a File 101
Using a URL 103
Using Applet Parameters 104

Object Reference URLs 105
corbaloc: URLs 105
corbaname: URLs 107
file: URLs 107
relfile: URLs 108

Initial Services 108
ORBacus 5

6

Resolving an Initial Service 108
Configuring the Initial Services 110
The Initial Service Locator 111

CHAPTER 7 The Implementation Repository 113

Background 114
How It All Works 114
Information Managed by the IMR 114
IMR Security 116

Synopsis 117
Usage 117
Windows NT Native Service 118
Configuration Properties 120

Connecting to the Service 121
Utilities 122

Implementation Repository Administration 122
Making References 123
Upgrading the IMR Database 124

Getting Started with the Implementation Repository 124
Programming Example 127

CHAPTER 8 The Implementation Repository Console 131

Synopsis 132
Usage 132
CLASSPATH Requirements 132
Implementation Repository Service Lookup 132

The Menus 132
The File Menu 132
The Edit Menu 133
The View Menu 133

The Toolbar and the Popup Menu 134

CHAPTER 9 ORBacus Names 135

Synopsis 135
Usage 135
ORBacus

Windows NT Native Service 136
Configuration Properties 138
Persistence 138
CLASSPATH Requirements 139

Connecting to the Service 139
Using the Naming Service with the IMR 139
Naming Service Concepts 140

Bindings 140
Name Resolution 141

Programming Example 142
Initialization 142
Binding 144
Exceptions 146
The Event Loop 147
Releasing Resources 148

CHAPTER 10 ORBacus Names Console 149

Synopsis 149
Usage 149
CLASSPATH Requirements 150
Naming Service Lookup 150

The Menus 150
The File Menu 150
The Edit Menu 152
The View Menu 153
The Tools Menu 154

The Toolbar 155
The Popup Menu 156

CHAPTER 11 ORBacus Properties 157

Synopsis 157
Usage 157
Configuration Properties 158
CLASSPATH Requirements 158

Connecting to the Service 158
Using the Property Service with the IMR 159
ORBacus 7

8

Property Service Concepts 159
Creating Properties 159
Querying for Properties 160
Deleting Properties 161

Programming Example 162

CHAPTER 12 ORBacus Time 165

Compliance Statement 165
Criteria to Be Followed for Secure Time 165
Proxies and Time Uncertainty 166

Synopsis 166
Usage 166
Configuration Properties 167
CLASSPATH Requirements 167

Time Service Concepts 167
Representation of Time 167
Basic Types 168
Enumerations 169
Exceptions 170
The Universal Time Object 170
The Time Interval Object 171
The TimeService Object 172

Time Service Extensions 173
Programming Example 176

CHAPTER 13 ORBacus Events 181

Synopsis 181
Usage 181
Windows NT Native Service 182
Configuration Properties 183
Diagnostics 184
CLASSPATH Requirements 185

Connecting to the Service 185
Using the Event Service with the IMR 186
Event Service Concepts 187

The Event Channel 187
ORBacus

Event Suppliers and Consumers 187
Event Channel Policies 188
Event Channel Factories 188

Programming Example 190

CHAPTER 14 ORBacus Trader 195

Synopsis 196
Usage 196
Configuration Properties 196
CLASSPATH Requirements 197

Connecting to the Service 197
Using the Trading Service with the IMR 197
Trading Service Concepts 198

Basic Concepts 198
Importing Service Offers 202
Offer Management 205
Dynamic Properties 206
Trader Federation with Links 207
Supporting Legacy Applications with Proxy Offers 209

Programming Example 210
The Print Server 210
The Client 213

CHAPTER 15 ORBacus Trader Console 215

Synopsis 216
Usage 216
CLASSPATH Requirements 216

Main Window 216
Terminology 217
The Trader Console Menus 218

The Console menu 218
The Edit menu 218
The View menu 219
The Insert menu 220
The Tools menu 220

The Toolbar 220
ORBacus 9

10
Managing Service Types 220
Adding a New Service Type 221
Removing a Service Type 223
Masking a Service Type 223
Unmasking a Service Type 224

Managing Offers 224
Adding a New Offer 224
Modifying an Offer 226
Withdrawing Offers 227

Managing Proxy Offers 229
Adding a New Proxy Offer 229
Withdrawing Proxy Offers 231

Managing Links 232
Adding a New Link 232
Modifying a Link 232
Removing a Link 233

Configuring the Trader Attributes 233
Support Attributes 234
Import Attributes 235
Link Attributes 237
Admin Attributes 237

Executing Queries 238
Connecting to a New Trader 240

CHAPTER 16 The Interface Repository 243

Synopsis 243
Usage 243
Windows NT Native Service 244
Configuration Properties 245

Connecting to the Interface Repository 246
Configuration Issues 246
Interface Repository Utilities 246

irfeed 246
irdel 247

Programming Example 247
ORBacus

CHAPTER 17 Using Policies 249

Overview 249
Supported Policies 250
Programming Examples 251

Connection Reuse Policy 251
Timeout Policy 253

CHAPTER 18 Concurrency Models 255

Introduction 255
What is a Concurrency Model? 255
Why different Concurrency Models? 255
ORBacus Concurrency Models Overview 256

Single-Threaded Concurrency Models 256
Blocking Clients 256
Reactive Clients and Servers 257

Multi-Threaded Concurrency Models 259
Threaded Clients and Servers 259
Thread-per-Client Server 260
Thread-per-Request Server 261
Thread Pool Server 262

Selecting Concurrency Models 263
The Reactor 263

What is a Reactor? 263
Available Reactors 263

CHAPTER 19 The Open Communications Interface 267

What is the Open Communications Interface? 267
Interface Summary 267

Buffer 267
Transport 268
Acceptor and Connector 268
Acceptor and Connector Factories 268
The Registries 268
The Info Objects 268
Class Diagram 269
ORBacus 11

12
OCI Reference 270
OCI for the Application Programmer 270

A “Converter” Class for Java 270
Getting Hostnames and Port Numbers 271
Determining a Client’s IP Address 272
Determining a Server’s IP Address 274

The IIOP OCI Plug-in 275
IIOP Acceptor Configuration 275

The Bi-directional OCI Plug-in 277
How does it work? 277
Peers 278
POA Managers 279
Initialization and Configuration 279
Bi-directional Acceptor Configuration 281

CHAPTER 20 Exceptions and Error Messages 283

CORBA System Exceptions 283
INITIALIZE Minor Exception Code 286
UNKNOWN Minor Exception Code 286
BAD_PARAM Minor Exception Code 286
NO_MEMORY Minor Exception Code 288
IMP_LIMIT Minor Exception Code 288
COMM_FAILURE Minor Exception Code 288
MARSHAL Minor Exception Code 290
NO_IMPLEMENT Minor Exception Code 292
NO_RESOURCES Minor Exception Code 292
BAD_INV_ORDER Minor Exception Code 292
TRANSIENT Minor Exception Code 293
INTF_REPOS Minor Exception Code 293
OBJECT_NOT_EXIST Minor Exception Code 293
INV_POLICY Minor Exception Code 293

Non-Compliant Application Asserts 293

APPENDIX A Boot Manager Reference 299

Interface OB::BootManager 299
Interface OB::BootLocator 301
ORBacus

APPENDIX B ORBacus Policy Reference 303

Module OB 303
Interface OB::ACMTimeoutPolicy 306
Interface OB::ConnectTimeoutPolicy 307
Interface OB::ConnectionReusePolicy 308
Interface OB::InterceptorPolicy 309
Interface OB::LocationTransparencyPolicy 310
Interface OB::ProtocolPolicy 311
Interface OB::RequestTimeoutPolicy 312
Interface OB::RetryPolicy 313
Interface OB::TimeoutPolicy 314

APPENDIX C Reactor Reference 315

Interface OB::Reactor 315

APPENDIX D Logger Reference 319

Interface OB::Logger 319

APPENDIX E Open Communications Interface Reference 321

Module OCI 321
Interface OCI::Buffer 326
Interface OCI::Transport 328
Interface OCI::TransportInfo 332
Interface OCI::CloseCB 334
Interface OCI::Connector 335
Interface OCI::ConnectorInfo 338
Interface OCI::ConnectCB 340
Interface OCI::Acceptor 341
Interface OCI::AcceptorInfo 344
Interface OCI::AcceptCB 346
ORBacus 13

14
Interface OCI::AccFactory 347
Interface OCI::AccFactoryInfo 349
Interface OCI::AccFactoryRegistry 350
Interface OCI::ConFactory 352
Interface OCI::ConFactoryInfo 354
Interface OCI::ConFactoryRegistry 356
Interface OCI::Current 358
Module OCI::IIOP 359
Interface OCI::IIOP::TransportInfo 360
Interface OCI::IIOP::ConnectorInfo 361
Interface OCI::IIOP::AcceptorInfo 362
Interface OCI::IIOP::AccFactoryInfo 363
Interface OCI::IIOP::ConFactoryInfo 364

References 365
ORBacus

CHAPTER 1 Introduction
1.1 What is ORBacus?
ORBACUS is an Object Request Broker (ORB) that is compliant with the Common Object
Request Broker Architecture (CORBA) specification as defined in “The Common Object
Request Broker: Architecture and Specification” [4], “C++ Language Mapping” [5],
“IDL/Java Language Mapping” [6], and “Portable Interceptors” [7].

These are some of the highlights of ORBACUS:

• Full CORBA IDL support

• C++ and Java language mappings

• Simple configuration and bootstrapping

• Portable Object Adapter

• Objects by Value

• Portable Interceptors

• Single- and Multi-threaded

• Active Connection Management

• Fault Tolerant Extensions

• Dynamic Invocation and Dynamic Skeleton Interface

• Dynamic Any
ORBacus 15

Introduction

16
• Interface and Implementation Repository

• Pluggable Protocols

• IDL-to-HTML and IDL-RTF documentation tools

• Includes Naming, Trading, Event, Property and Time Services

For platform availability, please refer to the ORBACUS home page at
http://www.ooc.com/ob/.

1.2 About this Document
This manual is—except for the “Getting Started” chapter—no replacement for a good
CORBA book. This manual also does not contain the precise specifications of the
CORBA standard, which are freely available on-line. A good grasp of the CORBA speci-
fications in [4], [6], and [6] is absolutely necessary to effectively use this manual. In par-
ticular, the chapters in [4], covering CORBA IDL and the IDL-to-C++ mapping, should be
studied thoroughly.

For C++ users, we also highly recommend [3]. This book contains by far the best treat-
ment of CORBA programming with C++ to date.

What this manual does contain, however, is information on how ORBACUS implements
the CORBA standard. A shortcoming of the current CORBA specification is that it leaves
a high degree of freedom to the CORBA implementation. For example, the precise seman-
tics of a oneway call are not specified by the standard.

To make it easier to get started with ORBACUS, this manual contains a “Getting Started”
chapter, explaining some ORBACUS basics with a very simple example.

1.3 Getting Help
Should you need any assistance with ORBACUS, please visit our Support Frequently
Asked Questions (FAQ) list at http://www.ooc.com/faq/support.html.
ORBacus

CHAPTER 2 Getting Started
2.1 The “Hello World” Application
The example described in this chapter is founded on a well-known application: A “Hello
World!” program presented here in a special client-server version.

Many books on programming start with this tiny demo program. In introductory C++
books you'll probably find the following piece of code in the very first chapter:

// C++
#include <iostream.h>

int main(int, char*[])
{

cout << "Hello World!" << endl;
return 0;

}

Or in introductory Java books:

// Java
public class Greeter
{

public static void main(String args[])
{

System.out.println("Hello World!");
}

ORBacus 17

Getting Started

18
}

These applications simply print “Hello World!” to standard output and that is exactly what
this chapter is about: Printing “Hello World!” with a CORBA-based client-server applica-
tion. In other words, we will develop a client program that invokes a say_hello opera-
tion on an object in a server program. The server responds by printing “Hello World!” on
its standard output.

2.2 The IDL Code
How do we write a CORBA-based “Hello World!” application? The first step is to create a
file containing our IDL definitions. Since our sample application isn't a complicated one,
the IDL code needed for this example is simple:

1 // IDL
2 interface Hello
3 {
4 void say_hello();
5 };

2 An interface with the name Hello is defined. An IDL interface is conceptually equivalent
to a pure abstract class in C++, or to an interface in Java.

4 The only operation defined is say_hello, which neither takes any parameters nor returns
any result.

2.3 Implementing the Example in C++
The next step is to translate the IDL code to C++ using the IDL-to-C++ translator. Save
the IDL code shown above to a file called Hello.idl. Now translate the code to C++
using the following command:

idl Hello.idl

This command will create the files Hello.h, Hello.cpp, Hello_skel.h and
Hello_skel.cpp.

2.3.1 Implementing the Server

To implement the server, we need to define an implementation class for the Hello inter-
face. To do this, we create a class Hello_impl that is derived from the “skeleton” class
POA_Hello, defined in the file Hello_skel.h. The definition for Hello_impl looks
like this:
ORBacus

Implementing the Example in C++
1 // C++
2 #include <Hello_skel.h>
3

4 class Hello_impl : public POA_Hello,
5 public PortableServer::RefCountServantBase
6 {
7 public:
8

9 virtual void say_hello() throw(CORBA::SystemException);
10 };

2 Since our implementation class derives from the skeleton class POA_Hello, we must
include the file Hello_skel.h.

4-5 Here we define Hello_impl as a class derived from POA_Hello and
RefCountServantBase. RefCountServantBase is part of the PortableServer
namespace and provides reference counting.

9 Our implementation class must implement all operations from the IDL interface. In this
case, this is just the operation say_hello.

The implementation for Hello_impl looks as follows:

1 // C++
2 #include <iostream.h>
3 #include <OB/CORBA.h>
4 #include <Hello_impl.h>
5

6 void Hello_impl::say_hello() throw(CORBA::SystemException)
7 {
8 cout << "Hello World!" << endl;
9 }

3 We must include OB/CORBA.h, which contains definitions for the standard CORBA
classes, as well as for other useful things.

4 We must also include the Hello_impl class definition, contained in the header file
Hello_impl.h.

6-9 The say_hello function simply prints “Hello World!” on standard output.

Save the class definition of Hello_impl in the file Hello_impl.h and the implementa-
tion of Hello_impl in the file Hello_impl.cpp.
ORBacus 19

Getting Started

20
Now we need to write the server program. To simplify exception handling and ORB
destruction, we split our server into two functions: main() and run(). main() only cre-
ates the ORB, and calls run():

1 // C++
2 #include <OB/CORBA.h>
3 #include <Hello_impl.h>
4

5 #include <fstream.h>
6

7 int run(CORBA::ORB_ptr);
8

9 int main(int argc, char* argv[])
10 {
11 int status = EXIT_SUCCESS;
12 CORBA::ORB_var orb;
13

14 try
15 {
16 orb = CORBA::ORB_init(argc, argv);
17 status = run(orb);
18 }
19 catch(const CORBA::Exception&)
20 {
21 status = EXIT_FAILURE;
22 }
23

24 if(!CORBA::is_nil(orb))
25 {
26 try
27 {
28 orb -> destroy();
29 }
30 catch(const CORBA::Exception&)
31 {
32 status = EXIT_FAILURE;
33 }
34 }
35

36 return status;
37 }

2-5 Several header files are included. Of these, OB/CORBA.h provides the standard CORBA
definitions, and Hello_impl.h contains the definition of the Hello_impl class.
ORBacus

Implementing the Example in C++
7 A forward declaration for the run() function.

16 The first thing a CORBA program must do is initialize the ORB. This operation expects
the parameters with which the program was started. These parameters may or may not be
used by the ORB, depending on the CORBA implementation. ORBACUS recognizes cer-
tain options that will be explained later.

17 The run() helper function is called.

19-22 This code catches and prints all CORBA exceptions raised by ORB_init() or run().

24-34 If the ORB was successfully created, it is destroyed. This releases the resources used by
the ORB. If destroy() raises a CORBA exception, this exception is caught and printed.

36 The exit status is returned. If there was no error, EXIT_SUCCESS is returned, or
EXIT_FAILURE otherwise.

Now we write the run() function:

1 // C++
2 int run(CORBA::ORB_ptr orb)
3 {
4 CORBA::Object_var poaObj =
5 orb -> resolve_initial_references("RootPOA");
6 PortableServer::POA_var rootPoa =
7 PortableServer::POA::_narrow(poaObj);
8

9 PortableServer::POAManager_var manager =
10 rootPoa -> the_POAManager();
11

12 Hello_impl* helloImpl = new Hello_impl();
13 PortableServer::ServantBase_var servant = helloImpl;
14 Hello_var hello = helloImpl -> _this();
15

16 CORBA::String_var s = orb -> object_to_string(hello);
17 const char* refFile = "Hello.ref";
18 ofstream out(refFile);
19 out << s << endl;
20 out.close();
21

22 manager -> activate();
23 orb -> run();
24

25 return EXIT_SUCCESS;
26 }
ORBacus 21

Getting Started

22
4-7 Using the ORB reference, resolve_initial_references() is invoked to obtain a ref-
erence to the Root POA.

9-10 The Root POA is used to obtain a reference to its POA Manager.

12-14 A servant of type Hello_impl is created and assigned to a ServantBase_var variable.
The servant is then used to incarnate a CORBA object, using the _this() operation.
ServantBase_var and Hello_var, like all _var types, are “smart” pointer, i.e.,
servant and hello will release their assigned object automatically when they go out of
scope.

16-20 The client must be able to access the implementation object. This can be done by saving a
“stringified” object reference to a file, which can then be read by the client and converted
back to the actual object reference.1 The operation object_to_string() converts a
CORBA object reference into its string representation.

22-23 The server must activate the POA Manager to allow the Root POA to start processing
requests, and then inform the ORB that it is ready to accept requests.

Save the code for main() and run() to a file with the name Server.cpp.

2.3.2 Implementing the Client

In several respects, the client program is similar to the server program. The code to initial-
ize and destroy the ORB is the same:

1 // C++
2 #include <OB/CORBA.h>
3 #include <Hello.h>
4

5 #include <fstream.h>
6

7 int run(CORBA::ORB_ptr);
8

9 int main(int argc, char* argv[])
10 {
11 ... // Same as for the server
12 }
13

14 int run(CORBA::ORB_ptr orb)

1. If your application contains more than one object, you do not need to save object references for
all objects. Usually you save the reference of one object which provides operations that can sub-
sequently return references to other objects.
ORBacus

Implementing the Example in C++
15 {
16 const char* refFile = "Hello.ref";
17 ifstream in(refFile);
18 char s[2048];
19 in >> s;
20 CORBA::Object_var obj = orb -> string_to_object(s);
21

22 Hello_var hello = Hello::_narrow(obj);
23

24 hello -> say_hello();
25

26 return 0;
27 }

3 In contrast to the server, the client does not need to include Hello_impl.h. Only the gen-
erated file Hello.h is needed.

7-12 This code is the same as for the server.

16-20 The “stringified” object reference written by the server is read and converted to a
CORBA::Object object reference. It’s not necessary to obtain a reference to the Root
POA or its POA Manager, because they are only needed by server applications.

22 The _narrow operation generates a Hello object reference from the CORBA::Object
object reference. Although _narrow for CORBA objects works similar to dynamic_cast<>
for plain C++ objects, dynamic_cast<> must not be used for CORBA object references. That’s
because in contrast to dynamic_cast<>, _narrow might have to query the server for type
information.

24 The say_hello operation on the hello object reference is invoked, causing the server to
print “Hello World!”.

Save this code into the file Client.cpp.

2.3.3 Compiling and Linking

Both the client and the server must be linked with the compiled Hello.cpp, which usu-
ally has the name Hello.o under Unix and Hello.obj under Windows. The compiled
Hello_skel.cpp and Hello_impl.cpp are only needed by the server.

Compiling and linking is to a large degree compiler- and platform-dependent. Many com-
pilers require unique options to generate correct code. To build ORBACUS programs, you
must at least link with the ORBACUS library libOB.a (Unix) or ob.lib (Windows).
Additional libraries are required on some systems, such as libsocket.a and libnsl.a
for Solaris or wsock32.lib for Windows.
ORBacus 23

Getting Started

24
The ORBACUS distribution includes various README files for different platforms which
give hints on the options needed for compiling and the libraries necessary for linking.
Please consult these README files for details.

2.3.4 Running the Application

Our “Hello World!” application consists of two parts: the client program and the server
program. The first program to be started is the server, because it must create the file
Hello.ref that the client needs in order to connect to the server. As soon as the server is
running, you can start the client. If all goes well, the “Hello World!” message will appear
on the screen.

2.4 Implementing the Example in Java
In order to implement this application in Java, the interface specified in IDL is translated
to Java classes similar to the way the C++ code was created. The ORBACUS IDL-to-Java
translator jidl is used like this:

jidl --package hello Hello.idl

This command results in several Java source files on which the actual implementation will
be based. The generated files are Hello.java, HelloHelper.java,
HelloHolder.java, HelloOperations.java, HelloPOA.java and
_HelloStub.java, all generated in a directory with the name hello.

2.4.1 Implementing the Server

The server's Hello implementation class looks as follows:

1 // Java
2 package hello;
3

4 public class Hello_impl extends HelloPOA
5 {
6 public void say_hello()
7 {
8 System.out.println("Hello World!");
9 }

10 }

4 The implementation class Hello_impl must inherit from the generated class HelloPOA.
ORBacus

Implementing the Example in Java
6-8 As with the C++ implementation, the say_hello method simply prints “Hello World!”
on standard output.

Save this class to the file Hello_impl.java in the directory hello.

We also have to write a class which holds the server's main() and run() methods. We
call this class Server, saved as the file Server.java in the directory hello:

1 // Java
2 package hello;
3

4 public class Server
5 {
6 public static void main(String args[])
7 {
8 java.util.Properties props = System.getProperties();
9 props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");

10 props.put("org.omg.CORBA.ORBSingletonClass",
11 "com.ooc.CORBA.ORBSingleton");
12

13 int status = 0;
14 org.omg.CORBA.ORB orb = null;
15

16 try
17 {
18 orb = org.omg.CORBA.ORB.init(args, props);
19 status = run(orb);
20 }
21 catch(Exception ex)
22 {
23 ex.printStackTrace();
24 status = 1;
25 }
26

27 if(orb != null)
28 {
29 try
30 {
31 ((com.ooc.CORBA.ORB)orb).destroy();
32 }
33 catch(Exception ex)
34 {
35 ex.printStackTrace();
36 status = 1;
37 }
ORBacus 25

Getting Started

26
38 }
39

40 System.exit(status);
41 }

8-11 These properties are necessary to use the ORBACUS ORB with JDK 1.2 or later.

18 The ORB must be initialized using ORB.init. The ORB class resides in the package
org.omg.CORBA. You must either import this package, or, as shown in this example, you
must use org.omg.CORBA explicitly.

19 The run() helper function is called.

21-25 This code catches and prints all CORBA exceptions raised by ORB.init() or run().

27-38 If the ORB was successfully created, it is destroyed. This releases the resources used by
the ORB. If destroy() raises a CORBA exception, this exception is caught and printed.
The cast to com.ooc.CORBA.ORB is required when using JDK 1.2, but not when using
JDK 1.1 or JDK 1.3.

41 The exit status is returned. If there was no error, 0 is returned, or 1 otherwise.

Now we write the run() method:

1 // Java
2 static int run(org.omg.CORBA.ORB orb)
3 throws org.omg.CORBA.UserException
4 {
5 org.omg.PortableServer.POA rootPOA =
6 org.omg.PortableServer.POAHelper.narrow(
7 orb.resolve_initial_references("RootPOA"));
8

9 org.omg.PortableServer.POAManager manager =
10 rootPOA.the_POAManager();
11

12 Hello_impl helloImpl = new Hello_impl();
13 Hello hello = helloImpl._this(orb);
14

15 try
16 {
17 String ref = orb.object_to_string(hello);
18 String refFile = "Hello.ref";
19 java.io.PrintWriter out = new java.io.PrintWriter(
20 new java.io.FileOutputStream(refFile));
21 out.println(ref);
22 out.close();
ORBacus

Implementing the Example in Java
23 }
24 catch(java.io.IOException ex)
25 {
26 ex.printStackTrace();
27 return 1;
28 }
29

30 manager.activate();
31 orb.run();
32

33 return 0;
34 }
35 }

5-10 A reference to the Root POA is obtained using the ORB reference, and the Root POA is
used to obtain a reference to its POA Manager.

12-23 A servant of type Hello_impl is created and is used to incarnate a CORBA object. The
CORBA object is released automatically when it is not used anymore.

15-28 The object reference is “stringified” and written to a file.

30-31 The server enters its event loop to receive incoming requests.

2.4.2 Implementing the Client

Save this to a file with the name Client.java in the directory hello:

1 // Java
2 package hello;
3

4 public class Client
5 {
6 public static void main(String args[])
7 {
8 ... // Same as for the server
9 }

10

11 static int run(org.omg.CORBA.ORB orb)
12 {
13 org.omg.CORBA.Object obj = null;
14 try
15 {
16 String refFile = "Hello.ref";
17 java.io.BufferedReader in = new java.io.BufferedReader(
ORBacus 27

Getting Started

28
18 new java.io.FileReader(refFile));
19 String ref = in.readLine();
20 obj = orb.string_to_object(ref);
21 }
22 catch(java.io.IOException ex)
23 {
24 ex.printStackTrace();
25 return 1;
26 }
27

28 Hello hello = HelloHelper.narrow(obj);
29

30 hello.say_hello();
31

32 return 0;
33 }
34 }

6-9 This code is the same as for the server.

14-26 The stringified object reference is read and converted to an object.

28 The object reference is “narrowed” to a reference to a Hello object. A simple Java cast is
not allowed here, because it is possible that the client will need to ask the server whether
the object is really of type Hello.

30 The say_hello operation is invoked, causing the server to print “Hello World!” on stan-
dard output.

2.4.3 Compiling

Ensure that your CLASSPATH environment variable includes the current working directory
as well as the ORBACUS for Java classes, i.e., the OB.jar file. If you are using the Unix
Bourne shell or a compatible shell, you can do this with the following commands:

CLASSPATH=.:your_orbacus_directory/lib/OB.jar:$CLASSPATH
export CLASSPATH

Replace your_orbacus_directory with the name of the directory where ORBACUS is
installed.

If you are running ORBACUS on a Windows-based system, you can use the following
command within the Windows command interpreter:

set CLASSPATH=.;your_orbacus_directory\lib\OB.jar;%CLASSPATH%
ORBacus

Summary
Note that for Windows you must use “;” and not “:” as the delimiter.

To compile the implementation classes and the classes generated by the ORBACUS IDL-
to-Java translator, use javac (or the Java compiler of your choice):

javac hello/*.java

2.4.4 Running the Application

The “Hello World” Java server is started with:

java hello.Server

And the client with:

java hello.Client

Again, make sure that your CLASSPATH environment variable includes the OB.jar file.

You might also want to use a C++ server together with a Java client (or vice versa). This is
one of the primary advantages of using CORBA: if something is defined in CORBA IDL,
the programming language used for the implementation is irrelevant. CORBA applications
can talk to each other, regardless of the language they are written in.

2.5 Summary
At this point, you might be inclined to think that this is the most complicated method of
printing a string that you have ever encountered in your career as a programmer. At first
glance, a CORBA-based approach may indeed seem complicated. On the other hand, think
of the benefits this kind of approach has to offer. You can start the server and client appli-
cations on different machines with exactly the same results. Concerning the communica-
tion between the client and the server, you don't have to worry about platform-specific
methods or protocols at all, provided there is a CORBA ORB available for the platform
and programming language of your choice. If possible, get some hands-on experience and
start the server on one machine, the client on another1. As you will see, CORBA-based
applications run interchangeably in both local and network environments.

One last point to note: you likely won't be using CORBA to develop systems as simple as
our “Hello, World!” example. The more complex your applications become (and today’s
applications are complex), the more you will learn to appreciate having a high-level
abstraction of your applications' key interfaces captured in CORBA IDL.

1. Note that after the startup of the server program, you have to copy the stringified object refer-
ence, i.e., the file Hello.ref, to the machine where the client program is to be run.
ORBacus 29

Getting Started

30
2.6 Where to go from here
To understand the remaining chapters of this manual, you must have read the CORBA
specifications in [4], [5], and [6]. You will not be able to understand the chapters that fol-
low without a good understanding of CORBA in general, CORBA IDL and the IDL-to-
C++ and IDL-to-Java mappings.
ORBacus

CHAPTER 3 TheORBacus Code
Generators
3.1 Overview
ORBACUS includes the following code generators:

3.2 Synopsis
idl [options] idl-files...

jidl [options] idl-files...

hidl [options] idl-files...

ridl [options] idl-files...

irgen name-base

idl The ORBACUS IDL-to-C++ Translator

jidl The ORBACUS IDL-to-Java Translator

hidl The ORBACUS IDL-to-HTML Translator

ridl The ORBACUS IDL-to-RTF Translator

irgen The ORBACUS Interface Repository C++ Code Generator
ORBacus 31

The ORBacus Code Generators

32
3.3 Description
idl is the ORBACUS IDL-to-C++ translator. It translates IDL files into C++ files. For
each IDL file, four C++ files are generated. For example,

idl MyFile.idl

produces the following files:

jidl translates IDL files into Java files. For every construct in the IDL file that maps to a
Java class or interface, a separate class file is generated. Directories are automatically cre-
ated for those IDL constructs that map to a Java package (e.g., a module).

jidl can also add comments from the IDL file starting with /** to the generated Java
files. This allows you to use the javadoc tool to produce documentation from the gener-
ated Java files. See “Using javadoc” on page 44 for additional information.

hidl creates HTML files from IDL files. An HTML file is generated for each module and
interface defined in an IDL file. Comments in the IDL file are preserved and javadoc
style keywords are supported. The section “Documenting IDL Files” on page 41 provides
more information.

ridl creates Rich Text Format (RTF) files from IDL files. An RTF file is generated for
each module and interface defined in an IDL file. Comments in the IDL file are preserved
and javadoc style keywords are supported. The section “Documenting IDL Files” on
page 41 provides more information.

irgen generates C++ code directly from the contents of an Interface Repository. See “The
IDL-to-C++ Translator and the Interface Repository” on page 40 for an example.

3.4 Options for idl
-h, --help

Show a short help message.

MyFile.h Header file containing MyFile.idl’s translated data types
and interface stubs

MyFile.cpp Source file containing MyFile.idl’s translated data types
and interface stubs

MyFile_skel.h Header file containing skeletons for MyFile.idl’s interfaces

MyFile_skel.cpp Source file containing skeletons for MyFile.idl’s interfaces
ORBacus

Options for idl
-v, --version

Show the ORBACUS version number.

-e, --cpp NAME

Use NAME as the preprocessor program.

-d, --debug

Print diagnostic messages. This option is for ORBACUS internal debugging purposes only.

-DNAME

Defines NAME as 1. This option is directly passed to the preprocessor.

-DNAME=DEF

Defines NAME as DEF. This option is directly passed to the preprocessor.

-UNAME

Removes any definition for NAME. This option is directly passed to the preprocessor.

-IDIR

Adds DIR to the include file search path. This option is directly passed to the preprocessor.

-E

Runs the source files through the preprocessor without generating code.

--no-skeletons

Don’t generate skeleton classes.

--no-type-codes

Don’t generate type codes and insertion and extraction functions for the Any type. Use of
this option will cause the translator to generate more compact code.

--locality-constrained

Generate locality-constrained objects.

--no-virtual-inheritance

Don't use virtual C++ inheritance. If you use this option, you cannot use multiple interface
inheritance in your IDL code, and you also cannot use multiple C++ inheritance to imple-
ment your servant classes.

--tie
ORBacus 33

The ORBacus Code Generators

34
Generate tie classes for delegate-based interface implementations. Tie classes depend on
the corresponding skeleton classes, i.e., you must not use --no-skeletons in combina-
tion with --tie.

--fwd

Generate separate header files for forward declarations.

--impl

Generate example servant implementation classes. An input file Foo.idl will generate
the files Foo_impl.h and Foo_impl.cpp. These files will not be overwritten, therefore
you must first remove the existing files before new ones can be generated. You must not
use --no-skeletons in combination with this option.

--impl-all

Similar to --impl, but function signatures are generated for all inherited operations and
attributes. You must not use --no-skeletons in combination with this option.

--c-suffix SUFFIX

Use SUFFIX as the suffix for source files. The default value is .cpp.

--h-suffix SUFFIX

Use SUFFIX as the suffix for header files. The default value is .h.

--skel-suffix SUFFIX

Use SUFFIX as the suffix for skeleton files. The default value is _skel.

--all

Generate code for included files instead of inserting #include statements. See “Include
Statements” on page 40.

--no-relative

When generating code, idl assumes that the same -I options that are used with idl are
also going to be used with the C++ compiler. Therefore idl will try to make all
#include statements relative to the directories specified with -I. The option --no-
relative suppresses this behavior, in which case idl will not make #include state-
ments for included files relative to the paths specified with the -I option.

--header-dir DIR

This option can be used to make #include statements for header files relative to the spec-
ified directory.
ORBacus

Options for idl
--this-header-dir DIR

Like the --header-dir option, this option can be used to make #include statements
for header files relative to the specified directory. However, this option only applies to
#include statements for the header files of this IDL file.

--other-header-dir DIR

Like the --header-dir option, this option can be used to make #include statements
for header files relative to the specified directory. However, this option only applies to
#include statements for the header files corresponding to IDL files that were included in
this IDL file.

--output-dir DIR

Write generated files to directory DIR.

--file-list FILE

Write a list of all generated files to file FILE.

--dll-import DEF

Put DEF in front of every symbol that needs an explicit DLL import statement.

--with-interceptor-args

Generate code with support for arguments, result and exception list values for intercep-
tors.

--no-orb-mediation

By default, invocations on collocated servants are mediated by the ORB. Specify this
option to disable ORB mediation.

--no-local-copy

To ensure strict compliance with CORBA’s location transparency semantics, the default
behavior of the translator is to generate code that copies valuetype argument and result
values for collocated invocations. Specify this option to disable strict compliance and gen-
erate more efficient code.

--case-sensitive

The semantics of OMG IDL forbid identifiers in the same scope to differ only in case.
This option relaxes these semantics, but is only provided for backward compatibility with
non-compliant IDL.
ORBacus 35

The ORBacus Code Generators

36
3.5 Options for jidl
-h, --help
-v, --version
-e, --cpp NAME
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
-E
--no-skeletons
--locality-constrained
--all
--tie
--file-list FILE
--no-local-copy
--case-sensitive

These options are the same as for the idl command.

--no-comments

The default behavior of jidl is to add any comments from the IDL file starting with /**
to the generated Java files. Specify this option if you don’t want these comments added to
your Java files.

--package PKG

Specifies a package name for the generated Java classes. Each class will be generated rel-
ative to this package.

--prefix-package PRE PKG

Specifies a package name for a particular prefix1. Each class with this prefix will be gener-
ated relative to the specified package.

--auto-package

Derives the package names for generated Java classes from the IDL prefixes. The prefix
ooc.com, for example, results in the package com.ooc.

--output-dir DIR

1. Prefix refers to the value of the #pragma prefix statement in an IDL file. For example, the
statement #pragma prefix ““ooc.com” defines ooc.com as the prefix. The prefix is
included in the Interface Repository identifiers for all types defined in the IDL file.
ORBacus

Options for hidl
Specifies a directory where jidl will place the generated Java files. Without this option
the current directory is used.

--clone

Generates a clone method for struct, union, enum, exception, valuetype and abstract
interface types. For valuetypes, only an abstract method is generated. The valuetype
implementer must supply an implementation for clone.

--impl

Generates example servant implementation classes. For IDL interface types, a class is
generated in the same package as the interface classes, having the same name as the inter-
face with the suffix _impl. The generated class extends the POA class of the interface.
For IDL valuetypes, a class is generated in the same package as the valuetype with the suf-
fix ValueFactory_impl. You must not use --no-skeletons in combination with this
option.

--impl-tie

Similar to --impl, but implementation classes for interfaces implement the Operations
interface to facilitate the use of TIE classes. You must not use --no-skeletons in com-
bination with this option.

--with-interceptor-args

Generate code with support for arguments, result and exception list values for intercep-
tors. Note that use of this option will generate proprietary stubs and skeletons which are
not compatible with ORBs from other vendors.

3.6 Options for hidl
-h, --help
-v, --version
-e, --cpp NAME
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
-E
--all
--case-sensitive

These options are the same as for the idl command.

--no-sort
ORBacus 37

The ORBacus Code Generators

38
Don’t sort symbols alphabetically.

--ignore-case

Sort case-insensitive.

--use-tables

Use tables for indices.

--output-dir DIR

Write HTML files to the directory DIR.

3.7 Options for ridl
-h, --help
-v, --version
-e, --cpp NAME
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
-E
--all
--case-sensitive

These options are the same as for the idl command.

--no-sort

Don’t sort symbols alphabetically.

--ignore-case

Sort case-insensitive.

--use-tables

Use tables for indices.

--output-dir DIR

Write RTF files to the directory DIR.

--single-file FILE

Create a single file called FILE.rtf.
ORBacus

Options for irgen
--with-index

Create index entries.

--font PARA NAME
--font-size PARA SIZE

Specify the font name or size for a particular paragraph type. The paragraph types and
their default values are shown below.

3.8 Options for irgen
-h, --help
-v, --version
--no-skeletons
--no-type-codes
--locality-contrained
--no-virtual-inheritance
--tie
--impl
--impl-all
--c-suffix SUFFIX
--h-suffix SUFFIX
--skel-suffix SUFFIX
--header-dir DIR
--other-header-dir DIR
--output-dir DIR
--file-list FILE
--dll-import DEF
--with-interceptors-args
--no-local-copy

These options are the same as for the idl command.

Type Font Size
body roman Times New Roman 12pt

entry swiss Tahoma 12pt

extra same as body 12pt

heading swiss Arial 18pt

index same as heading 15pt

literal roman Courier New 10pt

symbol roman Symbol 12pt
ORBacus 39

The ORBacus Code Generators

40
The argument to irgen is the pathname to use as the base name of the output filenames.
For example, if the pathname you supply is output/file, then irgen will produce
output/file.cpp, output/file.h, output/file_skel.cpp and output/
file_skel.h.

Note that irgen will generate code for all of the type definitions contained in the Inter-
face Repository server.

See Chapter 16 for more information on the Interface Repository.

3.9 The IDL-to-C++ Translator and the Interface Repository
The ORBACUS IDL-to-C++ and IDL-to-Java translators internally use the Interface
Repository for generating code. That is, these programs have their own private Interface
Repository that is fed with the specified IDL files. All code is generated from that private
Interface Repository.

It is also possible to generate C++ code from a global Interface Repository. First, the com-
mand irserv must be used to start the Interface Repository. Then the Interface Reposi-
tory must be fed with the IDL code, using the command irfeed. Finally, the irgen
command can be used to generate the C++ code. For example:

irserv --ior > IntRep.ref &
irfeed -ORBrepository ‘cat IntRep.ref‘ file.idl
irgen -ORBrepository ‘cat IntRep.ref‘ file

The IDL-to-C++ translator idl performs all these steps at once, in a single process with a
private Interface Repository. Thus, you only have to run a single command:

idl file.idl

See Chapter 16 for more information on the Interface Repository.

3.10 Include Statements
If you use the #include statement in your IDL code, the ORBACUS IDL-to-C++ transla-
tor idl does not create code for included IDL files. Instead, the translator inserts the
appropriate #include statements in the generated header files. Please note that there are
several restrictions on where to place the #include statements in your IDL files for this
feature to work properly:

• #include may only appear at the beginning of your IDL files. All #include
statements must be placed before the rest of your IDL code.1
ORBacus

Documenting IDL Files
• Type definitions, such as interface or struct definitions, may not be split among
several IDL files. In other words, no #include statement may appear within such
definitions.

If you don’t want these restrictions to be applied, you can use the translator option --all
with idl. With this option, the IDL-to-C++ translator treats code from included files as if
the code appeared in your IDL file at the position where it is included. This means that the
compiler will not place #include statements in the automatically-generated header files,
regardless of whether the code comes directly from your IDL file or from files included by
your IDL file.

Note that when generating code from an Interface Repository using irgen, the translator
behaves identically to idl with the --all option. In other words, the irgen command
does not place #include statements in the generated files, but rather generates code for
all IDL definitions in the Interface Repository.

3.11 Documenting IDL Files
With the ORBACUS IDL-to-HTML and IDL-to-RTF translators, hidl and ridl, you can
easily generate HTML and RTF files containing IDL interface descriptions. The transla-
tors generate a nicely-formatted file for each IDL module and interface. Figure 3.1 shows
an HTML example and Figure 3.2 an RTF example.

The formatting syntax supported by hidl and ridl is similar to that used by javadoc.
The following keywords are recognized:

@author author

Denotes the author of the interface.

@exception exception-name description

Adds an exception description to the exception list of an operation.

@member member-name description

Adds a member description to the member list of a struct, union, enum or exception type.

@param parameter-name description

Adds a parameter description to the parameter list of an operation.

@return description

1. Preprocessor statements like #define or #ifdef may be placed before your #include
statements.
ORBacus 41

The ORBacus Code Generators

42
Adds descriptive text for the return value of an operation.

@see reference

Adds a “See also” note.

@since since-text

Comment related to the availability of new features.

Figure 3.1: Documentation generated with the IDL-to-HTML translator
ORBacus

Documenting IDL Files
@version version

The interface’s version number.

Like javadoc, hidl and ridl use the first sentence in the documentation comment as
the summary sentence. This sentence ends at the first period that is followed by a blank,
tab or line terminator, or at the first @.

Figure 3.2: Documentation generated with the IDL-to-RTF translator
ORBacus 43

The ORBacus Code Generators

44
ridl understands most basic HTML tags and produces an equivalent format in the gener-
ated RTF files. The following HTML tags are supported:

 <CODE> <DD> <DL> <DT> <HR> <I> <P> <TABLE>
<TD> <TR> <U>

3.12 Using javadoc
If not explicitly suppressed with the --no-comments option, the ORBACUS IDL-to-Java
translator jidl adds IDL comments starting with /** to the generated Java files, so that
javadoc can be used to generate documentation (as long as the comments are in a format
compatible with javadoc).

Here is an example that shows how to include documentation in an IDL interface descrip-
tion file. Let’s assume we have an interface I in a module M:

// IDL

module M
{

/**
*
* This is a comment related to interface I.
*
* @author Uwe Seimet
*
* @version 1.0
*
**/

interface I
{

/**
*
* This comment describes exception E.
*
**/

exception E { };

/**
*
* The description for operation S.
*
* @param arg A dummy argument.
ORBacus

Using javadoc
*
* @return A dummy string.
*
* @exception E Raised under certain circumstances.
*
**/

string S(in long arg)
raises(E);

};

};

When running jidl on this file, the comments are automatically added to the generated
Java files M/I.java and M/IPackage/E.java. For I.java, the generated code looks
as follows:

// Java

package M;

//
// IDL:M/I:1.0
//
/**
* This is a comment related to interface I.
*
* @author Uwe Seimet
*
* @version 1.0
*
**/

public interface I extends org.omg.CORBA.Object
{

//
// IDL:M/I/S:1.0
//
/**
*
* The description for operation S.
*
* @param arg A dummy argument.
*
* @return A dummy string.
*
* @exception M.IPackage.E Raised under certain circumstances.
ORBacus 45

The ORBacus Code Generators

46
*
**/
public String
S(int arg)

throws M.IPackage.E;
}

Note that jidl automatically inserts the fully-qualified Java name for the exception E
(M.IPackage.E in this case).

These are the contents of IPackage/E.java:

// Java

package M.IPackage;

//
// IDL:M/I/E:1.0
//
/**
*
* This comment describes exception E.
*
**/

final public class E extends org.omg.CORBA.UserException
{

public
E()
{
}

}

Now you can use javadoc to extract the comments from the generated Java files and pro-
duce nicely-formatted HTML documentation.

For additional information please refer to the javadoc documentation.
ORBacus

CHAPTER 4 ORB andObject Adapter
Initialization
4.1 ORB Initialization

4.1.1 Initializing the C++ ORB

In C++, the ORB is initialized with CORBA::ORB_init(). For example:

// C++
int main(int argc, char* argv[])
{

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
// ...

}

The CORBA::ORB_init() call interprets arguments starting with -ORB and -OA. All of
these arguments, passed through the argc and argv parameters, are automatically
removed from the argument list.

4.1.2 Initializing the Java ORB for Applications

A Java application can initialize the ORB in the following manner:

// Java
import org.omg.CORBA.*;
public static void main(String args[])
{

ORBacus 47

ORB and Object Adapter Initialization

48
ORB orb = ORB.init(args, new java.util.Properties());
// ...

}

The ORB.init() call interprets arguments starting with -ORB and -OA. Unlike the C++
version, these arguments are not removed (see “Advanced Property Usage” on page 63 for
more information).

4.1.3 Initializing the Java ORB in JDK 1.2/1.3

The ORB implementation included in JDK 1.2 and beyond can be considered a “minimal”
ORB, suitable primarily for use in basic client-oriented tasks. In order to use the ORBA-
CUS ORB instead of the JDK’s default ORB, you must start your application with the fol-
lowing properties:

java -Dorg.omg.CORBA.ORBClass=com.ooc.CORBA.ORB \
-Dorg.omg.CORBA.ORBSingletonClass=com.ooc.CORBA.ORBSingleton \
MyApp

An alternative is to set these properties in your program before initializing the ORB. For
example:

// Java
import org.omg.CORBA.*;
public static void main(String args[])
{

java.util.Properties props = System.getProperties();
props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
props.put("org.omg.CORBA.ORBSingletonClass",

"com.ooc.CORBA.ORBSingleton");

ORB orb = ORB.init(args, props);
// ...

}

4.2 Object Adapter Initialization

4.2.1 Initialization of the Object Adapter

In ORBACUS, the object adapter is not initialized until the Root POA is first resolved. For
example:

// C++
CORBA::Object_var poaObj =

orb -> resolve_initial_reference(“RootPOA”);
ORBacus

Configuring the ORB and Object Adapter
// Java
org.omg.CORBA.Object poaObj =

orb.resolve_initial_references(“RootPOA”);

Upon completion, the ORB will have created the Root POA and its POA Manager, and
will have initialized the ORB’s server-side functionality.

4.3 Configuring the ORB and Object Adapter
ORBACUS applications can tailor the behavior of the ORB and object adapters using a col-
lection of properties1. These properties can be defined in a number ways:

• using the Windows Registry (Windows NT/C++)

• using a configuration file

• using system properties (Java)

• using command-line options

• programmatically at run-time

The ORBACUS configuration properties are described in the sections below. Unless other-
wise noted, every property can be used in both C++ and Java applications.

4.3.1 ORB Properties

ooc.config

Value: filename

Selects the default configuration file. This property is only available in Java applications
and is equivalent to the ORBACUS_CONFIG environment variable in C++. See “Using a
Configuration File” on page 59 for more information on configuration files.

ooc.orb.client_shutdown_timeout

Value: timeout >= 0

If the client is not able to gracefully disconnect from the server in timeout seconds, a con-
nection shutdown is forced. If this property is set to zero, then the client will not force a

1. Note that these properties have nothing to do with the Property Service as described in
Chapter 11.
ORBacus 49

ORB and Object Adapter Initialization

50
connection shutdown. If the property is not set, a default timeout value of two seconds is
used.

ooc.orb.client_timeout

Value: timeout >= 0

The client actively closes a connection that has been idle for timeout seconds once that
connection has no more outstanding replies. Note that the application must use the
threaded client-side concurrency model if connection timeouts are desired. If this property
is set to zero, or not set at all, then the client does not close idle connections. Note that a
policy can also be set on the ORB or on individual object references. See “OB::ACMTim-
eoutPolicy” on page 250 for more information.

ooc.orb.conc_model

Value: blocking, reactive, threaded

Selects the client-side concurrency model. The reactive concurrency model is not cur-
rently available in ORBACUS for Java. The default value is blocking for both C++ and
Java applications. See Chapter 18 for more information on concurrency models.

ooc.orb.default_init_ref

Value: URL

Specifies a partial URL. If an application calls the ORB operation
resolve_initial_references and no match is found, the ORB appends a slash (‘/’)
character and the service identifier to the specified URL and invokes string_to_object
to obtain the initial reference.

ooc.orb.default_wcs

Value: string

Specifies the default wide character code set for the ORB. Note that the CORBA specifi-
cation states that a default wide character code set does not exist. Therefore, this option
should only be used when communicating with a broken ORB that expects a particular
wide character code set and does not correctly support the negotiation of wide character
code sets.

ooc.orb.giop.max_message_size

Value: max >= 0
ORBacus

Configuring the ORB and Object Adapter
Specifies the maximum GIOP message size in bytes. If set to 0, no maximummessage size
will be used. If a message is sent or received that exceeds the maximum size, the ORB will
raise the IMP_LIMIT system exception.

ooc.orb.id

Value: id

Specifies the identifier of the ORB to be used by the application.

ooc.orb.init_iiop

Value: none, client, server, both

Specifies to what extent the ORB should initialize the IIOP protocol plug-in. The default
value is both. For security reasons, applications may wish to disable the client and/or
server capabilities of the plug-in. Note that the values server and both do not require
that the application must be a server. This property simply determines which protocol ser-
vices are installed. A value of none will typically be used when a different protocol plug-
in is being used and the IIOP plug-in is unnecessary.

ooc.orb.native_cs

Value: string

Specifies the native character code set for the ORB. The default is ISO 8859-1.

ooc.orb.native_wcs

Value: string

Specifies the native wide character code set for the ORB. The default is UTF-16.

ooc.orb.raise_dii_exceptions

Value: true, false

Determines whether system exceptions that occur during Dynamic Invocation Interface
(DII) operations are raised immediately or are stored only in the CORBA::Environment
object. This property is only available for Java applications. The default value is false for
JDK 1.1.x, and true for later JDK versions. Note that specifying a value of false when
using JDK 1.2 or later may result in unexpected behavior.
ORBacus 51

ORB and Object Adapter Initialization

52
ooc.orb.server_name

Value: string

Specifies the name of the server, as registered with the Implementation Repository (IMR).
Note that you should not put this property in a configuration file that is shared by several
IMR-enabled servers. Furthermore, this property should not be specified for servers that
are not registered with the IMR.

ooc.orb.server_shutdown_timeout

Value: timeout >= 0

If the server is not able to gracefully disconnect from the client in timeout seconds, a con-
nection shutdown is forced. If this property is set to zero, then the server will not force a
connection shutdown. If the property is not set, a default timeout value of two seconds is
used.

ooc.orb.server_timeout

Value: timeout >= 0

The server actively closes a connection that has been idle for timeout seconds once that
connection has no more outstanding replies. Note that the application must use one of the
threaded server-side concurrency model if connection timeouts are desired. If this property
is set to zero, or not set at all, then the server does not close idle connections.

ooc.orb.service.name

Value: ior

Adds an initial service to the ORB’s internal list. This list is consulted when the applica-
tion invokes the ORB operation resolve_initial_references. name is the key that
is associated with an IOR or URL. For example, the property
ooc.orb.service.NameService adds “NameService” to the list of initial services. See
“Initial Services” on page 108 for more information.

ooc.orb.trace.connections

Value: level >= 0

Defines the output level for diagnostic messages printed by ORBACUS that are related to
connection establishment and closure. A level of 1 or higher produces information about
ORBacus

Configuring the ORB and Object Adapter
connection events, and a level of 2 or higher produces code set exchange information. The
default level is 0, which produces no output.

ooc.orb.trace.retry

Value: level >= 0

Defines the output level for diagnostic messages printed by ORBACUS that are related to
transparent re-sending of failed messages. A level of 1 or higher produces information
about re-sending of messages, and a level of 2 or higher also produces information about
use of individual IOR profiles. The default level is 0, which produces no output.

4.3.2 OA Properties

Configuring an object adapter is achieved by setting properties on POA Managers. These
properties are grouped into two categories: global properties, and properties specific to a
particular POAManager. Global properties have the prefix ooc.orb.oa, while properties
specific to a particular POA Manager have the prefix ooc.orb.poamanager.name,
where name is the name of the POA Manager (see “Using POA Managers” on page 65).

Unless otherwise noted, a POAManager will search for configuration properties using the
following algorithm:

• First, use properties defined specifically for that POA Manager

• Next, use global properties

• Finally, use default settings.

See “Using POA Managers” on page 65 for more information on POA Managers.

ooc.orb.oa.conc_model

Value: reactive, threaded, thread_per_client, thread_per_request,
thread_pool

Selects the server-side concurrency model. The reactive concurrency model is not
available in ORBACUS for Java. The default value is reactive for C++ applications and
threaded for Java applications. See Chapter 18 for more information on concurrency
models. If this property is set to thread_pool, then the property
ooc.orb.oa.thread_pool determines how many threads are in the pool.

This property is also used to determine the default value of the communications concur-
rency model for POA Managers (see ooc.orb.poamanager.manager.conc_model
below). If the value of ooc.orb.oa.conc_model is reactive, the default value for the
ORBacus 53

ORB and Object Adapter Initialization

54
communications concurrency model is reactive, otherwise the default value is
threaded.

ooc.orb.oa.host

Deprecated. See ooc.iiop.host.

ooc.orb.oa.numeric

Deprecated. See ooc.iiop.numeric.

ooc.orb.oa.port

Deprecated. See ooc.iiop.port.

ooc.orb.oa.thread_pool

Value: n > 0

Determines the number of threads to reserve for servicing incoming requests. The default
value is 10. This property is only effective when the ooc.orb.oa.conc_model property
has the value thread_pool.

ooc.orb.oa.version

Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references. The default value is 1.2. This
option is useful for backward compatibility with older ORBs that reject object references
using a newer version of the protocol.

ooc.orb.poamanager.manager.conc_model

Value: reactive, threaded

Specifies the communications concurrency model used by the POA Manager with name
manager. The default value is determined by ooc.orb.oa.conc_model. See Chapter 18
for more information on concurrency models.

ooc.orb.poamanager.manager.host

Deprecated. See ooc.iiop.acceptor.manager.host.
ORBacus

Configuring the ORB and Object Adapter
ooc.orb.poamanager.manager.numeric

Deprecated. See ooc.iiop.acceptor.manager.numeric.

ooc.orb.poamanager.manager.port

Deprecated. See ooc.iiop.acceptor.manager.port.

ooc.orb.poamanager.manager.version

Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references generated by a particular POA
Manager. This option is useful for backward compatibility with older ORBs that reject
object references using a newer version of the protocol. The default value is determined by
the value of ooc.orb.oa.version.

4.3.3 IIOP Properties

An application can configure IIOP endpoints with properties having the prefix ooc.iiop.
As with the object adapter properties described in the previous section, IIOP properties are
also grouped into global and POA Manager-specific categories. See “Using POA Manag-
ers” on page 65 for more information on POA Managers and their relationship to IIOP
endpoints.

ooc.iiop.backlog

Value: 0 <= backlog <= 65535

Specifies the length of the queue for incoming connection requests. Note that the operat-
ing system may override this setting if the value exceeds the maximum allowed by the
operating system.

ooc.iiop.bind

Value: hostname or IP address

Specifies that the server should bind its socket to a specific network interface If not speci-
fied, the server will bind its socket to all available network interfaces. This property is use-
ful in situations where a host has several network interfaces, but the server should only
listen for connections on a particular interface.
ORBacus 55

ORB and Object Adapter Initialization

56
ooc.iiop.host

Value: host[,host,...]

Explicitly defines the hostname(s) and/or IP address(es) to be used in generated object ref-
erences. The default value is the canonical hostname of the machine. If multiple host-
names are specified, the value of ooc.iiop.multi_profile determines how those
hostnames are represented in object references.

ooc.iiop.multi_profile

Value: true, false

Specifies how multiple addresses should be represented in an object reference. If true,
each address is represented as a separate “tagged profile” in the object reference. If false,
there will be only one tagged profile, with the first address used as the primary address of
the profile, and all other addresses represented as alternate addresses in that profile. The
default representation depends on the protocol version in use. If the protocol version is
1.0, the default value is true, otherwise the default value is false. As far as ORBACUS

is concerned, the ORB behavior is identical for both representations, but other ORBs may
require a particular representation.

ooc.iiop.numeric

Value: true, false

If true, object references are generated using the internet (IP) address in dotted decimal
notation instead of the canonical hostname. The default value is false. This property is
ignored if ooc.iiop.host is specified.

ooc.iiop.port

Value: 0 < port <= 65535

Specifies the port number on which the Root POA Manager should listen for new connec-
tions. If no port is specified, one will be selected automatically by the server. Use this
property if you plan to publish an IOR (e.g., in a file, a naming service, etc.) and you want
that IOR to remain valid across executions of your server. Without this property, your
server is likely to use a different port number each time the server is executed. See
Chapter 6 for more information.

ooc.iiop.acceptor.manager.backlog

Value: 0 <= backlog <= 65535
ORBacus

Configuring the ORB and Object Adapter
Specifies the length of the queue for incoming connection requests on the POA Manager
with name manager. Note that the operating system may override this setting if the value
exceeds the maximum allowed by the operating system.

ooc.iiop.acceptor.manager.bind

Value: hostname or IP address

Specifies that the POA Manager with name manager should bind its socket to a specific
network interface If not specified, the POA Manager will bind its socket to all available
network interfaces. This property is useful in situations where a host has several network
interfaces, but the POA Manager should only listen for connections on a particular inter-
face.

ooc.iiop.acceptor.manager.host

Value: hostname(s) and/or IP address(es)

Explicitly defines the hostname(s) to be used in object references generated by the POA
Manager with name manager. The default value is determined by the value of
ooc.iiop.host.

ooc.iiop.acceptor.manager.multi_profile

Value: true, false

Specifies how multiple addresses should be represented in an object reference generated
by the POAManager with name manager. If true, each address is represented as a separate
“tagged profile” in the object reference. If false, there will be only one tagged profile, with
the first address used as the primary address of the profile, and all other addresses repre-
sented as alternate addresses in that profile. The default representation depends on the pro-
tocol version in use. If the protocol version is 1.0, the default value is true, otherwise the
default value is false. As far as ORBACUS is concerned, the ORB behavior is identical
for both representations, but other ORBs may require a particular representation.

ooc.iiop.acceptor.manager.numeric

Value: true, false

If true, the POA Manager with name manager will generate object references that contain
an internet (IP) address in dotted decimal notation instead of the canonical hostname. The
default value is determined by the value of ooc.iiop.numeric. This property is ignored
if either ooc.iiop.host or ooc.iiop.acceptor.manager.host is specified.
ORBacus 57

ORB and Object Adapter Initialization

58
ooc.iiop.acceptor.manager.port

Value: 0 < port <= 65535

Specifies the port number on which the POA Manager with name manager should listen
for new connections. If no port is specified, one will be selected automatically by the
server.

4.3.4 Command-line Options

There are equivalent command-line options for many of the ORBACUS properties. The
options and their equivalent property settings are shown in Table 4.1. Refer to “ORB
Properties” on page 49 for a description of the properties.

Option Property

-OAbacklog backlog ooc.iiop.backlog=backlog

-OAbind host ooc.iiop.bind=host

-OAhost host[,host,...] ooc.iiop.host=host[,host,...]

-OAnumeric ooc.iiop.numeric=true

-OAport port ooc.iiop.port=port

-OAreactive ooc.orb.oa.conc_model=reactive

-OAthreaded ooc.orb.oa.conc_model=threaded

-OAthread_per_client ooc.orb.oa.conc_model=thread_per_client

-OAthread_per_request ooc.orb.oa.conc_model=thread_per_request

-OAthread_pool n ooc.orb.oa.conc_model=thread_pool
ooc.orb.oa.thread_pool=n

-OAversion version ooc.orb.oa.version=version

-ORBblocking ooc.orb.conc_model=blocking

-ORBDefaultInitRef URL ooc.orb.default_init_ref=URL

-ORBid id ooc.orb.id=id

-ORBInitRef name=ior ooc.orb.service.name=ior

-ORBnative_cs name ooc.orb.native_cs=name

Table 4.1: Command-line Options
ORBacus

Configuring the ORB and Object Adapter
A few additional command-line options are supported that do not have equivalent proper-
ties. These options are described in Table 4.2.

4.3.5 Using a Configuration File

A convenient way to define a group of properties is to use a configuration file. A sample
configuration file is shown below:

Concurrency models
ooc.orb.conc_model=threaded
ooc.orb.oa.conc_model=thread_pool
ooc.orb.oa.thread_pool=5

Initial services

-ORBnative_wcs name ooc.orb.native_wcs=name

-ORBnaming ior ooc.orb.service.NameService=ior

-ORBproperty name=value name=value

-ORBreactive ooc.orb.conc_model=reactive

-ORBrepository ior ooc.orb.service.InterfaceRepository=ior

-ORBserver_name string ooc.orb.server_name=string

-ORBservice name ior ooc.orb.service.name=ior

-ORBthreaded ooc.orb.conc_model=threaded

-ORBtrace_connections level ooc.orb.trace.connections=level

-ORBtrace_retry level ooc.orb.trace.retry=level

Option Description

-ORBconfig filename Causes the ORB to load the configuration file specified
by filename.

-ORBversion Causes the ORB to print its version to standard output.

Table 4.2: Additional Command-line Options

Option Property

Table 4.1: Command-line Options
ORBacus 59

ORB and Object Adapter Initialization

60
ooc.orb.service.NameService=corbaloc::myhost:5000/NameService
ooc.orb.service.EventService=corbaloc::myhost:5001/DefaultEventChannel
ooc.orb.service.TradingService=corbaloc::myhost:5002/TradingService

Note that trailing blanks are not ignored but are a part of the property.

You can define the name of the configuration file1 using a command-line option, an envi-
ronment variable (C++), or a system property (Java):

• Command-line option:

-ORBconfig filename

• Environment variable:

ORBACUS_CONFIG=filename

• Java system property:

ooc.config=filename

When an ORB is initialized, it first checks for the presence of the environment variable or
system property. If present, the ORB loads the configuration file. Next, the ORB loads the
configuration file specified by the -ORBconfig option. Therefore, the properties loaded
from the file specified by -ORBconfig will override any existing properties, including
those loaded by a configuration file specified in the environment variable or system prop-
erty. See “Precedence of Properties” on page 63 for more information.

Configuration files are only loaded during ORB initialization. Changes made to a configu-
ration file after an ORB has been initialized have no effect on that ORB.

4.3.6 Using the Windows NT Registry

Another convenient mechanism for use with C++ applications under Windows NT is to
use the system registry2. Properties can be stored in the registry under the following regis-
try keys:

HKEY_LOCAL_MACHINE\Software\OOC\Properties
HKEY_CURRENT_USER\Software\OOC\Properties

1. ORBACUS for Java also accepts a URL specification as the filename.

2. Use caution when defining ORBACUS properties in the registry, as they become global proper-
ties that will be used in every ORBACUS for C++ application. For example, subtle errors can
occur if the ooc.iiop.port property is defined on a global basis.
ORBacus

Configuring the ORB and Object Adapter
Individual properties are defined as sub-keys of the base. For example, the property
ooc.orb.trace.connections=5 is stored in the registry as the following key contain-
ing a value named connections with a REG_SZ data member equal to “5”:

Software\OOC\Properties\ooc\orb\trace

RegUpdate

The ORBACUS distribution includes a utility called RegUpdate. The tool first removes
all sub-keys defined under the specified registry key. Next, all values defined in an ORBA-
CUS configuration file are transferred to the registry.

Synopsis

RegUpdate HKEY_LOCAL_MACHINE|HKEY_CURRENT_USER config-file

Example:

RegUpdate HKEY_LOCAL_MACHINE ob.conf

This command reads the properties defined in the file ob.conf and writes the values
under the following registry key:

HKEY_LOCAL_MACHINE\Software\OOC\Properties

4.3.7 Defining Properties

Properties in Java

Java applications can use the standard Java mechanism for defining system properties
because ORBACUS will also search the system properties during ORB initialization.

For example:

1 // Java
2 java.util.Properties props = System.getProperties();
3 props.put("ooc.orb.conc_model", "threaded");
4 props.put("ooc.iiop.port", "10000");
5 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

2 Obtain the system properties.

3,4 Define ORBACUS properties.

5 Initialize the ORB.
ORBacus 61

ORB and Object Adapter Initialization

62
Java virtual machines typically allow you to define system properties on the command
line. For example, using Sun’s JVM you can do the following:

java -Dooc.iiop.port=5000 MyServer

You can also use the java.util.Properties object that is passed to the ORB.init()
method to provide ORBACUS property definitions:

1 // Java
2 java.util.Properties props = new java.util.Properties();
3 props.put("ooc.iiop.numeric", "true");
4 org.omg.CORBA.ORB orb = orb.omg.CORBA.ORB.init(args, props);

2 Create a java.util.Properties object to hold our properties.

3 Define ORBACUS properties.

4,5 Initialize the ORB using the java.util.Properties object.

Properties in C++

In C++, the ORBACUS-specific class OB::Properties can be used to define properties:

// C++
class Properties
{

// ...
public:

Properties();
Properties(Properties_ptr p);
~Properties();

static Properties_ptr _duplicate(Properties_ptr p);
static Properties_ptr _nil();

static Properties_ptr getDefaultProperties();

void setProperty(const char* key, const char* value);
const char* getProperty(const char* key) const;

// ...
};

For example, to add the threaded concurrency model to a property set that is used to ini-
tialize the ORB:
ORBacus

Configuring the ORB and Object Adapter
1 // C++
2 OB::Properties_var dflt = OB::Properties::getDefaultProperties();
3 OB::Properties_var props = new OB::Properties(dflt);
4 props -> setProperty("ooc.orb.conc_model", "threaded");
5 CORBA::ORB_var orb = OBCORBA::ORB_init(argc, argv, props);

2-3 Create an OB::Properties object that is based on the default properties. This is impor-
tant because, unlike org.omg.CORBA.ORB.init, OBCORBA::ORB_init does not read
the default properties if the property parameter is not null.

4 Define ORBACUS properties.

5 Initialize the ORB using the ORBACUS-specific OBCORBA::ORB_init operation.

4.3.8 Precedence of Properties

Given that properties can be defined in several ways, it’s important to establish the order of
precedence used by ORBACUS when collecting and processing the property definitions.
The order of precedence is listed below, from highest to lowest. Properties defined at a
higher precedence override the same properties defined at a lower precedence.

1. Command-line options

2. Configuration file specified at the command-line

3. User-supplied properties

4. Configuration file specified by the ORBACUS_CONFIG environment variable (C++) or
the ooc.config system property (Java)

5. System properties (Java only)

6. HKEY_CURRENT_USER\Software\OOC\Properties (Windows NT/C++ only)

7. HKEY_LOCAL_MACHINE\Software\OOC\Properties (Windows NT/C++ only)

For example, a property defined using a command-line option overrides the same property
defined in a configuration file.

4.3.9 Advanced Property Usage

With the methods for ORB initialization discussed in the previous sections, the command-
line arguments are not processed until a call to CORBA::ORB_init (C++),
OBCORBA::ORB_init (C++), or org.omg.CORBA.ORB.init (Java). Hence, the set of
properties that will be used by the ORB is not available until after the ORB is initialized.
This poses a problem if the properties need to be validated prior to ORB initialization.
ORBacus 63

ORB and Object Adapter Initialization

64
If you need access to an ORB’s property set before it is initialized, then you may elect to
use the ORBACUS-specific operations OB::ParseArgs (C++) or
com.ooc.CORBA.ORB.ParseArgs (Java). The following examples check the value of
the ooc.orb.conc_model property to ensure that it is set to reactive or threaded. If
not, the code chooses the threaded concurrency model.

1 // C++
2 OB::Properties_var dflt = OB::Properties::getDefaultProperties();
3 OB::Properties_var props = new OB::Properties(dflt);
4 OB::ParseArgs(argc, argv, props, OB::Logger::_nil());
5 const char* orbModel = props -> getProperty(“ooc.orb.conc_model”);
6 if(strcmp(orbModel, “threaded”) != 0 &&
7 strcmp(orbModel, “reactive”) != 0)
8 {
9 props -> setProperty(“ooc.orb.conc_model”, “threaded”);

10 }
11 CORBA::ORB_var orb = OBCORBA::ORB_init(argc, argv, props);

2-3 Create an OB::Properties object that is based on the default properties.

4 Initialize the properties for the ORB. After invoking OB::ParseArgs, props contains
the ORB properties and argv no longer contains any -ORB or -OA command-line argu-
ments. The OB::ParseArgs operation takes an optional Logger object, which
ParseArgs will use to display any warning or error messages. In this example, a custom
Logger object is not used, so the code passes a nil value.

5-10 Retrieve the ooc.orb.conc_model property and set it to threaded if its value is not
valid.

11 Initialize the ORB.

1 // Java
2 java.util.Properties props = System.getProperties();
3 args = com.ooc.CORBA.ORB.ParseArgs(args, props, null);
4 String orbModel = props.get(“ooc.orb.conc_model”);
5 if(!orbModel.equals(“threaded”))
6 {
7 props.put(“ooc.orb.conc_model”, “threaded”);
8 }
9 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(arg, props);

2 Create a java.util.Properties object.

3 Initialize the properties for the ORB. After invoking com.ooc.CORBA.ORB.ParseArgs,
props contains the ORB properties. The return value of ParseArgs is a string array with
ORBacus

Using POA Managers
all -ORB and -OA arguments removed. As in the C++ example, a Logger object is not
used.

4-8 Retrieve the ooc.orb.conc_model property and set it to threaded if its value is not
valid.

9 Initialize the ORB.

4.4 Using POA Managers
The CORBA specification states that a POA Manager is used to control the flow of
requests to one or more POAs. In ORBACUS, each POA Manager also encapsulates a set
of network endpoints on which a server listens for new connections. This design provides
applications with a great deal of flexibility:

• endpoints can be activated and deactivated on demand

• a group of endpoints can be controlled using a single POA Manager and serviced by
one or more POAs

4.4.1 Creating POA Managers

When the Root POA is first resolved using resolve_initial_references, a POA
Manager is created to manage the Root POA. Additional POA Managers are created
implicitly when a nil value for the POA Manager argument is passed to the create_POA
operation. In this text, we’ll refer to POA Managers created in this way as “anonymous”
POA Managers.

By default, each new POAManager creates a single IIOP endpoint (i.e., the POAManager
will listen for new connections on a port). Applications should therefore use caution to
ensure that POA Managers are not created unnecessarily.

An application can control the endpoint configuration using configuration properties (see
“ORB Properties” on page 49). However, properties cannot be specified for anonymous
POA Managers, therefore these POA Managers are created using the default settings. For
IIOP, the default settings will cause an anonymous POA Manager to listen for new con-
nections on a port chosen by the operating system. To override this behavior and allow an
application to easily configure POA Managers, ORBACUS provides a proprietary factory
interface for creating named POA Managers:

// IDL
module OBPortableServer
{
interface POAManagerFactory
{

ORBacus 65

ORB and Object Adapter Initialization

66
struct AcceptorConfig
{

OCI::ProtocolId id;
OCI::ParamSeq params;

};

typedef sequence< AcceptorConfig > AcceptorConfigSeq;

exception POAManagerAlreadyExists
{
};

POAManager create_poa_manager(in string name)
raises(POAManagerAlreadyExists,

OCI::InvalidParam);

POAManager create_poa_manager_with_config(
in string name,
in AcceptorConfigSeq config)
raises(POAManagerAlreadyExists,

OCI::NoSuchFactory,
OCI::InvalidParam);

POAManagerSeq get_poa_managers();

void destroy();
};
};

The example below illustrates how to create and configure a new POA Manager using the
ORBACUS POA Manager Factory.

Here is an example in C++:

1 // C++
2 CORBA::Object_var obj =
3 orb -> resolve_initial_references(“POAManagerFactory”);
4 OBPortableServer::POAManagerFactory_var factory =
5 OBPortableServer::POAManagerFactory::_narrow(obj);
6 PortableServer::POAManager_var myPOAManager =
7 factory -> create_poa_manager(“MyPOAManager”);

2-5 Resolve the POA Manager Factory.

6-7 Create a new POA Manager with the name “MyPOAManager”.
ORBacus

Using POA Managers
And in Java:

1 // Java
2 org.omg.CORBA.Object obj =
3 orb.resolve_initial_references(“POAManagerFactory”);
4 com.ooc.OBPortableServer.POAManagerFactory factory =
5 com.ooc.OBPortableServer.POAManagerFactoryHelper.narrow(obj);
6 org.omg.PortableServer.POAManager myPOAManager =
7 factory.create_poa_manager(“MyPOAManager”);

2-5 Resolve the POA Manager Factory.

6-7 Create a new POA Manager with the name “MyPOAManager”.

Now we can configure the IIOP port used by our new POA Manager with the following
property:

ooc.iiop.acceptor.MyPOAManager.port=5001

When experimenting with various endpoint configurations, it can be very useful to enable
connection tracing diagnostics. With diagnostics enabled, the ORB will display its end-
point information, allowing you to confirm that the application’s endpoints are configured
correctly. Diagnostics can be enabled using the -ORBtrace_connections command-
line option, or using the equivalent property ooc.orb.trace.connections. See “Con-
figuring the ORB and Object Adapter” on page 49 for more information on the supported
configuration properties and command-line options.

4.4.2 The Root POA Manager

As its name suggests, the Root POA Manager is the POA Manager of the Root POA. The
Root POA Manager is usually created by the ORB when
resolve_initial_references is first called for the Root POA. However, an applica-
tion can also manually create the Root POA Manager if a special configuration is desired.
This capability is useful in that it allows the application to use the Root POA with custom-
ized endpoints.

Note that an application must create the Root POA Manager before resolving the Root
POA. Otherwise, the ORB will have already created the Root POA Manager and the appli-
cation will receive an exception when it attempts to create the Root POA Manager.

When using the POA Manager Factory, the name of the Root POA Manager is always
“RootPOAManager”.
ORBacus 67

ORB and Object Adapter Initialization

68
4.4.3 Dispatching Requests

As explained in [4], a POA Manager is initially in the “holding” state, where incoming
requests on the POA Manager’s endpoints are queued. To dispatch requests, the POA
Manager must be activated using the activate() operation.

4.4.4 Callbacks

In mixed client/server applications in which callbacks occur, it is important to remember
that callbacks will not be dispatched until the POA Manager has been activated. If the
POA Manager has not been activated, the application will likely hang. In general, applica-
tions should activate the POA Manager prior to making any request that might result in a
callback.

4.4.5 Advanced Configuration Example

The create_poa_manager operation demonstrated in section 4.4.1 is a simple way to
create a POA Manager with a single endpoint. In some architectures, however, it may be
more appropriate to configure a POA Manager with multiple endpoints.

Using the create_poa_manager_with_config operation, the application can instruct
the POA Manager Factory to create a POA Manager with a specific endpoint configura-
tion. In terms of the ORBACUS Open Communications Interface (OCI), the application is
configuring the POA Manager’s acceptors (see Chapter 19 for more information on the
OCI). The example below illustrates how to configure the Root POA Manager with two
acceptors.

1 // C++
2 #include <OB/CORBA.h>
3 #include <OB/OCI_IIOP.h>
4 ...
5 OBPortableServer::POAManagerFactory_var factory = ... // resolve
6 OBPortableServer::POAManagerFactory::AcceptorConfigSeq config;
7 config.length(2);
8 config[0].id = OCI::IIOP::TAG_IIOP;
9 config[0].params.length(1);

10 config[0].params[0].name = CORBA::string_dup(“port”);
11 config[0].params[0].value <<= (CORBA::UShort)3000;
12 config[1].id = OCI::IIOP::TAG_IIOP;
13 config[1].params.length(1);
14 config[1].params[0].name = CORBA::string_dup(“port”);
15 config[1].params[0].value <<= (CORBA::UShort)3001;
16 PortableServer::POAManager_var manager =
ORBacus

Using POA Managers
17 factory -> create_poa_manager_with_config(“RootPOAManager”,
18 config);
19 PortableServer::RootPOA_var rootPOA =
20 orb -> resolve_initial_references(“RootPOA”);

5 Resolve the ORBACUS POA Manager Factory. See section 4.4.1 for an example.

6-7 Initialize a configuration sequence with two elements.

8-11 Configure an IIOP acceptor to listen on port 3000.

12-15 Configure an IIOP acceptor to listen on port 3001.

16-18 Create the Root POA Manager.

19-20 The Root POA Manager must be created before resolving the Root POA.

1 // Java
2 import com.ooc.OBPortableServer.POAManagerFactory;
3 import com.ooc.OBPortableServer.POAManagerFactoryPackage.*;
4 ...
5 POAManagerFactory factory = ... // resolve
6 AcceptorConfig[] config = new AcceptorConfig[2];
7 config[0] = new AcceptorConfig();
8 config[0].id = com.ooc.OCI.IIOP.TAG_IIOP.value;
9 config[0].params = new com.ooc.OCI.Param[1];

10 config[0].params[0] = new com.ooc.OCI.Param();
11 config[0].params[0].name = “port”;
12 config[0].params[0].value = orb.create_any();
13 config[0].params[0].value.insert_ushort((short)3000);
14 config[1] = new AcceptorConfig();
15 config[1].id = com.ooc.OCI.IIOP.TAG_IIOP.value;
16 config[1].params = new com.ooc.OCI.Param[1];
17 config[1].params[0] = new com.ooc.OCI.Param();
18 config[1].params[0].name = “port”;
19 config[1].params[0].value = orb.create_any();
20 config[1].params[0].value.insert_ushort((short)3001);
21 org.omg.PortableServer.POAManager manager =
22 factory.create_poa_manager_with_config(“RootPOAManager”,
23 config);
24 org.omg.PortableServer.POA rootPOA =
25 orb.resolve_initial_references(“RootPOA”);

5 Resolve the ORBACUS POA Manager Factory. See section 4.4.1 for an example.

6 Initialize a configuration sequence with two elements.
ORBacus 69

ORB and Object Adapter Initialization

70
7-13 Configure an IIOP acceptor to listen on port 3000.

14-20 Configure an IIOP acceptor to listen on port 3001.

21-23 Create the Root POA Manager.

24-25 The Root POA Manager must be created before resolving the Root POA.

4.5 ORB Destruction

4.5.1 Destroying the C++ ORB

Applications must destroy the ORB before returning from main so that resources used by
the ORB are properly released. To destroy the ORB, invoke destroy on the ORB:

// C++
CORBA::ORB_var orb = // Initialize the orb
// ...
orb -> destroy();

4.5.2 Destroying the Java ORB

As in C++, Java must destroy the ORB so that resources are properly released. In Java, the
ORB is destroyed as follows:

// Java
org.omg.CORBA.ORB orb = // Initialize the orb
// ...
orb.destroy();

In JDK 1.2, the ORB interface does not define the standard destroy method. To work
around this problem, an application can be compiled using the -Xbootclasspath option
to ensure that the ORBACUS classes (i.e., OB.jar) are located before the JDK’s runtime
classes. Alternatively, an application can cast the ORB reference to the type
com.ooc.CORBA.ORB when calling destroy, as shown below:

// Java
org.omg.CORBA.ORB orb = // Initialize the orb
// ...
((com.ooc.CORBA.ORB)orb).destroy();

Note that using this cast is ORBACUS-specific, therefore an application wishing to remain
strictly portable must use a workaround such as -Xbootclasspath. For example:

javac -Xbootclasspath/p:/path/to/OB.jar MyApp.java
ORBacus

Server Event Loop
The /p suffix indicates that the ORBACUS classes should be prepended to the JVM’s boot
classpath. See the JDK documentation for more information.

4.6 Server Event Loop
A server’s event loop is entered by calling POAManager::activate on each POA Man-
ager, and then calling ORB::run. For example, in Java:

// Java
org.omg.CORBA.ORB orb = ... // Initialize the orb
org.omg.PortableServer.POAManager manager = ... // Get Root POA manager
manager.activate();
orb.run();

And in C++:

// C++
CORBA::ORB_var orb = ... // Initialize the orb
PortableServer::POAManager_var manager = ... // Get the Root POA manager
manager -> activate();
orb -> run();

You can deactivate a server by calling ORB::shutdown, which causes ORB::run to
return. For example, consider a server that can be shut down by a client by calling a
deactivate operation on one of the server’s objects. First the IDL code:

// IDL
interface ShutdownObject
{

void deactivate();
};

On the server side, ShutdownObject can be implemented like this:

1 // C++
2 class ShutdownObject_impl :
3 public POA_ShutdownObject,
4 public PortableServer::RefCountServantBase
5 {
6 CORBA::ORB_var orb_;
7

8 public:
9

10 ShutdownObject_impl(CORBA::ORB_ptr orb)
11 : orb_(CORBA::ORB::_duplicate(orb))
12 {
ORBacus 71

ORB and Object Adapter Initialization

72
13 }
14

15 virtual void deactivate() throw(CORBA::SystemException)
16 {
17 orb_ -> shutdown(false);
18 }
19 };

2-3 A servant class for ShutdownObject is defined. For more information on how to imple-
ment servant classes, see Chapter 5.

5 An ORB is needed to call shutdown.

9-12 The constructor initializes the ORB member.

14-17 deactivate calls shutdown on the ORB. Note that shutdown is called with the argu-
ment false to avoid a deadlock. A false argument instructs shutdown to terminate
request processing without waiting for executing operations to complete. A true argu-
ment instructs shutdown to return only once all operations have completed. If shutdown
were to be called with a true argument in this example, it would deadlock. That is
because shutdown(true) would be invoked from within an operation and, therefore,
could not ever return.

The client can use the deactivate call as shown below:

// C++
ShutdownObject_var shutdownObj = ... // Get a reference somehow
shutdownObj -> deactivate();

4.7 Applets

4.7.1 Compatibility with Netscape

The Java mapping in ORBACUS 4 uses the portable stream-based stubs as specified in [6].
These stubs are not compatible with Netscape’s built-in ORB. Therefore, in order to write
applets using ORBACUS 4, you will need to disable or replace Netscape’s built-in ORB.

The Netscape ORB classes are contained in the file iiop10.jar, located in the java/
classes subdirectory of the Netscape installation. To disable the ORB, rename this file
(e.g., to iiop10_old.jar). With the ORB disabled, applets can download the ORBACUS

classes along with the applet.
ORBacus

Applets
To replace the built-in ORB with ORBACUS, rename the iiop10.jar file as described
above, and copy the OB.jar file to the same directory, giving it the name iiop10.jar.
For example:

cd <netscape-home>/java/classes
mv iiop10.jar iiop10_old.jar
cp <orbacus-home>/lib/OB.jar iiop10.jar

4.7.2 Initializing the Java ORB for Applets

A different overloading of ORB.init() is provided for use by applets:

// Java
import org.omg.CORBA.*;
public void init()
{

ORB orb = ORB.init(this, new java.util.Properties());
// ...

}

4.7.3 Adding ORBacus Applets to Web Pages

Like any other applet, ORBACUS applets can be added to HTML pages with the APPLET
tag:

<APPLET CODE=”Client.class” ARCHIVE=”OB.jar” WIDTH=500 HEIGHT=300>
</APPLET>

It is necessary to tell the Web browser where to find the ORBACUS Java classes. This is
best done with the ARCHIVE attribute as shown above. An alternative is to use the
CODEBASE attribute and to extract the OB.jar archive in the directory defined by
CODEBASE. For more information, please consult your Java Development Kit documenta-
tion.

4.7.4 Defining ORB Options for an Applet

The PARAM tag is used in HTML to define parameters for an applet. When initialized by an
applet, the ORB looks for the ORBparams parameter, whose value should be command-
line options separated by spaces.

For example, the HTML code below uses the -ORBconfig option to specify the URL of
the ORB configuration file:

<APPLET CODE=”Client.class” ARCHIVE=”OB.jar” WIDTH=500 HEIGHT=300>
<PARAM NAME=”ORBparams” VALUE=”-ORBconfig http://www/orb.cfg”>
ORBacus 73

ORB and Object Adapter Initialization

74
</APPLET>

Your applet can also define ORBACUS configuration properties using Java system proper-
ties, or using the java.util.Properties object passed to
org.omg.CORBA.ORB.init(). See “ORB Properties” on page 49 for more information.

4.7.5 Defining the ORB Class Parameters

Some Web browsers1 have a built-in ORB. In order to use ORBACUS instead of this built-
in ORB, you must set the following applet parameters:

<APPLET CODE=”Client.class” ARCHIVE=”OB.jar” WIDTH=500 HEIGHT=300>
<PARAM NAME=”org.omg.CORBA.ORBClass”

VALUE=”com.ooc.CORBA.ORB”>
<PARAM NAME=”org.omg.CORBA.ORBSingletonClass”

VALUE=”com.ooc.CORBA.ORBSingleton”>
</APPLET>

4.7.6 Security Issues

Web browsers generally place several security restrictions on applets that you need to be
aware of when developing an applet using ORBACUS:

• Applets can only communicate with the host from which the applet was downloaded.

• Applets cannot accept connections from any host.

The first limitation forces you to run any CORBA server applications that your applet
communicates with on your Web server host.2 The second limitation prevents your applet
from acting as a CORBA server, which is often necessary when a client wishes to receive
callbacks from a server.

These limitations are the most common causes of security exceptions in an applet. You
must ensure that any object references used by your applet refer to objects on the Web
server host. Furthermore, you must not attempt to enable CORBA server functionality in
your applet by using the POA.

1. For example, Netscape v4 has a built-in ORB.

2. Netscape v4 also does not normally allow CORBA applets to be loaded from a local (i.e., filesys-
tem) HTML file, causing a SecurityException when the applet attempts to connect to the
CORBA server. To work around this problem, CORBA applets must be downloaded from a Web
server.
ORBacus

CHAPTER 5 CORBAObjects
5.1 Overview
A CORBA object is an object with an interface defined in CORBA IDL. CORBA objects
have different representations in clients and servers.

• A server implements a CORBA object in a concrete programming language, for
example in C++ or Java. This is done by writing an implementation class for the
CORBA object and by instantiating this class. The resulting implementation object is
called a servant.

• A client that wants to make use of an object implemented by a server creates an object
that delegates all operation calls to the servant via the ORB. Such an object is called a
proxy.

When a client invokes a method on the local proxy object, the ORB packs the input param-
eters and sends them to the server, which in turn unpacks these parameters and invokes the
actual method on the servant. Output parameters and return values, if any, follow the
reverse path back to the client. From the client’s perspective, the proxy acts just like the
remote object since it hides all the communication details within itself.

A servant must somehow be connected to the ORB, so that the ORB can invoke a method
on the servant when a request is received from a client. This connection is handled by the
Portable Object Adapter (POA), as shown in Figure 5.1.
ORBacus 75

CORBA Objects

76
The Portable Object Adapter in ORBACUS replaces the deprecated “Basic Object
Adapter” (BOA). (The BOA was deprecated by the OMG because it had a number of seri-
ous deficiencies and was under-specified.) The POA is a far more flexible and powerful
object adapter than the BOA. The POA not only allows you to write code that is portable
among ORBs from different vendors, it also provides a number of features that are essen-
tial for building high-performance and scalable servers.

5.2 Implementing Servants
In this section, we will implement servant classes (or “implementation classes”) for the
IDL interfaces defined below:

1 // IDL
2 interface A
3 {
4 void op_a();
5 };
6

7 interface B
8 {
9 void op_b();

10 };
11

12 interface I : A, B
13 {
14 void op_i();
15 };

Figure 5.1: Servants, Proxies and the Object Adapter

Proxy

Servant

POA

ORB

Client Server
ORBacus

Implementing Servants
2-5 An interface A is defined with the operation op_a.

7-10 An interface B is defined with the operation op_b.

12-15 Interface I is defined, which is derived from A and B. It also defines a new operation op_i.

5.2.1 Implementing Servants using Inheritance

ORBACUS for C++ and ORBACUS for Java both support the use of inheritance for inter-
face implementation. To implement an interface using inheritance, you write a servant
class that inherits from a skeleton class generated by the IDL translator. By convention,
the name of the servant class should be the name of the interface with the suffix _impl,
e.g., for an interface I, the implementation class is named I_impl.1

Inheritance using C++

In C++, I_impl must inherit from the skeleton class POA_I that was generated by the
IDL-to-C++ translator. If I inherits from other interfaces, for example from the interfaces
A and B, then I_impl must also inherit from the corresponding implementation classes
A_impl and B_impl.

1 // C++
2 class A_impl : virtual public POA_A
3 {
4 public:
5 virtual void op_a() throw(CORBA::SystemException);
6 };
7

8 class B_impl : virtual public POA_B
9 {

10 public:
11 virtual void op_b() throw(CORBA::SystemException);
12 };
13

14 class I_impl : virtual public POA_I,
15 virtual public A_impl,
16 virtual public B_impl
17 {
18 public:
19 virtual void op_i() throw(CORBA::SystemException);
20 };

1. These naming rules are not mandatory, they are just a recommendation.
ORBacus 77

CORBA Objects

78
2-6 The servant class A_impl is defined, inheriting from the skeleton class POA_A. If op_a
had any parameters, these parameters would be mapped according to the standard IDL-to-
C++ mapping rules [4].

8-13 This is the servant class for B_impl.

14-20 The servant class for I_impl is not only derived from POA_I, but also from the servant
classes A_impl and B_impl.

Note that virtual public inheritance must be used. The only situation in which the
keyword virtual is not necessary is for an interface I which does not inherit from any
other interface and from which no other interface inherits. This means that the implemen-
tation class I_impl only inherits from the skeleton class POA_I and no implementation
class inherits from I_impl.

It is not strictly necessary to have an implementation class for every interface. For exam-
ple, it is sufficient to only have the class I_impl as long as I_impl implements all inter-
face operations, including the operations of the base interfaces:

1 // C++
2 class I_impl : virtual public POA_I
3 {
4 public:
5 virtual void op_a() throw(CORBA::SystemException);
6 virtual void op_b() throw(CORBA::SystemException);
7 virtual void op_i() throw(CORBA::SystemException);
8 };

2 Now I_impl is only derived from POA_I, but not from the other servant classes.

5-7 I_impl must implement all operations from the interface I as well as the operations of all
interfaces from which I is derived.

Inheritance using Java

Several files are generated by the ORBACUS IDL-to-Java translator for an interface I,
including:

• I.java, which defines a Java interface I containing public methods for the
operations and attributes of I, and

• IPOA.java, which is an abstract skeleton class that serves as the base class for
servant classes.

In contrast to C++, Java’s lack of multiple inheritance currently makes it impossible for a
servant class to inherit operation implementations from other servant classes, except when
ORBacus

Implementing Servants
using delegation-based implementation. For our interface I it is therefore necessary to
implement all operations in a single servant class I_impl, regardless of whether those
operations are defined in I or in an interface from which I is derived.

1 // Java
2 public class I_impl extends IPOA
3 {
4 public void op_a()
5 {
6 }
7

8 public void op_b()
9 {

10 }
11

12 public void op_i()
13 {
14 }
15 }

2-15 The servant class I_impl is defined, which implements op_i, as well as the inherited
operations op_a and op_b.

5.2.2 Implementing Servants using Delegation

Sometimes it is not desirable to use an inheritance-based approach for implementing an
interface. This is especially true if the use of inheritance would result in overly complex
inheritance hierarchies (for example, because of use of an existing class library that
requires extensive use of inheritance). Therefore, another alternative is available for imple-
menting servants which does not use inheritance. A special class, known as a tie class, can
be used to delegate the implementation of an interface to another class.1

Delegation using C++

The ORBACUS IDL-to-C++ translator can automatically generate a tie class for an inter-
face in the form of a template class. A tie template class is derived from the corresponding
skeleton class and has the same name as the skeleton, with the suffix _tie appended.

1. Note that tie classes are rarely necessary. Not only is the inheritance implementation less com-
plex, but it also avoids a number of problems that arise with the life cycle of objects, particularly
in threaded servers. We suggest that you use the tie approach only if you have no other option.
ORBacus 79

CORBA Objects

80
For the interface I from the C++ example above, the template POA_I_tie is generated
and must be instantiated with a class that implements all operations of I. By convention,
the name of this class should be the name of the interface with _impl_tie appended.1

In contrast to the inheritance-based approach, it is not necessary for the class implement-
ing I’s operations, i.e., I_impl_tie, to be derived from a skeleton class. Instead, an
instance of POA_I_tie delegates all operation calls to I_impl_tie, as shown in Figure
5.2.

Here is our definition of I_impl_tie:

1 // C++
2 class I_impl_tie
3 {
4 public:
5 virtual void op_a() throw(CORBA::SystemException);
6 virtual void op_b() throw(CORBA::SystemException);
7 virtual void op_i() throw(CORBA::SystemException);
8 };

2 I_impl_tie is defined and not derived from any other class.

5-7 I_impl_tie must implement all of I’s operations, including inherited operations.

1. Again, you are free to choose whatever name you like. This is just a recommendation.

Figure 5.2: Class Hierarchy for Delegation Implementation in C++

POA_I_tie

T

delegates to

POA_I

I_impl_tie
ORBacus

Implementing Servants
A servant class for I can then be defined using the I_skel_tie template:

1 // C++
2 typedef POA_I_tie< I_impl_tie > I_impl;

2 The servant class I_impl is defined as a template instance of POA_I_tie, parameterized
with I_impl_tie.

The tie template generated by the IDL compiler contains functions that permit you change
the instance denoted by the tie:

1 // C++
2 template<class T>
3 class POA_I_tie : public POA_I
4 {
5 public:
6 // ...
7 T* _tied_object();
8 void _tied_object(T& obj);
9 void _tied_object(T* obj, CORBA::Boolean release = true);

10 // ...
11 }

7-9 The _tied_object function permits you to retrieve and change the implementation
instance that is currently associated with the tie. The first modifier function calls delete
on the current tied instance before accepting the new tied instance if the release flag is
currently true; the release flag for the new tied instance is set to false. The second mod-
ifier function also calls delete on the current tied instance before accepting the new
instance but sets the release flag to the passed value.

Delegation using Java

For every IDL interface, the IDL-to-Java mapping generates an “operations” interface
containing methods for the IDL attributes and operations. This operations interface is also
used to support delegation-based servant implementation. For an interface I, the following
additional class is generated:

• IPOATie.java, the tie class that inherits from IPOA and delegates all requests to an
instance of IOperations.

To implement our servant class using delegation, we need to write a class that implements
the IOperations interface:
ORBacus 81

CORBA Objects

82
1 // Java
2 public class I_impl_tie implements IOperations
3 {
4 public void op_a()
5 {
6 }
7

8 public void op_b()
9 {

10 }
11

12 public void op_i()
13 {
14 }
15 }

2 The servant class I_impl_tie is defined to implement the IOperations interface.

4-14 I_impl_tie must implement all of I’s operations, including inherited operations.

Figure 5.3 illustrates the relationship between the classes generated by the IDL-to-Java
translator and the servant implementation classes.

Figure 5.3: Class Hierarchy for Inheritance and Delegation Implementation in Java

IPOATie
delegates to

IPOA

I_impl IOperations

I_impl_tie
ORBacus

Creating Servants
As noted earlier, Java’s lack of multiple inheritance makes it impossible to inherit an
implementation from another servant class. Using tie classes, however, does allow imple-
mentation inheritance, but only in certain situations.

For example, let’s implement each of our sample interfaces using delegation.

1 // Java
2 public class A_impl implements AOperations
3 {
4 public void op_a()
5 {
6 }
7 }
8

9 public class B_impl implements BOperations
10 {
11 public void op_b()
12 {
13 }
14 }
15

16 public class I_impl extends B_impl implements IOperations
17 {
18 public void op_a()
19 {
20 }
21

22 public void op_i()
23 {
24 }
25 }

2-7 Class A_impl is defined as implementing AOperations.

9-14 Class B_impl is defined as implementing BOperations.

16-21 Class I_impl inherits the implementation of op_b from B_impl, and provides an imple-
mentation of op_a and op_i. Since a Java class can only extend one class, it’s not possi-
ble for I_impl to inherit the implementations of both op_a and op_b.

5.3 Creating Servants
Servants are created the same way in both C++ and Java: once your servant class is writ-
ten, you simply instantiate a servant with new.1
ORBacus 83

CORBA Objects

84
5.3.1 Creating Servants using C++

Here is how to create servants using C++:

1 // C++
2 I_impl* servant_pointer = new I_impl;
3 I_impl* another_servant_pointer = new I_impl;

2,3 Two servants are created with new. Note that this merely instantiates the servants but does
not inform the ORB that these servants exist yet. The ORB server-side run time only
learns of the existence of the servants once you activate them.

In case the servant class was written using the delegation approach, an object of the class
implementing I’s operations must be passed to the servant’s constructor:

1 // C++
2 I_impl_tie* impl = new I_impl_tie;
3 POA_I_tie< I_impl_tie >* tie_pointer =
4 new POA_I_tie< I_impl_tie >(impl);

2 A new I_impl_tie is created with new.

3,4 An instance of POA_I_tie parameterized with I_impl_tie is created, taking impl as a
parameter. All operation calls to tie will then be delegated to impl.

In this example, the lifetime of impl is coupled to the lifetime of the servant tie. That is,
when the tie is destroyed, delete impl is called by the tie’s destructor. In case you don’t
want the lifetime of impl to be coupled to the lifetime of the tie, for example, because you
want to create a servant on the stack and not on the heap (making it illegal to call delete
on the tie), use the following code:

1 // C++
2 I_impl_tie impl;
3 POA_I_tie< I_impl_tie >* tie =
4 new POA_I_tie< I_impl_tie >(&impl, false);

2 A new I_impl_tie is created, this time on the stack, not on the heap.

3,4 An instance of POA_I_tie is created. The false parameter tells tie not to call delete
on impl.

1. You can also instantiate servants on the stack. However, this only works only for some POA pol-
icies, so servants are usually instantiated on the heap.
ORBacus

Creating Servants
5.3.2 Creating Servants using Java

Every tie class generated by the IDL-to-Java translator has two constructors:

// Java
public class IPOATie extends IPOA
{

public IPOATie(IOperations delegate) { ... }
public IPOATie(IOperations delegate, POA poa) { ... }
...

}

The second constructor allows a POA instance to be supplied, which will be used as the
return value for the tie’s _default_POA method. If the POA instance is not supplied, the
_default_POA method will return the root POA of the ORB with which the tie has been
associated.

This example demonstrates how to create servants using Java:

1 // Java
2 I_impl impl = new I_impl();
3 I_impl anotherImpl = new I_impl();

2,3 Two servants, impl and anotherImpl, are created with new.

In case the servant class was written using the delegation approach, an object implement-
ing the IOperations interface must be passed to the tie’s constructor:

1 // Java
2 I_impl_tie impl = new I_impl_tie();
3 IPOATie tie = new IPOATie(impl);

2 A new I_impl_tie is created.

3 An instance of IPOATie is created, taking impl as a parameter. All operation calls to tie
will then be delegated to impl.

The tie class also provides methods for accessing and changing the implementation object:

1 // Java
2 public class IPOATie extends IPOA
3 {
4 ...
5 public IOperations _delegate() { ... }
6 public void _delegate(IOperations delegate) { ... }
ORBacus 85

CORBA Objects

86
7 ...
8 }

5 This method returns the current delegate (i.e., implementation) object.

6 This method changes the delegate object.

5.4 Activating Servants
Servants must be activated in order to receive requests from clients. Servant activation
informs the ORB run time which particular servant represents (or incarnates) a particular
CORBA object. Activation of a servant assigns an object identifier to the servant. That
object identifier is also embedded in every object reference that is created for an object and
serves to link the object reference with its servant.

The POA’s IdAssignmentPolicy value controls whether object IDs are assigned by the
POA or the server application code. The SYSTEM_ID policy value directs the ORB to
assign a unique object identifier to the CORBA object represented by the servant; the
USER_ID policy value requires the server application code to supply an ID that must be
unique within the servant’s POA.

Servants can be activated implicitly or explicitly. Implicit activation takes place when you
create the first object reference for a servant. Explicit activation requires a separate API
call. Typically, you will use implicit activation for transient objects and explicit activation
for persistent objects. The ImplicitActivationPolicy controls whether explicit or
implicit is in effect. Explicit activation requires the NO_IMPLICIT_ACTIVATION policy
value on the servant’s POA, whereas implicit activation requires the
IMPLICIT_ACTIVATION policy value.

5.4.1 Implicit Activation of Servants using C++

The following code shows how to implicitly activate a servant:

1 // C++
2 I_impl impl;
3 I_var iv = impl -> _this();

2 A new servant impl is created.

3 The new servant is activated implicitly by calling _this.

Note that implicit activation as shown requires the RETAIN, IMPLICIT_ACTIVATION,
and SYSTEM_ID policies on the servant’s POA. The servant is activated with the POA that
is returned by the servant’s _default_POA member function. (The default implementa-
ORBacus

Activating Servants
tion of _default_POA returns the Root POA; if you want servants activated on a different
POA, you must override _default_POA in the implementation class to return the POA
you want to use.)

5.4.2 Implicit Activation of Servants using Java

This is how Java servants are implicitly activated:

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 I_impl impl = new I_impl();
4 I Iref = impl._this(orb);

2 To activate a servant, we need the ORB.

3 A new servant impl is created.

4 The new servant is activated (using the POA returned by the servant’s _default_POA
operation).

As shown above, a servant in Java must be associated with an ORB, and cannot be associ-
ated with multiple ORBs. The first call to _this() must supply the ORB reference; sub-
sequent calls to _this() for the same servant can omit the ORB reference.

An alternative way to associate a servant with an ORB is to call the set_delegate
method defined in org.omg.CORBA_2_3.ORB.

// Java
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
((org.omg.CORBA_2_3.ORB)orb).set_delegate(impl);

5.4.3 Explicit Activation of Servants using C++

If NO_IMPLICIT_ACTIVATION and SYSTEM_ID are in effect for a servant’s POA, you
activate the servant by calling activate_object:

1 I_impl impl;
2 PortableServer::POA_var poa = impl._default_POA();
3 poa -> activate_object(&impl);

1 The code instantiates a servant.

2 To activate a servant, we need the servant’s POA.

3 activate_object creates a unique ID for the servant.
ORBacus 87

CORBA Objects

88
Once a servant is activated, calls to _this on the servant return an object reference that
contains the ORB-assigned ID for the object.

If NO_IMPLICIT_ACTIVATION and USER_ID are in effect for servant’s POA, you activate
the servant by supplying the ID value as an octet sequence to
activate_object_with_id:

1 I_impl impl;
2 PortableServer::POA_var poa = impl._default_POA();
3 PortableServer::ObjectId_var oid =
4 PortableServer::string_to_ObjectId("MyObjectName");
5 poa -> activate_object_with_id(oid, &impl);

3,4 The string_to_ObjectId helper function converts a string into an octet sequence.

5 activate_object_with_id uses the octet sequence as the object ID for the servant.

You can use any suitable key value as an object ID. Typically, the key will be part of the
object’s state, such as a social security number. However, you can also use keys that are
not directly related to object state, such as database record identifiers. Once the servant is
activated, calls to _this on the servant return an object reference that contains the ID you
assigned to the object.

5.4.4 Explicit Activation of Servants using Java

Servant activation in Java also uses activate_object (for SYSTEM_ID) and
activate_object_with_id (for USER_ID). With SYSTEM_ID, the code looks as fol-
lows:

1 I_impl impl = new I_impl();
2 orb.omg.PortableServer.POA poa = impl._default_POA();
3 poa.activate_object(impl);

For USER_ID, you must provide the Object ID:

1 I_impl impl = new I_impl();
2 org.omg.PortableServer.POA poa = impl._default_POA();
3 byte[] id = "MyObjectName".getBytes();
4 poa.activate_object_with_id(id, impl);
ORBacus

Deactivating Servants
5.5 Deactivating Servants

5.5.1 Deactivation of Servants using C++

A servant can be deactivated. Deactivating a servant breaks the association between the
CORBA object and the servant; requests that arrive from clients thereafter result in an
OBJECT_NOT_EXIST exception (or a TRANSIENT exception, if the server is down at the
time a request is made).

To deactivate a servant, call the deactivate_object member function on the servant’s
POA:

1 // C++
2 PortableServer::POA_var poa = impl._default_POA();
3 PortableServer::ObjectId_var id = poa -> servant_to_id(&impl);
4 poa -> deactivate_object(id);

2 The code obtains a reference to the servant’s POA by calling _default_POA. (This
assumes that _default_POA is correctly overridden to return the appropriate POA if the
servant is not activated with the Root POA.)

3 The call to servant_to_id on the servant’s POA returns the object ID with which the
servant is activated.

4 The call to deactivate_object breaks the association between the CORBA object and
the servant.

Note that deactivate_object returns immediately, even though the servant may still be
executing requests, possibly in a number of different threads.

5.5.2 Deactivation of Servants using Java

Deactivation of a servant in Java is analogous to C++:

1 // Java
2 org.omg.PortableServer.POA poa = impl._default_POA();
3 byte[] id = poa.servant_to_id(impl);
4 poa.deactivate_object(id);

5.5.3 Transient and Persistent Objects

A POA has either the TRANSIENT or the PERSISTENT policy value. A transient POA gen-
erates transient object references. A transient object reference remains functional only for
ORBacus 89

CORBA Objects

90
as long as its POA remains in existence. Once the POA for a transient reference is
destroyed, the reference becomes permanently non-functional and client requests on such
a reference raise either OBJECT_NOT_EXIST or TRANSIENT (depending on whether or not
the server is running at the time the request is sent). Transient references remain non-func-
tional even if you restart the server and re-create a transient POA with the same name as
was used previously. Transient POAs almost always use the SYSTEM_ID policy as a matter
of convenience (although the combination of TRANSIENT and USER_ID is legal).

Object references created on a persistent POA continue to be valid beyond the POA’s life
time. That is, if you create a persistent reference on a POA, destroy the POA, and then rec-
reate that POA again (with the same POA name), the original reference continues to
denote the same CORBA object (even if the server was shut down and restarted). Persis-
tent references require the same POA name and object ID to be used to denote the same
object. This means that persistent references rely on the combination of PERSISTENT and
USER_ID. USER_ID must be used in conjunction with NO_IMPLICIT_ACTIVATION, so
servants for persistent references are always activated explicitly.

5.6 Factory Objects
It is quite common to use the Factory [2] design pattern in CORBA applications. In short,
a factory object provides access to one or more additional objects. In CORBA applica-
tions, a factory object can represent a focal point for clients. In other words, the object ref-
erence of the factory object can be published in a well-known location, and clients know
that they only need to obtain this object reference in order to gain access to other objects in
the system, thereby minimizing the number of object references that need to be published.

The Factory pattern can be applied in a wide variety of situations, including the following:

• Security - A client is required to provide security information before the factory
object will allow the client to have access to another object.

• Load-balancing - The factory object manages a pool of objects, often representing
some limited resource, and assigns them to clients based on some utilization
algorithm.

• Polymorphism - A factory object enables the use of polymorphism by returning
object references to different implementations depending on the criteria specified by a
client.

These are only a few examples of the potential applications of the Factory pattern. The
examples listed above can also be used in any combination, depending on the require-
ments of the system being designed. Note that the factory pattern applies equally to persis-
tent and transient objects.
ORBacus

Factory Objects
A simple application of the Factory pattern, in which a new object is created for each cli-
ent, is illustrated below. The implementation uses the following interface definitions:

1 // IDL
2 interface Product
3 {
4 void destroy();
5 };
6

7 interface Factory
8 {
9 Product createProduct();

10 };

2-5 The Product interface is defined. The destroy operation allows a client to destroy the
object when it is no longer needed.

7-10 The Factory interface is defined. The createProduct operation returns the object ref-
erence of a new Product.

5.6.1 Factory Objects using C++

First, we’ll implement the Product interface:

1 // C++
2 class Product_impl :
3 public virtual POA_Product,
4 public virtual PortableServer::RefCountServantBase
5 {
6 public:
7

8 virtual void destroy() throw(CORBA::SystemException)
9 {

10 PortableServer::POA_var poa = _default_POA();
11 PortableServer::ObjectId_var id = poa -> servant_to_id(this);
12 poa -> deactivate_object(id);
13 }
14 };

2-4 The servant class Product_impl is defined as an implementation of the Product inter-
face. In addition, Product_impl inherits from RefCountServantBase, which makes
the servant reference counted.
ORBacus 91

CORBA Objects

92
8-13 The destroy() operation deactivates the servant with the POA. As a result, the POA will
release all references it maintains to the servant. Since there are no other references to the
servant left, the servant’s reference count will drop to zero, and thus the servant is
destroyed.

Next, we’ll implement the factory:

1 // C++
2 class Factory_impl : public virtual POA_Factory
3 {
4 public:
5

6 virtual Product_ptr
7 createProduct() throw(CORBA::SystemException)
8 {
9 PortableServer::ServantBase_var result =

10 new Product_impl(orb_);
11 PortableServer::POA_var poa = ... // Get servant’s POA
12 PortableServer::ObjectId_var id = ... // Assign an ID
13 poa -> activate_object_with_id(id, result);
14 return result -> _this();
15 }
16 };

2 The servant class Factory_impl is defined as an implementation of the Factory inter-
face.

9 A new reference counted Product servant is instantiated. The servant is assigned to a
ServantBase_var, which decrements the servant’s reference count when it goes out of
scope.

11-14 Activates the servant and returns an object reference to the client.

It is important to understand how the servant is eventually destroyed. The
RefCountServantBase class from which the servant inherits implements a reference
count. When the servant is instantiated, the RefCountServantBase constructor sets this
reference count to 1. When the servant is activated with the POA, the POA increases the
reference count by at least 1. When the ServantBase_var we assigned the servant to
goes out of scope, the reference count is decremented by 1. This means that when
createProduct() returns, only the POA is “holding” a reference to the servant. Later,
when the servant is deactivated in destroy(), the POA decrements the reference count
by exactly the same number it used to increment the reference count upon activation. This
causes the reference count to drop to zero, in which case the servant will be implicitly
deleted.
ORBacus

Factory Objects
Note that whenever the ORB starts to dispatch a request on the servant, the reference count
is increased by 1. After request dispatching is finished, the count is decremented by 1.
This ensures that a reference counted servant cannot be deleted while a request is execut-
ing.

5.6.2 Factory Objects using Java

Here is our Java implementation of the Product interface:

1 // Java
2 public class Product_impl extends ProductPOA
3 {
4 public void destroy()
5 {
6 byte[] id = _default_POA().servant_to_id(this);
7 _default_POA().deactivate_object(id);
8 }
9 }

2 Servant class Product_impl is defined as an implementation of the Product interface.

6,7 The destroy operation deactivates the servant with the POA. As long as no other refer-
ences to the servant are held in the server, the object will be eligible for garbage collection.

Here’s our implementation of the factory:

1 // Java
2 public class Factory_impl extends FactoryPOA
3 {
4 public Product createProduct()
5 {
6 Product_impl result = new Product_impl(orb_);
7 org.omg.PortableServer.POA poa = ... // Get servant’s POA
8 byte[] id = ... // Assign an ID
9 poa.activate_object_with_id(id, result);

10 return result._this(orb_);
11 }
12 }

2 Servant class Factory_impl is defined as an implementation of the Factory interface.

4-11 The createProduct operation instantiates a new Product servant, activates it with the
POA, and returns an object reference to the client.
ORBacus 93

CORBA Objects

94
5.6.3 Caveats

In these simple examples, the factory objects do not maintain any references to the
Product servants they create; it is the responsibility of the client to ensure that it destroys
a Product object when it is no longer needed. This design has a significant potential for
resource leaks in the server, as it is quite possible that a client will not destroy its Product
objects, either because the programmer who wrote the client forgot to invoke destroy, or
because the client program crashed before it had a chance to clean up. You should keep
these issues in mind when designing your own factory objects.1

5.6.4 Obtaining the POA for a Servant

As mentioned in the previous sections, every servant inherits a _default_POA function
from its skeleton class. The default implementation of this function returns the Root POA.
If you instantiate servants on anything but the Root POA, you must override the function
in the servant; otherwise, calls to _this will create incorrect object references. Usually,
this involves remembering the POA reference for a servant in a private member variable
and returning that reference from a call to _default_POA. (If all servants for objects of a
particular interface type use the same POA, you can use a static member variable.)

In C++, you can use an approach similar to the following:

1 // C++
2 class Product_impl :
3 public virtual POA_Product,
4 public virtual PortableServer::RefCountServantBase
5 {
6 PortableServer::POA_var poa_;
7

8 public:
9 void Product_impl(PortableServer::POA_ptr poa)

10 : poa_(PortableServer::POA::_duplicate(poa))
11 {
12 }
13

14 virtual PortableServer::POA_ptr _default_POA()
15 {
16 return PortableServer::POA::_duplicate(poa_)

1. Two possible strategies for handling this issue include: time-outs, in which a servant that has not
been used for some length of time is automatically released; and expiration, in which an object
reference is only valid for a certain length of time, after which a client must obtain a new refer-
ence. The implementation of these solutions is beyond the scope of this manual.
ORBacus

Factory Objects
17 }
18 };

9-12 The constructor accepts a POA reference and remembers that reference in a private mem-
ber variable.

14-17 The _default_POA function returns the servant’s POA.

In Java, the approach is very similar:

// Java
public class Product_impl extends ProductPOA
{

private org.omg.PortableServer.POA poa_;

public Product_impl(org.omg.PortableServer.POA poa)
{

poa_ = poa;
}

public org.omg.PortableServer.POA
_default_POA()
{

return poa_;
}

}

5.6.5 Getting the POA for a Currently Executing Request

The ORB provides access to an object of type PortableServer::Current:

// IDL
module PortableServer
{

interface Current : CORBA::Current
{

exception NoContext { };
POA get_POA() raises(NoContext);
ObjectId get_object_id() raises(NoContext);

};
};

This interface provides access to the POA and the object ID for an executing request. Note
that these operations must be invoked only from within the context of an executing opera-
tion inside a servant; otherwise, they raise NoContext. The Current object provides a
useful way to obtain access to a servant’s POA and object ID without having to store the
ORBacus 95

CORBA Objects

96
POA reference in a member variable, at the cost of being accessible only from within an
operation implementation. You can obtain a reference to the Current object from
resolve_initial_references. In C++, the code looks something like this:

// C++
CORBA::ORB_var orb = ... // Get the ORB somehow
CORBA::Object_var obj =

orb -> resolve_initial_references("POACurrent");
PortableServer::Current_var current =

PortableServer::Current::_narrow(obj);
if(!CORBA::is_nil(current))

... // Got Current object OK

You can keep the reference to the Current object in a variable and use it from within any
executing operation in a servant. There is no need to “refresh” the Current reference for
the current operation, not even for threaded servers. The ORB takes care of ensuring that
operation invocations on the Current object return the correct data.

In Java, the code to obtain the Current reference looks like this:

// Java
org.omg.CORBA.ORB orb = ... // Get the ORB somehow
org.omg.CORBA.Object obj =

orb.resolve_initial_references("POACurrent");
org.omg.PortableServer.Current current =

org.omg.PortableServer.CurrentHelper.narrow(obj);
if(current != null)

... // Got Current object OK
ORBacus

CHAPTER 6 LocatingObjects
6.1 Obtaining Object References
Using CORBA, an object can obtain a reference to another object in a multitude of ways.
One of the most common ways is by receiving an object reference as the result of an oper-
ation, as demonstrated by the following example:

1 // IDL
2 interface A
3 {
4 };
5

6 interface B
7 {
8 A getA();
9 };

2-4 An interface A is defined.

6-9 An interface B is defined with an operation returning an object reference to an A.

On the server side, A and B can be implemented in C++ as follows:

1 // C++
2 class A_impl : public POA_A,
3 public PortableServer::RefCountServantBase
ORBacus 97

Locating Objects

98
4 {
5 };
6

7 class B_impl : public POA_B,
8 public PortableServer::RefCountServantBase
9 {

10 A_impl* a_;
11

12 public:
13

14 B_impl()
15 {
16 a_ = new A_impl();
17 }
18

19 ~B_impl()
20 {
21 a_ -> _remove_ref();
22 }
23

24 virtual A_ptr getA() throw(CORBA::SystemException)
25 {
26 return a_ -> _this();
27 }
28 };

2-5 The servant class A_impl is defined, which inherits from the skeleton class POA_A and the
class RefCountServantBase which provides a reference counting implementation.

7-28 The servant class B_impl inherits from the skeleton class POA_B and the reference count-
ing class RefCountServantBase.

14-17 An instance of the servant class A_impl is created in the constructor for B_impl.

19-22 In the destructor for B_impl, the reference count for the servant A_impl is decremented,
which leads to the destruction of the servant.

24-27 getA returns an object reference to the A_impl servant (implicitly creating and activating
the CORBA object if necessary).

In Java, the interfaces can be implemented like this:

1 // Java
2 public class A_impl extends APOA
3 {
4 }
ORBacus

Obtaining Object References
5

6 public class B_impl extends BPOA
7 {
8 org.omg.CORBA.ORB orb_;
9 A_impl a_;

10

11 public B_impl(org.omg.CORBA.ORB orb)
12 {
13 orb_ = orb;
14 a_ = new A_impl();
15 }
16

17 A getA()
18 {
19 return a_._this(orb_);
20 }
21 }

2-4 The servant class A_impl is defined, which inherits from the skeleton class APOA.

6-21 The servant class B_impl is defined, which inherits from the skeleton class BPOA.

11-15 B_impl’s constructor stores a reference to the orb and creates a new A_impl servant.

17-20 getA returns an object reference to the A_impl servant (implicitly creating and activating
the CORBA object if necessary).

A client written in C++ could use code like the following to get references to A:

// C++
B_var b = ... // Get a B object reference somehow
A_var a = b -> getA();

And in Java:

// Java
B b = ... // Get a B object reference somehow
A a = b.getA();

In this example, once your application has a reference to a B object, it can obtain a refer-
ence to an A object using getA. The question that arises, however, is How do I obtain a
reference to a B object? This chapter answers that question by describing a number of
ways an application can bootstrap its first object reference.
ORBacus 99

Locating Objects

100
6.2 Lifetime of Object References
All of the strategies described in this chapter involve the publication of an object reference
in some form. A common source of problems for newcomers to CORBA is the lifetime
and validity of object references. Using IIOP, an object reference can be thought of as
encapsulating several pieces of information:

• hostname

• port number

• object key

If any of these items were to change, any published object references containing the old
information would likely become invalid and its use might result in a TRANSIENT or
OBJECT_NOT_EXIST exception. The sections that follow discuss each of these compo-
nents and describe the steps you can take to ensure that a published object reference
remains valid.

6.2.1 Hostname

By default, the hostname in an object reference is the canonical hostname of the host on
which the server is running. Therefore, running the server on a new host invalidates any
previously published object references for the old host.

ORBACUS provides the -OAhost option to allow you to override the hostname in any
object references published by the server. This option can be especially helpful when used
in conjunction with the Domain Name System (DNS), in which the -OAhost option spec-
ifies a hostname alias that is mapped by DNS to the canonical hostname.

See “Command-line Options” on page 58 for more information on the -OAhost option.

6.2.2 Port Number

Each time a server is executed, the Root POA manager selects a new port number on
which to listen for incoming requests. Since the port number is included in published
object references, subsequent executions of the server could invalidate existing object ref-
erences.

To overcome this problem, ORBACUS provides the -OAport option that causes the Root
POA manager to use the specified port number. You will need to select an unused port
number on your host, and use that port number every time the server is started.

See “Command-line Options” on page 58 for more information on the -OAport option.
ORBacus

Stringified Object References
6.2.3 Object Key

Each object created by a server is assigned a unique key that is included in object refer-
ences published for the object. Furthermore, the order in which your server creates its
objects may affect the keys assigned to those objects.

To ensure that your objects always have the same keys, activate your objects using POAs
with the PERSISTENT life span policy and the USER_ID object identification policy.

6.3 Stringified Object References
The CORBA specification defines two operations on the ORB interface for converting
object references to and from strings.

// IDL
module CORBA
{

interface ORB
{

string object_to_string(in Object obj);
Object string_to_object(in string ref);

};
};

Using “stringified” object references is the simplest way of bootstrapping your first object
reference. In short, the server must create a stringified object reference for an object and
make the string available to clients. A client obtains the string and converts it back into an
object reference, and can then invoke on the object.

The examples discussed in the sections below are based on the IDL definitions presented
at the beginning of this chapter.

6.3.1 Using a File

One way to publish a stringified object reference is for the server to create the string using
object_to_string and then write it to a well-known file. Subsequently, the client can
read the string from the file and use it as the argument to string_to_object. This
method is shown in the following C++ and Java examples.

First, we’ll look at the relevant server code:

1 // C++
2 CORBA::ORB_var orb = ... // Get a reference to the ORB somehow
3 B_impl* bImlp = new B_impl();
ORBacus 101

Locating Objects

102
4 PortableServer::ServantBase_var servant = bImpl;
5 B_var b = bImpl -> _this();
6 CORBA::String_var s = orb -> object_to_string(b);
7 ofstream out("object.ref")
8 out << s << endl;
9 out.close();

3-5 A servant for the interface B is created and is used to incarnate a CORBA object.

6 The object reference of the servant is “stringified”.

7-9 The stringified object reference is written to a file.

In Java, the server code looks like this:

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 B_impl bImpl = new B_impl();
4 B b = bImpl._this(orb);
5 String ref = orb.object_to_string(b);
6 java.io.PrintWriter out = new java.io.PrintWriter(
7 new java.io.FileOutputStream("object.ref"));
8 out.println(ref);
9 out.close();

3-4 A servant for the interface B is created and is used to incarnate a CORBA object.

5 The object reference of the servant is “stringified”.

6-9 The stringified object reference is written to a file.

Now that the stringified object reference resides in a file, our clients can read the file and
convert the string to an object reference:

1 // C++
2 CORBA::ORB_var orb = ... // Get a reference to the ORB somehow
3 ifstream in("object.ref");
4 string s;
5 in >> s;
6 CORBA::Object_var obj = orb -> string_to_object(s.c_str());
7 B_var b = B::_narrow(obj);

3-5 The stringified object reference is read.

6 string_to_object creates an object reference from the string.
ORBacus

Stringified Object References
7 Since the return value of string_to_object is of type CORBA::Object_ptr,
B::_narrow must be used to get a B_ptr (which is assigned to a self-managed B_var in
this example).

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 java.io.BufferedReader in = new java.io.BufferedReader(
4 new java.io.FileReader("object.ref"));
5 String ref = in.readLine();
6 org.omg.CORBA.Object obj = orb.string_to_object(ref);
7 B b = BHelper.narrow(obj);

3-5 The stringified object reference is read.

6 string_to_object creates an object reference from the string.

7 Use BHelper.narrow to narrow the return value of string_to_object to B.

6.3.2 Using a URL

It is sometimes inconvenient or impossible for clients to have access to the same filesys-
tem as the server in order to read a stringified object reference from a file. A more flexible
method is to publish the reference in a file that is accessible by clients as a URL. Your cli-
ents can then use HTTP or FTP to obtain the contents of the file, freeing them from any
local filesystem requirements. This strategy only requires that your clients know the
appropriate URL, and is especially suited for use in applets.

Note: This example is shown only in Java because of Java’s built-in support for URLs, but
the strategy can also be used in C++.

1 // Java
2 import java.io.*;
3 import java.net.*;
4

5 String location = "http://www.mywebserver/object.ref";
6 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
7

8 URL url = new URL(location);
9 URLConnection conn = url.openConnection();

10 BufferedReader in = new BufferedReader(
11 new InputStreamReader(conn.getInputStream()));
12 String ref = in.readLine();
13 in.close();
14
ORBacus 103

Locating Objects

104
15 org.omg.CORBA.Object object = orb.string_to_object(ref);
16 B b = BHelper.narrow(object);

5 location is the URL of the file containing the stringified object reference.

8-13 Read the string from the URL connection.

15 Convert the string to an object reference.

16 Narrow the reference to a B object.

6.3.3 Using Applet Parameters

In addition to using the URL method described in the previous section, an applet can also
use an applet parameter to obtain a stringified object reference. The following HTML
illustrates this concept:

<APPLET CODE="Client.class" ARCHIVE="OB.jar" WIDTH=500 HEIGHT=300>
<PARAM NAME="ref" VALUE="IOR:000012031...">

</APPLET>

The stringified object reference is inserted directly into the HTML file and passed to the
applet as a parameter. The applet can retrieve this parameter and convert it to an object
reference as shown below:

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 String ref = getParameter("ref");
4 org.omg.CORBA.Object object = orb.string_to_object(ref);
5 B b = BHelper.narrow(object);

3 Obtain the applet parameter ref.

4 Convert the string to an object reference.

5 Narrow the object reference to a B object.

The presence of the stringified object reference in the HTML file could present a mainte-
nance problem. One solution is for the server to write the entire HTML file, thereby ensur-
ing that the object reference is always up to date. You can find an example of this
approach in the demo/hello subdirectory.

See “Applets” on page 72 for more information on using ORBACUS in applets.
ORBacus

Object Reference URLs
6.4 Object Reference URLs
Prior to the adoption of the Interoperable Naming Service (INS) [10], the only standard
format for stringified object references was the cumbersome IOR: format. The INS intro-
duced two new, more readable formats for object references that use a URL-like syntax.
Object reference URLs can be passed to string_to_object, just like IOR: references.
The two new URL formats are described in detail in the specification, but will be briefly
discussed here. The optional file: URL format is also discussed, as well as the propri-
etary relfile: URL format.

6.4.1 corbaloc: URLs

The corbaloc: URL supports any number of protocols; the format of the URL depends
on the protocol in use. The general format of a corbaloc: URL is shown below:

corbaloc:[protocol]:<protocol-specific>

ORBACUS supports two standard protocols, iiop and rir.

The corbaloc: URL for the iiop protocol has the following structure:

corbaloc:[iiop]:[version@]host[:port]/object-key

The components of the URL are as follows:

• iiop - This is the default protocol for corbaloc: URLs, and therefore is optional.

• version - The IIOP version number in major.minor format. The default is 1.0.

• host - The hostname of the server.

• port - The port on which the server is listening. The default is 2089.

• object-key - A stringified object key.

The specification allows a URL to contain multiple addresses, but the semantics are ven-
dor-specific. In ORBACUS, each address is used in turn until one is found that works or
until the ORB has tried them all and failed to contact the object.

The rir protocol is a shortcut for the ORB operation resolve_initial_references.
The corbaloc: URL for the rir protocol has the following structure:

corbaloc:rir:[/id]

The components of the URL are as follows:

• rir - The protocol.
ORBacus 105

Locating Objects

106
• id - The identifier of the service to be resolved. The identifier NameService is used
if id is not supplied.

Some examples of corbaloc: URLs are:

corbaloc::nshost:10000/NameService
corbaloc::myhost:10000/MyObjectId
corbaloc:rir:/NameService

In the above examples, NameService and MyObjectId are used as object keys. Nor-
mally, object keys contain the information necessary to uniquely identify a POA and a ser-
vant within the POA. However, the object keys used above do not contain information
which identifies both the POA and the servant (unless some assumptions are made, e.g., a
default POA name). To solve this problem, ORBACUS defines the interfaces
BootManager and BootLocator. (See Appendix A for a detailed description.)

The BootManager::add_binding operation binds an object id to an object reference.
The BootManager::remove_binding operation is used to remove a binding. A
BootLocator object can be registered with the BootManager using the set_locator
operation and is used to dynamically locate a reference for a given object id. The follow-
ing example illustrates how a server can add a binding for the object id MyObjectId.
First, in C++:

1 // C++
2 CORBA::Object_var obj // ... A reference to a persistent object
3 CORBA::Object_var bmgrObj =
4 orb -> resolve_initial_references("BootManager");
5 OB::BootManager_var bootManager =
6 OB::BootManager::_narrow(bmgrObj);
7 PortableServer::ObjectId_var objId =
8 PortableServer::string_to_ObjectId("MyObjectId");
9 bootManager -> add_binding(objId, obj);

3-6 Get a reference to the BootManager object by invoking
resolve_initial_references (see 6.5.1 on page 108) on the ORB.

7-8 Create the object id.

9 Create the new binding.

Or in Java:

1 // Java
2 org.omg.CORBA.Object obj = ... // A reference to a persistent object
3 org.omg.CORBA.Object bmgrObj =
ORBacus

Object Reference URLs
4 orb.resolve_initial_references("BootManager");
5 com.ooc.OB.BootManager bootManager =
6 com.ooc.OB.BootManagerHelper.narrow(bmgrObj);
7 byte[] objId = "MyObjectId".getBytes();
8 bootManager.add_binding(objId, obj);

3-6 Get a reference to the BootManager object by invoking
resolve_initial_references (see 6.5.1 on page 108) on the ORB.

7 Create the object id.

8 Create the new binding.

6.4.2 corbaname: URLs

A corbaname: URL provides additional flexibility by incorporating use of the Naming
Service in the string_to_object operation. The corbaname: URL extends the capa-
bilities of the corbaloc: URL to allow the object-key to identify a binding in a Nam-
ing Service. For example, consider this URL:

corbaname::ns1:5001/NameService#ctx/MyObject

When the ORB interprets this URL, it attempts to resolve a naming context object located
at host ns1 on port 5001 and having the object key NameService. Once the naming con-
text has been resolved, the ORB attempts to lookup the binding named MyObject in the
naming context ctx. If successful, the result of string_to_object is the object refer-
ence associated with the binding.

6.4.3 file: URLs

A file: URL provides a convenient way to obtain object references using an IOR or
URL reference that is in a file. The format of a file: URL is:

file:/<absolute file name>

Using the file: URL and given that the file object.ref is located in the /tmp direc-
tory, the client side example of 6.3.1 on page 101 may be simplified as follows:

// C++
CORBA::ORB_var orb = ... // Get a reference to the ORB somehow
CORBA::Object_var obj

= orb -> string_to_object("file:/tmp/object.ref");
B_var b = B::_narrow(obj);

// Java
ORBacus 107

Locating Objects

108
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
org.omg.CORBA.Object obj =

orb.string_to_object("file:/tmp/object.ref");
B b = BHelper.narrow(obj);

6.4.4 relfile: URLs

ORBACUS also provides the proprietary relfile: URL. This URL is the same as the
file: URL except that it takes a relative file name instead of an absolute file name.

6.5 Initial Services
The CORBA specification provides a standard way to bootstrap an object reference
through the use of initial services, which denote a set of unique services whose object ref-
erences, if available, can be obtained using the ORB operation
resolve_initial_references, which is defined as follows:

// IDL
module CORBA
{

interface ORB
{

typedef string ObjectId;
exception InvalidName {};

Object resolve_initial_references(in ObjectId identifier)
raises(InvalidName);

};
};

Initial services are intended to have well-known names, and the OMG has standardized
the names for some of the CORBAservices [9]. For example, the Naming Service has the
name NameService, and the Trading Service has the name TradingService.

6.5.1 Resolving an Initial Service

An example in which the ORB is queried for a Naming Service object reference will dem-
onstrate how to use resolve_initial_references. The example assumes that the
ORB has already been initialized as usual. First the Java version:

1 // Java
2 org.omg.CORBA.Object obj = null;
3 org.omg.CosNaming.NamingContext ctx = null;
ORBacus

Initial Services
4

5 try
6 {
7 obj = orb.resolve_initial_references("NameService");
8 }
9 catch(org.omg.CORBA.ORBPackage.InvalidName ex)

10 {
11 ... // An error occured, service is not available
12 }
13

14 if(obj == null)
15 {
16 ... // The object reference is invalid
17 }
18

19 try
20 {
21 ctx = org.omg.CosNaming.NamingContextHelper.narrow(obj);
22 }
23 catch(org.omg.CORBA.BAD_PARAM ex)
24 {
25 ... // This object does not implement a NamingContext
26 }

5-12 Try to resolve the name of a particular service. If a service of the specified name is not
known to the ORB, an InvalidName exception is thrown.

19-26 The service type was known. Now the object reference has to be narrowed to the particular
service type. If this fails, the service is not available.

And here’s the C++ version:

1 // C++
2 CORBA::Object_var obj;
3 CosNaming::NamingContext_var ctx;
4

5 try
6 {
7 obj = orb -> resolve_initial_references("NameService");
8 }
9 catch(CORBA::ORB::InvalidName&)

10 {
11 ... // An error occured, service is not available
12 }
13
ORBacus 109

Locating Objects

110
14 if(CORBA::is_nil(obj))
15 {
16 ... // The object reference is invalid
17 }
18

19 ctx = CosNaming::NamingContext::_narrow(obj);
20 if(CORBA::is_nil(ctx))
21 {
22 ... // This object does not implement NamingContext
23 }

1-23 This is the equivalent to the Java version above.

6.5.2 Configuring the Initial Services

When an application uses initial services that are not locality-constrained, the application
must register the object references for these objects with the ORB. ORBACUS supports the
standard -ORBInitRef and -ORBDefaultInitRef command-line options for register-
ing initial service object references:

-ORBInitRef name=URL
-ORBDefaultInitRef URL

For example, starting an application as shown below will enable the client to resolve the
NameService initial reference:

myclient -ORBInitRef NameService=corbaloc::nshost:10000/NameService

The -ORBconfig option is an alternative method for defining a list of initial services, and
is often preferable when a number of services must be defined.

See “Configuring the ORB and Object Adapter” on page 49 for more information on these
command-line options. Also refer to the INS specification [10] for detailed information on
the standard options -ORBInitRef and -ORBDefaultInitRef.

In addition to using command-line parameters, a program can add to the list of initial ser-
vices using the ORB operation register_initial_reference1:

// IDL
module CORBA
{

interface ORB

1. This will become part of the ORB interface when the Portable Interceptor specification is
adopted.
ORBacus

Initial Services
{
void register_initial_reference(in ObjectId id, in Object obj)

raises(InvalidName);
};

};

For example, in C++:

1 // C++
2 CORBA::Object_var obj = ... // Get a name service reference somehow
3 orb -> register_initial_reference("NameService", obj);

2 Get a reference to the naming service, for example by reading a stringified object refer-
ence and converting it with string_to_object, or by any other means.

3 Add the reference to the ORB’s list of initial references.

Or in Java:

1 // Java
2 org.omg.CORBA.Object obj = ...// Get a name service reference somehow
3 orb.register_initial_reference("NameService", obj);

1-3 This is the same as the C++ version above.

6.5.3 The Initial Service Locator

In addition to providing the ORBACUS Implementation Repository, the IMR server (see
Chapter 7) acts as an initial service locator. That is, assuming that the IMR server is prop-
erly configured, the name of the host running the IMR server is the only information
needed to find a particular initial service.

To locate an initial service with name foo, the IMR server must first be configured with
the initial reference of this service. This may be done with the -ORBInitRef command-
line option or the ooc.orb.service configuration property (see Chapter 4 for details).
Next, the client that wishes to connect to foo must be configured with the default initial
reference specifying the host running the IMR server. The -ORBDefaultInitRef com-
mand-line option or the ooc.orb.default_init_ref configuration property may be
used to configure the default initial reference. For example, given that the IMR server is
running on imr-host, then the client can be started with the option:

-ORBDefaultInitRef=corbaloc::imr-host

When the client is configured with this default initial reference it may invoke
resolve_initial_references("foo") on the ORB to obtain a reference to foo.
ORBacus 111

Locating Objects

112
 ORBacus

CHAPTER 7 The Implementation
Repository
The ORBACUS Implementation Repository (IMR) provides support for the indirect bind-
ing1 of persistent object references. The key advantage of indirect binding is that it loosens
the coupling between clients and servers so that the location of the server can change with-
out affecting the client. In practical terms, this is accomplished by providing the client
with an IOR that actually refers to the IMR, rather than to the server itself. The IMR also
provides the ability to start servers on demand using the Object Activation Daemon
(OAD).

The CORBA specification does not standardize how servers and the IMR interact, it only
suggests functionality for vendors to implement. Hence, the interface between servers and
the IMR is strictly proprietary. Due to the proprietary interface between servers and the
IMR, servers using the IMR must be developed using ORBACUS for C++ or Java. How-
ever, the interaction between clients and the IMR is strictly specified by the GIOP specifi-
cation, so any client that is CORBA compliant may interact with the IMR.

1. Binding refers to the process of opening a connection and associating an object reference with its
servant.
ORBacus 113

The Implementation Repository

114
7.1 Background

7.1.1 How It All Works

When a server is using the IMR, object references created by one of its persistent POAs
refer to the IMR rather than to the server itself. When the client makes a request using this
reference, the IMR receives the request, activates the server (if necessary) using the OAD,
and returns a new object reference to the client that identifies the server at its current host
and port. The client then establishes a connection with the server using the new object ref-
erence and communicates directly with the server, without the intervention of the IMR.
However, should the server fail, a well-behaved client will contact the IMR again, which
may restart the server and allow the client to resume its activities.

7.1.2 Information Managed by the IMR

The IMR provides support for the indirect binding and automatic activation of servers
within a given domain. In order to provide this support, the IMR manages three types of
entities: OADs, servers, and POAs.

OADs

An OAD is responsible for the activation of servers on a given host. Each OAD is regis-
tered in the IMR using a host name. The IMR also maintains the status of each OAD. If
the OAD is running and in a ready state it will have a status of up, otherwise, its status will
be down.

Servers

Servers are registered with a name that is unique within the domain and the host corre-
sponding to the OAD that is responsible for the server. Since the name is unique within the
domain, it is not currently possible to register the same server with multiple OADs. The
server name that is registered in the IMR can be any string, but it must be the same as the
name used by the server (i.e., the name specified by the -ORBserver_name option, or
equivalent property). The attributes of a server that are stored by the IMR are summarized
below:

host The host corresponding to the OAD that is responsible for the server.

exec The path of server executable (the .exe extension must be included on
Windows platforms). If this attribute is not set, then the IMR will not
activate the server.
ORBacus

Background
The IMR also maintains various state information for each server:

• The internal ID of the server.

• The status of the server process. The valid values are forked, starting, running,
stopping, and stopped.

• Whether or not the server was started manually.

• The number of times that the server process has been spawned.

Server processes inherit environment settings from the environment in which the OAD
was started. Hence, path, library path, and class path environment variables can be used by
the server application. This is especially useful in the case of shared library and class path
settings. (Note that the class path may also be set in the args attribute.)

On Windows platforms, the exec attribute may refer to an executable or batch file. On
UNIX platforms, the exec attribute may refer to an executable or a shell script with

#! interpreter

as its first line. However, if a batch file or shell script is used, then it should accept the -

ORBserver_name option since it is automatically appended to the args attribute by the
IMR.

args The arguments to be supplied when starting the server executable. Note
that “-ORBserver_name server-name” is automatically appended to
the arguments before the server process is started.

rundir The directory that the server process will be started from. If this
attribute is not set, then the server process will be started from the root
directory. For Windows platforms, the full path must be specified in the
exec attribute even if this attribute is set.

mode The activation mode. The possible values are: shared, only one server
process is created which is used by all clients, and persistent, the
server process is started when the IMR starts and is used by all clients.

activate-poas If this attribute is set to true (default), then all persistent POAs will be
registered automatically. If set to false, then persistent POAs are not
registered automatically.

update-timeout The amount of time (in milliseconds) to wait for server status updates.

failure-timeout The amount of time (in seconds) to wait for the server to start.

max-spawns The maximum number of tries to start the server.
ORBacus 115

The Implementation Repository

116
In the case of Java servers, a batch file or shell script should be created to start the server.
An alternative is to set the exec attribute to the Java interpreter and to use the args
attribute to specify the class implementing the server.

POAs

The IMR allows implicit registration of POAs when the server is started. This can be
enabled or disabled for each server using the activate_poas server attribute. If implicit
registration is enabled, then the user does not have to register any of the POAs; instead, the
server transparently notifies the IMR whenever a call to create_POA is made by the
application code.

If the user disables implicit registration, then the user must register all persistent POAs
(i.e., POAs with the PERSISTENT life span policy). POAs are registered using the name of
its server and the name of the POA. Note that any transient POAs (POAs with the
TRANSIENT life span policy) created by the server are not registered with the IMR.

The IMR also maintains the status for each POA, which indicates the state of its POA
Manager. The valid values are inactive, active, holding, and discarding.

7.1.3 IMR Security

It is very important that only the IMR’s public port (also referred to as its forward port) be
accessible outside of the network firewall. Otherwise, anyone can mimic the IMR and
cause an OAD to run any command they decide.

For additional security, the information managed by the IMR may only be modified when
the IMR is running in administrative mode. That is:

• OAD registration and removal,

• server registration and removal,

• modification of server attributes, and

• POA registration and removal

are only possible when the IMR is running in administrative mode. An attempt to modify
the information managed by the IMR when it is not running in administration mode will
result in a CORBA::NO_PERMISSION exception.
ORBacus

Synopsis
7.2 Synopsis

7.2.1 Usage

The IMR and OAD are currently implemented using ORBACUS for C++, but ORBACUS

for Java servers can also be launched by the IMR. Both the IMR and OAD are contained in
the IMR server, which may be started in one of three modes:

Command-line usage is as follows:

imr
[-h,--help] [-v,--version] [-m,--master] [-s,--slave]
[-a,--administrative] [-d,--database] [-A,--admin-port]
[-F,--forward-port] [-S,--slave-port] [-L, --locator-port]

master Start only the IMR.

slave Start only the OAD.

dual Start both the IMR and OAD.
ORBacus 117

The Implementation Repository

118
Options

7.2.2 Windows NT Native Service

The imr server is also available as a native Windows NT service.

ntimrservice
[-h,--help] [-i,--install] [-s,--start-install]

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.

-m
--master Run the server in master mode.a

a. Note that only one of the -m or -s options may be specified. Also, if neither the -m or -s
option is specified, then the server is started in dual mode.

-s
--slave Run the server in slave mode.a

-a
--administrative

Run the IMR in administrative mode. The IMR will run in non-
administrative mode by default.

-d DIRECTORY
--database DIRECTORY

Specifies the directory in which the IMR maintains its database
files. If not specified, the current working directory is used.

-A PORT
--admin-port PORT

Specifies the IMR's administrative port. This is the port that the
OADs and IMR-enabled servers use to communicate with the
IMR. For security reasons, access to this port can be restricted.
If not specified, port 9999 is used.

-F PORT
--forward-port PORT

Specifies the IMR's public port, which is used by clients for
server requests. If not specified, the port 9998 is used.

-S PORT
--slave-port PORT

Specifies the port used by the OAD. Note that all of the OADs in
a domain must use the same port. If not specified, the port 9997
is used.

-L PORT
--locator-port PORT

Specifies the port used by the Initial Service Locator (see “The
Initial Service Locator” on page 111). If not specified, the port
2809 is used.
ORBacus

Synopsis
[-u,--uninstall] [-d,--debug]

In order to use the IMR server as a native Windows NT service, first add the desired con-
figuration properties to the HKEY_LOCAL_MACHINE NT registry key (see “Using the Win-
dows NT Registry” on page 60 for more details). For example, add the
ooc.imr.admin_port, ooc.imr.forward_port, and ooc.imr.slave_port proper-
ties so that the IMR and OAD will use non-default ports.

Next the service should be installed with:

ntimrservice -i

This adds the ORBacus Implementation Repository entry to the Services dialog
in the Control Panel. To start the service, select the ORBacus Implementation

Repository entry, and press Start. If the service is to be started automatically when the
machine is booted, select the ORBacus Implementation Repository entry, then click
Startup. Next select Startup Type - Automatic, and press OK. Alternatively, the ser-
vice could have been installed using the -s option, which configures the service for auto-
matic start-up:

ntimrservice -s

If you want to remove the service, run:

ntimrservice -u

Note: If the executable for the service is moved, it must be uninstalled and re-installed.

Any trace information provided by the service is be placed in the Windows NT Event
Viewer with the title IMRService. To enable tracing information, add the desired trace
configuration property (i.e., one of the ooc.imr.trace properties or one of the

-h
--help

Display the command-line options supported by the service.

-i
--install

Install the service. The service must be started manually.

-s
--start-install

Install and start the service.

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.
ORBacus 119

The Implementation Repository

120
ooc.orb.trace properties) to the HKEY_LOCAL_MACHINE NT registry key with a
REG_SZ value of at least 1.

7.2.3 Configuration Properties

In addition to the standard configuration properties described in Chapter 4, the IMR also
supports the following properties:

ooc.imr.mode

Value: master, slave, dual

Specifies the mode in which the imr server will be started.

ooc.imr.administrative

Value: true, false

If set to true, then run the IMR in administrative mode. For details refer to the -a com-
mand-line option.

ooc.imr.dbdir

Value: directory

Equivalent to the -d command-line option.

ooc.imr.admin_port

Value: port

Equivalent to the -A command-line option.

ooc.imr.forward_port

Value: port

Equivalent to the -F command-line option.

ooc.imr.slave_port

Value: port

Equivalent to the -S command-line option.
ORBacus

Connecting to the Service
ooc.imr.locator_port

Value: port

Equivalent to the -L command-line option.

ooc.imr.trace.peer_status

Value: level >= 0

Defines the output level for IMR diagnostic messages related to communications with the
OADs. The default level is 0, which produces no output.

ooc.imr.trace.process_control

Value: level >= 0

Defines the output level for IMR diagnostic messages related to the forking and death of
server processes. The default level is 0, which produces no output.

ooc.imr.trace.server_status

Value: level >= 0

Defines the output level for IMR diagnostic messages related to the status of servers and
POAs. The default level is 0, which produces no output.

7.3 Connecting to the Service
Servers that use the IMR must be configured with the IMR initial reference. The object
key of the IMR is IMR, hence, a URL-style object reference of the IMR service running on
host imrhost at port 10000 would be:

corbaloc::imrhost:10000/IMR

Using this object reference, a server can configure the IMR initial reference with the prop-
erty:

ooc.orb.service.IMR=corbaloc::imrhost:10000/IMR

An alternative to using the above property is to use the -ORBInitRef command-line
option. Refer to Chapter 6 for more information on URLs and configuring initial services.
ORBacus 121

The Implementation Repository

122
7.4 Utilities

7.4.1 Implementation Repository Administration

The imradmin utility provides complete control over the IMR, OADs and servers in a
domain. Its command interface is shown below:

-h, --help Display this information.

--add-oad [host] Register an OAD for the specified host.

--add-server server-name [exec [host]] Register a server under the OAD specified
by host with the given exec attribute.

--add-poa server-name poa-name Register a POA for the specified server.

--remove-oad [host] Unregister an OAD.

--remove-server server-name Unregister a server.

--remove-poa server-name poa-name Unregister a POA.

--get-oad-status [host] Get the status of an OAD.

--get-server-info server-name Get the attributes and state information for a
server.

--get-poa-status server-name poa-name Get the status of a POA.

--list-oads List all OADs.

--list-servers List all servers.

--list-poas server-name List all POAs.

--tree Display all OADs, servers and POAs in a
tree like format.

--tree-oad [host] Display an OAD and its associated servers
and POAs in a tree like format.

--tree-server server-name Display a server and its associated POAs in
a tree like format.

--set-server server-name {exec|host|
args|rundir|mode|activate_poas|
update_timeout|failure_timeout|
max_spawns} value

Set an attribute of a server (e.g.,
--set-server srv max_spawns 2
sets the max_spawns attribute for the
server srv to 2).

--start-server server-name Start a server.
ORBacus

Utilities
Note that the imradmin utility also needs to be configured with the IMR initial reference
(see “Connecting to the Service” on page 121).

The host argument is optional. If host is not specified the local host name is used. The
server-name argument refers to the name of the server. The format of the poa-name
argument is poa1/poa2/poa3, where poa1 is a child of the Root POA, poa2 is a child of
poa1, and poa3 is a child of poa2. Refer to “Information Managed by the IMR” on
page 114 for further details.

In very rare circumstances, it's possible for the IMR and OAD to become confused as to
the state of a server. In this case it might be necessary to manually reset the state of the
server using the --reset-server command. It is also necessary to use this command if
the server continually crashes on startup and has reached the maximum number of retries
specified by its max_spawns attribute. This prevents the OAD from continually starting
the same broken server.

7.4.2 Making References

The mkref utility creates IMR-based object references for use by clients. Since the Object
ID is required to create a reference, this utility can only be used to create references for
objects created by POAs using the USER_ID object identification policy. Its usage is
shown below.

mkref [-H imr-host] server-name object-id poa1/poa2/.../poan

The mkref utility uses the ooc.imr.forward_port property (see “Configuration Prop-
erties” on page 120). If this property is not set then mkref will use 9998.

--stop-server server-name Stop a server.

--reset-server server-name Reset a server.

imr-host The host that the imr server is running on. If the host is not specified,
then localhost is used.

server-name The name of the server as registered in the IMR.

object-id The Object ID used by the object.

poa1/poa2/.../poan The POA which creates the object, where poa1 is a child of the Root
POA, poa2 is a child of poa1, and so on.
ORBacus 123

The Implementation Repository

124
7.4.3 Upgrading the IMR Database

The imrdbupgrade utility is used to upgrade an earlier version of the IMR database.
Command-line usage is as follows:

imrdbupgrade database-directory

The database-directory parameter is used to specify the IMR database directory.

7.5 Getting Started with the Implementation Repository
To use the IMR, several steps must be taken. These steps are presented below and are
explained by way of example. In this example we assume that ORBACUS has been
installed in the directory /usr/local/ORBacus and the executables imr, imradmin and
mkref all exist in a directory that is in the search path.

1. Determine the physical architecture.

In this example, we have a network with three hosts: master, slave1 and slave2.
The host master is used to run only the IMR. The hosts slave1 and slave2 are
used to run individual CORBA servers.

2. Create a configuration file for the IMR and OADs.

First, create a configuration file for the IMR containing the following:

imr.conf
ooc.imr.admin_port=10000
ooc.imr.forward_port=10001
ooc.imr.slave_port=10002

ooc.imr.mode=master

ooc.imr.dbdir=/usr/local/ORBacus/db

This file is placed in the /usr/local/ORBacus/etc directory on host master. This
configuration file can also be used by the mkref utility.

Second, create a configuration file for the OADs containing the following:

oad.conf
ooc.orb.service.IMR=corbaloc::master:10000/IMR
ooc.imr.slave_port=10002

ooc.imr.mode=slave

ooc.imr.dbdir=/usr/local/ORBacus/db

This files is placed in the /usr/local/ORBacus/etc directory on hosts slave1
and slave2.

3. Start the IMR in administrative mode.

On host master, run:
ORBacus

Getting Started with the Implementation Repository
imr -ORBconfig /usr/local/ORBacus/etc/imr.conf --administrative

4. Start the OADs.

On host slave1, run:

imr -ORBconfig /usr/local/ORBacus/etc/oad.conf

On host slave2, run:

imr -ORBconfig /usr/local/ORBacus/etc/oad.conf

Each OAD automatically registers itself with the IMR. Note that an OAD can also be
registered manually using the imradmin utility. For example, to register the OAD on
host slave1, run:

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \

--add-oad slave1

5. Add each server to the IMR.

In our example, we will run one server on each OAD. The server names are Server1
and Server2 and are located in /usr/local/bin on their respective hosts.

First, we register the servers using the imradmin utility:

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \

--add-server Server1 "/usr/local/bin/server1" slave1

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \

--add-server Server2 "/usr/local/bin/server2" slave2

Next, we set the server arguments:

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \

--set-server Server1 args \

"-ORBInitRef IMR=corbaloc::master:10000/IMR"

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \

--set-server Server2 args \

"-ORBInitRef IMR=corbaloc::master:10000/IMR"

A C++ server can automatically register itself with the IMR using the -
ORBregister command-line option. For example, to registered Server1, run the
following on slave1:

/usr/local/bin/server1 -ORBregister Server1 \

-ORBInitRef IMR=corbaloc::master:10000/IMR

If the server requires command-line options, then these options must be added using
the imradmin utility.

6. Add each POA to the IMR.
ORBacus 125

The Implementation Repository

126
In this example, the servers are registered without setting the activate_poas
attribute, so the attribute defaults to true. Hence, all persistent POAs will be regis-
tered automatically. If this were not the case, the POAs would have to be registered
manually.

7. Configure your servers to use the IMR.

There are three ways to configure a server to use the IMR:

a) Use the -ORBregister command-line option (only available for C++ servers).
This option is used for server registration and can only be used when starting the
server for the first time.

b) Use the -ORBserver_name command-line option.

c) Use the ooc.orb.server_name configuration property. This configuration
property is equivalent to the -ORBserver_name command-line option and may
be set in a configuration file or programmatically prior to initializing the ORB in
a server.

In this example, the IMR is responsible for starting the servers. Hence, when the
server is started, the -ORBserver_name option is automatically added to the argu-
ment list.

8. Create object references for use by the clients.

A server can always be used to create references for its objects. However, if an object
is created by a POA that uses the USER_ID object identification policy, then the
mkref utility can also be used to create a reference for the object. Using the mkref
utility is discussed below.

Assume each server has a single primary object. Server1 uses Object1 for its
Object ID and Server2 uses Object2. Also, each server creates a persistent POA
called Main to hold its objects. To create object references for these objects, run the
following on master:

mkref -ORBconfig /usr/local/ORBacus/etc/imr.conf \

Server1 Object1 Main > Object1.ref

mkref -ORBconfig /usr/local/ORBacus/etc/imr.conf \

Server2 Object2 Main > Object2.ref

The imr.conf configuration file contains the properties needed by the mkref utility.

After all OADs, servers and POAs are registered, it is recommended to restart the IMR in
non-administrative mode. This will prevent any accidental (or unauthorized) modifica-
tions.
ORBacus

Programming Example
7.6 Programming Example
In this section, we will show how to modify the C++ version of the “Hello World” server
(see Chapter 2) to use a persistent object reference. This will allow the server to use the
IMR for indirect binding. Modifications to the Java version of the server are similar. The
code for both the C++ and Java persistent “Hello World” servers may be found in the
demo/hello_imr directories of the ORBACUS for C++ and Java distributions.

The “Hello World” server presented in Chapter 2 uses the Root POA to activate its Hello
servant. Since the Root POA uses the TRANSIENT life span policy, the object reference it
creates will not be persistent. Hence, the “Hello World” server must be modified so that
the Hello servant is activated using a child POA with the PERSISTENT life span policy.
The new child POA will also use the USER_ID object identification policy so that the
mkref utility may be used. Further, the Hello servant is no longer activated under the Root
POA, so it becomes necessary for it to override the _default_POAmethod. The modified
servant’s class declaration is shown below:

1 // C++
2

3 #include <Hello_skel.h>
4

5 class Hello_impl : public POA_Hello,
6 public PortableServer::RefCountServantBase
7 {
8 PortableServer::POA_var poa_;
9

10 public:
11

12 Hello_impl(PortableServer::POA_ptr);
13

14 virtual void say_hello() throw(CORBA::SystemException);
15

16 virtual PortableServer::POA_ptr _default_POA();
17 };

8 Private member to store the servant’s default POA.

12 A constructor must be defined to allow the assignment of the servant’s default POA.

16 Declaration of the _default_POA method.

The remainder of the class declaration is unchanged. The definition of the constructor and
_default_POA method follow:
ORBacus 127

The Implementation Repository

128
// C++

Hello_impl::Hello_impl(PortableServer::POA_ptr poa)
: poa_(PortableServer::POA::_duplicate(poa)

{
}

PortableServer::POA_ptr Hello_impl::_default_POA()
{

return PortableServer::POA::_duplicate(poa_);
}

The modified portion of the server program is shown below:

1 // C++
2

3 int
4 run(CORBA::ORB_ptr orb, int argc)
5 {
6 CORBA::Object_var poaObj =
7 orb -> resolve_initial_references("RootPOA");
8 PortableServer::POA_var rootPoa =
9 PortableServer::POA::_narrow(poaObj);

10

11 PortableServer::POAManager_var manager =
12 rootPoa -> the_POAManager();
13

14 CORBA::PolicyList pl(2);
15 pl.length(2);
16 pl[0] = rootPOA -> create_lifespan_policy(
17 PortableServer::PERSISTENT);
18 pl[1] = rootPOA -> create_id_assignment_policy(
19 PortableServer::USER_ID);
20

21 PortableServer::POA_var helloPOA =
22 rootPOA -> create_POA("hello", manager, pl);
23

24 Hello_impl* helloImpl = new Hello_impl(helloPOA);
25 PortableServer::ServantBase_var servant = helloImpl;
26 PortableServer::ObjectId_var oid =
27 PortableServer::string_to_ObjectId("hello");
28 helloPOA -> activate_object_with_id(oid, servant);
29 Hello_var hello = helloImpl -> _this();
30
ORBacus

Programming Example
31 CORBA::String_var s = orb -> object_to_string(hello);
32 ofstream out("Hello.ref");
33 out << s << endl;
34 out.close();
35

36 manager -> activate();
37 orb -> run();
38

39 return 0;
40 }

14-22 Create a new POA using PERSISTENT life span policy and the USER_ID object identifica-
tion policy.

24-25 Create the Hello servant.

26-27 Using the string "hello", create an object id.

28 Activate the servant with the new POA.

The remainder of the code is unchanged.
ORBacus 129

The Implementation Repository

130
 ORBacus

CHAPTER 8 The Implementation
Repository Console
The ORBACUS Implementation Repository (IMR) includes a graphical client for adminis-
tering the service called the ORBACUS IMR Console. The ORBACUS IMR Console pro-
vides complete control over the IMR, OADs and servers in a domain.
ORBacus 131

The Implementation Repository Console

132
8.1 Synopsis

8.1.1 Usage

com.ooc.IMRConsole.Main
[--look CLASS] [--windows] [--motif] [--mac] [-h,--help]

8.1.2 CLASSPATH Requirements

The ORBACUS IMR Console requires the classes in OB.jar, OBIMR.jar, OBUtil.jar
and the Java Foundation Classes (JFC). Note, JFC is part of version 1.2 (or greater) of
JDK.

8.1.3 Implementation Repository Service Lookup

In order to locate an IMR Service, the application uses the initial IMR Service, as pro-
vided to the ORB with options such as -ORBservice or -ORBconfig. If the service is
not found, an error is displayed and the IMR Console exits.

8.2 The Menus
The menus provide access to all of the features of the application. In addition, the most
common actions are also available in the toolbar, as well as in a popup menu that is dis-
played when pressing the right mouse button over an item in the binding table or context
tree.

8.2.1 The File Menu

The File menu contains the Exit menu item, which is used to exit the ORBACUS IMR Con-
sole.

--look CLASS Use the specified Look & Feel class.

--windows Use the Windows Look & Feel (if available).

--motif Use the Motif Look & Feel (if available).

--mac Use the Macintosh Look & Feel (if available).

-h
--help

Display the command-line options supported by the program.
ORBacus

The Menus
8.2.2 The Edit Menu

The operations in the Edit menu provide the means for manipulating OADs, servers and
POAs.

The Create menu item creates a child object under the selected object. OADs are created
under the “IMR Domain” root object, servers are created under OADs, and POAs are cre-
ated under servers.

The Modify menu item applies to all objects. However, servers are currently the only
objects that have attributes that can be modified.

To delete an object, the Delete menu item is used. This operation recursively deletes all
children under the selected item.

The Cut and Paste menu items only apply to servers and are used to move servers to differ-
ent hosts. Note that OAD for the desired host must be selected when using Paste.

In very rare circumstances, it's possible for the IMR and OAD to become confused as to
the state of a server. In this case it might be necessary to manually reset the state of the
server using the Resetmenu item. It also necessary to use this item if the server continually
crashes on startup and has reached the maximum number of retries specified by its
max_spawns attribute. This prevents the OAD from continually starting the same broken
server.

8.2.3 The View Menu

The View menu contains the Refresh menu item. The Refresh menu item is used to update
the console when the contents of the IMR have been changed from outside the console.
Note that clicking or expanding an item will refresh the item.

Create Create a new OAD, server, or POA.

Modify Modify the selected object.

Delete Delete the selected object.

Cut Move the selected server to the clipboard.

Paste Insert the server contained in the clipboard under the selected OAD.

Start Start the selected server.

Stop Stop the selected server.

Reset Reset the state of the selected server.
ORBacus 133

The Implementation Repository Console

134
8.3 The Toolbar and the Popup Menu
In addition to the operations offered by the menu bar, some frequently needed functions
are available by icons located in the toolbar. The toolbar contains all of the items of the
Edit menu and the Refresh item of the View menu. The toolbar is shown below in Figure
8.1.

When selecting an OAD, server or POA with the right mouse button, a popup menu with a
choice of operations will be displayed as shown in Figure 8.2. This popup menu provides

the same operations as the toolbar.

Figure 8.1: A closer look at the toolbar

Figure 8.2: The popup menu
ORBacus

CHAPTER 9 ORBacus Names
A CORBA object is often represented by an object reference in the form of a “stringified”
IOR, a lengthy string that is difficult to read and cumbersome to use. It is much more nat-
ural to think of an object in terms of its name, which is a core feature of the CORBA Nam-
ing Service. In the Naming Service, objects are registered with a unique name, which can
later be used to resolve their associated object references.

ORBACUS Names is compliant with [10]. This chapter does not provide a complete
description of the service. It only provides an overview, suitable to get you started. For
more information, please refer to the specification.

9.1 Synopsis

9.1.1 Usage

ORBACUS includes functionally equivalent implementations of the Naming Service in
C++ and Java.

C++

nameserv
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-t,--timeout MINS]
[-c, --callback-timeout SECS]
ORBacus 135

ORBacus Names

136
Java

com.ooc.CosNaming.Server
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-t,--timeout MINS]
[-c, --callback-timeout SECS]

Options

9.1.2 Windows NT Native Service

The C++ version of ORBACUS Names is also available as a native Windows NT service.

ntnameservice
[-h,--help] [-i,--install] [-s,--start-install]

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.

-i
--ior

Prints the stringified IOR of the server to standard output.

-n
--no-updates

Disables automatic updates, i.e., callbacks that notify interested
clients of changes to the naming service.

-s
--start

Use this option only when starting a persistent server using a
new database.

-d FILE
--database FILE

Enables persistence for the server. All of the bindings created by
the server will be saved to the specified file. If you are starting
the server for the first time using this database, you must also
use the -s command-line option.

-t MINS
--timeout MINS

Specifies the timeout in minutes after which a persistent server
automatically compacts its database. The default timeout is five
minutes.

-c SECS
--callback-timeout SECS

Specifies the timeout in seconds to be used for the ORBACUS

timeout policy (OB::TimeoutPolicy). The default
timeout is five seconds. See Chapter 17 for more information.
ORBacus

Synopsis
[-u,--uninstall] [-d,--debug]

In order to use the Naming Service as a native Windows NT service, it is first necessary to
add the ooc.naming.port configuration property to the HKEY_LOCAL_MACHINE NT
registry key (see “Using the Windows NT Registry” on page 60 for more details). If the
service is to be persistent, the path to the database file must be stored in the following
property:1

HKEY_LOCAL_MACHINE\Software\OOC\Properties\ooc\naming\database

Next the service should be installed with:

ntnameservice -i

This adds the ORBacus Naming Service entry to the Services dialog in the Control
Panel. To start the naming service, select the ORBacus Naming Service entry, and press
Start. If the service is to be started automatically when the machine is booted, select the
ORBacus Naming Service entry, then click Startup. Next select Startup Type -
Automatic, and press OK. Alternatively, the service could have been installed using the
-s option, which configures the service for automatic start-up:

ntnameservice -s

If you want to remove the service, run:

ntnameservice -u

-h
--help

Display the command-line options supported by the server.

-i
--install

Install the service. The service must be started manually.

-s
--start-install

Install the service. The service will be started automatically.

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.

1. Please note that services do not have access to network drives, so the path to the database must be
on a local hard drive.
ORBacus 137

ORBacus Names

138
Note: If the executable for the Naming Service is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service will be placed in the Windows NT Event
Viewer with the title NamingService. To enable tracing information, add the desired
trace configuration property (i.e., the ooc.naming.trace_level property or one of the
ooc.orb.trace properties) to the HKEY_LOCAL_MACHINE NT registry key with a
REG_SZ value of at least 1.

9.1.3 Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS

Names also supports the following properties:

9.1.4 Persistence

ORBACUS Names can optionally be used in a persistent mode, in which all data managed
by the service is saved in a file. If you do not run the service in its persistent mode, all of
the data will be lost when the service terminates.

It is also important to note that when using the service in its persistent mode, you should
always start the service on the same port (see Chapter 4 for more information).

ooc.naming.callback_timeout=SECS Equivalent to the -c command-line option.

ooc.naming.database=FILE Equivalent to the -d command-line option.

ooc.naming.no_updates Equivalent to the -n command-line option.

ooc.naming.port=PORT Specifies the port number on which the service
should listen for new connections. Note that this
property is only considered if the ooc.oa.port
property is not set.

ooc.naming.timeout=MINS Equivalent to the -t command-line option.

ooc.naming.trace_level=LEVEL Defines the output level for diagnostic messages
printed by ORBACUS Names. The default level
is 0, which produces no output. A level of 1 or
higher produces messages related to database
operations, a level of 2 or higher produces
messages related to adding and removing listeners,
and a level of 3 or higher produces messages
related to binding operations.
ORBacus

Connecting to the Service
9.1.5 CLASSPATH Requirements

ORBACUS Names for Java requires the classes in OB.jar and OBNaming.jar.

9.2 Connecting to the Service
The object key of the Naming Service is NameService, which identifies an object of type
CosNaming::OBNamingContext. The OBNamingContext interface is derived from the
standard interface CosNaming::NamingContextExt and provides additional ORBA-
CUS-specific functionality. For a description of the OBNamingContext interface, please
refer to the documented IDL file naming/idl/OBNaming.idl.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the naming service running on host nshost at port 10000:

corbaloc::nshost:10000/NameService

Refer to Chapter 6 for more information on URLs and configuring initial services.

9.3 Using the Naming Service with the IMR
The Naming Service may be used with the Implementation Repository (IMR). However, if
used with the IMR, it is important to note that the corbaloc URL-style object reference
described in the previous section cannot be used. If the IMR is used, then the object refer-
ence for the Naming Service must be created using one of the following methods (where
NamingServer refers to the server name configured with the IMR):

• start the Naming Service with the options:

--ior -ORBserver_name NamingServer

causing the Naming Service to print its reference to standard output.

• use the mkref utility:

mkref NamingServer NameService RootContextPOA

When using the Naming Service with the IMR, the service must be started with the option
-ORBserver_name NamingServer, where NamingServer refers to the server name
configured with the IMR. When the IMR is configured to start the Naming Service, this
option is automatically added to the service’s arguments. However, when the Naming Ser-
vice is started manually, the option must be present. For further information on configur-
ing a service with the IMR, refer to “Getting Started with the Implementation Repository”
on page 124.
ORBacus 139

ORBacus Names

140
9.4 Naming Service Concepts

9.4.1 Bindings

Object references registered with the Naming Service are maintained in a hierarchical
structure similar to a filesystem. A file in a filesystem is analogous to an object binding in
the Naming Service. The equivalent for a folder in a filesystem is a naming context in
Naming Service terms. The pieces of information stored in a Naming Service are called
bindings. A binding consists of an object’s name and its type, as defined in the
CosNaming module:

// IDL
typedef string Istring;

struct NameComponent
{

Istring id;
Istring kind;

};

typedef sequence<NameComponent> Name;

enum BindingType
{

nobject,
ncontext

};

struct Binding
{

Name binding_name;
BindingType binding_type;

};

As you can see, each name consists of one or more components, like a file is fully speci-
fied by its path in a filesystem. Each name component consists of two strings, id and
kind, which could be likened to a file’s name and its extension. Generally, the filesystem
analogy works very well when describing the Naming Service structures.

A new Naming Service entry, i.e., a binding, is created with the following operations:

// IDL
void bind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
ORBacus

Naming Service Concepts
void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

NamingContext new_context();

NamingContext bind_new_context(in Name n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

bind registers a new object with the Naming Service, whereas a new context is registered
with bind_context. For each operation, an object reference and a Name are expected as
parameters. New naming context objects are created with new_context or
bind_new_context. bind_context and bind_new_context throw an
AlreadyBound exception if the name is already in use in the target context.

To create a new binding without being concerned if the specified binding already exists,
use the following operations:

// IDL
void rebind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Use the unbind operation to delete a particular binding:

// IDL
void unbind(in Name n)

raises(NotFound, CannotProceed, InvalidName);

9.4.2 Name Resolution

Besides registering objects, an equally important task of the Naming Service is name reso-
lution. A name is passed to the resolve or resolve_str operation and an object refer-
ence is returned if the name exists.

// IDL
Object resolve(in Name n)

raises(NotFound, CannotProceed, InvalidName);
Object resolve_str(in StringName n)

raises(NotFound, CannotProceed, InvalidName);

The resolve and resolve_str operations are only useful when a particular name is
known in advance. Sometimes it is necessary to ask for a list of all bindings registered
with a particular naming context. The list operation returns a list of bindings.
ORBacus 141

ORBacus Names

142
// IDL
typedef sequence<Binding> BindingList;

void list(in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

If the number of bindings is especially large, the BindingIterator interface is provided
so that you don’t have to query for all available bindings at once. Simply get a certain
number of bindings specified with how_many, and get the rest, if any, using the
BindingIterator.

// IDL
interface BindingIterator
{

boolean next_one(out Binding b);

boolean next_n(in unsigned long how_many,
out BindingList bl);

void destroy();
};

Make sure that you destroy the iterator object when it is no longer needed.

9.5 Programming Example
ORBACUS includes simple C++ and Java examples that demonstrate how to use the
CORBA Naming Service. These examples are located in the folder naming/demo. We
will concentrate on the Java example, but the C++ example works similarly. The example
expects a Naming Service server to be already running and that the server’s initial refer-
ence can be resolved by the ORB. Because of its volume we have split the code into sev-
eral parts for the discussion below.

9.5.1 Initialization

The first code fragment deals with initializing the ORB.

1 // Java
2 java.util.Properties props = System.getProperties();
3 props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
4 props.put("org.omg.CORBA.ORBSingletonClass",
5 "com.ooc.CORBA.ORBSingleton");
6

7 org.omg.CORBA.ORB orb = null;
ORBacus

Programming Example
8 try
9 {

10 orb = ORB.init(args, props);
11

12 org.omg.CORBA.Object poaObj = null;
13 try
14 {
15 poaObj = orb.resolve_initial_references("RootPOA");
16 }
17 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
18 {
19 throw new RuntimeException();
20 }
21 POA rootPOA = POAHelper.narrow(poaObj);
22 POAManager manager = rootPOA.the_POAManager();
23

24 org.omg.CORBA.Object obj = null;
25 try
26 {
27 obj = orb.resolve_initial_references("NameService");
28 }
29 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
30 {
31 throw new RuntimeException();
32 }
33

34 if(obj == null)
35 {
36 throw new RuntimeException();
37 }
38

39 NamingContextExt nc = null;
40 try
41 {
42 nc = NamingContextExtHelper.narrow(obj);
43 }
44 catch(org.omg.CORBA.BAD_PARAM ex)
45 {
46 throw new RuntimeException();
47 }

10-22 Usually the application is initialized in the main method. For more information on ORB
initialization see Chapter 4.
ORBacus 143

ORBacus Names

144
24-32 In the next step we try to connect to the Naming Service by supplying “NameService” to
resolve_initial_references. If InvalidName is thrown, there is no Naming Ser-
vice available because the ORB doesn’t know anything about this service.

34-47 If calling resolve_initial_references was successful, the object reference is
checked and narrowed in order to verify that it supports the interface
CosNaming::NamingContextExt. If the narrow operation raises
CORBA::BAD_PARAM, the object does not support the interface. This is considered to be an
error because we explicitly asked for a Naming Service instance.

9.5.2 Binding

In the next step some sample bindings are created and bound to the Naming Service.

1 // Java
2 Named_impl implA = new Named_impl();
3 Named_impl implA1 = new Named_impl();
4 Named_impl implA2 = new Named_impl();
5 Named_impl implA3 = new Named_impl();
6 Named_impl implR = new Named_impl();
7 Named_impl implC = new Named_impl();
8 Named a = implA._this(orb);
9 Named a1 = implA1._this(orb);

10 Named a2 = implA2._this(orb);
11 Named a3 = implA3._this(orb);
12 Named b = implB._this(orb);
13 Named c = implC._this(orb);
14

15 try
16 {
17 NameComponent[] nc1Name = new NameComponent[1];
18 nc1Name[0] = new NameComponent();
19 nc1Name[0].id = "nc1";
20 nc1Name[0].kind = "";
21 NamingContext nc1 = nc.bind_new_context(nc1Name);
22

23 NameComponent[] nc2Name = new NameComponent[2];
24 nc2Name[0] = new NameComponent();
25 nc2Name[0].id = "nc1";
26 nc2Name[0].kind = "";
27 nc2Name[1] = new NameComponent();
28 nc2Name[1].id = "nc2";
29 nc2Name[1].kind = "";
30 NamingContext nc2 = nc.bind_new_context(nc2Name);
ORBacus

Programming Example
31

32 NameComponent[] aName = new NameComponent[1];
33 aName[0] = new NameComponent();
34 aName[0].id = "a";
35 aName[0].kind = "";
36 nc.bind(aName, a);
37

38 NameComponent[] a1Name = new NameComponent[1];
39 a1Name[0] = new NameComponent();
40 a1Name[0].id = "a1";
41 a1Name[0].kind = "";
42 nc.bind(a1Name, a1);
43

44 NameComponent[] a2Name = new NameComponent[1];
45 a2Name[0] = new NameComponent();
46 a2Name[0].id = "a2";
47 a2Name[0].kind = "";
48 nc.bind(a2Name, a2);
49

50 NameComponent[] a3Name = new NameComponent[1];
51 a3Name[0] = new NameComponent();
52 a3Name[0].id = "a3";
53 a3Name[0].kind = "";
54 nc.bind(a3Name, a3);
55

56 NameComponent[] bName = new NameComponent[2];
57 bName[0] = new NameComponent();
58 bName[0].id = "nc1";
59 bName[0].kind = "";
60 bName[1] = new NameComponent();
61 bName[1].id = "b";
62 bName[1].kind = "";
63 nc.bind(bName, b);
64

65 NameComponent[] cName = new NameComponent[3];
66 cName[0] = new NameComponent();
67 cName[0].id = "nc1";
68 cName[0].kind = "";
69 cName[1] = new NameComponent();
70 cName[1].id = "nc2";
71 cName[1].kind = "";
72 cName[2] = new NameComponent();
73 cName[2].id = "c";
74 cName[2].kind = "";
ORBacus 145

ORBacus Names

146
75 nc.bind(cName, c);
76 }

2-13 Several sample objects are created that will later be bound to our Naming Service. These
objects implement an interface called Named. In this example, the details of this interface
are not important. Named might even be an interface without any operations defined in it.

17-75 Create and bind some new contexts and bind the sample objects to these contexts. Each
binding name consists of several NameComponents that are similar to the path compo-
nents of a file located somewhere in a filesystem. Objects are bound with the Naming Ser-
vice’s bind operation; for contexts, the corresponding operation bind_context is used.
In addition to the object’s IOR, both operations expect a unique binding name. If a name
already exists, an AlreadyBound exception is thrown. There are also other exceptions
you might encounter at this stage, e.g., IllegalName if an empty string was provided as
part of a NameComponent.

9.5.3 Exceptions

This code fragment deals with exceptions that may be thrown by the Naming Service
operations.

1 // Java
2 catch(NotFound ex)
3 {
4 System.err.print("Got a ‘NotFound’ exception (");
5 switch(ex.why.value())
6 {
7 case NotFoundReason._missing_node:
8 System.err.print("missing node");
9 break;

10

11 case NotFoundReason._not_context:
12 System.err.print("not context");
13 break;
14

15 case NotFoundReason._not_object:
16 System.err.print("not object");
17 break;
18 }
19

20 System.err.println(")");
21 ex.printStackTrace();
22 throw new SystemException();
23 }
ORBacus

Programming Example
24 catch(CannotProceed ex)
25 {
26 System.err.println("Got a ‘CannotProceed’ exception");
27 ex.printStackTrace();
28 throw new SystemException();
29 }
30 catch(InvalidName ex)
31 {
32 System.err.println("Got an ‘InvalidName’ exception");
33 ex.printStackTrace();
34 throw new SystemException();
35 }
36 catch(AlreadyBound ex)
37 {
38 System.err.println("Got an ‘AlreadyBound’ exception");
39 ex.printStackTrace();
40 throw new SystemException();
41 }

2-41 Catch exceptions. Don’t ever forget to do this. It can be useful to call printStackTrace
on the exception object in order to get detailed information about the program flow caus-
ing the exception.

9.5.4 The Event Loop

Next we start listening for requests.

1 // Java
2 try
3 {
4 manager.activate();
5 }
6 catch(org.omg.PortableServer.POAManagerPackage.AdapterInactive

ex)
7 {
8 throw new RuntimeException();
9 }

10 orb.run();

2-10 Everything is ready now, so we can listen for requests by calling actiavate on the POA
Manager and run on the ORB.
ORBacus 147

ORBacus Names

148
9.5.5 Releasing Resources

Some cleanup work should be done before exiting the program. Every binding must be
properly unbound and the ORB must be destroyed.

1 // Java
2 nc.unbind(cName);
3 nc.unbind(bName);
4 nc.unbind(aName);
5 nc.unbind(a1Name);
6 nc.unbind(a2Name);
7 nc.unbind(a3Name);
8 nc.unbind(nc2Name);
9 nc.unbind(nc1Name);

10 }
11 catch(RuntimeException ex)
12 {
13 status = 1;
14 }
15

16 if (orb != null)
17 {
18 try
19 {
20 orb.destroy();
21 }
22 catch(const RuntimeException ex)
23 {
24 status = 1;
25 }
26 }
27

28 System.exit(status);

2-9 All bindings are unbound.

16-26 destroy is called on the ORB. This releases the resources used by the ORB.

The complete example can be found in the folder naming/demo included with the ORBA-
CUS distribution.
ORBacus

CHAPTER 10 ORBacus Names Console
ORBACUS Names includes a graphical client for administering the service called the
ORBACUS Names Console. The application can manage any CORBA-compliant Naming
Service, but additional features are provided when used with ORBACUS Names.

10.1 Synopsis

10.1.1 Usage

com.ooc.CosNamingConsole.Main
[-f,--file FILE] [-i,--ior] [-n,--no-updates] [--look CLASS]
[--windows] [--motif] [--mac] [-h,--help] [-v, --version]

-f FILE
--file FILE

Read the Naming Service IOR from FILE.

-i
--ior

Print the stringified IOR of the Naming Service to standard output.

-n
--no-updates

Disables automatic updates, i.e., callbacks that notify interested clients of
changes to the naming service.

--look CLASS Use the specified Look & Feel class.

--windows Use the Windows Look & Feel (if available).
ORBacus 149

ORBacus Names Console

150
10.1.2 CLASSPATH Requirements

The ORBACUS Names Console requires the classes in OB.jar, OBNaming.jar,
OBUtil.jar and the Java Foundation Classes (JFC). Note, JFC is part of version 1.2 (or
greater) of JDK.

10.1.3 Naming Service Lookup

In order to locate a Naming Service, the application takes the following steps on start-up:

• First it checks whether a Naming Service reference was given with the -f option.

• If this is not the case, then the initial Naming Service is used, as provided to the ORB
with options like -ORBservice or -ORBconfig.

If both of the above steps fail, an error window is displayed and the Names console exits.

10.2 The Menus
The menus provide access to all of the features of the application. In addition, the most
common actions are also available in the toolbar, as well as in a popup menu that is displayed
when pressing the right mouse button over an item in the binding table or context tree.

10.2.1 The File Menu

This menu contains operations that create bindings and define the current root context.

--motif Use the Motif Look & Feel (if available).

--mac Use the Macintosh Look & Feel (if available).

-h
--help

Display the command-line options supported by the program.

New Window Opens an additional control window.

Switch Root Context Selects a new root naming context.

Load Context Recursively loads a naming context from a file.

Save Context As Recursively saves the selected naming context to a file.

Save IOR to File Saves the stringified IOR of the currently selected item to a file.

Close Window Closes the current window.

Exit Quits the ORBACUS Names Console.
ORBacus

The Menus
After starting the application, the current root context is the naming context corresponding
to the IOR specified on the command line or the initial Naming Service, as provided to the
ORB with options like -ORBservice or -ORBconfigby. You can make another naming
context the root context using Switch Root Context. The new root context’s IOR is speci-
fied in the Enter IOR dialog window, as shown in Figure 10.1. The IOR can be entered

directly or can be read from a file. If an IOR is entered manually you usually either use the
URL-style notation as described in Chapter 6, or you copy a stringified object reference
into the dialog box using “Cut & Paste”. After selecting Browse a file containing an IOR
can be selected.

Sometimes it is not desirable to completely replace the currently visible root context by
another root context. For example, you may need to copy bindings from one context to
another. If this is the case, simply open an additional window for the new root context
using New Window. You can then switch the root context in only one window without
affecting the information displayed in the other one. Using two windows, you can easily
transfer bindings from one context to another using “Cut & Paste”.

Complete naming contexts can be loaded from a special file with naming context informa-
tion. Such a file, which was previously created with Save Context As, is loaded with Load
Context. The bindings saved to this file are added to the current naming context.

When saving a naming context, the console checks each context for accessibility. If a con-
text cannot be accessed, i.e., if its contents cannot be saved, a message is displayed in the
error window. You also get an error message if the console detects a recursion. The bind-
ings contained in the naming context leading to the recursion is not saved.

Use Save IOR to File in order to create a file that contains the stringified IOR of the cur-
rently selected binding or context.

With Close Window the current window is closed. Closing the last window causes the
application to terminate. Exit can be used to terminate the application regardless of how
many windows are open.

Figure 10.1: Entering an IOR
ORBacus 151

ORBacus Names Console

152
10.2.2 The Edit Menu

The operations in this menu provide the means for creating and deleting objects and for
changing the Naming Service structure.

New contexts and bindings are created with the operations New Context and New Binding,
respectively. If one of these functions is selected, a new context or object binding with a
unique name is added to the current context. For new object bindings an IOR can be spec-
ified.

Use Delete to remove the selected items from a naming context. Deleting Naming Service
entries removes all selected bindings from their parent context. The objects belonging to
these bindings are not affected. Destroying Naming Service information only affects the
actual Naming Service data, not the objects themselves.

Use Link to create a new binding for an existing naming context, where the naming con-
text is specified by an IOR. The operation Unlink unbinds the selected items. For objects,
Unlink is equivalent to Delete, but for contexts, Unlink differs in that the context is not
destroyed. Since a context is not destroyed using Unlink, it should only be used when
there are multiple bindings to a context in order to avoid orphaned contexts.

The console supports a clipboard that you can use to move bindings between different
contexts. Data is transferred to the clipboard using the Cut or Copy commands. Cutmoves
the currently selected items to the clipboard and deletes the original entries, whereas Copy

New Context Creates a new naming context.

New Binding Creates a new binding for an object.

Delete Deletes the selected items.

Link Creates a new binding for an existing naming context.

Unlink Unbinds the selected items.

Cut Moves the selected items to the clipboard.

Copy Copies the selected items to the clipboard.

Paste Inserts the clipboard contents.

Change ID Edits the ID field of the selected item.

Change Kind Edits the Kind field of the selected item.

Change IOR Edits the IOR of the selected item.

Select all Selects all items in the object table.

Invert Selection Inverts the current selection.
ORBacus

The Menus
simply creates a copy in the clipboard but keeps the source entry unchanged. When new
data is transferred to the clipboard, the old clipboard contents are replaced. Using Paste,
you can add the clipboard data into a naming context. The clipboard contents are not
changed by this operation, i.e., you can Paste the same items several times. Note that if
naming contexts are transferred to the clipboard, their contents are not evaluated before
they are pasted. It is during the Paste operation that the bindings of a context are dupli-
cated. This means that if new bindings are added to a context after a Cut or Copy opera-
tion, these bindings will be present after pasting this context.

An item registered with the Naming Service has three modifiable attributes: its ID, its
Kind and its IOR. The ID and Kind attributes can be edited by simply double-clicking the
ID or Kind field in the table. You can also change binding attributes with the correspond-
ing menu operations Change ID, Change Kind and Change IOR. Entering a new IOR for an
existing name effectively replaces an object registered with the Naming Service by
another object with the same name.

Use Select all to select all of the entries in the binding table. The current table selection can
be inverted using Invert Selection.

10.2.3 The View Menu

The operations in this menu control the appearance of the console window as well as the
presentation of the Naming Service data.

A toolbar that gives access to frequently needed operations is normally present below the
menu. If you don’t have a need for this toolbar or if you just want to save space on the
screen, you can switch it off with the Toolbar toggle button. The same applies to the status
bar where information about the currently selected item is displayed. The status bar dis-
plays an object’s repository ID, the host where this object is located and the port it is
bound to. If an item with a nil object reference is selected or if multiple items are selected,
the status bar is empty.

Toolbar Toggles the toolbar visibility.

Status Bar Toggles the statusbar visibility.

Error Window Toggles the error message window visibility.

Simple List Displays minimum object information.

Details Displays additional object information.

Sort Sets sorting mode for object list.

Refresh Updates the complete window contents
ORBacus 153

ORBacus Names Console

154
If an error occurs while editing bindings, the console automatically displays a new win-
dow with information about what went wrong. Usually this information consists of excep-
tion data. The visibility of this window can be explicitly controlled with the Error Window
toggle button.

If the console is connected to ORBACUS Names, as described in Chapter 9, the console
can display timestamp information for each binding by making use of proprietary features
of ORBACUS Names. This information is shown in the binding table if the Details display
mode instead of the Simple List mode is active.

Usually the console sorts the items in the binding table in ascending alphabetical order,
with naming contexts being listed at the top. You can change this order with the options
available in the Sort menu. Bindings can be sorted by their ID or Kind fields. If the
extended attributes are displayed, items can also be sorted by date and time. You can
reverse the sort order by selecting the current sorting mode a second time in the View
menu or by clicking on the table header cells. In this case, the display switches from
ascending to descending order and vice versa.

If the contents of a naming context have been changed by a third party and you want to
update the information displayed in the console window, selecting Refresh updates the dis-
play. If the console is connected to ORBACUS Names, a refresh is done automatically each
time a change occurs.

10.2.4 The Tools Menu

The operations available in this menu are meant as tools for your everyday work.

Sometimes it is useful to check if an object bound to a name still exists or if the object ref-
erence associated with it has become invalid, for example, because of a server crash. To
perform such a check, select all the objects you want to check and start the Ping operation.
The console tries to contact each of the selected objects and displays the time it took to get
a connection to them in a separate window. This is very similar to the Windows or Unix
ping command for an IP address or a host name. If there is a time-out while trying to con-
tact an object, this information is displayed in the Ping Window and the console continues
with the next object.

If you want objects that cannot be contacted, for example because of a server breakdown,
to be unbound from the current context, Clean up does the job. Clean up non-recursively
tries to connect to the selected objects. If there is a communication failure or the

Ping Checks the accessibility of the selected items.

Clean up Unbinds inaccessible objects from the current context.
ORBacus

The Toolbar
_non_existent() operation returns true for a particular object, the corresponding bind-
ing is automatically removed. Clean up should be used with care.

10.3 The Toolbar
In addition to the operations offered by the menu bar, some frequently needed functions
are available by icons located in the toolbar, as shown in Figure 10.3.

The icon on the toolbar’s left is the Upwards icon which changes the naming context to the
parent of the context currently being displayed. The next five icons correspond to the New
Context, New Binding, Cut, Copy, Paste and Delete items as described in “The Edit Menu”
on page 152.

Figure 10.2: The Ping Window

Figure 10.3: A closer look at the toolbar
ORBacus 155

ORBacus Names Console

156
The Simple List and Details items from the View menu are the next two icons in the toolbar.
They determine whether the binding table displays only the ID and Kind fields, or, if
ORBACUS Names is available, also the date and time the binding was last modified.

The last item in the menubar corresponds to the Refresh operation from the View menu.

10.4 The Popup Menu
When selecting an item in the binding table or a tree node with the right mouse button, a
popup menu with a choice of operations is displayed as shown in Figure 10.4. This is

another convenient alternative for executing frequently used operations.

Figure 10.4: A popup menu offers important operations
ORBacus

CHAPTER 11 ORBacus Properties
The CORBA Property Service1 permits you to annotate an object with extra attributes
(called properties) that were not defined by the object’s IDL interface. Properties can rep-
resent any value because they make use of the CORBA Any data type.

ORBACUS Properties is compliant with [10]. This chapter does not provide a complete
description of the service. It only provides an overview, suitable to get you started. For
more information, please refer to the specification.

11.1 Synopsis

11.1.1 Usage

ORBACUS includes functionally equivalent implementations of the Property Service in
C++ and Java.

C++

propserv
[-h,--help] [-v,--version] [-i,--ior]

1. Note that the Property Service has nothing to do with the properties used for configuration pur-
poses. Configuration properties are described in “ORB Properties” on page 49.
ORBacus 157

ORBacus Properties

158
Java

com.ooc.CosPropertyService.Server
[-h,--help] [-v,--version] [-i,--ior]

Options

11.1.2 Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS

Properties also supports the following properties:

11.1.3 CLASSPATH Requirements

ORBACUS Properties for Java requires the classes in OB.jar and OBProperty.jar.

11.2 Connecting to the Service
The object key of the Property Service is PropertyService, which identifies an object
of type CosPropertyService::PropertySetDefFactory.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the Property Service running on host prophost at port
10000:

corbaloc::prophost:10000/PropertyService

Refer to Chapter 6 for more information on URLs and configuring initial services.

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.

-i
--ior

Prints the stringified IOR of the server to standard output.

ooc.property.port=PORT Specifies the port number on which the service
should listen for new connections. Note that this
property is only considered if the ooc.oa.port
property is not set.
ORBacus

Using the Property Service with the IMR
11.3 Using the Property Service with the IMR
The Property Service may be used with the Implementation Repository (IMR). However,
if used with the IMR, it is important to note that the corbaloc URL-style object reference
described in the previous section cannot be used. If the IMR is used, then the object refer-
ence for the Property Service must be created using one of the following methods (where
PropertyServer refers to the server name configured with the IMR):

• start the Property Service with the options:

--ior -ORBserver_name PropertyServer

causing the Property Service to print its reference to standard output.

• use the mkref utility:

mkref PropertyServer PropertyService PropertyServicePOA

When using the Property Service with the IMR, the service must be started with the option
-ORBserver_name PropertyServer, where PropertyServer refers to the server
name configured with the IMR. When the IMR is configured to start the Property Service,
this option is automatically added to the service’s arguments. However, when the Property
Service is started manually, the option must be present. For further information on config-
uring a service with the IMR, refer to “Getting Started with the Implementation Reposi-
tory” on page 124.

11.4 Property Service Concepts

11.4.1 Creating Properties

A property handled by the CORBA Property Service consists of two components: the
property’s name and its value. The name is a CORBA string and the associated value is
represented by a CORBA Any:

// IDL
typedef string PropertyName;

struct Property
{

PropertyName property_name;
any property_value;

};

New properties are created using a factory object implementing the PropertySet inter-
face. A new property is created using the define_property operation:

// IDL
ORBacus 159

ORBacus Properties

160
void define_property(in PropertyName, in any property_value)
raises(InvalidPropertyName, ConflictingProperty,
UnsupportedTypeCode, UnsupportedProperty,
ReadOnlyProperty);

As a property consists of a name–value pair, both the name and the value are the parame-
ters to this operation.

11.4.2 Querying for Properties

As soon as a property is defined, the PropertySet can be queried for the property’s
value with the get_property_value operation:

// IDL
any get_property_value(in PropertyName property_name)

raises(PropertyNotFound, InvalidPropertyName);

For a particular property name, this call either returns the Any associated with that name or
throws an exception if a property with the name does not exist.

You can not only query for a particular property value, but also for a list of all the proper-
ties defined within a PropertySet. The get_all_properties operation serves this
purpose:

// IDL
void get_all_properties(in unsigned long how_many,

out Properties nproperties, out PropertiesIterator rest);

This operation works similar to the list call offered by the Naming Service. In both
cases the maximum number of items to be returned at once is specified. An iterator imple-
menting the PropertiesIterator interface gives access to the remaining items, if any.

// IDL
interface PropertiesIterator
{

void reset();

boolean next_one(out Property aproperty);

boolean next_n(in unsigned long how_many,
out Properties nproperties);

void destroy();
};
ORBacus

Property Service Concepts
If you are only interested in a list of property names you can get this list by calling
get_all_property_names:

// IDL
void get_all_property_names(in unsigned long how_many,

out PropertyNames property_names,
out PropertyNamesIterator rest);

As with get_all_properties a list of names as well as an iterator is returned. This iter-
ator implements the PropertyNamesIterator interface:

// IDL
interface PropertyNamesIterator
{

void reset();

boolean next_one(out PropertyName property_name);

boolean next_n(in unsigned long how_many,
out PropertyNames property_names);

void destroy();
};

The iterators should always be destroyed when they are no longer needed.

Sometimes it is useful to know of how many properties a PropertySet consists of. This
information is provided by get_number_of_properties:

// IDL

unsigned long get_number_of_properties();

Note that you have to be careful if you intend to use the return value of
get_number_of_properties as the input value for the how_many parameter of
get_all_properties in order to get a complete property list. You always have to check
the PropertiesIterator for properties that were not returned as part of the
Properties sequence returned by get_all_properties, otherwise you might miss a
property that was defined by another process between your calls to
get_number_of_properties and get_all_properties.

11.4.3 Deleting Properties

If a property has become obsolete it can be deleted from the PropertySet with
delete_property:
ORBacus 161

ORBacus Properties

162
// IDL
void delete_property(in PropertyName property_name)

raises(PropertyNotFound, InvalidProperty, FixedProperty);

As you might have guessed by this operation’s signature, there are properties that cannot
be deleted at all. This kind of property is called a FixedProperty. The Property Service
defines several other special property types, such as read-only properties. Please refer to
the OMG Property Service [9] specification for details.

11.5 Programming Example
The Property Service test suite, which is part of the ORBACUS distribution, provides a
good example of how to create properties and query for their values. The code below is
based on excerpts of this test suite, which is located in the directory property/test. We
will concentrate on an example in Java here. As with the previous examples, the Java code
is very similar to what is necessary in C++. The example demonstrates how to create prop-
erties and how to get a list of all the properties defined within a PropertySet.

1 // Java
2

3 org.omg.CORBA.Object obj = null;
4

5 try
6 {
7 obj = orb.resolve_initial_references("PropertyService");
8 }
9 catch(org.omg.CORBA.ORBPackage.InvalidName ex)

10 {
11 // An error occurred, Property Service is not available
12 }
13

14 if(obj == null)
15 {
16 // The object reference is invalid
17 }
18

19 PropertySetDefFactory factory = null;
20 try
21 {
22 factory = PropertySetDefFactoryHelper.narrow(obj);
23 }
24 catch(org.omg.CORBA.BAD_PARAM ex)
25 {
26 // This object does not implement the Property Service
ORBacus

Programming Example
27 }
28

29 PropertySetDef set = factory.create_propertysetdef();
30

31 Any anyLong = orb.create_any();
32 Any AnyString = orb.create_any();
33 Any anyShort = orb.create_any();
34 anyLong.insert_long(12345L);
35 anyString.insert_string(“Foo”);
36 anyShort.insert_short((short)0);
37

38 try
39 {
40 set.define_property(“LongProperty”, anyLong);
41 set.define_property(“StringProperty”, anyString);
42 set.define_property(“ShortProperty”, anyShort);
43 }
44 catch(ReadOnlyProperty ex)
45 {
46 // An error occurred
47 }
48 catch(ConflictingProperty ex)
49 {
50 // An error occurred
51 }
52 catch(UnsupportedProperty ex)
53 {
54 // An error occurred
55 }
56 catch(UnsupportedTypeCode ex)
57 {
58 // An error occurred
59 }
60 catch(InvalidPropertyName ex)
61 {
62 // An error occurred
63 }
64

65 PropertiesHolder ph = new PropertiesHolder();
66 PropertiesIteratorHolder ih = new PropertiesIteratorHolder();
67 set.get_all_properties(0, ph, ih);
68

69 PropertyHolder h = new PropertyHolder();
70 while(ih.value.next_one(h))
71 {
ORBacus 163

ORBacus Properties

164
72 // The next property is now stored in h.value
73 }
74

75 ih.value.destroy();

5-27 Get a Property Service reference and check for errors.

29 The PropertySetDefFactory object is used to create a PropertySetDef instance.
Note that PropertySetDef is a subclass of PropertySet.

31-36 Each property consists of a name and a value in the form of a CORBA Any.

38-63 Three properties are defined. The first has the name “LongProperty” and stores a long
value. The second one is called “StringProperty” and stores a string. The remaining
property represents a short value. If for some reason a property cannot be created, an
exception is thrown.

65-73 Now we try to get a list of all the properties that were previously defined. With
get_all_properties the PropertySetDef returns its properties. As we have set the
how_many parameter to 0, we have to use the PropertiesIterator for each item. An
application would normally provide a positive integer for how_many.

75 The iterator has fulfilled its duty and can now be destroyed.
ORBacus

CHAPTER 12 ORBacus Time
The CORBA Time Service provides the means to obtain the current time along with an
error estimate. The service also provides operations related to time and intervals.

This chapter does not provide a complete description of the Time Service. It only provides
an overview, suitable for getting started. For detailed information, please refer to the Time
Service specification [9].

12.1 Compliance Statement
ORBACUS Time is compliant with [9] and conforms to the Basic Time Service. The fol-
lowing presents the necessary documentation for conformance.

12.1.1 Criteria to Be Followed for Secure Time

The Time Service specification states:

The following types of operations must be protected against unauthorized invocation. They
must also be mandatorily audited:

• Operations that set or reset the current time

• Operations that designate a time source as authoritative

• Operations that modify the accuracy of the time service or the uncertainty interval of
generated timestamps.
ORBacus 165

ORBacus Time

166
The UNIX and Windows NT/2000 operating systems do not provide mandatory auditing
for the system time, which is the source of time for ORBACUS Time. Hence, ORBACUS

Time cannot provide secure time. As required, the TimeUnavailable exception is raised
when the secure_universal_time operation of the TimeService interface is
invoked.

12.1.2 Proxies and Time Uncertainty

The specification states:

In a CORBA system, the use of proxy objects can render time values unreliable by intro-
ducing unpredictable latency between the time the time server object generates a times-
tamp and the time the caller’s time server proxy receives the timestamp and returns it to
the caller.

ORBACUS Time prevents this problem from occurring by requiring a Time Service imple-
mentation in every address space that will need to make Time Service calls.

12.2 Synopsis

12.2.1 Usage

As stated in 12.1.2, ORBACUS Time can only be used as a collocated server, so there is no
server executable. In C++, the Time Service is initialized with
OB::TimeServiceInit(), which is declared in OB/TimeService.h. For example:

// C++
int main(int argc, char* argv[])
{

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
OB::TimeServiceInit(orb, argc, argv);
// ...

}

In Java, the Time Service is initialized in a similar manner:

// Java
public static void main(String args[])
{

java.util.Properties props = System.getProperties();
props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
props.put("org.omg.CORBA.ORBSingletonClass",

"com.ooc.CORBA.ORBSingleton");
ORBacus

Time Service Concepts
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
com.ooc.CosTime.TimeService.init(orb, args);
// ...

}

To obtain a reference to the Time Service after initialization, the client must invoke
resolve_initial_references("TimeService") on the ORB.

In addition to the standard command-line arguments described in Chapter 4, clients that
use ORBACUS Time accept the following command-line option:

12.2.2 Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS

Time also supports the following property:

12.2.3 CLASSPATH Requirements

ORBACUS Time for Java requires the classes in OB.jar and OBTime.jar.

12.3 Time Service Concepts
The section presents an overview of the Time Service specification. For details refer to
[9]. ORBACUS specific extensions are also presented.

12.3.1 Representation of Time

The Time Service uses the Universal Time Coordinated (UTC) representation from the
X/Open DCE Time Service.

Absolute UTC time is defined as follows:

-TIMEinaccuracy VALUE Specifies the inaccuracy of time in 100 nanosecond units. The
default is 0.

ooc.time.inaccuracy=VALUE Equivalent to the -TIMEinaccuracy command-line
option.

Time units 100 nanoseconds (10-7 seconds)
ORBacus 167

ORBacus Time

168
Absolute UTC time in the Time Service always refers to time in Greenwich Time (GMT)
Zone.

Note that the base time used in the Time Service differs from the base time of the com-
monly used POSIX time representation. The base time of the POSIX time representation
is 1 January 1970 00:00:00.

Relative UTC time is defined as follows:

12.3.2 Basic Types

Data structures used by the Time Service are declared in the TimeBase module. An over-
view of the various structure follow:

1 // IDL
2 module TimeBase
3 {
4 unsigned long long TimeT;
5 unsigned long long InaccuracyT;
6 short TdfT;
7 struct UtcT
8 {
9 TimeT time;

10 unsigned long inacclo;
11 unsigned short inacchi;
12 TdfT tdf;
13 };
14 struct IntervalT
15 {
16 TimeT lower_bound;
17 TimeT upper_bound;
18 };
19 };

Base time 15 Oct 1582 00:00:00

Approximate range AD 30,000

Time units 100 nanoseconds (10-7 seconds)

Approximate range +/- 30,000
ORBacus

Time Service Concepts
4 An absolute or relative time.

5 The value of inaccuracy in an absolute or relative time in units of 100 nanoseconds. The
inaccuracy defines an error envelope around a time value that has a lower bound of
max(0, time - inaccuracy) and an upper bound of min(maximum time, time +

inaccuracy). Only the first 48 bits of the 64 available bits are used to hold inaccuracy.
Using a value requiring more than 48 bits as an inaccuracy argument of a Time Service
operation will raise a CORBA::BAD_PARAM exception.

6 The time displacement factor is in the form of minutes of displacement from the Green-
wich Meridian. Displacements East of the meridian are positive, and displacements West
are negative. Hence, adding the time displacement factor to an absolute time will give the
time in the local time zone.

7-13 Represents an absolute or relative time along with its associated inaccuracy and time dis-
placement factor. Note that inacclo and inacchi together make the 48 bit inaccuracy
value.

14-18 Represents a time interval.

12.3.3 Enumerations

Enumerations used by the Time Service are declared in the CosTime module. An over-
view of the various enumerations follow:

1 // IDL
2 module CosTime
3 {
4 enum ComparisonType
5 {
6 IntervalC,
7 MidC
8 };
9 enum TimeComparison

10 {
11 TCEqualTo,
12 TCLessThan,
13 TCGreaterThan,
14 TCIndeterminate
15 };
16 enum OverlapType
17 {
18 OTContainer,
19 OTContained,
20 OTOverlap,
ORBacus 169

ORBacus Time

170
21 OTNoOverlap
22 };
23 };

4-8 This enumeration defines two types of time comparisons. IntervalC comparisons take
into account the error envelope. MidC comparisons ignore the error envelope and per-
forms the comparison based solely on the time values.

9-14 This enumeration defines the possible results of a time comparison. MidC comparisons
can never result in TCIndeterminate. IntervalC comparisons result in
TCIndeterminate if the error envelops overlap.

16-21 This enumeration defines the type of overlap between two intervals.

• OTContainer implies that interval A wholly contains interval B. The overlap
interval is equal to interval B.

• OTContained implies that interval B wholly contains interval A or intervals A and B
are equal. The overlap interval is equal to interval A. (Note: the specification does
not define the result comparing equivalent intervals.)

• OTOverlap indicates that neither interval wholly contains the other but there is
overlap. The overlap interval is the intersection of the two intervals.

• OTNoOverlap indicates that the two intervals do not intersect. The overlap interval is
the gap between the two intervals.

12.3.4 Exceptions

In addition to the standard CORBA exceptions, the Time Service may raise the
TimeUnavailable exception that is declared in the CosTime module. ORBACUS Time
will always raise the TimeUnavailable exception when the
secure_universal_time operation of the TimeService interface is invoked. This is
because ORBACUS Time does not provide secure time.

12.3.5 The Universal Time Object

The Universal Time Object (UTO) represents an absolute or relative time along with its
associated inaccuracy and time displacement factor. The UTO also provides various oper-
ations related to time. The UTO is declared in the CosTime module as follows:

1 // IDL
2 module CosTime
3 {
4 interface TIO; // forward declaration
ORBacus

Time Service Concepts
5 interface UTO
6 {
7 readonly attribute TimeBase::TimeT time;
8 readonly attribute TimeBase::InaccuracyT inaccuracy;
9 readonly attribute TimeBase::TdfT tdf;

10 readonly attribute TimeBase::UtcT utc_time;
11 UTO absolute_time();
12 TimeComparison compare_time(
13 in ComparisonType comparison_type, in UTO uto);
14 TIO time_to_interval(in UTO uto);
15 TIO interval();
16 };
17 };

7-9 Attributes of the UTO.

10 UtcT structure containing the same attributes as the UTO.

11 Return a UTO with the absolute time corresponding to the relative time of the UTO. Will
raise a CORBA::DATA_CONVERSION exception in the case that the operation would result
in a overflow.

12-13 Compare the time of the UTO parameter with the time of the UTO (the time of the UTO
parameter is the second parameter in the comparison). See “Enumerations” on page 169
for details. Will raise a CORBA::BAD_PARAM exception if the UTO parameter is nil or if its
inaccuracy attribute is greater then the maximum allowable inaccuracy.

14 Return a TIO representing the time interval between the time of the UTO and the time of
the UTO parameter. Will raise a CORBA::BAD_PARAM exception if the UTO parameter is
nil or if its inaccuracy attribute is greater then the maximum allowable inaccuracy.

15 Return a TIO representing the error envelope of the UTO.

12.3.6 The Time Interval Object

The Time Interval Object (TIO) represents a time interval and provides various operations
related to time intervals. The TIO is declared in the CosTime module as follows:

1 // IDL
2 module CosTime
3 {
4 interface TIO
5 {
6 readonly attribute TimeBase::IntervalT time_interval;
7 OverlapType spans(in UTO time, out TIO overlap);
ORBacus 171

ORBacus Time

172
8 OverlapType overlaps(in TIO interval, out TIO overlap);
9 UTO time();

10 };
11 };

6 The time interval represented by the TIO.

7 Compare the time interval of the TIO (interval A) with the associated error envelope of the
UTO parameter (interval B). See “Enumerations” on page 169 for details. Will raise a
CORBA::BAD_PARAM exception if the UTO parameter is nil or if its inaccuracy attribute is
greater then the maximum allowable inaccuracy.

8 Compare the time interval of the TIO (interval A) with the time interval of the TIO param-
eter (interval B). See “Enumerations” on page 169 for details. Will raise a
CORBA::BAD_PARAM exception if the TIO parameter is nil or if its lower bound is greater
than its upper bound.

9 Return a UTO with an associated error envelop equal to the time interval of the TIO and a
time equal to the midpoint of the time interval. Will raises a CORBA::DATA_CONVERSION
exception if the resulting inaccuracy is greater than the maximum allowable inaccuracy.

12.3.7 The TimeService Object

The TimeService Object provides operations for getting the current time and creating arbi-
trary UTOs and TIOs. The TimeService is declared in the CosTime module as follows:

1 // IDL
2 module CosTime
3 {
4 interface TimeService
5 {
6 UTO universal_time()
7 raises(TimeUnavailable);
8 UTO secure_universal_time()
9 raises(TimeUnavailable);

10 UTO new_universal_time(in TimeBase::TimeT time,
11 in TimeBase::InaccuracyT inaccuracy,
12 in TimeBase::TdfT tdf);
13 UTO uto_from_utc(in TimeBase::UtcT utc);
14 TIO new_interval(in TimeBase::TimeT lower,
15 in TimeBase::TimeT upper);
ORBacus

Time Service Extensions
16 };
17 };

6-7 Return a UTO with the current time.

8-9 Since ORBACUS Time is not secure, this operation will always raise a TimeUnavailable
exception.

10-13 Both new_universal_time and uto_from_utc return a UTO with the specified
attributes.

14-15 Return a TIO with the specified lower and upper bounds.

12.4 Time Service Extensions
ORBACUS provides additional operation for working with the structures defined in the
TimeBase module. In C++, these operations are provided by the TimeHelper class and
global functions and are part of the OB module. Declarations are as follows:

1 // C++
2 module OB
3 {
4

5 class TimeHelper
6 {
7 public:
8 static const CORBA::ULongLong MaxTimeT =
9 OB_ULONGLONG(0xffffffffffffffff);

10 static const CORBA::ULongLong MaxInaccuracyT =
11 OB_ULONGLONG(0xffffffffffff);
12

13 static TimeBase::UtcT utcNow(TimeBase::InaccuracyT = 0);
14 static TimeBase::UtcT utcMin();
15 static TimeBase::UtcT utcMax();
16 static timeval toTimeval(const TimeBase::UtcT&);
17 static timeval toTimeval(TimeBase::TimeT);
18 static TimeBase::IntervalT toIntervalT(TimeBase::TimeT,
19 TimeBase::InaccuracyT);
20 static TimeBase::UtcT toUtcT(TimeBase::TimeT,
21 TimeBase::InaccuracyT, TimeBase::TdfT = 0);
22 static TimeBase::UtcT toUtcT(const TimeBase::IntervalT&);
23 static char* toString(const TimeBase::UtcT&);
24 static char* toTimeString(const TimeBase::UtcT&);
ORBacus 173

ORBacus Time

174
25 static char* toString(TimeBase::TimeT);
26 };
27

28 bool operator<(const TimeBase::UtcT&, const TimeBase::UtcT&);
29 bool operator<=(const TimeBase::UtcT&, const TimeBase::UtcT&);
30 bool operator>(const TimeBase::UtcT&, const TimeBase::UtcT&);
31 bool operator>=(const TimeBase::UtcT&, const TimeBase::UtcT&);
32 bool operator==(const TimeBase::UtcT&, const TimeBase::UtcT&);
33 bool operator!=(const TimeBase::UtcT&, const TimeBase::UtcT&);
34 TimeBase::UtcT operator+(const TimeBase::UtcT&, TimeBase::TimeT);
35 TimeBase::UtcT operator+(TimeBase::TimeT, const TimeBase::UtcT&);
36 TimeBase::UtcT operator-(const TimeBase::UtcT&, TimeBase::TimeT);
37

38 }; // end of module OB

8-9 The maximum value of the TimeT type.

10-11 The maximum value of the InaccuracyT type.

13 Return the current UTC time.

14 Return the minimum UTC time.

15 Return the maximum UTC time.

16-17 Return the equivalent POSIX time.

18-19 Create an interval from a time value and its inaccuracy (similar to
UTC::time_to_interval).

20-21 Create a UTC time from its different components.

22 Create a UTC time from an interval (similar to TIO::time).

23-25 Return the string representation of the UTC time.

• toString(const TimeBase::UtcT&) returns the time and date,

• toTimeString(const TimeBase::UtcT&) returns only the time, and

• toString(TimeBase::TimeT) returns a string of the form
seconds:milliseconds.

Use CORBA::string_free() to free the return value.

28-36 Various relational and arithmetic operators.

Similar operations are available in Java. Declarations are as follows:
ORBacus

Time Service Extensions
1 // Java
2 package com.ooc.CosTime
3

4 import org.omg.CORBA.*;
5 import org.omg.TimeBase.*;
6

7 public class TimeHelper
8 {
9 public final static long MaxTimeT = 0xffffffffffffffffL;

10 public final static long MaxInaccuracyT = 0xffffffffffffL;
11

12 public static UtcT utcNow(long inaccuracy);
13 public static UtcT utcMin();
14 public static UtcT utcMax();
15 public static long toJavaMillis(UtcT utc);
16 public static long toJavaMillis(long time);
17 public static IntervalT toIntervalT(long time, long inaccuracy);
18 public static UtcT toUtcT(long time, long inaccuracy, short tdf);
19 public static UtcT toUtcT(long time, long inaccuracy);
20 public static UtcT toUtcT(IntervalT inter);
21 public static String toString(UtcT utc);
22 public static String toTimeString(UtcT utc);
23 public static String toString(long time);
24

25 public static boolean lessThan(UtcT a, UtcT b);
26 public static boolean lessThanEqual(UtcT a, UtcT b);
27 public static boolean greaterThan(UtcT a, UtcT b);
28 public static boolean greaterThanEqual(UtcT a, UtcT b);
29 public static boolean equal(UtcT a, UtcT b);
30 public static boolean notEqual(UtcT a, UtcT b);
31 public static UtcT add(UtcT a, long t);
32 public static UtcT add(long t, UtcT a);
33 public static UtcT subtract(UtcT a, long t);
34 }

9 The maximum value of the TimeT type.

10 The maximum value of the InaccuracyT type.

12 Return the current UTC time.

13 Return the minimum UTC time.

14 Return the maximum UTC time.

15 Return the equivalent POSIX time in milliseconds.
ORBacus 175

ORBacus Time

176
16 Return the equivalent POSIX time in milliseconds.

17 Create an interval from a time value and its inaccuracy (similar to
UTC::time_to_interval).

18 Create a UTC time from its different components.

19 Create a UTC time from an interval (similar to TIO::time).

21-23 Return the string representation of the UTC time. See description of C++ versions above.

25-33 Various relational and arithmetic operators.

12.5 Programming Example
This section presents a simple program that uses ORBACUS Time to implement a stop
watch. The program is presented in C++, but the Java implementation is similar. The pro-
gram is split into three functions main(), run() and stopwatch(). main() only cre-
ates the ORB, initializes the Time Service, and calls run():

1 // C++
2 #include <OB/CORBA.h>
3 #include <OB/TimeService.h>
4 #include <OB/TimeHelper.h>
5

6 #include <iostream>
7

8 using namespace std;
9

10 int run(CORBA::ORB_ptr);
11 int stopwatch(CosTime::TimeService_ptr);
12

13 int main(int argc, char* argv[])
14 {
15 int status = EXIT_SUCCESS;
16 CORBA::ORB_var orb;
17

18 try
19 {
20 orb = CORBA::ORB_init(argc, argv);
21 OB::TimeServiceInit(orb, argc, argv);
22 status = run(orb);
23 }
24 catch(const CORBA::Exception& ex)
25 {
26 cerr << ex << endl;
ORBacus

Programming Example
27 status = EXIT_FAILURE;
28 }
29

30 if(!CORBA::is_nil(orb))
31 {
32 try
33 {
34 orb -> destroy();
35 }
36 catch(const CORBA::Exception& ex)
37 {
38 cerr << ex << endl;
39 status = EXIT_FAILURE;
40 }
41 }
42

43 return status;
44 }

2-6 Several header files are included. OB/CORBA.h provides standard CORBA definitions,
OB/TimeService.h provides ORBACUS Time definitions, and OB/TimeHelper.h pro-
vides definitions for ORBACUS Time extensions.

10-11 Forward declarations for the run() and stopwatch() functions.

20 Initialize the ORB.

21 Initialize the Time Service.

22 Call the run() helper function.

30-41 If the ORB was successfully created, it is destroyed.

The run method resolves the Time Service initial reference and calls stopwatch():

1 // C++
2 int run(CORBA::ORB_ptr orb)
3 {
4 CORBA::Object_var obj;
5

6 try
7 {
8 obj = orb -> resolve_initial_references(“TimeService”);
9 }

10 catch(const CORBA::ORB::InvalidName&)
11 {
ORBacus 177

ORBacus Time

178
12 cerr << "Can’t resolve 'TimeService'" << endl;
13 return EXIT_FAILURE;
14 }
15

16 if(CORBA::is_nil(obj))
17 {
18 cerr << "'TimeService' is a nil object reference" << endl;
19 return EXIT_FAILURE;
20 }
21

22 CosTime::TimeService_var ts =
23 CosTime::TimeService::_narrow(obj);
24

25 if(CORBA::is_nil(ts))
26 {
27 cerr << "'TimeService' is not a TimeService "
28 << "object reference" << endl;
29 return EXIT_FAILURE;
30 }
31

32 return stopwatch(ts);
33 }

8 Using the ORB reference, resolve_initial_reference is invoked to obtain a refer-
ence to the Time Service.

23-23 The reference is then narrowed to a reference of type CosTime::TimeService.

stopwatch() uses the Time Service to implement a stop watch:

1 // C++
2 int stopwatch(CosTime::TimeService_ptr ts)
3 {
4 CosTime::UTO_var start;
5 CosTime::UTO_var stop;
6

7 try
8 {
9 cout << "Press Enter to start " << flush;

10 cin.get();
11 start = ts -> universal_time();
12 cout << "Press Enter to stop " << flush;
13 cin.get();
14 stop = ts -> universal_time();
15 }
ORBacus

Programming Example
16 catch(const CosTime::TimeUnavailable&)
17 {
18 cout << "Time not available" << endl;
19 return EXIT_FAILURE;
20 }
21

22 CORBA::String_var str =
23 OB::TimeHelper::toTimeString(start -> time());
24 cout << "Start time: " << str << endl;
25

26 str = OB::TimeHelper::toTimeString(stop -> time());
27 cout << "Stop time: " << str << endl;
28

29 TimeBase::TimeT elapsed = stop -> time() - start -> time();
30 cout << "Elapsed time: " << total / 10000 << " ms" << endl;
31

32 return EXIT_SUCCESS;
33 }

7-20 Get the start and stop times.

22-27 Output the start and stop times.

29-30 Compute elapsed time and output result.
ORBacus 179

ORBacus Time

180
 ORBacus

CHAPTER 13 ORBacus Events
Some applications need to exchange information without explicitly knowing about each
other. Often a server isn’t even aware of the nature and number of clients that are inter-
ested in the data the server has to offer. A special mechanism is required that provides
decoupled data transfer between servers and clients. This issue is addressed by the
CORBA Event Service.

ORBACUS Events is compliant with [9]. This chapter does not provide a complete descrip-
tion of the service. It only provides an overview, suitable to get you started. For more
information, please refer to the specification.

13.1 Synopsis

13.1.1 Usage

ORBACUS includes functionally equivalent implementations of the Event Service in C++
and Java.

C++

eventserv
[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u,--untyped-service]
ORBacus 181

ORBacus Events

182
Java

com.ooc.CosEvent.Server
[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u,--untyped-service]

Options

13.1.2 Windows NT Native Service

The C++ version of ORBACUS Events is also available as a native Windows NT service.

nteventservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.

-i
--ior

Print the stringified IOR of the server to standard output.

-t
--typed-service

Run a typed event service.

-u
--untyped-service

Run an untyped event service. This is the default behavior.

-h
--help

Display the command-line options supported by the server.

-i
--install

Install the service. The service must be started manually.

-s
--start-install

Install and start the service.

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.
ORBacus

Synopsis
In order to use the Event Service as a native Windows NT service, it is first necessary to
add the ooc.event.port property to the HKEY_LOCAL_MACHINE NT registry key (see
“Using the Windows NT Registry” on page 60 for more details).

Next the service should be installed with:

nteventservice -i

This adds the ORBacus Event Service entry to the Services dialog in the Control
Panel. To start the event service, select the ORBacus Event Service entry, and press
Start. If the service is to be started automatically when the machine is booted, select the
ORBacus Event Service entry, then click Startup. Next select Startup Type -
Automatic, and press OK. Alternatively, the service could have been installed using the
-s option, which configures the service for automatic start-up:

nteventservice -s

If you want to remove the service, run:

nteventservice -u

Note: If the executable for the Event Service is moved, it must be uninstalled and re-
installed.

Any trace information provided by the service is be placed in the Windows NT Event
Viewer with the title EventService. To enable tracing information, add the desired trace
configuration property (i.e., one of the ooc.event.trace properties or one of the
ooc.orb.trace properties) to the HKEY_LOCAL_MACHINE NT registry key with a
REG_SZ value of at least 1.

13.1.3 Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS

Events also supports the following properties:

ooc.event.inactivity_timeout=sec Proxies that are inactive for the specified number
of seconds will be reaped. The default value is four
hours.

ooc.event.max_events The maximum number of events in each event
queue. If this limit is reached and another event is
received, the oldest event is discarded.The default
value is 10.
ORBacus 183

ORBacus Events

184
13.1.4 Diagnostics

ORBACUS Events generates diagnostic messages if the ooc.orb.trace_level property
is set to 2.

ooc.event.max_retries The maximum number of times to retry before
giving up and disconnecting the proxy. The default
value is 10.

ooc.event.port=port Specifies the port number on which the service
should listen for new connections. Note that this
property is only considered if the ooc.oa.port
property is not set.

ooc.event.pull_interval=msec This specifies the number of milliseconds between
successive calls to pull on PullSupplier.
Default value is 0.

ooc.event.reap_frequency=sec This specifies the frequency (in seconds) in which
inactive proxies will be reaped. The default value
is thirty minutes. Setting this property to 0 disables
the reaping of proxies.

ooc.event.retry_timeout=msec Specifies the initial amount of time in milliseconds
that the service waits between successive
retries.The default value is 1000.

ooc.event.retry_multiplier=n A double that defines the factor by which the
retry_timeout property should be multiplied
for each successive retry.

ooc.event.trace.events=LEVEL Defines the output level for event diagnostic mes-
sages printed by ORBACUS Events. The default
level is 0, which produces no output. A level of 1
or higher produces event processing information
and a level of 2 or higher produces event creation
and destruction information.

ooc.event.trace.lifecycle=LEVEL Defines the output level for lifecycle diagnostic
messages printed by ORBACUS Events. The
default level is 0, which produces no output. A
level of 1 or higher produces lifecycle information
(e.g. creation and destruction of Suppliers and
Consumers).

ooc.event.typed_service Equivalent to the -t command-line option.
ORBacus

Connecting to the Service
13.1.5 CLASSPATH Requirements

ORBACUS Events for Java requires the classes in OB.jar and OBEvent.jar.

13.2 Connecting to the Service
The object key of the Event Service depends on whether it is running as a “typed” or
“untyped” service. The object keys and corresponding interface types are shown in Table
13.1.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the untyped event service running on host evhost at port
10000:

corbaloc::evhost:10000/DefaultEventChannel

Refer to Chapter 6 for more information on URLs and configuring initial services.

ORBACUS Events also provides proprietary “factory” interfaces which allow construction
and administration of multiple event channels in a single service. The object keys and cor-
responding interface types of the factories are shown in Table 13.2.

Object Key Interface Type

Event
Service

DefaultEventChannel
CosEventChannelAdmin::
EventChannel

Typed Event
Service

DefaultTypedEventChannel
CosTypedEventChannelAdmin::
TypedEventChannel

Table 13.1: Primary Object Keys and Interface Types

Object Key Interface Type

Event
Channel
Factory

DefaultEventChannelFactory
OBEventChannelFactory::
EventChannelFactory

Typed Event
Channel
Factory

DefaultTypedEventChannelFactory
OBTypedEventChannelFactory::
TypedEventChannelFactory

Table 13.2: Factory Object Keys and Interface Types
ORBacus 185

ORBacus Events

186
For a description of the factory interfaces, please refer to the documented IDL files
event/idl/OBEventChannelFactory.idl and
event/idl/OBTypedEventChannelFactory.idl.

13.3 Using the Event Service with the IMR
The Event Service may be used with the Implementation Repository (IMR). However, if
used with the IMR, it is important to note that the corbaloc URL-style object reference
described in the previous section cannot be used. If the IMR is used, then the object refer-
ence for the “untyped” Event Service must be created using one of the following methods
(where EventServer refers to the server name configured with the IMR):

• start the Event Service with the options:

-ORBserver_name EventServer --ior

causing the Event Service to print its reference to standard output.

• use the mkref utility:

mkref EventServer DefaultEventChannel EventServicePOA

For the “typed” Event Service, the object reference must be created using one of the fol-
lowing methods:

• start the Event Service with the options:

-ORBserver_name EventServer --typed-service --ior

causing the Event Service to print its reference to standard output.

• use the mkref utility:

mkref EventServer DefaultTypedEventChannel EventServicePOA

Object references for the ORBACUS proprietary “factory” objects can be created using the
following commands:

mkref EventServer DefaultEventChannelFactory EventServicePOA
mkref EventServer DefaultTypedEventChannelFactory EventServicePOA

When using the Event Service with the IMR, the service must be started with the option
-ORBserver_name EventServer, where EventServer refers to the server name con-
figured with the IMR. When the IMR is configured to start the Event Service, this option
is automatically added to the service’s arguments. However, when the Event Service is
started manually, the option must be present. For further information on configuring a ser-
vice with the IMR, refer to “Getting Started with the Implementation Repository” on
page 124.
ORBacus

Event Service Concepts
13.4 Event Service Concepts

13.4.1 The Event Channel

The Event Service distributes data in the form of events. The term event in this context
refers to a piece of information that is contributed by an event source. An event channel
instance accepts this information and distributes it to a list of objects that previously have
connected to the channel and are listening for events.

The Event Service specification defines two distinct kinds of event channels: untyped and
typed. Whereas an untyped event channel forwards every event to each of the registered
clients in the form of a CORBA Any, a typed event channel works more selectively by
supporting strongly-typed events which allow for data filtering. We will only discuss the
untyped event channel here. For information on typed event channels, and more details on
the Event Service in general, please refer to the official Event Service specification [9].

13.4.2 Event Suppliers and Consumers

Applications participating in generating and accepting events are called suppliers and con-
sumers, respectively. Suppliers and consumers each come in two different versions,
namely, push suppliers and pull suppliers, and push consumers and pull consumers.

What’s the difference between pushing events and pulling events? Let’s have a look at the
consumer side first. Some consumers must be immediately informed when new events
become available on an event channel. Such consumers usually act as push consumers.
They implement the PushConsumer interface which ensures that the event channel
actively forwards events to them using the push() operation:.

// IDL
interface PushConsumer
{

void push(in any data)
raises(Disconnected);

void disconnect_push_consumer();
};

Push consumers are passive, that is, are servers. Conversely, pull consumers are active,
that is, are clients. Pull consumers poll an event channel for new events. As events may
arrive at a greater rate than they are polled for by a pull consumer or accepted and pro-
cessed by a push consumer, some events might get lost. A buffering policy implemented
by the event channel determines whether events are buffered and what happens in case of
an event queue overflow.
ORBacus 187

ORBacus Events

188
Like consumers, suppliers can also use push or pull behavior. Push suppliers are the more
common type, in which the supplier directly forwards data to the event channel and thus
plays the client role in the link to the channel. Pull suppliers, on the other hand, are polled
by the event channel and supply an event in response, if a new event is available. Polling
is done by the try_pull() operation if it is to be non-blocking or by the blocking
pull() call:

// IDL
interface PullSupplier
{

any pull()
raises(Disconnected);

any try_pull(out boolean has_event)
raises(Disconnected);

void disconnect_pull_supplier();
};

13.4.3 Event Channel Policies

The untyped event channel implementation included in the ORBACUS distribution features
a simple event queue policy. Events are buffered in the form of a queue, i.e., a certain
number of events are stored and, in case of a buffer overflow, the oldest events are dis-
carded.

13.4.4 Event Channel Factories

The standard CORBA Event Service provides no support for managing the lifecycle of
event channels; as a result, applications requiring multiple channels are often forced to run
a separate instance of the Event Service for each channel. To remedy this situation,
ORBACUS Events provides optional, proprietary interfaces for event channel administra-
tion.

The OBEventChannelFactory::EventChannelFactory interface describes the fac-
tory for untyped event channels:

// IDL
module OBEventChannelFactory
{
typedef string ChannelId;
typedef sequence<ChannelId> ChannelIdSeq;

exception ChannelAlreadyExists {};
ORBacus

Event Service Concepts
exception ChannelNotAvailable {};

interface EventChannelFactory
{

CosEventChannelAdmin::EventChannel
create_channel(in ChannelId id)

raises(ChannelAlreadyExists);

CosEventChannelAdmin::EventChannel
get_channel_by_id(in ChannelId id)

raises(ChannelNotAvailable);

ChannelIdSeq get_channels();

void shutdown();
};
};

The OBTypedEventChannelFactory::TypedEventChannelFactory interface
describes the factory for typed event channels:

// IDL
module OBTypedEventChannelFactory
{
interface TypedEventChannelFactory
{

CosTypedEventChannelAdmin::TypedEventChannel
create_channel(in OBEventChannelFactory::ChannelId id)

raises(OBEventChannelFactory::ChannelAlreadyExists);

CosTypedEventChannelAdmin::TypedEventChannel
get_channel_by_id(in OBEventChannelFactory::ChannelId id)

raises(OBEventChannelFactory::ChannelNotAvailable);

OBEventChannelFactory::ChannelIdSeq get_channels();

void shutdown();
};
};

At start-up, the untyped Event Service creates a single channel having the identifier
DefaultEventChannel, and the typed Event Service creates a single channel having the
identifier DefaultTypedEventChannel. A channel’s identifier also serves as its object
key; therefore, a channel can be located using a corbaloc: URL (see “corbaloc: URLs”
ORBacus 189

ORBacus Events

190
on page 105). For example, a channel with the identifier TelemetryData can be located
on the host myhost at port 2098 using the following URL:

corbaloc::myhost:2098/TelemetryData

To obtain the object reference of a channel factory, use a corbaloc: URL with the object
key as shown in Table 13.1 on page 185. For example, assuming the untyped Event Ser-
vice is running on host myhost at port 2098, here is how a C++ application can obtain the
object reference of the channel factory and create a channel with the identifier
TelemetryData:

// C++
CORBA::Object_var obj = orb -> string_to_object(

"corbaloc::myhost:2098/DefaultEventChannelFactory");
OBEventChannelFactory::EventChannelFactory_var factory =

OBEventChannelFactory::EventChannelFactory::_narrow(obj);
CosEventChannelAdmin::EventChannel_var channel =

factory -> create_channel("TelemetryData");

Here is the same example in Java:

// Java
org.omg.CORBA.Object obj = orb.string_to_object(

"corbaloc::myhost:2098/DefaultEventChannelFactory");
com.ooc.OBEventChannelFactory.EventChannelFactory factory =

com.ooc.OBEventChannelFactory.EventChannelFactoryHelper.
narrow(obj);

org.omg.CosEventChannelAdmin.EventChannel channel =
factory.create_channel("TelemetryData");

13.5 Programming Example
In the Event Service example that comes with ORBACUS, two supplier and two consumer
clients demonstrate how to use an untyped event channel to propagate information. The
pieces of information transferred by this example are strings containing the current date
and time. After starting the Event Service server, you can start these clients in any order.
The demo applications obtain the initial Event Service reference as already demonstrated,
i.e., by calling resolve_initial_references. When started, each supplier provides
information about the current date and time and each client displays the event data in its
console window.

This is the push supplier’s main loop:

1 // Java
2 while(consumer_ != null)
ORBacus

Programming Example
3 {
4 java.util.Date date = new java.util.Date();
5 String s = "PushSupplier says: " + date.toString();
6

7 Any any = orb_.create_any();
8 any.insert_string(s);
9

10 try
11 {
12 consumer_.push(any);
13 }
14 catch(Disconnected ex)
15 {
16 // Supplier was disconnected from event channel
17 }
18

19 try
20 {
21 Thread.sleep(1000);
22 }
23 catch(InterruptedException ex)
24 {
25 }
26 }

4-8 The current date and time is inserted into the Any.

10-17 The event data, in this example date and time, are pushed to the event channel. From the
push supplier’s view the event channel is just a consumer implementing the
PushConsumer interface.

19-25 After sleeping for one second, the steps above are repeated.

The example’s pull supplier works similarly to the push supplier, except that the event
channel explicitly polls the supplier for new events. This is done by either pull() or
try_pull(). The pull supplier doesn’t see anything from the event channel but an object
implementing the PullConsumer interface. The following example shows the basic lay-
out of a pull supplier:

1 // Java
2 public Any pull()
3 {
4 java.util.Date date = new java.util.Date();
5 String s = "PullSupplier says: " + date.toString();
6

ORBacus 191

ORBacus Events

192
7 Any any = orb.create_any();
8 any.insert_string(s);
9

10 return any;
11 }
12

13 public Any
14 try_pull(BooleanHolder has_event)
15 {
16 has_event.value = true;
17

18 return pull();
19 }

4-8 Date and time are inserted into the Any.

13-19 In this example new event data can be provided at any time, so try_pull() always sets
has_event to true in order to signal that an event is available. It then returns the actual
event data.

After examining the most important aspects of the event suppliers’ code, we are now
going to analyze the consumers’ code. The push consumer with its push() operation is
shown first:

1 // Java
2 public void push(Any any)
3 {
4 try
5 {
6 String s = any.extract_string();
7 System.out.println(s);
8 }
9 catch(MARSHAL ex)

10 {
11 // Ignore unknown event data
12 }
13 }

2-13 The push consumer’s push() operation is called with the event wrapped in a CORBA
Any. In this code fragment it is assumed that the Any contains a string with date and time
information. In case the Any contains another data type a MARSHAL exception is
thrown.This exception can be ignored here because other events aren’t of interest. After
extracting the string it is displayed in the console window.
ORBacus

Programming Example
In contrast to the push consumer, the pull consumer has to actively query the event chan-
nel for new events. This is how the pull consumer loop looks:

1 // Java
2 while(supplier_ != null)
3 {
4 Any any = null;
5

6 try
7 {
8 any = supplier_.pull();
9 }

10 catch(Disconnected ex)
11 {
12 // Supplier was diconnected from event channel
13 }
14

15 try
16 {
17 String s = any.extract_string();
18 System.out.println(s);
19 }
20 catch(MARSHAL ex)
21 {
22 // Ignore unknown event data
23 }
24 }

4 A CORBA Any is prepared for later use.

6-13 Using pull(), the consumer polls the event channel for new events. The event channel
acts as a pull supplier in this case. The pull() operation blocks until a new event is avail-
able.

15-23 The consumer expects a string wrapped in a CORBA Any. The string value is extracted
and displayed. If an exception is raised the Any contained some other data type which is
simply ignored.

In all of these examples the event channel acts either as a consumer (if the clients are sup-
pliers) or a supplier (if the clients are consumers) of events. Actually each client is not
directly connected to the event channel but to a proxy that receives or sends events on
behalf of the channel. For more information on the Event Service and for the complete
definitions of the IDL interfaces, please refer to the official Event Service specification.
ORBacus 193

ORBacus Events

194
 ORBacus

CHAPTER 14 ORBacus Trader
The Trading Service and the Naming Service are similar, in that they both provide facili-
ties for object location and discovery. As discussed in Chapter 9, an object in the Naming
Service is located by name. In the Trading Service, on the other hand, an object does not
have a name. Rather, a server advertises an object in the Trading Service based on the kind
of service provided by the object. A client locates objects of interest by asking the Trading
Service to find all objects that provide a particular service. The client can further restrict
the search to select only those objects with particular characteristics.

ORBACUS Trader is compliant with [9] and conforms to the specification’s definition of a
full-service trader, meaning that the service supports all of the functionality described in
the specification.

This chapter does not provide a complete description of the service. It only provides an
overview, suitable to get you started. For more information, please refer to the specifica-
tion.
ORBacus 195

ORBacus Trader

196
14.1 Synopsis

14.1.1 Usage

com.ooc.CosTrading.Server
[-h,--help] [-v,--version] [-i,--ior] [-d,--dbdir DIR]
[-t,--timeout MINS]

14.1.2 Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS

Trader also supports the following properties:

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.

-i
--ior

Prints the stringified IOR of the server to standard output.

-d DIR
--dbdir DIR

Enables persistence for the server. All of the data created by the server will
be saved to files in the specified directory DIR.

-t MINS
--timeout MINS

Specifies the timeout in minutes after which a persistent server
automatically compacts its database. The default timeout is five minutes.

ooc.trading.dbdir=DIR Equivalent to the -d command-line option.

ooc.trading.timeout=MINS Equivalent to the -t command-line option.

ooc.trading.allow_nil_objects Determines whether the server should allow an offer
to be exported with a nil object reference.

ooc.trading.port=PORT Specifies the port number on which the service
should listen for new connections. Note that this
property is only considered if the ooc.oa.port
property is not set.

ooc.trading.use_ir Determines whether the server should validate offers
and service types using the Interface Repository.
ORBacus

Connecting to the Service
14.1.3 CLASSPATH Requirements

ORBACUS Trader requires the classes in OB.jar, OBTrading.jar and OBUtil.jar.

14.2 Connecting to the Service
The object key of the Trading Service is TradingService, which identifies an object of
type CosTrading::Lookup.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the trading service running on host traderhost at port
10000:

corbaloc::traderhost:10000/TradingService

Refer to Chapter 6 for more information on URLs and configuring initial services.

14.3 Using the Trading Service with the IMR
The Trading Service may be used with the Implementation Repository (IMR). However, if
used with the IMR, it is important to note that the corbaloc URL-style object reference
described in the previous section cannot be used. If the IMR is used, the object reference
for the Trading Service must be created using one of the following methods (where
TradingServer refers to the server name configured with the IMR):

• start the Trading Service with the options:

--ior -ORBserver_name TradingServer

causing the Trading Service to print its reference to standard output.

• use the mkref utility:

mkref TradingServer TradingService TradingServicePOA

When using the Trading Service with the IMR, the service must be started with the option
-ORBserver_name TradingServer, where TradingServer refers to the server name
configured with the IMR. When the IMR is configured to start the Trading Service, this
option is automatically added to the service’s arguments. However, when the Trading Ser-
vice is started manually, the option must be present. For further information on configur-
ing a service with the IMR, refer to “Getting Started with the Implementation Repository”
on page 124.
ORBacus 197

ORBacus Trader

198
14.4 Trading Service Concepts

14.4.1 Basic Concepts

Roles

The client of a trading service (also known as a trader) plays one of two roles at any partic-
ular point in time. If the client is advertising a service, it is playing the role of an exporter.
If the client is searching for a service, it is playing the role of an importer.

Service Types

A service type is used to define a particular type of service, and is similar to a database
schema or a class in NDS. All of the service type definitions are stored in a service type
repository managed by the Trading Service. An exporter that advertises a service must
associate the service with a service type.

A service type consists of the following information:

• A service type name uniquely identifies the service type.

• An interface type defines the IDL interface to which an advertised object of this type
must conform.

• A collection of property types defines additional attributes of the service offer.

Service Type Names

Each service type in the repository has a unique name. Although the specification is not
completely clear about the format of these names, ORBACUS Trader supports two formats:

• Scoped names - These names have formats such as ::One::Two. Other supported
variations include Three::Four and simply Five.

• Interface repository identifiers - These names adhere to the format of interface
repository identifiers. The most common format is

IDL:[prefix/][Module/]Interface:X.Y

Note: Although both naming formats follow interface repository conventions, service type
names are never used to lookup information in the interface repository.
ORBacus

Trading Service Concepts
Interface Types

An interface type describes the computational signature of the advertised service. The
interface type is a string whose format should be a scoped name or an interface repository
identifier as described above for service type names. When a new service is exported,
ORBACUS Trader may use the interface repository to confirm that the object being adver-
tised conforms1 to the interface defined by the interface type.

Property Types

A service type can have zero or more property types, representing additional information
that can be associated with an advertised service.

A property type definition consists of a name, a value type and a mode. The value type is a
CORBA::TypeCode, and the mode indicates whether a property is mandatory and whether
it is read-only. The property modes have the following semantics:

• Mandatory - The exporter must provide a value for a mandatory property at the time
the service is exported. Mandatory properties cannot be removed.

• Read-only - Once an exporter has supplied a value for a read-only property, that
property cannot be modified. A read-only property can be removed.

• Mandatory and Read-only - A property that is both mandatory and read-only must
have a value when the service is exported, and cannot subsequently be changed or
removed.

A property that is neither mandatory nor read-only is considered optional, and can be
changed and removed.

ORBACUS Trader accepts Java-style identifiers as property names, meaning a property
name must start with a letter, and may consist of letters, numbers and underscores.

Super Types

Service types can inherit from other service types, which enables the definition of super
types that encapsulate behavior and characteristics common to many service types. When
a new service type is created that has super types, the trader performs several validation
steps:

1. All super types must already exist in the service type repository.

1. An object conforms to an interface if it implements that interface, or if it implements a subclass
of that interface.
ORBacus 199

ORBacus Trader

200
2. Any property type definitions in the new service type that have the same name as a
definition in a super type must be compatible with the super type definition. For two
property definitions to be compatible, their value types must match, and the mode of
the new definition must be the same as, or stronger than, the mode of the property in
the super type.

3. The interface type of the new service type must conform to the interface type of all
super types. ORBACUS Trader may use the interface repository to verify that this is
true.

For example, consider two IDL interfaces, InterfaceA and InterfaceB, defined
below:

interface InterfaceA {
void do_something();

};

interface InterfaceB : InterfaceA {
void do_something_else();

};

Here, InterfaceB is defined as a subclass of InterfaceA. Now, let’s define two service
types:

service ServiceTypeA
{

interface InterfaceA;
property string name;

};

service ServiceTypeB : ServiceTypeA
{

interface InterfaceB;
mandatory property string name;
readonly property float cost;

};

In the example above, ServiceTypeB inherits from ServiceTypeA. As such, it inherits
all of the property types from ServiceTypeA, and declares an interface type of
InterfaceB, which conforms to the interface type of its super type because InterfaceB
is a subclass of InterfaceA.

Notice that ServiceTypeB redefines the mode of the “name” property. Whereas the defi-
nition in ServiceTypeA does not specify a mode (making the property optional), the def-
inition in ServiceTypeB makes this property mandatory, therefore a value for the
ORBacus

Trading Service Concepts
property must be supplied when the offer is exported. Note that the reverse is not allowed;
a subtype cannot redefine a mandatory property to be optional.

ServiceTypeB also adds a new property, “cost”, which is defined to be read-only.
Because the property is not mandatory, an exporter does not need to supply a value for it at
the time a service offer is exported. However, once a value has been defined for this prop-
erty, it cannot subsequently be changed.

Service Offers

A service offer is an instance of a service type and represents the advertisement of a ser-
vice by a service provider.

A service offer has the following characteristics:

• A service type name associates the offer with a particular service type.

• An object reference provides the “pointer” (the object reference) to the advertised
object that is necessary for clients to invoke the service being offered.

• A set of properties describe this service offer and must conform to the property types
defined by the service type.

The trader uses the definition of the specified service type to perform several validation
steps on a new offer:

1. The exporter must provide values for all mandatory properties (including all
mandatory properties that the service type inherits from its super types, if any).

2. The object must conform to the interface type defined by the service type.

3. The value types of all properties must match the value types as defined by the service
type. For example, a value of type double is not allowed for a property whose type is
defined as string in the service type.

Note: ORBacus Trader allows an exporter to supply values for named properties that are
not defined in the service type.

The value of a property in a service offer can be modified if the mode of the property is
not read-only. A property can be removed from a service offer if the property is not man-
datory. New properties can also be added to an existing service offer.

Design Issues

The Trading Service can be a tool for constructing efficient distributed applications. The
advantage of annotating a service offer with properties, and allowing offers to be filtered
ORBacus 201

ORBacus Trader

202
on the basis of those properties using a constraint, is that importers can select offers with-
out having to incur the overhead of invoking operations on each object.

For example, suppose ServiceTypeB did not have the “cost” property. Instead, let’s pre-
tend that InterfaceB has an additional operation, “cost”, which returned a value of type
float:

interface InterfaceB : InterfaceA {
void do_something_else();
float cost();

};

In this situation, if the importer needed to select only those objects whose cost is within a
certain range, the importer would need to iterate over each object returned by the Trading
Service to invoke the “cost” operation. In a distributed environment, the overhead of this
activity could be prohibitively expensive. It is the developer’s responsibility to anticipate
the types of queries that importers will need to perform and design their service types
accordingly.

14.4.2 Importing Service Offers

The primary responsibility of a Trading Service is satisfying an importer’s request for
matching service offers. The CosTrading::Lookup interface defines a single operation,
“query”, for use by importers. This operation takes a number of parameters, the most
important of which are explained below.

Service Type

The service type informs the Trading Service about the kind of service in which the
importer is interested. The service type effectively narrows the total number of service
offers the Trading Service must search to completely satisfy the importer’s request. Unless
the importer requests otherwise, the Trading Service will also consider the offers of ser-
vice types that are subtypes of the given service type.

Constraint

The constraint is a boolean expression in a constraint language. The Trading Service eval-
uates each potential service offer against the constraint; if the expression evaluates to
TRUE, then the offer is considered a match. One constraint language is defined by the
Trading Service specification, but proprietary query languages can also be accommodated.
ORBacus

Trading Service Concepts
ORBACUS Trader supports the standard OMG constraint language, which includes many
of the features commonly found in query languages and is described in detail in the Trad-
ing Service specification.

The standard constraint language has constructs similar to common programming and
database query languages, including comparative functions, substring matching, set mem-
bership, and mathematical and logical operators. The most important aspect of the con-
straint language, however, is its ability to refer to the properties of a service offer, enabling
importers to include or exclude a potential service offer on the basis of its properties. If the
offer does not contain a property that is necessary in order to completely evaluate the con-
straint, that offer is skipped.

Constraint expressions are restricted to operating only on properties of the following
types:

• boolean, short, unsigned short, long, unsigned long, float, double, char, string

• sequences of the above types

This restriction does not imply that more complex property types are forbidden. However,
properties of complex types cannot be referred to in a constraint expression, except in the
context of the exist operator, which simply tests for the existence of a property.

The simplest constraint is “TRUE”, which evaluates to TRUE for every potential service
offer, effectively matching every offer that is considered. Using this constraint, importers
have a simple means of obtaining all of the offers for a particular service type.

Using the example service type ServiceTypeB, we can form a more complex constraint
example: “’Bill’ ~ name and cost < 7.5”. In this example, we are searching for all offers of
type ServiceTypeB where the “name” property contains the string “Bill” and the “cost”
property has a value less than 7.5.

Preference

The preference is an expression that indicates how the Trading Service should order the
matching offers before it returns them to the importer. The specification defines the fol-
lowing five forms of a preference expression:

• max expression - The offers are sorted in descending order based on the value of the
numeric expression.

• min expression - The offers are sorted in ascending order based on the value of the
numeric expression.
ORBacus 203

ORBacus Trader

204
• with expression - The offers are ordered based on the boolean expression such that
all offers for which the expression is TRUE are returned before those for which the
expression evaluates to FALSE.

• random - The offers are returned in a random order.

• first - The offers are returned in the order they are discovered by the Trading
Service.

The expression associated with max, min and with is defined using the constraint lan-
guage. If the expression cannot be evaluated for a service offer, that offer is still returned
(because it is a matching offer). However, the offer is returned after all offers for which
the expression could be successfully evaluated.

For example, the preference expression “min cost” would order the matching offers in
ascending order based on the value of the “cost” property.

Policies

Policies provide a means for importers to exert additional influence over the query opera-
tion. The specification defines a number of standard policies, but implementations may
support additional ones. A policy is represented as a name–value pair. The Trading Ser-
vice administrator can establish default values for each policy to be used when an importer
does not supply a value for a policy. Maximum values for policies can also be established
to constrain the importer’s policy values.

Some of the standard policies are described below:

• search_card – The upper bound (“cardinality”) on the total number of service
offers to be searched

• match_card – The upper bound on the total number of matching service offers

• return_card – The upper bound on the total number of matching offers to be
returned

• exact_type_match – If the value for this policy is TRUE, the Trading Service will
only consider service offers exported for the given service type. If the value is FALSE
or is not supplied, the Trading Service will also consider service offers exported for
subtypes of the given service type.

ORBACUS Trader supports all of the policies defined by the specification.
ORBacus

Trading Service Concepts
14.4.3 Offer Management

The CosTrading::Register interface provides operations for managing the service
offers of the Trading Service, including the ability to export, modify and withdraw
(remove) service offers.

Exporting a Service Offer

Exporting a service offer is a relatively simple task. The exporter must know the service
type, have a valid object reference, and have values for all of the mandatory properties
defined by the service type (and any of its super types). After the Trading Service has val-
idated the new offer, a unique identifier is assigned to the offer and returned to the
exporter.

Modifying a Service Offer

The Trading Service allows service offers to be modified, with a few restrictions. First, the
object reference associated with an offer cannot be changed. Second, a client may add,
modify and delete the properties of an offer only within the limitations of the property
modes established by the service type.

Each of the property mode combinations is described below, along with the limitations (if
any) in place when modifying a service offer.

• Normal – Properties that are neither mandatory nor read-only can be added, modified,
and deleted without restriction.

• Read-only – Once a value has been defined for a read-only property, it cannot be
modified. A read-only property that was not defined when the offer was exported can
be added during a modification operation. Read-only properties cannot be deleted.

• Mandatory – A mandatory property can be modified but cannot be deleted.

• Mandatory and read-only – A property that is both mandatory and read-only cannot
be modified or deleted.

Withdrawing Service Offers

There are two distinct ways to withdraw service offers. First, a client application or the
Trading Service administrator can remove individual offers one at a time using the unique
identifier associated with each offer. Exporters that will eventually need to clean up obso-
lete service offers are responsible for remembering the identifiers assigned to their service
offers.
ORBacus 205

ORBacus Trader

206
Multiple service offers can be removed using an operation that accepts a service type and
a constraint expression. Every offer of the service type that matches the constraint expres-
sion is withdrawn. Offers that match the constraint and have a service type that is a sub-
type of the specified service type are removed as well. A simple way of removing all of
the offers for a service type is to use “TRUE” for the constraint expression.

14.4.4 Dynamic Properties

In many situations, an exporter will need to periodically update the properties of a service
offer to reflect changing conditions. The interest rate on a loan is an example of a property
that might fluctuate frequently throughout the day. The requirement for an exporter to
keep all of its offers up to date may become overly burdensome, so the Trading Service
supports a feature called dynamic properties that can simplify these activities.

Rather than supplying a static value for a property, an exporter can substitute a special
data structure containing an object reference implementing the
CosTradingDynamic::DPEval interface. When a trader requires the value of a dynamic
property, a request is made on the given object reference to obtain the property’s value. In
essence, the value of the property is delegated to another object, which might look up the
value in a database, compute the value on the fly, etc.

Dynamic properties introduce additional overhead during query processing, therefore the
importer can use a policy to exclude offers with dynamic properties. Furthermore, ORBA-
CUS Trader is careful to ensure that it does not needlessly evaluate a dynamic property.

Figure 14.1 illustrates the interactions of the objects involved.
ORBacus

Trading Service Concepts
Figure 14.1: Dynamic Property Evaluation

1. An exporter advertises a service offer containing a dynamic property.

2. Some time later, an importer invokes the trader's query() operation to search for
service offers.

3. If, during the processing of the query, the trader requires1 the value of the dynamic
property, the trader will invoke the evalDP() operation on the DynamicPropEval
object whose reference was provided by the exporter. This operation will determine
the value of the property and return it to the trader.

14.4.5 Trader Federation with Links

A powerful feature of the Trading Service allows administrators to establish links between
traders for the propagation of query requests. When an importer executes a query opera-
tion, the trader will always search its own set of service offers, but may also forward the
request on to any linked traders. The matching local offers, plus any offers found by the
linked traders, are returned to the importer. The importer is not aware of the query propa-
gation, but can use policies to control the trader’s use of links.

1. The trader will require the value of a property if the property is used in a constraint or preference
expression, or if the property is one of the desired properties requested by the importer.

ExporterImporter

Trader

1. export2. query

DynamicPropEval

Offer

3. evalDP
ORBacus 207

ORBacus Trader

208
A link is a unidirectional, point-to-point connection from one trader to another. The “tar-
get” trader is not notified when a new link to it is created in another trader. Of course, bi-
directional links can be established by creating a link in each trader referring to the other
trader.

Each link has a name that is unique among all links in a trader. In a trader “network”, a
particular trader can be identified by a path composed of the names of the links that must
be traversed to navigate from a starting trader to the desired one. In addition to the link
name, the other attributes of a link consist of the object reference of the target trader’s
CosTrading::Lookup object and rules that govern query propagation for that particular
link.

As you can imagine, there are significant performance issues associated with the use of
links, therefore the Trading Service provides importers and administrators with a great
deal of control over the trader’s linked behavior during a query operation. In particular,
each link has a rule that dictates under what circumstances the trader should propagate a
query to the target trader. Three possibilities exist, as defined in the FollowOption enu-
merated type:

1. local_only - Never propagate a query request (effectively disabling the link).

2. if_no_local - Only propagate a query request if no matching offers were found
among the trader’s local offers.

3. always - Always propagate a query request.

In addition, an importer may supply a value for the link_follow_rule policy contain-
ing one of the above settings. When the trader executes a query operation, it uses the fol-
lowing algorithm to decide how it should behave for each of its links:

• If the importer has not supplied a value for the link_follow_rule policy, the
trader’s default value will be used instead. Otherwise, the importer’s value is checked
to ensure that it does not exceed the trader’s maximum value for this policy.

• If the policy is more restrictive than the rule established for the link, the importer’s
policy (or the default value) will be used.

• If the link’s rule is more restrictive, then the link’s rule takes precedence.

Importers may use the hop_count policy to limit the total number of “hops” that occur
for each link of a query. For example, using a value of five means that the query can be
propagated to a depth of at most four from the originating trader.

To prevent infinite loops, traders can be configured to generate unique identifiers to be
passed along when a query request is propagated to other traders. If the request happens to
ORBacus

Trading Service Concepts
be propagated back to the originating trader, it will recognize the unique identifier it gen-
erated and will take no further action on that request.

Links provide a great deal of flexibility to system designers. They can be used in a manner
similar to partitions in NDS, where responsibility for resources is distributed among mul-
tiple independent but interconnected entities. Links can also be applied in a more con-
trolled fashion, where administrators selectively make the service offers of one trader
available to one or more other traders.

14.4.6 Supporting Legacy Applications with Proxy Offers

A proxy offer is a special kind of service offer, in that it has properties like a service offer
and can be matched during a query like a service offer. But rather than returning the offer
to the importer, the trader formulates a modified query request and forwards it to an object
specified by the proxy offer that implements the CosTrading::Lookup interface. In this
way, the match of a single proxy offer can result in a number of service offers being
returned to the importer.

In addition to the information contained in a service offer, a proxy offer contains:

• the object reference of an object implementing the CosTrading::Lookup interface.

• a boolean value, if_match_all, which indicates to the trader performing a query
that it should consider this proxy offer a match if the service type matches. In other
words, if this value is TRUE, the trader does not need to evaluate the importer’s
constraint against the properties of this offer; if the service type matches, then the
proxy offer is considered a match.

• a constraint recipe, which specifes how the trader should rewrite the query constraint
before passing it to the proxy offer’s target object.

• zero or more policies that the trader should pass on to the proxy offer’s target object.

An importer can specify a policy during a query that causes the trader to exclude all proxy
offers. One of the common uses for proxy offers is wrapping a legacy application with a
CORBA object that implements the CosTrading::Lookup interface. A single proxy
offer is exported, containing a reference to this wrapper object. The object can implement
the “query” operation to invoke the legacy application, passing it the constraint expres-
sion. The trader’s ability to rewrite the query constraint helps to minimize the amount of
work that needs to be done by the wrapper object. The results returned by the legacy appli-
cation can be translated into service offers and returned to the importer.
ORBacus 209

ORBacus Trader

210
14.5 Programming Example
A number of sample programs are included with ORBACUS Trader. You can find the
source code for these programs in the demo subdirectory. In this section, we will discuss
the example application in demo/printer.

14.5.1 The Print Server

The source code for the print server can be found in demo/printer/Server.java. The
server performs the following steps:

• Resolve the initial reference of the trading service

• Withdraw any existing offers

• Install the service type, if necessary

• Export new offers

Resolving the Trading Service

The server uses the standard operation resolve_initial_references to obtain the
object reference of the trading service:

org.omg.CORBA.Object obj =
orb.resolve_initial_references("TradingService");

The reference must then be narrowed. The interface type supported by the reference is
CosTrading::Lookup.

org.omg.CosTrading.Lookup result = null;
...
result = org.omg.CosTrading.LookupHelper.narrow(obj);

Withdrawing Offers

Before exporting new offers, the server withdraws any existing offers.

static final String SERVICE_TYPE = "Printer";
...
org.omg.CosTrading.Register reg = trader.register_if();
reg.withdraw_using_constraint(SERVICE_TYPE, "TRUE");

This code demonstrates the easiest way to withdraw all offers of a given service type.
Invoking the withdraw_using_constraint operation with a constraint of “TRUE”
matches every offer for that service type.
ORBacus

Programming Example
Installing a Service Type

To install the Printer service type, the server obtains the object reference of the
ServiceTypeRepository object and invokes the add_type operation.

1 org.omg.CORBA.Object obj = trader.type_repos();
2 org.omg.CosTradingRepos.ServiceTypeRepository repos =
3 org.omg.CosTradingRepos.ServiceTypeRepositoryHelper.narrow(obj);
4

5 PropStruct[] props = new PropStruct[5];
6

7 for(int i = 0 ; i < props.length ; i++)
8 props[i] = new PropStruct();
9

10 int n = 0;
11

12 org.omg.CORBA.TypeCode stringTC =
13 orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string);
14

15 props[n].name = "bldg";
16 props[n].value_type = stringTC;
17 props[n].mode = PropertyMode.PROP_NORMAL;
18 n++;
19 props[n].name = "color";
20 props[n].value_type =
21 orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_boolean);
22 props[n].mode = PropertyMode.PROP_NORMAL;
23 n++;
24 props[n].name = "cost_per_page";
25 props[n].value_type =
26 orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_float);
27 props[n].mode = PropertyMode.PROP_NORMAL;
28 n++;
29 props[n].name = "ppm";
30 props[n].value_type =
31 orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_ushort);
32 props[n].mode = PropertyMode.PROP_NORMAL;
33 n++;
34 props[n].name = "queue";
35 props[n].value_type = stringTC;
36 props[n].mode = PropertyMode.PROP_NORMAL;
37 n++;
38

39 String[] superTypes = new String[0];
40
ORBacus 211

ORBacus Trader

212
41 repos.add_type(SERVICE_TYPE, printer.PrintServerHelper.id(),
42 props, superTypes);

1-3 Obtain and narrow the ServiceTypeRepository reference.

5-37 Create the array of structures that describes the properties of the service type.

39 Use a zero-length array to indicate that the service type has no super types.

41-42 Add the service type. The repository ID of the PrintServer interface is used as the interface
type.

Exporting Offers

The server uses a configuration file to describe the attributes of each printer.

1 org.omg.CosTrading.Register reg = trader.register_if();
2

3 fr = new FileReader(file);
4 BufferedReader in = new BufferedReader(fr);
5

6 String line;
7 while((line = in.readLine()) != null)
8 {
9 line = line.trim();

10 if(line.startsWith("#"))
11 continue;
12

13 org.omg.CosTrading.Property[] props =
14 parseProperties(orb, line);
15

16 reg.export(printServer, SERVICE_TYPE, props);
17 }

1 Obtain the CosTrading::Register interface.

3-4 Open the configuration file.

6-11 Read each line of the file, skipping any lines that begin with ‘#’.

13-14 Parse the line and produce an array of CosTrading.Property structures containing the
property values.

16 Export the service offer, supplying the object reference of the PrintServer, the service
type, and the properties.
ORBacus

Programming Example
14.5.2 The Client

Most of the code in the example client located in demo/printer/Client.java
involves creating and managing the graphical user interface. The code that executes the
trader query is shown below.

1 org.omg.CosTrading.Policy[] policies =
2 new org.omg.CosTrading.Policy[0];
3 org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps =
4 new org.omg.CosTrading.LookupPackage.SpecifiedProps();
5 desiredProps._default(
6 org.omg.CosTrading.LookupPackage.HowManyProps.all);
7

8 org.omg.CosTrading.OfferSeqHolder offers =
9 new org.omg.CosTrading.OfferSeqHolder();

10 org.omg.CosTrading.OfferIteratorHolder iter =
11 new org.omg.CosTrading.OfferIteratorHolder();
12 org.omg.CosTrading.PolicyNameSeqHolder limits =
13 new org.omg.CosTrading.PolicyNameSeqHolder();
14 ...
15 trader_.query("Printer", constraint, preference, policies,
16 desiredProps, 100, offers, iter, limits);
17 ...
18 if(iter.value != null)
19 iter.value.destroy();

1-2 Allocate an empty array of policies. See the example client in demo/loan/client for a
demonstration of how to use policies in a query.

3-6 The client wants the server to return all of the properties for each matching offer.

8-13 Allocate holders for the out parameters.

15-16 Execute the query for the Printer service type. The client indicates that it wants a maxi-
mum of 100 offers to be returned. Additional offers will be obtained via the iterator.

18-19 After examining the results, the client must destroy the iterator, if one was returned.
ORBacus 213

ORBacus Trader

214
 ORBacus

CHAPTER 15 ORBacus Trader Console
The ORBACUS Trader Console allows you to manage all aspects of ORBACUS Trader. The
functionality provided by this application includes:

• Managing service types, offers, proxy offers and links

• Performing queries

• Configuring the trader attributes
ORBacus 215

ORBacus Trader Console

216
15.1 Synopsis

15.1.1 Usage

com.ooc.CosTradingConsole.Main
[--windows] [--motif] [--mac] [--look CLASS] [-h,--help]

15.1.2 CLASSPATH Requirements

The ORBACUS Trader Console requires the classes in OB.jar, OBTrading.jar,
OBUtil.jar and the Java Foundation Classes (JFC). Note, JFC is part of version 1.2 (or
greater) of JDK.

15.2 Main Window
The ORBACUS Trader Console main window appears as shown in Figure 15.1.

--windows Use the Windows Look & Feel (if available).

--motif Use the Motif Look & Feel (if available).

--mac Use the Macintosh Look & Feel (if available).

--look CLASS Use the specified JTC Look & Feel class.

-h
--help

Display the command-line options supported by the program.
ORBacus

Terminology
Figure 15.1: The Trader Console main window

The main window includes the following elements:

15.3 Terminology
The ORBACUS Trader Console application uses the term item to generically refer to the
four types of data managed by a trading service:

• Service types

Menu bar Provides access to all of the application’s features

Toolbar Shortcuts for the most common menu commands

Item type selector Selects which type of item is shown in the item list

Item list Displays the names or identifiers of all items contained in the trader

Item description Provides a textual summary of the selected item

Status bar Displays information about the trader to which the console is currently
connected, including the host, port and IDL interface
ORBacus 217

ORBacus Trader Console

218
• Offers

• Proxy offers

• Links

The console window is used to browse these items. The window only shows one type of
item at a time, which you can change with the item type selector drop-down list1 or by
selecting a type from the View menu. When a new item type is selected, the current list of
items is retrieved from the trading service and displayed in the item list.

15.4 The Trader Console Menus
This section describes the ORBACUS Trader Console menu commands.

15.4.1 The Console menu

You use the commands in the Console menu to manage the console windows.

15.4.2 The Edit menu

The console supports the typical notion of a clipboard, which can be manipulated with cut,
copy and paste commands. However, the console does not use the system clipboard, and
therefore the application clipboard can only be accessed by windows from the same exe-
cution of the application. In other words, if you start two instances of the application, you
cannot cut and paste between them. You can cut and paste if you start a single instance of
the application, and create multiple windows with the Console/New Window command.

1. Also known as a combo-box.

New Window Creates a new console window, connected to the current trader.

Connect Opens the Connect dialog box, allowing you to connect to a different
trading service.

Close Closes the current console window. If this window is the last console
window present, the application exits.

Exit Quits the application.

Cut Copies the selected items to the clipboard and then permanently
removes the selected items

Copy Copies the selected items to the clipboard

Paste Pastes the items from the clipboard into the current trader
ORBacus

The Trader Console Menus
There are some issues to be aware of when using the cut, copy and paste operations. First,
service types and links must have unique names; therefore, you will not be able to paste
one of these items if an item already exists in the trader with the same name.

Secondly, a certain amount of forethought is advised when you wish to cut and paste ser-
vice types. Since service types can inherit from other service types, you cannot cut a ser-
vice type that has subtypes. If you wish to cut or delete a number of service types, and if
inheritance relationships exist between any of them, you must cut the types without any
subtypes first. The same principle applies to pasting service types, in that you cannot paste
a type if its supertypes do not exist or have not yet been pasted. It is recommended that
you only operate on one service type at a time when using the cut, copy, paste or delete
commands.

Some types of items, namely service types and proxy offers, cannot be modified. The
Modify command (and its toolbar equivalent) are disabled while these types are dis-
played.

The Clone and Modify commands operate on a single item at a time. If more than one
item is currently selected, the application uses the first of the selected items.

15.4.3 The View menu

You use the View menu to select the type of items you wish to be displayed in the item
list. Selecting a new type of item from this menu is equivalent to changing the setting of
the item type selector.

The Refresh command causes the application to retrieve an updated list of items from the
trader and display them in the item list. This command can be useful if you know (or sus-
pect) that the list of items has been changed by some other client of the trading service.

Select All Selects all of the items in the item list

Clone Creates a clone of the selected item. The appropriate dialog box is dis-
played to allow you to create a new item, but the fields of the dialog
box are initialized with the values from the selected item.

Modify Edits the currently selected item

Delete Permanently removes the selected items
ORBacus 219

ORBacus Trader Console

220
15.4.4 The Insert menu

You use the Insert menu when you want to create a new item. It displays a dialog box in
which you can supply the information about the new item. If you need to create a new item
that is similar to an existing item, you can also use the Edit/Clone command.

15.4.5 The Tools menu

The commands available in the Tools menu provide access to additional features of the
trading service.

15.5 The Toolbar
The toolbar contains buttons for the most common menu commands.

15.6 Managing Service Types
With the console, you can manage all aspects of the trader’s service type repository.

Note: Although ORBACUS Trader supports properties with user-defined types, the con-
sole only supports simple types and sequences of simple types.

Refer to “Service Types” on page 198 for more information on service types.

Query Perform query operations on the trader and review the matching offers

Attributes Configure the trader attributes

Withdraw Offers Removes offers using a constraint expression

Mask Type Masks the selected service type

Unmask Type Unmasks the selected service type

New
Item Copy Edit Query

Cut Paste Delete Refresh
ORBacus

Managing Service Types
15.6.1 Adding a New Service Type

To add a new service type, do the following:

1. Select Insert/Service Type. The New Service Type dialog box appears as shown
below.

2. Enter a name for the service type in the Service type name text box. The name must
be unique among all of the service types managed by the trader.

3. Enter an interface repository identifier in the Interface text box. If the interface
repository service is available, clicking the Browse... button displays an interface
ORBacus 221

ORBacus Trader Console

222
repository browser as shown below.

The browser displays only modules and interfaces. When you select an interface, its
identifier is displayed in the ID text box below. Click OK to accept the identifier you
have selected.

4. Use the Add... and Delete buttons to add and remove super types. Clicking the Add...
button displays the Super Types dialog box as shown below. Select any service types
you wish to use as super types for the new type and click OK. The order in which you
add super types is not important.

5. Use the Add..., Edit... and Delete buttons to manipulate the properties for this service
type. Clicking the Add... or Edit... buttons displays the Property dialog box as shown
ORBacus

Managing Service Types
below. Enter a name for the property, select a property type, and use the checkboxes to
indicate the mode of this property. Click OK to add the new property.

6. Click OK on the New Service Type dialog box to add the new service type.

15.6.2 Removing a Service Type

To remove a service type, do the following:

1. Select View/Service Types to display the service types in the item list.

2. Select the service type you wish to remove.

3. Select Edit/Delete. A confirmation dialog appears.

4. Click Yes to permanently remove the service type.

Note: If a service type has subtypes, you will not be able to remove the type until all of its
subtypes have been removed.

15.6.3 Masking a Service Type

To mask a service type, do the following:

1. Select View/Service Types to display the service types in the item list.

2. Select the service type you wish to mask.

3. Select Tools/Mask Type.
ORBacus 223

ORBacus Trader Console

224
15.6.4 Unmasking a Service Type

To unmask a service type, do the following:

1. Select View/Service Types to display the service types in the item list.

2. Select the service type you wish to unmask.

3. Select Tools/Unmask Type.

15.7 Managing Offers

15.7.1 Adding a New Offer

To add a new offer, do the following:

1. Select Insert/Offer. The New Offer dialog box appears as shown below.

2. Select a service type from the drop-down list. Each time you select a service type, the
Properties table is updated to reflect the properties defined for that service type.

3. Select a method for specifying the object reference for this offer. Select the IOR
toggle if you want to paste the stringified interoperable object reference into the text
box. If you want the application to read the reference from a file, select From file and
enter the filename in the text box, or click the Browse... button to display a file
ORBacus

Managing Offers
selection dialog box. If the trading service is configured to allow nil objects, and you
do not wish to specify an object reference for this offer, you may leave the object
reference blank.

4. Enter values for the properties in the Properties table. All properties have a checkbox
to the left of the property name. For a mandatory property, the checkbox is disabled,
meaning that a value must be provided for this property. For an optional property, you
can use the checkbox to indicate whether this property should be included with the
offer. To enter a value for a property, double-click on the property value field. For
properties with sequence types, you can enter multiple values by separating them with
commas. Press Return when you are finished entering the value for a property.

5. Click the Add... button if you wish to add a property that is not defined by the service
type. The Add Property dialog box appears as shown below. Enter a name for the
property, select the property’s type from the drop-down list, and enter a value in the
text box. The name you use for the property must not be the same as any existing
properties. Click OK to add the property to the Properties table.

Note: Once the property has been added to the Properties table, you can edit it
directly, just as you can with any other property. If you later decide that you do not
want to include the property with the offer, simply uncheck the property’s checkbox.

6. If you wish to make a property dynamic, select the property and click the Dynamic...
button. The Dynamic Property dialog box appears as shown below. Select a method
for specifying an object reference as outlined in step 3 above. If you wish to include
additional data, select a type from the drop-down list and enter a value in the text box.
ORBacus 225

ORBacus Trader Console

226
Click OK to save the dynamic property. The property table displays <dynamic> as
the value of a dynamic property.

7. To clear the value of a property, select the property and click Reset. You can use this
command to convert a property from a dynamic property to a regular property.

8. Click OK to add the new offer. The application validates the information and reports
any errors in a dialog box.

Note: For properties of type string, an empty value is accepted as a valid value, even
for mandatory properties.

15.7.2 Modifying an Offer

To modify an offer, do the following:

1. Select View/Offers to display the offers in the item list.

2. Select the offer you wish to modify.
ORBacus

Managing Offers
3. Select Edit/Modify. The Edit Offer dialog box appears as shown below.

4. You can modify a property by double-clicking on the property value. Press Return
when you have finished editing a property value.

5. You can remove an existing property from the offer (if it is an optional property) by
unchecking its checkbox. Similarly, you can add a property to the offer by checking its
checkbox and entering a value for the property.

6. See the discussion of adding a new offer above for details on adding new properties
and configuring dynamic properties.

7. Click OK to update the offer.

15.7.3 Withdrawing Offers

There are two distinct ways to withdraw offers. The first way is by selecting individual
offers, as outlined below:

1. Select View/Offers to display the offers in the item list.

2. Select the offer(s) you wish to withdraw.

3. Select Edit/Delete. A confirmation dialog appears.

4. Click Yes to withdraw the offers.

The above method is suitable for withdrawing a limited number of specific offers. A more
efficient method for removing a large quantity of offers for a single type, or for removing
ORBacus 227

ORBacus Trader Console

228
offers without having to manually search for the right ones, is by withdrawing offers with
a constraint expression:

1. Select Tools/Withdraw Offers. The Withdraw Offers dialog box appears as shown
below.

2. Select the service type from the drop-down list. Offers with this service type or a
subtype of this service type are considered for withdrawal.

3. Enter a constraint expression in the text box. See “Constraint” on page 202 for more
information on constraint expressions.

4. Click OK to withdraw the offers. Only offers that match the constraint expression are
withdrawn. An error message appears if no matching offers were found.

Note: A simple way to remove all of the offers for a service type is to use “TRUE” for the
constraint expression.
ORBacus

Managing Proxy Offers
15.8 Managing Proxy Offers

15.8.1 Adding a New Proxy Offer

To add a new proxy offer, do the following:

1. Select Insert/Proxy Offer. The New Proxy Offer dialog box appears as shown
below.

2. Select a service type from the drop-down list. Each time you select a service type, the
property table is updated to reflect the properties defined for that service type.
ORBacus 229

ORBacus Trader Console

230
3. Select a method for specifying the object reference of the target
CosTrading::Lookup object for this proxy offer. Select the IOR toggle if you want
to paste the stringified interoperable object reference into the text box. If you want the
application to read the reference from a file, select From file and enter the filename in
the text box, or click the Browse... button to display a file selection dialog box.

4. Enter the constraint recipe in the text box.

5. Select If match all if a matching service type is all that is required for this proxy offer
to be considered a match during a query.

6. Enter values for the properties in the Properties table. All properties have a checkbox
to the left of the property name. For a mandatory property, the checkbox is disabled,
meaning that a value must be provided for this property. For an optional property, you
can use the checkbox to indicate whether this property should be included with the
offer. To enter a value for a property, double-click on the property value field. For
properties with sequence types, you can enter multiple values by separating them with
commas. Press Return when you are finished entering the value for a property.

7. If you wish to add a property that is not defined by the service type, click the Add...
button. The Add Property dialog box appears as shown in “Adding a New Offer” on
page 224. Enter a name for the property, select the property’s type from the drop-down
list, and enter a value in the text box. The name you use for the property must not be
the same as any existing properties. Click OK to add the property to the Properties
table.
Note: Once the property has been added to the Properties table, you can edit it
directly, just as you can with any other property. If you later decide that you do not
want to include the property with the proxy offer, simply uncheck the property’s
checkbox.

8. If you wish to make a property dynamic, select the property and click the Dynamic...
button. The Dynamic Property dialog box appears as shown in “Adding a New Offer”
on page 224. Select a method for specifying an object reference as outlined in step 3
above. If you wish to include additional data, select a type from the drop-down list and
enter a value in the text box. Click OK to save the dynamic property. The property
table displays <dynamic> as the value of a dynamic property.

9. To clear the value of a property, select the property and click Reset. You can use this
command to convert a property from a dynamic property to a regular property.
ORBacus

Managing Proxy Offers
10. Use the Add..., Edit... and Delete buttons to manipulate the policies to be passed on to
the target object. Clicking the Add... or Edit... buttons displays the Policy dialog box
as shown below.

11. Click OK to add the new proxy offer. The application validates the information and
reports any errors in a dialog box.

Note: For properties of type string, an empty value is accepted as a valid value, even
for mandatory properties.

15.8.2 Withdrawing Proxy Offers

To withdraw a proxy offer, do the following:

1. Select View/Proxy Offers to display the proxy offers in the item list.

2. Select the proxy offer you wish to withdraw.

3. Select Edit/Delete. A confirmation dialog appears.

4. Click Yes to withdraw the proxy offer.
ORBacus 231

ORBacus Trader Console

232
15.9 Managing Links

15.9.1 Adding a New Link

To add a new link, do the following:

1. Select Insert/Link. The New Link dialog box appears as shown below.

2. Enter a name for this link in the text box.

3. Select a method for specifying the target trader’s object reference for this link. Select
the IOR toggle if you want to paste the stringified interoperable object reference into
the text box. If you want the application to read the reference from a file, select From
file and enter the filename in the text box, or click the Browse... button to display a file
selection dialog box.

4. Select the appropriate link-follow rules from the drop-down lists.

5. Click OK to add the new link.

15.9.2 Modifying a Link

To modify a link, do the following:

1. Select View/Links to display the links in the item list.

2. Select the link you wish to modify.
ORBacus

Configuring the Trader Attributes
3. Select Edit/Modify. The Edit Link dialog box appears as shown below.

4. Update the settings for the link-follow rules.

5. Click OK to update the link.

15.9.3 Removing a Link

To remove a link, do the following:

1. Select View/Links to display the links in the item list.

2. Select the link you wish to remove.

3. Select Edit/Delete. A confirmation dialog appears.

4. Click Yes to remove the link.

15.10 Configuring the Trader Attributes
To configure the trader attributes, select Tools/Attributes. The Attributes dialog box
appears, containing a tabbed folder with four tabs. The tabs provide access to the attributes
from the following four IDL interfaces:

• CosTrading::SupportAttributes

• CosTrading::ImportAttributes

• CosTrading::LinkAttributes

• CosTrading::Admin

Each of the tabs is described below. Click OK when you have finished modifying the
attributes.
ORBacus 233

ORBacus Trader Console

234
15.10.1Support Attributes

Supports modifiable properties

If enabled, the trader considers offers with modifiable properties (that is, properties that
are not read-only) during a query, unless the importer requests otherwise with the
use_modifiable_properties policy. If disabled, the trader does not consider offers
with modifiable properties, regardless of the importer's wishes. This setting also deter-
mines the behavior of the modify operation in the CosTrading::Register interface. If
enabled, the server allows modification of offers. If disabled, the modify operation raises
the NotImplemented exception.

Supports dynamic properties

If enabled, the trader considers offers with dynamic properties during a query, unless the
importer requests otherwise with the use_dynamic_properties policy. If disabled, the
trader does not consider offers with dynamic properties, regardless of the importer's
wishes. The trading service specification does not define the behavior of a trader when this
option is disabled and an offer is exported that contains dynamic properties; however,
ORBACUS TRADER always accepts offers containing dynamic properties.

Supports proxy offers

If enabled, the trader considers proxy offers during a query, unless the importer requests
otherwise with the use_proxy_offers policy. If disabled, the trader does not consider
proxy offers, regardless of the importer's wishes. This setting also determines the behavior
of the proxy_if attribute in the CosTrading::SupportAttributes interface. If
ORBacus

Configuring the Trader Attributes
enabled, proxy_if returns the reference of the server's CosTrading::Proxy object. If
disabled, proxy_if returns nil.

Service Type Repository

The IOR of the service type repository currently in use by the trader is displayed in the
text box. In order to change the service type repository, you first need to select a method
for specifying its object reference. Select the IOR toggle if you want to paste the
stringified IOR into the text box. If you want the application to read the reference from a
file, select From file and enter the filename in the text box, or click the Browse... button
to display a file selection dialog box.

15.10.2Import Attributes

Many of the Import attributes have default and maximum values. The default value is used
if an importer does not supply a value for the corresponding importer policy. The maxi-
mum value is used as the allowable upper limit for the importer policy. If an importer sup-
plies a policy value that is greater than the maximum value, the importer’s policy value is
overridden and the maximum value is used instead.

Search cardinality

The number of offers to be searched during a query. The corresponding importer policy is
search_card.

Match cardinality

The number of matched offers to be ordered during a query. The corresponding importer
policy is match_card.
ORBacus 235

ORBacus Trader Console

236
Return cardinality

The number of ordered offers to be returned by a query. The corresponding importer pol-
icy is return_card.

Link hop count

The depth of links to be traversed during a query. The corresponding importer policy is
hop_count.

Link follow policy

The trader’s behavior when considering whether to follow a link during a query. The
default value is used if an importer does not specify a value for the link_follow_rule
policy. The maximum value overrides the policy established for a link as well as the
link_follow_rule policy proposed by an importer.

Maximum list count

The maximum number of items to be returned from any operation that returns a list, such
as the list_offers operation in CosTrading::Admin or the next_n operation in
CosTrading::OfferIterator. This attribute may override the number of items
requested by a client.
ORBacus

Configuring the Trader Attributes
15.10.3Link Attributes

Maximum link follow policy

Determines the server's upper bound on the value of a link's limiting follow rule at the
time of creation or modification of a link. The server raises the
LimitingFollowTooPermissive exception if a link's limiting follow rule exceeds the
value of this attribute.

15.10.4Admin Attributes

Request identifier stem

The request identifier stem is used as a prefix by the server to generate unique request
identifiers during a federated query. Although the IDL attribute request_id_stem
ORBacus 237

ORBacus Trader Console

238
returns a sequence of octets, this property is defined in terms of a string, with the charac-
ters of the string comprising the octets of the stem. You need to provide a value for this
property only if the server will have links to other traders and you want to ensure that cir-
cular links are handled correctly.

15.11 Executing Queries
To execute a query, do the following:

1. Select Tools/Query. The Query dialog box appears as shown below.

2. Select a service type from the drop-down list.

3. Enter a constraint expression in the Constraint text box.

4. (Optional) Enter a preference expression in the Preference text box. If this field is
blank, the trader uses a default preference expression of "first".

5. If you wish to specify which properties are returned in the matching offers, click
Desired properties to activate the text box below and enter the names of the
properties in the text box. Use commas to separate the property names.

6. To include importer policies, click the Policies... button. The Policies dialog box
appears as shown below. Next to each field label is a checkbox. You must check the
box for a policy for it to be included in your query. Click the Defaults button to load
ORBacus

Executing Queries
the trader’s default import attributes into the fields of the dialog box. Click OK to
accept your changes.

7. ClickQuery to execute the query operation. If matching offers were found, theQuery
Results dialog box appears as shown below. You can scroll through the matching
ORBacus 239

ORBacus Trader Console

240
offers with the < and > buttons. Click Close when you have finished examining the
results.

Note: The Query Results dialog box cannot be used to edit offers.

15.12 Connecting to a New Trader
When the console is started, the first console window to appear is already connected to the
trader you specified using the command line options. If you are managing multiple trad-
ORBacus

Connecting to a New Trader
ers, you can connect to a different trader with the Console/Connect command. The Con-
nect dialog appears as shown below.

There are three methods of connecting to the trader.

1. To provide the stringified object reference, select the Trader IOR option and paste the
IOR into the text box.

2. To obtain the stringified object reference from a file, select IOR from file and enter
the filename in the text box, or click the Browse... button to display a file selection
dialog box.

3. To connect to a linked trader, select the Link option and choose the link from the drop-
down list.

ClickOK to connect to the trader. The contents of the current console window are updated
to reflect the new trader.

Note: If you want to be connected to two or more traders at the same time, use the Con-
sole/New Window command to create a new console window, then select Console/
Connect to connect the new window to another trader.
ORBacus 241

ORBacus Trader Console

242
 ORBacus

CHAPTER 16 The Interface Repository
A CORBA Interface Repository (IFR) is essential for applications using the dynamic fea-
tures of CORBA, such as the Dynamic Invocation Interface and DynAny. The IFR holds
IDL type definitions and can be queried and traversed by applications.

The ORBACUS Interface Repository is compliant with [4]. This chapter does not provide a
complete description of the IFR. For more information, please refer to the specification.

16.1 Synopsis

16.1.1 Usage

The ORBACUS Interface Repository is currently only provided with ORBACUS for C++.

irserv
[-h,--help] [-v,--version] [-e NAME,--cpp NAME] [-d,--debug]
[-i,--ior] [-DNAME] [-DNAME=DEF] [-UNAME] [-IDIR] [-E]
[--case-sensitive] [FILE ...]

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.
ORBacus 243

The Interface Repository

244
16.1.2 Windows NT Native Service

ntirservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

-e NAME
--cpp NAME

Use NAME as the preprocessor program.

-d
--debug

Print diagnostic messages. This option is for ORBACUS internal
debugging purposes only.

-i
--ior

Print the stringified IOR of the server to standard output.

-DNAME
-DNAME=DEF

Defines NAME as DEF, or 1 if DEF is not provided. This option is passed
directly to the preprocessor.

-UNAME
Removes any definition for NAME. This option is passed directly to the
preprocessor.

-IDIR
Adds DIR to the include file search path. This option is passed directly to
the preprocessor.

-E Run only the preprocessor.

--case-sensitive

The semantics of OMG IDL forbid identifiers in the same scope
to differ only in case. This option relaxes these semantics, but is
only provided for backward compatibility with non-compliant
IDL.

FILE ... IDL files to be loaded into the repository.

-h
--help

Display the command-line options supported by the server.

-i
--install

Install the service. The service must be started manually.

-s
--start-install

Install the service and start it.

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.
ORBacus

Synopsis
In order to use the IFR as a native Windows NT service, it is first necessary to add the
ooc.ifr.port configuration property to the HKEY_LOCAL_MACHINE NT registry key
(see “Using the Windows NT Registry” on page 60 for more details).

Next the service should be installed with:

ntirservice -i

This adds the ORBacus Interface Repository Service entry to the Services dia-
log in the Control Panel. To start the naming service, select the ORBacus Interface

Repository Service entry, and press Start. If the service is to be started automati-
cally when the machine is booted, select the ORBacus Interface Repository

Service entry, then click Startup. Next select Startup Type - Automatic, and
press OK. Alternatively, the service could have been installed using the -s option, which
configures the service for automatic start-up:

ntirservice -s

If you want to remove the service, run:

ntirservice -u

Note: If the executable for the Interface Repository is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service is placed in the Windows NT Event Viewer
with the title IRService. To enable tracing information, add the desired trace configura-
tion property (i.e., one of the ooc.orb.trace properties) to the HKEY_LOCAL_MACHINE
NT registry key with a REG_SZ value of at least 1.

16.1.3 Configuration Properties

In addition to the standard configuration properties described in Chapter 4, the ORBACUS

Interface Repository also supports the following properties:

ooc.ifr.options=OPTS Allows command-line options to be passed to the Win-
dows NT Native service at start-up. Note that absolute
pathnames should be used when specifying include direc-
tives, IDL files, etc.

ooc.ifr.port=PORT Specifies the port number on which the service should lis-
ten for new connections. Note that this property is only
considered if the ooc.oa.port property is not set.
ORBacus 245

The Interface Repository

246
16.2 Connecting to the Interface Repository
The object key of the IFR is DefaultRepository, which identifies an object of type
CORBA::Repository.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the IFR running on host ifrhost at port 10000:

corbaloc::ifrhost:10000/DefaultRepository

Refer to Chapter 6 for more information on URLs and configuring initial services.

16.3 Configuration Issues
Although applications can interact with the IFR as with any other CORBA server, it does
have special status within the ORB. Specifically, use of the standard operation
Object::get_interface() requires the presence of an IFR:

// PIDL
interface Object
{

...
InterfaceDef get_interface();
...

};

The exact semantics of get_interface can be a source of confusion. In ORBACUS, as
with most other ORBs, the get_interface operation is a remote operation. That is,
when a client invokes get_interface on an object reference, the request is sent to the
server. The server knows the interface type of the object reference and interacts with the
IFR to locate the appropriate CORBA::InterfaceDef object to return to the client.
Therefore, the server must be configured for the IFR. It is not necessary to configure the
client for the IFR if the client’s only interaction with the IFR is via get_interface.

16.4 Interface Repository Utilities

16.4.1 irfeed

IDL files can be loaded into the IFR at runtime using irfeed. See the description of the
irserv command for more information on the command-line options.

irfeed [-h,--help] [-v,--version] [-e NAME,--cpp NAME] [-d,--debug]
[-DNAME] [-DNAME=DEF] [-UNAME] [-IDIR] [-E] FILE ...
ORBacus

Programming Example
16.4.2 irdel

Type definitions can be removed from the IFR using irdel. See the description of the
irserv command for more information on the command-line options.

irdel [-h,--help] [-v,--version] name ...

The name argument represents the scoped name of the type to be removed. A scoped name
has the form “X::Y::Z”. For example, an interface I defined in a module M can be identi-
fied by the scoped name “M::I”.

16.5 Programming Example
Below is a simple example in Java that demonstrates how to obtain an InterfaceDef
object and display its contents:

1 // Java
2 import org.omg.CORBA.*;
3 ...
4

5 org.omg.CORBA.ORB = ... // initialize the ORB
6 org.omg.CORBA.Object obj = ... // get object reference somehow
7

8 org.omg.CORBA.Object defObj = obj._get_interface_def();
9 if(defObj == null)

10 {
11 System.err.println("No Interface Repository available");
12 System.exit(1);
13 }
14

15 InterfaceDef def = InterfaceDefHelper.narrow(defObj);
16 org.omg.CORBA.InterfaceDefPackage.FullInterfaceDescription desc =
17 def.describe_interface();
18

19 int i;
20

21 System.out.println("name = " + desc.name);
22 System.out.println("id = " + desc.id);
23 System.out.println("defined_in = " + desc.defined_in);
24 System.out.println("version = " + desc.version);
25 System.out.println("operations:");
26 for(i = 0 ; i < desc.operations.length ; i++)
27 {
28 System.out.println(i + ": " + desc.operations[i].name);
ORBacus 247

The Interface Repository

248
29 }
30 System.out.println("attributes:");
31 for(i = 0 ; i < desc.attributes.length ; i++)
32 {
33 System.out.println(i + ": " + desc.attributes[i].name);
34 }
35 System.out.println("base_interfaces:");
36 for(i = 0 ; i < desc.base_interfaces.length ; i++)
37 {
38 System.out.println(i + ": " + desc.base_interfaces[i]);
39 }

5-8 After initializing the ORB and obtaining an object reference, we invoke
_get_interface_def1 on the object.

9-13 If no interface definition could be found, _get_interface_def returns nil.

15 Narrow the object reference to InterfaceDef. We now have a reference to an object in
the IFR that describes the most-derived type of our object reference.

16-17 Request a complete description of the interface.

19-39 Print information about the interface, including the names of its operations and attributes.

A complete example of how to use the IFR can be found in the ob/demo/repository
subdirectory.

1. Recent versions of the IDL-to-Java mapping introduced the _get_interface_def operation,
which returns org.omg.CORBA.Object instead of org.omg.CORBA.InterfaceDef. Portable
Java applications should use _get_interface_def. In C++, the operation is
_get_interface.
ORBacus

CHAPTER 17 Using Policies
17.1 Overview
The ORB and its services may allow the application developer to configure the semantics
of its operations. This configuration is accomplished in a structured manner through inter-
faces derived from the interface CORBA::Policy.

There are two basic types of policies: those used to configure the ORB and those used to
create a new POA. Furthermore, the configuration of ORB policy objects is accomplished
at two levels:

• ORB Level: These policies override the system defaults. The ORB has an initial
reference ORBPolicyManager. A PolicyManager has a set of operations through
which the current set of overriding policies can be obtained, and new policies can be
applied.

• Object Level: The object interface contains operations to retrieve and set policies for
itself. Policies applied at the object level override those applied at the thread level, or
the ORB level.

For more information on Policies, the PolicyManager interface and the
CORBA::Object policy operations see [8] and [4].
ORBacus 249

Using Policies

250
17.2 Supported Policies
The following is a brief description of the ORBACUS-specific policies that are currently
supported. For a detailed description, please refer to Appendix B. For standard policies,
please refer to [4].

OB::ACMTimeoutPolicy

This policy determines whether the ORB performs “active connection management”
(ACM) on the connection associated with an object reference. The policy specifies a time
after which idle connections are shutdown. A value of 0 means no timeout. The default for
this policy is the value of the ooc.orb.client_timeout property (see
“ooc.orb.client_timeout” on page 50).

OB::ConnectionReusePolicy

This policy determines whether the ORB is permitted to reuse a communications channel
between peers. If this policy is false then each object will have a new communications
channel to its peer. The default for this policy is true.

OB::ConnectTimeoutPolicy

If an object has this policy and a connection cannot be established after value millisec-
onds, a CORBA::NO_RESPONSE exception is raised.

OB::InterceptorPolicy

This policy determines whether interceptors will be called. This policy can be set on an
ORB or object reference to control client-side interceptors, and can be set on a POA to
control server-side interceptors.

OB::LocationTransparencyPolicy

This policy determines how strictly the ORB will enforce location transparency. The
default behavior is strict enforcement, but an application may wish to sacrifice strict
CORBA compliance to improve performance for local invocations.

OB::ProtocolPolicy

This policy is used to force the selection of a particular protocol. If this policy is set, then
the protocol with the identified tag will be used, if possible. If it is not possible to use this
protocol, a CORBA::NO_RESOURCES exception will be raised.
ORBacus

Programming Examples
OB::RequestTimeoutPolicy

If an object has this policy and no response is available for a request after value millisec-
onds, a CORBA::NO_RESPONSE exception is raised.

OB::RetryPolicy

This policy is used to specify whether requests should be retried after communication fail-
ures.

OB::TimeoutPolicy

If an object has this policy and a connection cannot be established or no response is avail-
able for a request after valuemilliseconds, a CORBA::NO_RESPONSE exception is raised.
If an object has OB::ConnectTimeoutPolicy or OB::RequestTimeoutPolicy set,
those policies have precedence.

17.3 Programming Examples

17.3.1 Connection Reuse Policy

The following examples demonstrate how to set OB::ConnectionReusePolicy at both
the ORB level and the object level in C++ and Java. Setting a policy at the ORB level
means that the ORB will honor this policy for all newly created objects. Existing objects
maintain their current set of policies. Setting a policy at the object level overrides any
ORB level policies applied to that object.

Setting the connection reuse policy to false at the ORB level means that the ORB will
create a new connection from the client to the server for each new proxy object instead of
reusing existing ones. Setting the connection reuse policy to false at the object level
means that the client does not reuse connections to the server only for a particular proxy
object.

If the connection reuse policy is set to true at some later point, communications channels
that were previously created with a connection reuse policy set to false will not be
reused. That is, the connection reuse policy is sticky, in the sense that the reuse policy that
was in effect at the time that a communications channel is created stays with it. Setting the
reuse policy at the object level means that for a client the ORB will not reuse the commu-
nications channel that is associated with the proxy object.
ORBacus 251

Using Policies

252
Connection Reuse Policy at ORB Level

Our first example shows how the connection reuse policy can be set at the ORB level. First
in C++:

1 // C++
2 CORBA::Any boolAny;
3 boolAny <<= CORBA::Any::from_boolean(0);
4 CORBA::PolicyList policies;
5 policies.length(1);
6 policies[0] = orb -> create_policy(OB::CONNECTION_REUSE_POLICY_ID,
7 boolAny);
8 CORBA::Object_var pmObj =
9 orb -> resolve_initial_references("ORBPolicyManager");

10 CORBA::PolicyManager_var pm = CORBA::PolicyManager::_narrow(pmObj);
11 pm -> add_policy_overrides(policies);

2-3 Create an any and insert the value 0 (false).

4-5 Create a sequence containing one policy object.

6-7 Ask the ORB to create a connection reuse policy. Pass the any that contains the value for
this policy.

8-10 Obtain the ORB level policy manager object.

11 Add the policies to the ORB level policy manager.

And here is the same example in Java:

1 // Java
2 org.omg.CORBA.Any boolAny = orb.create_any();
3 boolAny.insert_boolean(false);
4 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
5 policies[0] =
6 orb.create_policy(com.ooc.OB.CONNECTION_REUSE_POLICY_ID.value,
7 boolAny);
8 org.omg.CORBA.PolicyManager pm =
9 org.omg.CORBA.PolicyManagerHelper.narrow(

10 orb.resolve_initial_references("ORBPolicyManager"));
11 pm.add_policy_overrides(policies);

1-11 This is equivalent to the C++ version.
ORBacus

Programming Examples
Connection Reuse Policy at Object Level

And now the same example, but at the object level. C++ first:

1 // C++
2 CORBA::Any boolAny;
3 boolAny <<= CORBA::Any::from_boolean(0);
4 CORBA::PolicyList policies(1);
5 policies.length(1);
6 policies[0] = orb -> create_policy(OB::CONNECTION_REUSE_POLICY_ID,
7 boolAny);
8 CORBA::Object_var newObj =
9 obj -> _set_policy_overrides(policies, CORBA::ADD_OVERRIDE);

2-6 This is the same as in the example for the ORB level.

Set the policy on the object by using the _set_policy_overrides method. This
method returns a new object that has the set of policies applied.

And here is the same example in Java:

1 // Java
2 org.omg.CORBA.Any boolAny = orb.create_any();
3 boolAny.insert_boolean(false);
4 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
5 policies[0] =
6 orb.create_policy(com.ooc.OB.CONNECTION_REUSE_POLICY_ID.value,
7 boolAny);
8 org.omg.CORBA.Object newObj =
9 obj._set_policy_override(policies,

10 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);

1-9 This is equivalent to the C++ version.

17.3.2 Timeout Policy

This example shows how to configure timeouts at the object level. As usual, the C++ ver-
sion is presented first, followed by the Java version:

1 // C++
2 CORBA::Any ULongAny;
3 ULongAny <<= (CORBA::ULong)1000;
4 CORBA::PolicyList policies(1);
5 policies.length(1);
6 policies[0] = orb -> create_policy(OB::TIMEOUT_POLICY_ID, ULongAny);
ORBacus 253

Using Policies

254
7 CORBA::Object_var newObj =
8 obj -> _set_policy_overrides(policies, CORBA::ADD_OVERRIDE);

2-6 We want to set the timeout to a value of 1000 milliseconds.

7-8 Set the policy on the object by using the _set_policy_overrides method. This
method returns a new object that has the set of policies applied.

And now the same example in Java:

1 // Java
2 org.omg.CORBA.Any ULongAny = orb.create_any();
3 ULongAny.insert_ulong(1000);
4 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
5 policies[0] =
6 orb.create_policy(com.ooc.OB.TIMEOUT_POLICY_ID.value,
7 ULongAny);
8 org.omg.CORBA.Object newObj =
9 obj._set_policy_override(policies,

10 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);

1-10 This is equivalent to the C++ version.

Note that you can also set the timeout policy at the ORB level.
ORBacus

CHAPTER 18 ConcurrencyModels
18.1 Introduction

18.1.1 What is a Concurrency Model?

A concurrency model describes how an Object Request Broker (ORB) handles communi-
cation and request execution. There are two main categories of concurrency models, sin-
gle-threaded concurrency models and multi-threaded concurrency models.

Single-threaded concurrency models describe how an ORB behaves while a request is sent
or received in a single-threaded environment. For example, one model is to simply let the
ORB block on sending and receiving messages. Another model is to let the ORB do some
work while sending and receiving messages, for example to receive user input through a
keyboard or a GUI, or to simply transfer buffered messages.

Multi-threaded concurrency models describe how the ORB makes use of multiple threads,
for example to send and receive messages “in the background.” Multi-threaded concur-
rency models also describe how several threads can be active in the user code and the strat-
egy the ORB employs to create these threads.

18.1.2 Why different Concurrency Models?

There is no “one size fits all” approach with respect to concurrency models. Each concur-
rency model provides a unique set of properties, each having advantages and disadvan-
ORBacus 255

Concurrency Models

256
tages. For example, applications using callbacks must have a concurrency model that
allows nested method invocations to avoid deadlocks. Other applications must be opti-
mized for speed, in which case a concurrency model with the least overhead will be cho-
sen.

Some ORBs are highly specialized, providing only the most frequently used concurrency
models for a specific domain. ORBACUS takes a different approach by supporting several
concurrency models.

18.1.3 ORBacus Concurrency Models Overview

ORBACUS allows different concurrency models to be established for the client and server
activities of an application. The client-side concurrency models are Blocking, Reactive and
Threaded. The server-side concurrency models are Reactive, Threaded, Thread-per-Cli-
ent, Thread-per-Request and Thread Pool.

18.2 Single-Threaded Concurrency Models

18.2.1 Blocking Clients

The blocking concurrency model is the simplest one. It only applies to the client side and
means that the ORB blocks while sending requests.

A special case are oneway requests,1 which do not block the ORB. If the ORB determines
that sending the oneway request would cause blocking, it puts the oneway request into a
request buffer. Whenever the client tries to send another request to the same server, this
buffer’s contents are sent first.

Because of its simplicity, the blocking concurrency model is the fastest model available.
There is no overhead, neither for calls to operations like select2 (because the ORB is
allowed to block on a single connection), nor for any thread creation or context switches.

1. A oneway request is a request for which no reply is received. Therefore a oneway request cannot
return any results and there is no guarantee that a oneway request was properly executed by a
server.

2. select is used for synchronous I/O multiplexing. For more information, see the selectUnix
manual page.
ORBacus

Single-Threaded Concurrency Models
18.2.2 Reactive Clients and Servers

Reactive servers use calls to operations like select in order to simultaneously accept
incoming connection requests, to receive requests from multiple clients and to send back
replies. This is shown in Figure 18.1.

Reactive clients also use operations like select to avoid blocking. This means that while
a request to a server is sent or a reply from that server is received, the client can simulta-
neously send buffered requests to other servers or receive and buffer replies. This is very
useful for oneway operations or the Dynamic Invocation Interface (DII) operation
send_deferred in combination with get_response or poll_response.1

Figure 18.1: Reactive Server

Client A Server Client B

connect

disconnect

connect

disconnect

accept

accept

close

close

f()

f()

dispatch

dispatch
ORBacus 257

Concurrency Models

258
However, the main advantage of a reactive client becomes apparent if it is used together
with a reactive server in mixed client/server applications. A mixed client/server applica-
tion is a program that is both a client and server at the same time. Without the reactive con-
currency model it is not possible to use nested method calls in single-threaded
applications, which are absolutely necessary for most kinds of callbacks.

Consider two programs A and B, both mixed client/server applications. First A tries to call
a method f on B. Before this method returns, B calls back A by invoking method g. This
scenario is quite common, and for example is used in the popular Model-View-Controller
pattern [1].

For blocking clients this scenario is shown in Figure 18.2. As you can see, the callback g

from B to A does not succeed, because A blocks while waiting for a reply for f from B. In
contrast, if the reactive concurrency model for the client is used, A can dispatch incoming
requests while waiting for B’s reply for f. This is shown in Figure 18.3.

The reactive concurrency models are also very fast. There is no overhead for thread cre-
ation or context switching. Only an additional call to an operation like select is needed
before operations such as send, recv or accept can be used by the ORB.1

The maximum nesting level for the reactive concurrency model is usually much higher
than for threaded concurrency models. The reason is that the maximum nesting level for

1. For more information on send_deferred, get_response and poll_response, see the
chapter “The Dynamic Invocation Interface” in [4].

Figure 18.2: Blocking Client

1. Instead of directly using operations like select, ORBACUS uses a Reactor to provide for flex-
ible integration with existing event loops and to allow the installation of user supplied event han-
dlers. See “The Reactor” on page 263 for more information.

Client/Server A Client/Server B

f()

g()
dispatch
ORBacus

Multi-Threaded Concurrency Models
threaded models is determined by the maximum number of threads allowed per process,
whereas the reactive concurrency model is only limited by the maximum stack size per
process.

18.3 Multi-Threaded Concurrency Models

18.3.1 Threaded Clients and Servers

A threaded client uses two separate threads for each connection to a server, one for send-
ing requests and another for receiving replies. This model has the advantage that oneway
requests can be sent “in the background”, i.e., without blocking the user thread execution.
The separate receiver thread allows messages to be received and buffered for later retrieval
by the user thread with DII operations such as get_response or poll_response.

Like a threaded client, a threaded server uses separate threads for receiving requests from
clients and sending replies. Additionally, there is a separate thread dedicated to accepting
incoming connection requests, so that a threaded server can serve more than one client at a
time.

ORBACUS’s threaded server concurrency model allows only one active thread in the user
code. This means that even though many requests can be received simultaneously, the exe-
cution of these requests is serialized. This is shown in Figure 18.4. (For simplicity, the
“dispatch” arrows and the corresponding return arrows are omitted in this and all follow-
ing diagrams.) In the example, the threaded server has two clients connected to it and thus
two receiver threads (sender threads not shown). First A calls f on the server. If, before f

Figure 18.3: Reactive Client/Server

Client/Server Client/Server

f()

g()
dispatch

dispatch
ORBacus 259

Concurrency Models

260
returns, B tries to call another operation g, this request is delayed until f returns. The same
is true for A’s call to h, which must wait until g returns.

Allowing only one active thread in user code has the advantage of the user code not having
to take care of any kind of thread synchronization. This means that the user code can be
written as if for a single threaded system, but without losing the advantage of the ORB
optimizing its operation by using multiple threads internally.

The threaded concurrency model is still fast. No calls to operations like select are
required. Time consuming thread creation is only necessary when a new client is connect-
ing, but not for each request. However, thread context switching makes this approach
slower than the reactive concurrency model, at least on a single-processor computer.

18.3.2 Thread-per-Client Server

The thread-per-client server concurrency model is very similar to the threaded server con-
currency model, except that the ORB allows one active thread-per-client in the user code.
This is shown in Figure 18.5. A’s call to f and B’s call to g are carried out simultaneously,
each in its own thread. However, if A tries to call another operation h (for example by
sending requests from different threads in a multi-threaded client or by using the DII oper-
ation send_deferred in a single-threaded client) as long as f has not finished yet, the
execution of h is delayed until f returns.

The thread-per-client model is still efficient. Like with the threaded concurrency model,
no threads need to be created, except when new connections are accepted.

Figure 18.4: Threaded Server

Client A Threaded Server

f()

h()

g()

Client B
ORBacus

Multi-Threaded Concurrency Models
18.3.3 Thread-per-Request Server

If the thread-per-request server concurrency model is chosen, the ORB creates a new
thread for each request. This is shown in Figure 18.6. (For simplicity there are no separate

arrows for dispatch and thread creation in the diagram.) With the thread-per-request

Figure 18.5: Thread-per-Client Server

Figure 18.6: Thread-per-Request Server

Client A Thread-per-Client
Server

f()

h()

g()

Client B

Client A Thread-per-Request
Server

f()

h()

g()

Client B
ORBacus 261

Concurrency Models

262
model, requests are never delayed. When they arrive, a new thread is created and the
request is executed in the user code using this thread. On return, the thread is destroyed.

Besides using a reactive client together with a reactive server, the thread-per-request server
in combination with a threaded client is the only other model that allows nested method
calls with an unlimited nesting level. The thread pool model also allows nested method
calls, but the nesting level is limited by the number of threads in the pool.

The thread-per-request concurrency model is inefficient. The main problem results from
the overhead involved in creating new threads, namely one for each request.

18.3.4 Thread Pool Server

The thread pool model uses threads from a pool to carry out requests, so that threads have
to be created only once and can then be reused for other requests. Figure 18.7 shows an

example with one client and a thread pool server with three threads in the pool. (Sender
and receiver threads are not shown.) The first three operation calls f, g and h can be car-
ried out immediately, since there are three threads in the pool. However, the fourth request
i is delayed until at least one of the other requests returns.

Since there is no time-consuming thread creation, the thread pool concurrency model per-
forms better than the thread-per-request model. The thread pool is a good trade-off if on

Figure 18.7: Thread Pool Server

Client Thread Pool
Server

g()
h()

f()

i()
ORBacus

Selecting Concurrency Models
the one hand frequent thread creation and destruction result in unacceptable performance,
but on the other hand delaying the execution of concurrent method calls is also not desired.

18.4 Selecting Concurrency Models
Concurrency models can be selected either by properties or command-line parameters (see
Chapter 4). The default concurrency models are shown in Table 18.1.

18.5 The Reactor

18.5.1 What is a Reactor?

In “reactive” mode (see “Reactive Clients and Servers” on page 257), ORBACUS uses a
so-called “Reactor” for event dispatching [14]. Simply speaking, the Reactor is an
instance in ORBACUS (a singleton) where special objects — so-called event handlers —
can register if they are interested in specific events. These events can be network events,
such as an event signaling that data are ready to be read from a network connection.

Again, this chapter only applies to ORBACUS when used with reactive concurrency mod-
els. If you use ORBACUS with any other concurrency model, for example any of the multi-
threaded models, the following examples are not applicable. Also, since ORBACUS for
Java currently doesn’t support the reactive model at all, the following only applies to
ORBACUS for C++.

18.5.2 Available Reactors

Currently there are three Reactors supported by ORBACUS:

• The standard “select” Reactor which relies on the Berkeley Sockets select function.

• A special Reactor for use with the X11 Window System. This Reactor handles X11
events (which for example can trigger X11 callbacks) and CORBA network events
simultaneously.

Client Server

Java Blocking Threaded

C++ Blocking Reactive

Table 18.1: Default Concurrency Models
ORBacus 263

Concurrency Models

264
• A special Reactor for use with Microsoft Windows 95/98/NT/2000. This Reactor
handles Windows messages and CORBA network events simultaneously.

The “default” Reactor is the “select” Reactor. If one of the other Reactors is to be used, it
must be initialized explicitly.

The X11 Reactor

An application that wants to use the X11 Reactor can obtain a special X11 Reactor using
OB::GetX11Reactor(), which it must pass to OBCORBA::ORB_init():

1 // C++
2 #include <X11/Intrinsic.h>
3

4 #include <OB/CORBA.h>
5 #include <OB/Logger.h>
6 #include <OB/Properties.h>
7 #include <OB/X11.h>
8

9 int main(int argc, char* argv[])
10 {
11 XtAppContext appContext;
12 Widget topLevel = XtAppInitialize(&appContext, "MyApplication",
13 0, 0, &argc, argv, 0, 0, 0);
14

15 OB::Reactor_var reactor = OB::GetX11Reactor(appContext);
16

17 CORBA::ORB_var = OBCORBA::ORB_init(argc, argv,
18 OB::Properties::_nil(), OB::Logger::_nil(), reactor);
19

20 ... // POA initialization not shown
21

22 orb -> run();
23

24 ... // Cleanup not shown
25 }

1-7 Include header files.

11-13 Initialize the X11 application.

15 Use the X11 application context to obtain a X11 Reactor.

17 Initialize the ORB using the ORBACUS-specific OBCORBA::ORB_init().
ORBacus

The Reactor
22 Enter the CORBA event loop. This loop will also dispatch X11 events. Alternatively, the
standard X11 event loop may be called, which will also dispatch CORBA events.

The Windows Reactor

Using a Windows Reactor is very similar to using a X11 Reactor:

1 // C++
2 #include <Windows.h>
3

4 #include <OB/CORBA.h>
5 #include <OB/Logger.h>
6 #include <OB/Properties.h>
7 #include <OB/OBWindows.h>
8

9 int main(int argc, char* argv[])
10 {
11 HINSTANCE hInstance = GetModuleHandle(0);
12

13 OB::Reactor_var reactor = OB::GetWindowsReactor(hInstance);
14

15 CORBA::ORB_var = OBCORBA::ORB_init(argc, argv,
16 OB::Properties::_nil(), OB::Logger::_nil(), reactor);
17

18 ... // POA initialization not shown
19

20 orb -> run();
21

22 ... // Cleanup not shown
23 }

2-7 Include header files.

13 Use the Windows application instance to get a Windows Reactor.

15-16 Initialize the ORB using the ORBACUS-specific OBCORBA::ORB_init().

20 Enter the CORBA event loop, which now also dispatches Windows events. The standard
Windows event loop may also be called, which will then also dispatch CORBA events.
ORBacus 265

Concurrency Models

266
 ORBacus

CHAPTER 19 TheOpen
Communications Interface
19.1 What is the Open Communications Interface?
The Open Communications Interface (OCI) defines common interfaces for pluggable pro-
tocols. It supports connection-oriented, reliable “byte-stream” protocols. That is, protocols
which allow the transmission of a continuous stream of bytes (octets) from the sender to
the receiver.

TCP/IP is one possible candidate for an OCI plug-in. Since ORBACUS uses GIOP, such a
plug-in then implements the IIOP protocol. Other candidates are SCCP (Signaling Con-
nection Control Part, part of SS.7) or SAAL (Signaling ATM Adaptation Layer).

Non-reliable or non-connection-oriented protocols can also be used if the protocol plug-in
itself takes care of reliability and connection management. For example, UDP/IP can be
used if the protocol plug-in provides for packet ordering and packet repetition in case of a
packet loss.

19.2 Interface Summary

19.2.1 Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of octets
and a position counter, which determines how many octets have already been sent or
received.
ORBacus 267

The Open Communications Interface

268
19.2.2 Transport

The Transport interface allows the sending and receiving of octet streams in the form of
Buffer objects. There are blocking and non-blocking send/receive operations available, as
well as operations that handle time-outs and detection of connection loss.

19.2.3 Acceptor and Connector

Acceptors and Connectors are Factories [2] for Transport objects. A Connector is used to
connect clients to servers. An Acceptor is used by a server to accept client connection
requests.

Acceptors and Connectors also provide operations to manage protocol-specific IOR pro-
files. This includes operations for comparing profiles, adding profiles to IORs or extract-
ing object keys from profiles.

19.2.4 Acceptor and Connector Factories

Acceptor and Connector Factories are used by clients to create Acceptors and Connectors.
Acceptors are created infrequently, usually only when POA Managers are created. Con-
nectors, however, need to be created by clients whenever a new connection to a server has
to be established.

The only component of the OCI that is configurable by applications is the Acceptor. When
creating a new Acceptor, an Acceptor Factory takes a sequence of protocol-specific
parameters which are used to configure the Acceptor. Each plug-in implementation should
document these configuration parameters. The configuration parameters for the plug-ins
included with ORBACUS are described later in this chapter.

19.2.5 The Registries

The ORB provides Acceptor and Connector Factory Registries. These registries allow the
plugging-in of new protocols. Transport, Connector, Connector Factory, Acceptor Factory
and Acceptor must be written by the plug-in implementors. The Connector Factory must
then be registered with the ORB’s Connector Factory Registry and the Acceptor Factory
must be registered with the ORB’s Acceptor Factory Registry.

19.2.6 The Info Objects

Info objects provide information on Transports, Acceptors and Connectors. A Transport
Info provides information on a Transport, an Acceptor Info on an Acceptor and a Connec-
tor Info on a Connector. To get information for a concrete protocol, these info objects
ORBacus

Interface Summary
must be narrow’d to an info object for this protocol, for example, in the case of an IIOP
plug-in, a OCI::TransportInfo must be narrow’d to OCI::IIOP::TransportInfo.

19.2.7 Class Diagram

Figure 19.1 shows the classes and interfaces of the OCI (except for the Buffer and Info

interfaces). ORBACUS provides abstract base classes for the interfaces Connector Factory,
Connector, Transport, Acceptor Factory and Acceptor. The protocol plug-in must inherit
from these classes in order to provide concrete implementations for a specific protocol.
ORBACUS also provides concrete classes for the interfaces Buffer, Connector Factory
Registry and Acceptor Factory Registry. Instances of Connector Factory Registry and
Acceptor Factory Registry can be obtained via the ORB operation
resolve_initial_references, using the identifiers “OCIConFactoryRegistry” and
“OCIAccFactoryRegistry”, respectively. Concrete implementations of Connector Factory

Figure 19.1: OCI Class Diagram

Connector
Factory Connector Transport Acceptor

Protocol-
Specific

Connector
Factory

Protocol-
Specific

Connector

Protocol-
Specific

Transport

Protocol-
Specific
Acceptor

Connector
Factory
Registry

n

ORB OA1 1

creates createscreates

Acceptor
Factory
Registry

Acceptor

Protocol-
Specific
Acceptor

n

Factory

creates

Factory
ORBacus 269

The Open Communications Interface

270
must be registered with the Connector Factory Registry, and concrete implementations of
Acceptor Factory must be registered with the Acceptor Factory Registry.

19.3 OCI Reference
This chapter does not contain a complete reference of the OCI. It only explains OCI basics
and, in the remainder of this chapter, how it is used from the application programmer’s
point of view for the most common tasks. For more information on how to use the OCI to
write your own protocol plug-ins, and for a complete reference, please refer to
Appendix E.

19.4 OCI for the Application Programmer
The following information only applies to the standard ORBACUS IIOP plug-in. For other
plug-ins, please refer to the plug-in’s documentation.

19.4.1 A “Converter” Class for Java

As you will see in the following examples, the OCI info objects return port numbers as
IDL unsigned short values and IP addresses as an array of 4 IDL unsigned octet

values. This works fine for C++, but in Java this causes a problem, because there are no
unsigned types in Java. The Java mapping simply maps unsigned types to signed types.
Consider for example the IP address 126.127.128.129. In Java, the OCI will return this as
126.127.-128.-127, because 128 and 129, if bit-wise mapped to the Java byte type, are
-128 and -127.

To avoid this problem, we will use a helper class which converts port numbers and IP
addresses to Java int types. This helper class looks as follows:

1 // Java
2 final class Converter
3 {
4 static int port(short s)
5 {
6 if(s < 0)
7 return 0xffff + (int)s + 1;
8 else
9 return (int)s;

10 }
11

12 static int[] addr(byte[] bArray)
13 {
14 int[] iArray = new int[4];
ORBacus

OCI for the Application Programmer
15 for(int i = 0 ; i < 4 ; i++)
16 if(bArray[i] < 0)
17 iArray[i] = 0xff + (int)bArray[i] + 1;
18 else
19 iArray[i] = (int)bArray[i];
20

21 return iArray;
22 }
23 };

4-10 Converts short port numbers to int.

12-22 Converts byte[] IP addresses to int[].

The converter class is used throughout the examples in the sections below.

19.4.2 Getting Hostnames and Port Numbers

The following code fragments show how it is possible to find out on what hostnames and
port numbers a server is listening. First the C++ version:

1 // C++
2 OCI::AcceptorSeq_var acceptors = poaManager -> get_acceptors();
3

4 for(CORBA::ULong i = 0 ; i < acceptors -> length() ; i++)
5 {
6 OCI::AcceptorInfo_var info = acceptors[i] -> get_info();
7 OCI::IIOP::AcceptorInfo_var iiopInfo =
8 OCI::IIOP::AcceptorInfo::_narrow(info);
9

10 if(!CORBA::is_nil(iiopInfo))
11 {
12 CORBA::StringSeq_var hosts = iiopInfo -> hosts();
13 CORBA::UShort port = iiopInfo -> port();
14

15 cout << "host: " << host[0] << endl;
16 cout << "port: " << port << endl;
17 }
18 }

2 The list of registered acceptors is requested from the POA Manager.

4 The for loop iterates over all acceptors.

6-8 The info object for the acceptor is requested and narrowed to an IIOP acceptor info object.
ORBacus 271

The Open Communications Interface

272
10 The if block is only entered in case the info object really belongs to an IIOP plug-in.

12-16 The hostname and port number are requested from the IIOP acceptor info object and
printed on standard output.

The Java version is basically equivalent to the C++ code and looks as follows:

1 // Java
2 com.ooc.OCI.Acceptor[] acceptors = poaManager.get_acceptors();
3

4 for(int i = 0 ; i < acceptors.length ; i++)
5 {
6 com.ooc.OCI.AcceptorInfo info = acceptors[i].get_info();
7 com.ooc.OCI.IIOP.AcceptorInfo iiopInfo =
8 com.ooc.OCI.IIOP.AcceptorInfoHelper.narrow(info);
9

10 if(iiopInfo != null)
11 {
12 String[] hosts = iiopInfo.hosts();
13 short port = Converter.port(iiopInfo.port());
14

15 System.out.println("host: " + host[0]);
16 System.out.println("port: " + port);
17 }
18 }

2-12 This is equivalent to the C++ version.

13 The converter class is used to get a port number in int format.

15-16 Like in the C++ version, the hostname and port number are printed on standard output.

19.4.3 Determining a Client’s IP Address

To determine the IP address of a client within a server method, the following code can be
used in a servant class method implementation:

1 // C++
2 CORBA::Object_var baseCurrent =
3 orb -> resolve_initial_references("OCICurrent");
4 OCI::Current_var current = OCI::Current::_narrow(baseCurrent);
5

6 OCI::TransportInfo_var info = current -> get_oci_transport_info();
7 OCI::IIOP::TransportInfo_var iiopInfo =
8 OCI::IIOP::TransportInfo::_narrow(info);
ORBacus

OCI for the Application Programmer
9

10 if(!CORBA::is_nil(iiopInfo))
11 {
12 OCI::IIOP::InetAddr remoteAddr = iiopInfo -> remote_addr();
13 CORBA::UShort remotePort = iiopInfo -> remote_port();
14

15 cout << "Call from: "
16 << remoteAddr[0] << '.' << remoteAddr[1] << '.'
17 << remoteAddr[2] << '.' << remoteAddr[3]
18 << ":" << remotePort << endl;
19 }

2-4 The OCI current object is requested and narrow’d to the correct OCI::Current type.

6-8 The info object for the transport is requested and narrow’d to an IIOP transport info
object.

10 The remainder of the example code is only executed if this was really an IIOP transport
info object.

12-18 The address and the port of the client calling this operation are obtained and printed on
standard output.

The Java version looks as follows:

1 // Java
2 org.omg.CORBA.Object baseCurrent =
3 orb.resolve_initial_references("OCICurrent");
4 com.ooc.OCI.Current current =
5 com.ooc.OCI.CurrentHelper.narrow(baseCurrent);
6

7 com.ooc.OCI.TransportInfo info = current.get_oci_transport_info();
8 com.ooc.OCI.IIOP.TransportInfo iiopInfo =
9 com.ooc.OCI.IIOP.TransportInfoHelper.narrow(baseInfo);

10

11 if(iiopInfo != null)
12 {
13 int[] remoteAddr = Converter.addr(iiopInfo.remote_addr());
14 int remotePort = Converter.port(iiopInfo.remote_port());
15

16 System.out.println("Call from: " +
17 remoteAddr[0] + "." +
18 remoteAddr[1] + "." +
19 remoteAddr[2] + "." +
ORBacus 273

The Open Communications Interface

274
20 remoteAddr[3] + ":" + remotePort);
21 }

2-11 This code is equivalent to the C++ version.

13-14 Again, the port number must be converted from short to int.

16-20 This is also equivalent to the C++ version.

19.4.4 Determining a Server’s IP Address

To determine the server’s IP address and port that an object will attempt to connect to, the
following code can be used:

1 // C++
2 CORBA::Object_var obj = ... // Get an object reference somehow
3

4 OCI::ConnectorInfo_var info = obj -> get_oci_connector_info();
5 OCI::IIOP::ConnectorInfo_var iiopInfo =
6 OCI::IIOP::ConnectorInfo::_narrow(info);
7

8 if(!CORBA::is_nil(iiopInfo))
9 {

10 OCI::IIOP::InetAddr_var remoteAddr = iiopInfo -> remoteAddr();
11 CORBA::UShort remotePort = iiopInfo -> remote_port();
12

13 cout << "Will connect to: "
14 << remoteAddr[0] << '.' << remoteAddr[2] << '.'
15 << remoteAddr[2] << '.' << remoteAddr[3]
16 << ":" << remotePort << endl;
17 }

4-6 Get the OCI connector info and narrow to an IIOP connector info

8 The if block is only executed if this really was an IIOP connector info.

10-16 The address and port are obtained and displayed on standard output.

The Java version looks as follows:

1 // Java
2 org.omg.CORBA.Object obj = ... // Get an object reference somehow
3

4 org.omg.CORBA.portable.ObjectImpl objImpl =
5 (org.omg.CORBA.portable.ObjectImpl)obj;
6 com.ooc.CORBA.Delegate objDelegate =
ORBacus

The IIOP OCI Plug-in
7 (com.ooc.CORBA.Delegate)objImpl._get_delegate();
8

9 com.ooc.OCI.ConnectorInfo info =
10 objDelegate.get_oci_connector_info();
11 com.ooc.OCI.IIOP.ConnectorInfo iiopInfo =
12 com.ooc.OCI.IIOP.ConnectorInfoHelper.narrow(info);
13

14 if(iiopInfo != null)
15 {
16 int[] remoteAddr = Converter.addr(iiopInfo.remote_addr());
17 int remotePort = Converter.port(iiopInfo.remote_port());
18

19 System.out.println("Will connect to: " +
20 remoteAddr[0] + "." +
21 remoteAddr[1] + "." +
22 remoteAddr[2] + "." +
23 remoteAddr[3] + ":" + remotePort);
24 }

4-7 We need to retrieve the ORBACUS-specific Delegate object so that we can get the con-
nector info.

9-12 Get the OCI connector info and narrow to an IIOP connector info.

14 The if block is only entered if this really was an IIOP connector info.

16-23 The address and port are obtained and displayed on standard output.

19.5 The IIOP OCI Plug-in
The IIOP plug-in implements the Internet Inter-ORB Protocol as described in [4]. By
default, the ORB automatically installs the client and server (i.e., Connector Factory and
Acceptor Factory) components of the IIOP plug-in, and IIOP is the default protocol used
by the ORB.

19.5.1 IIOP Acceptor Configuration

The configuration parameters for the IIOP Acceptor are described in Table 19.2.
ORBacus 275

The Open Communications Interface

276
Table 19.2: IIOP Acceptor Configuration Parameters

Typical configurations include the following:

Name Type Description

backlog unsigned short

The maximum length of the listen backlog queue. Note
that the operating system may have a smaller limit
which will override this value. If not specified, a default
value of 50 is used in Java, and 5 in C++.

bind string
The hostname or dotted decimal address of the network
interface on which to bind the socket. If not specified,
the socket will be bound to all available interfaces.

host CORBA::StringSeq

A sequence of one or more hostnames and/or dotted
decimal addresses representing the addresses that should
be advertised in IORs. Using IIOP 1.0, multiple
addresses are represented as multiple tagged profiles.
Using IIOP 1.1 or later, multiple addresses can be
represented as either multiple tagged profiles, or as a
single tagged profile with a tagged component for each
additional address. The multi_profile parameter
determines how multiple addresses are represented in
IIOP 1.1 or later. If this parameter is not specified, the
canonical hostname is used.

multi_profile boolean

If true, multiple addresses in the host parameter are
represented as multiple tagged profiles in an IOR. If
false, multiple addresses are represented as a single
tagged profile (using the first address in the host
sequence as the primary address), with all additional
addresses represented as alternate addresses in tagged
components. If IIOP 1.0 is in use, multiple addresses are
always represented as multiple tagged profiles, because
IIOP 1.0 does not support tagged components. If not
specified, the default value is false.

numeric boolean
If true, and if host is not specified, then the canonical
dotted decimal address is advertised in IORs. If not
specified, the default value is false.

port unsigned short

Specifies the port on which the acceptor should listen for
new connections. If not specified, the default value is 0,
which causes the operating system to select an unused
port.
ORBacus

The Bi-directional OCI Plug-in
• No parameters: The Acceptor will use the canonical hostname and a port selected by
the operating system.

• Port only: Specifying a port is typically required to create “persistent” object
references.

• Host and port: The canonical hostname is incorrect or cannot be determined reliably,
so a hostname is specified.

• Multiple hosts and port: The host is known by several names. The client should
attempt at least one connection to each address until finding one that succeeds or until
all addresses have been exhausted.

• Bind: A host has multiple network interfaces, but the acceptor should only be bound
to one of them.

19.6 The Bi-directional OCI Plug-in
The ORBACUS Bi-directional plug-in offers a solution for distributed systems where secu-
rity restrictions interfere with a client's ability to receive callbacks.

This capability is especially useful in two common situations:

• Firewalls prevent the server from establishing a separate connection back to the client

• Browser restrictions prevent an applet from accepting connections

Note: This plug-in does not implement the Bi-directional IIOP standard defined by
CORBA 2.3. This plug-in uses a proprietary protocol that is not interoperable with other
ORBs.

19.6.1 How does it work?

The Bi-directional plug-in uses a layered design that theoretically enables any connection-
oriented OCI plug-in to support bi-directional functionality. Initially however, only bi-
directional IIOP is supported.

In Figure 19.1, a server is shown that is capable of receiving both bi-directional IIOP con-
nections and regular IIOP connections.
ORBacus 277

The Open Communications Interface

278
Figure 19.1: Connection Requirements

Any callback requests from the Server to Client A will travel down the existing connec-
tion already established by the client. On the other hand, any callback requests from the
Server to Client B require a new IIOP connection to be established from the server to the
client.

19.6.2 Peers

The Bi-directional plug-in requires each peer in a bi-directional connection to have a
unique identifier, called the “peer ID”. Currently, this identifier is just a simple ISO-
LATIN1 string. In IIOP terms, a unique endpoint is derived from the hostname/port com-
bination. However, since the Bi-directional OCI plug-in has no knowledge of the underly-
ing protocol, a separate identification scheme is currently required, and must be provided
by the application. It is therefore the application's responsibility to ensure that each server
and client has a unique peer ID.

In IIOP, object references can be made “persistent” (i.e., valid across process restarts) by
ensuring that the process is restarted on the same host and port, and that the object keys in
the object references will continue to be valid. The same is true of peer IDs. If you want a
bi-directional IIOP object reference to remain valid across process restarts, you must use

Server

OCI
Bi-dir

OCI
IIOP

OCI
IIOP

OCI
IIOP
OCI
Bi-dir

Client A

OCI
IIOP

Client B

Requests &
Callbacks

Requests Callbacks
ORBacus

The Bi-directional OCI Plug-in
the same peer ID, host, port and object key. Conversely, if an object reference is transient,
then the peer ID can vary along with the host, port and object key.

19.6.3 POA Managers

When using the Bi-directional plug-in, a POA Manager must be created specifically for
accepting bi-directional connections. If the application only wishes to accept bi-direc-
tional connections, then only one POA Manager is required. If the application wishes to
accept both bi-directional and regular IIOP connections, then at least two POA Managers
are required.

There are really two ways a POA Manager can accept an incoming bi-directional IIOP
connection:

• By listening on a port for new TCP/IP connections, just like with regular IIOP

• By listening for new callback connections on existing outgoing connections

A server will typically want to enable both options, but a security-restricted client will
only want to enable the second option, since listening on a port is often forbidden (or
pointless, if a firewall prevents incoming TCP/IP connections).

The implication of enabling only the second option is that a server wishing to connect to a
client will only be able to do so if there is an existing bi-directional connection from the
client to the server. If not, the server will receive a TRANSIENT exception.

19.6.4 Initialization and Configuration

The initialization steps can be summarized as follows:

• Initialize the ORB

• Create a POA Manager with one or more Bi-directional acceptors

• Create POAs, activate servants, etc.

• Activate POAManager

The createPOAManager method initializes the Bi-directional OCI plug-in for IIOP and
returns a new POA Manager:

// Java
package com.ooc.BiDir;
public class IIOP
{

public static org.omg.PortableServer.POAManager
createPOAManager(
ORBacus 279

The Open Communications Interface

280
String name,
org.omg.CORBA.ORB orb,
String[] args,
java.util.Properties properties);

}

// C++
#include <OB/BiDirIIOPInit.h>

namespace OBBiDir
{
namespace IIOP
{
PortableServer::POAManager_ptr createPOAManager(

const char* name,
CORBA::ORB_ptr orb,
int& argc, char** argv,
OB::Properties_ptr properties):

};
};

The createPOAManager method supports the following properties:

The following command-line option is also supported:

If the command-line option and the ooc.bidir.peer property are both defined, the
command-line option has precedence.

ooc.bidir.peer=id Specifies the peer identifier for this ORB. This
property is required.

ooc.bidir.mode=client|server|both Specifies the bi-directional mode. If the value is
client, then only callback connections will
be accepted. If the value is server, then bi-
directional connections will only be accepted
on a port. The default value is both, in which
both kinds of connections are accepted.

-BIDIRpeer ID Equivalent to ooc.bidir.peer.
ORBacus

The Bi-directional OCI Plug-in
Because the Bi-directional plug-in can be layered upon the IIOP plug-in, the IIOP config-
uration properties are still applicable. See Chapter 4 for more information.

Several common scenarios are described in detail below.

Notes:

• In general, the plug-in should be initialized prior to resolving the RootPOA.

• The POA Manager returned by createPOAManagermust be passed to create_POA
for all POAs you want associated with that POA Manager.

Scenario: Server accepts only bi-directional IIOP connections

Solution: Configure the Root POA Manager for bi-directional IIOP. As long as no other
POA Manager is created, the server will accept only bi-directional connections.

Scenario: Server accepts both regular and bi-directional IIOP connections

Solution: Use the Root POAManager for regular IIOP connections, and create a new POA
Manager for bi-directional connections.

Remember that each POA Manager must be activated in order to dispatch requests to its
POAs.

Scenario: Client only accepts connections on existing outgoing bi-directional connections

Solution: Use the Root POA Manager in “client mode”, i.e., do not listen on a port. This is
accomplished by setting the ooc.bidir.mode property to client.

For details on how to create POAManagers, see “Creating POAManagers” on page 65. A
complete example of using the Bi-directional plug-in is provided in the subdirectory
bidir/demo/hello.

19.6.5 Bi-directional Acceptor Configuration

The configuration parameters for the Bi-directional Acceptor are described in Table 19.1.
ORBacus 281

The Open Communications Interface

282
Table 19.1: Bi-directional Acceptor Configuration Parameters

Name Type Description

callback boolean

Specifies whether the factory should create a “callback
acceptor”, i.e., one that can only receive callback
connections. Note that only one callback acceptor can be
created per ORB. If not specified, the default value is
false.

params OCI::ParamSeq

Provides a sequence of parameters for use in creating a
protocol-specific acceptor. For example, when creating a
bi-directional IIOP acceptor, these parameters are used
by the Bi-directional plug-in to create an IIOP acceptor.
This parameter can only be specified when the
callback parameter is false.
ORBacus

CHAPTER 20 Exceptions and Error
Messages
20.1 CORBA System Exceptions
The CORBA specification defines the standard system exceptions shown in Table 20.1. In

UNKNOWN Unknown exception type

BAD_PARAM An invalid parameter was passed

NO_MEMORY Failure to allocate dynamic memory

IMP_LIMIT Implementation limit was violated

COMM_FAILURE Communication failure

INV_OBJREF Invalid object reference

NO_PERMISSION The attempted operation was not permitted

INTERNAL Internal error in ORB

MARSHAL Error marshalling a parameter or result

INITIALIZE Failure when initializing ORB

NO_IMPLEMENT Operation implementation unavailable

Table 20.1: Standard CORBA System Exceptions
ORBacus 283

Exceptions and Error Messages

284
BAD_TYPECODE Bad typecode

BAD_OPERATION Invalid operation

NO_RESOURCES Insufficient resources for a request

NO_RESPONSE Response to a request is not yet available

PERSIST_STORE Persistent storage failure

BAD_INV_ORDER Routine invocation out of order

TRANSIENT Transient failure, request can be reissued

FREE_MEM Cannot free memory

INV_IDENT Invalid identifier syntax

INV_FLAG Invalid flag was specified

INTF_REPOS Error accessing interface repository

BAD_CONTEXT Error processing context object

OBJ_ADAPTER Failure detected by object adapter

DATA_CONVERSION Error in data conversion

OBJECT_NOT_EXIST Non-existent object, references should be discarded

TRANSACTION_REQUIRED Active transaction context required

TRANSACTION_ROLLEDBACK Transaction has rolled back or is marked to be rolled
back

INVALID_TRANSACTION Invalid transaction context

INV_POLICY Invalid Policy

CODESET_INCOMPATIBLE Incompatible client and server native code sets

REBIND Thrown on a OBJECT_FORWARD or
LOCATION_FORWARD status, depending on the
RebindPolicy

TIMEOUT Time-to-live period was exceeded

TRANSACTION_UNAVAILABLE Transaction service context could not be processed

Table 20.1: Standard CORBA System Exceptions
ORBacus

CORBA System Exceptions
the following subsections the minor exception codes are presented. Minor codes that are
ORBACUS-specific are presented as MinorCodeName*, that is, are tagged with the super-
script ‘*’.

TRANSACTION_MODE Mismatch between TransactionPolicy and current
transaction mode

BAD_QOS Object cannot support the required QOS

Table 20.1: Standard CORBA System Exceptions
ORBacus 285

Exceptions and Error Messages

286
20.1.1 INITIALIZE Minor Exception Code

20.1.2 UNKNOWNMinor Exception Code

20.1.3 BAD_PARAMMinor Exception Code

MinorORBDestroyed ORB already destroyed

MinorUnknownUserException Unknown user exception

MinorValueFactoryError
Failure to register, unregister or
lookup value factory

MinorRepositoryIdExists
Repository ID already exists in
Interface Repository

MinorNameExists
Name already used in Interface
Repository

MinorInvalidContainer Target is not a valid container

MinorNameClashInInheritedContext Name clash in inherited context

MinorBadAbstractInterfaceType
Incorrect type for abstract
interface

MinorBadSchemeName Bad scheme name

MinorBadAddress Bad address

MinorBadSchemeSpecificPart Bad scheme specific part

MinorOther Other

MinorInvalidAbstractInterfaceInheritance
Invalid abstract interface
inheritance

MinorInvalidValueInheritance Invalid valuetype inheritance

MinorInvalidServiceContextId Invalid service context ID

MinorObjectIsNull
Object parameter to
object_to_ior() is null

MinorInvalidComponentId Invalid component ID
ORBacus

CORBA System Exceptions
MinorInvalidProfileId Invalid profile ID

MinorDuplicateDeclarator* Duplicate declarator

MinorInvalidValueModifier* Invalid valuetype modifier

MinorDuplicateValueInit* Duplicate valuetype initializer

MinorAbstractValueInit*
Abstract valuetype cannot have
initializer

MinorDuplicateBaseType*
Base type appears more than
once

MinorSingleThreadedOnly*
ORB does not support multiple
threads

MinorNameRedefinitionInImmediateScope*
Invalid name redefinition in an
immediate scope

MinorInvalidValueBoxType* Invalid type for valuebox
ORBacus 287

Exceptions and Error Messages

288
20.1.4 NO_MEMORY Minor Exception Code

20.1.5 IMP_LIMIT Minor Exception Code

20.1.6 COMM_FAILURE Minor Exception Code

MinorAllocationFailure* Memory allocation failure

MinorMessageSizeLimit* Maximum message size exceeded

MinorThreadLimit* Can’t create new thread

MinorRecv* recv() failed

MinorSend* send() failed

MinorRecvZero* recv() returned zero

MinorSendZero* send() returned zero

MinorSocket* socket() failed

MinorSetsockopt* setsockopt() failed

MinorGetsockopt* getsockopt() failed

MinorBind* bind() failed

MinorListen* listen() failed

MinorConnect* connect() failed

MinorAccept* accept() failed

MinorSelect* select() failed

MinorGethostname* gethostname() failed

MinorGethostbyname* gethostbyname() failed

MinorWSAStartup* WSAStartup() failed

MinorWSACleanup* WSACleanup() failed

MinorNoGIOP* Not a GIOP message
ORBacus

CORBA System Exceptions
MinorUnknownMessage* Unknown GIOP message

MinorWrongMessage* Wrong GIOP message

MinorMessageError* Got a message error message

MinorFragment* Invalid fragment message

MinorUnknownReqId* Unknown request ID

MinorVersion* Incompatible GIOP version

MinorPipe* Creation of pipe failed
ORBacus 289

Exceptions and Error Messages

290
20.1.7 MARSHAL Minor Exception Code

MinorNoValueFactory Unable to locate value factory

MinorReadOverflow* Input stream buffer overflow

MinorReadBooleanOverflow* Overflow while reading boolean

MinorReadCharOverflow* Overflow while reading char

MinorReadWCharOverflow* Overflow while reading wchar

MinorReadOctetOverflow* Overflow while reading octet

MinorReadShortOverflow* Overflow while reading short

MinorReadUShortOverflow* Overflow while reading ushort

MinorReadLongOverflow* Overflow while reading long

MinorReadULongOverflow* Overflow while reading ulong

MinorReadLongLongOverflow* Overflow while reading longlong

MinorReadULongLongOverflow* Overflow while reading ulonglong

MinorReadFloatOverflow* Overflow while reading float

MinorReadDoubleOverflow* Overflow while reading double

MinorReadLongDoubleOverflow* Overflow while reading longdouble

MinorReadStringOverflow* Overflow while reading string

MinorReadStringZeroLength* Encountered zero-length string

MinorReadStringNullChar* Encountered null char in string

MinorReadStringNoTerminator* Terminating null char missing in string

MinorReadWStringOverflow* Overflow while reading wstring

MinorReadWStringZeroLength* Encountered zero-length wstring

MinorReadWStringNullWChar* Encountered null char in wstring

MinorReadWStringNoTerminator* Terminating null char missing in wstring

MinorReadFixedOverflow* Overflow while reading fixed
ORBacus

CORBA System Exceptions
MinorReadFixedInvalid* Invalid encoding for fixed value

MinorReadBooleanArrayOverflow* Overflow while reading boolean array

MinorReadCharArrayOverflow* Overflow while reading char array

MinorReadWCharArrayOverflow* Overflow while reading wchar array

MinorReadOctetArrayOverflow* Overflow while reading octet array

MinorReadShortArrayOverflow* Overflow while reading short array

MinorReadUShortArrayOverflow* Overflow while reading ushort array

MinorReadLongArrayOverflow* Overflow while reading long array

MinorReadULongArrayOverflow* Overflow while reading ulong array

MinorReadLongLongArrayOverflow* Overflow while reading longlong array

MinorReadULongLongArrayOverflow* Overflow while reading ulonglong array

MinorReadFloatArrayOverflow* Overflow while reading float array

MinorReadDoubleArrayOverflow* Overflow while reading double array

MinorReadLongDoubleArrayOverflow*
Overflow while reading longdouble
array

MinorReadInvTypeCodeIndirection* Invalid type code indirection

MinorWriteObjectLocal*
Attempt to marshal a locality-
constrained object

MinorLongDoubleNotSupported* Long double is not supported
ORBacus 291

Exceptions and Error Messages

292
20.1.8 NO_IMPLEMENTMinor Exception Code

20.1.9 NO_RESOURCES Minor Exception Code

20.1.10BAD_INV_ORDER Minor Exception Code

MinorMissingLocalValueImplementation
Missing local value
implementation

MinorIncompatibleValueImplementationVersion
Incompatible value
implementation version

MinorInvalidBinding
Portable Interceptor operation not supported in
binding

MinorDependencyPreventsDestruction
Dependency exists in Interface Repository
prevents destruction of object

MinorIndestructibleObject
Attempt to destroy indestructible object in
Interface Repository

MinorDestroyWouldBlock Operation would deadlock

MinorShutdownCalled ORB has shutdown

MinorInvalidPICall Invalid Portable Interceptor call

MinorServiceContextExists
A service context already exists with the
given ID

MinorPolicyFactoryExists
A factory already exists for the given
PolicyType

MinorBadConcModel* Invalid concurrency model

MinorORBRunning* ORB::run() already called

MinorRequestAlreadySent* Request has already been sent

MinorRequestNotSent* Request has not yet been sent

MinorResponseAlreadyReceived* Response has already been received
ORBacus

Non-Compliant Application Asserts
20.1.11TRANSIENT Minor Exception Code

20.1.12INTF_REPOS Minor Exception Code

20.1.13OBJECT_NOT_EXIST Minor Exception Code

20.1.14INV_POLICY Minor Exception Code

20.2 Non-Compliant Application Asserts
If the ORBACUS library was compiled without the preprocessor definition -DNDEBUG
defined, ORBACUS tries to detect common programming mistakes that lead to non–com-
pliant CORBA applications. If such a mistake is found an error messages like this will
appear:

Non-compliant application error detected:

MinorRequestCancelled Request has been cancelled

MinorConnectFailed* Request has been cancelled

MinorCloseConnection* Got a ‘close connection’ message

MinorActiveConnectionManagement*
Active connection management closed
connection

MinorForcedShutdown*
Forced connection shutdown because of
timeout

MinorNoIntfRepos* Interface Repository is not available

MinorLookupAmbiguous* Search name for lookup() is ambiguous

MinorIllegalRecursion* Illegal Recursion

MinorNoEntry* IFR is not populated with a required definition.

MinorUnregisteredValue
Attempt to pass unactivated (unregistered)
value as an object reference

MinorNoPolicyFactory
No PolicyFactory for the PolicyType has been
registered
ORBacus 293

Exceptions and Error Messages

294
Application used wrong memory allocation function

After detecting such an error, the ORBACUS library dumps a core (Unix only) and prints
the file and line number where the error was detected. You can use the core dump in order
to track down the problem with a debugger.

The following error messages can appear:

Application requested a feature that has not yet been implemented

This is not an application error. This error message appears if an application attempts to
use a feature that has not yet been implemented in ORBACUS. In this case the only thing
that can be done is to wait for the next ORBACUS version that has this particular feature
implemented.

Application used a deprecated feature that is not implemented anymore

This is not an application error. This error message appears if an application attempts to
use a feature that is no longer implemented in ORBACUS. In this case the only thing that
can be done is to avoid using this particular feature.

Application used wrong memory allocation function

If this message appears, an incorrect memory allocation function has been used. A com-
mon mistake that leads to this error is to use malloc, strdup and free (or the new and
delete operator) instead of CORBA::string_alloc and CORBA::string_dup and
CORBA::string_free for string memory management.

Memory that was already deallocated was deallocated again

This message indicates multiple memory deallocations. For example, if
CORBA::string_free is called twice on the same string, this message will be displayed.

Object was deleted without an object reference count of zero

This message appears if an object was deleted by calling delete on its object reference.
Never use the delete operator for that; use CORBA::release instead.

Object was already deleted (object reference count was already zero)

This message appears if the number of release operations on an object reference is
greater than the number of _duplicate operations.
ORBacus

Non-Compliant Application Asserts
Sequence length was greater than maximum sequence length

This message indicates that the application tried to set the length of a bounded sequence to
a value greater than its maximum length.

Index for sequence operator[]() or remove() function was out of range

This message appears if the argument to the sequence member functions operator[] or
remove exceeds the sequence length.

Buffer size not equal to sequence bound

This message indicates that the application attempted to call allocbuf on a bounded
sequence with an argument not equal to the sequence bound.

Null pointer was used to initialize T_var type

This message indicates an attempt to initialize a _var type with a null pointer.

operator->() was used on null pointer or nil object reference

This message indicates an attempt to use operator-> on an uninitialized _var type.

Application tried to dereference a null pointer

Some CORBA _var types have built-in conversion operators to a C++ reference type, i.e.,
some _var types for type T have a conversion operator to T&. This message appears if an
application uses this conversion operator on an uninitialized _var type.

Null pointer was passed as string parameter or return value

According to the IDL–to–C++ mapping specification, no null pointers may be passed as
string parameters or return values. This message appears if an application tries to do so.

Null value passed as parameter

This message indicates that an application attempted to pass a null value across an IDL
interface.

Self assignment caused a dangling pointer

This message appears if the content of a _var type is assigned to itself. For example, the
following code will lead to this error message:
ORBacus 295

Exceptions and Error Messages

296
1 // Somehow get a pointer to a variable struct
2 AVariableStruct_var var = ...
3 AVariableStruct* ptr = var;
4 var = ptr;

3,4 This will result in a dangling pointer, because var will free its own content on assignment.

Replacement of Any content by its own value caused a dangling pointer

This message appears if there is an attempt to replace the content of an Any by its own
value. For example:

1 char* s = CORBA::string_dup("Hello, world!");
2 CORBA::Any any;
3 any <<= s;
4 any <<= s;

3,4 Inserting s into any twice will result in a dangling pointer, because any will free its own
value (which is s) on assignment.

Invalid union discriminator type used

This message appears if the discriminator type argument to
CORBA::ORB::create_union_tc denotes a type invalid for union discriminators. Valid
types have a CORBA::TCKind that is one of CORBA::tk_short, CORBA::tk_ushort,
CORBA::tk_long, CORBA::tk_ulong, CORBA::tk_char, CORBA::tk_boolean or
CORBA::tk_enum.

Union discriminator mismatch

This message either indicates an attempt to set a union discriminator to an invalid value
with the _d modifier function or the use of a wrong accessor function, i.e., an accessor
function that does not correspond to the type of the union’s actual value.

Uninitialized union used

If this message appears, an uninitialized union (i.e., a union that was created with the
default constructor and that was not set to any legal value) was used.
ORBacus

Non-Compliant Application Asserts
CORBA::Any::operator<<=(Exception*) cannot be used with --no-type-codes

This message indicates that CORBA::Any::operator<<=(Exception*) was invoked
for an exception for which no TypeCode is available. That is, the IDL defining the excep-
tion was compiled with the --no-typecodes option.

An operation on an unembedded recursive TypeCode was invoked

If this message appears, an operation was invoked on a recursive TypeCode that has not
yet been embedded.

An already embedded TypeCode was reused

This message indicates that an application attempted to embed a recursive TypeCode that
was already embedded.

LongDouble type is not supported on this platform

This message appears when an application uses the CORBA::LongDouble type on a plat-
form which does not support this type.
ORBacus 297

Exceptions and Error Messages

298
 ORBacus

APPENDIX A BootManager Reference
A.1 Interface OB::BootManager

interface BootManager

Interface to manage bootstrapping of objects.

Exceptions

NotFound
exception NotFound
{
};

This exception indicates that a binding has not been found.

AlreadyExists
exception AlreadyExists
{
};

This exception indicates that a binding already exists.
ORBacus 299

Boot Manager Reference

300
Operations

add_binding
void add_binding(in PortableServer::ObjectId oid,

in Object obj)
raises(AlreadyExists);

Add a new binding to the internal table.

Parameters:
oid - The object id to bind.
obj - The object reference.

Raises:
AlreadyExists - Thrown if binding already exists.

remove_binding
void remove_binding(in PortableServer::ObjectId oid)

raises(NotFound);

Remove a binding from the internal table.

Parameters:
oid - The object id to remove.

Raises:
NotFound - Thrown if no binding found.

set_locator
void set_locator(in BootLocator locator);

Set the BootLocator. The BootLocator is called when a binding for an object id does not exist in
the internal table.

Parameters:
locator - The BootLocator reference.

See Also:
BootLocator
ORBacus

Interface OB::BootLocator
A.2 Interface OB::BootLocator

interface BootLocator

Interface used by BootManager to assist in locating objects.

See Also:
BootManager

Operations

locate
void locate(in PortableServer::ObjectId oid,

out Object obj,
out boolean add)

raises(BootManager::NotFound);

Locate the object coresponding to the given object id.

Parameters:
oid - The object id.
obj - The object reference to associate with the id.
add - Whether the binding should be added to the internal table.

Raises:
NotFound - Raised if no binding found.
ORBacus 301

Boot Manager Reference

302
 ORBacus

APPENDIX B ORBacus Policy Reference
B.1 Module OB

Constants

ACM_TIMEOUT_POLICY_ID
const CORBA::PolicyType ACM_TIMEOUT_POLICY_ID = 1330577418;

This policy type identifies the active connection management (ACM) timeout policy.

CONNECTION_REUSE_POLICY_ID
const CORBA::PolicyType CONNECTION_REUSE_POLICY_ID = 1330577411;

This policy type identifies the connection reuse policy.

CONNECT_TIMEOUT_POLICY_ID
const CORBA::PolicyType CONNECT_TIMEOUT_POLICY_ID = 1330577416;

This policy type identifies the connect timeout policy.

INTERCEPTOR_POLICY_ID
const CORBA::PolicyType INTERCEPTOR_POLICY_ID = 1330577415;
ORBacus 303

ORBacus Policy Reference

304
This policy type identifies the interceptor policy.

LOCATION_TRANSPARENCY_POLICY_ID
const CORBA::PolicyType LOCATION_TRANSPARENCY_POLICY_ID = 1330577414;

This policy type identifies the location transparency policy.

LOCATION_TRANSPARENCY_RELAXED
const short LOCATION_TRANSPARENCY_RELAXED = 1;

The LOCATION_TRANSPARENCY_RELAXED LocationTransparencyPolicy value.

LOCATION_TRANSPARENCY_STRICT
const short LOCATION_TRANSPARENCY_STRICT = 0;

The LOCATION_TRANSPARENCY_STRICT LocationTransparencyPolicy value.

PROTOCOL_POLICY_ID
const CORBA::PolicyType PROTOCOL_POLICY_ID = 1330577410;

This policy type identifies the protocol policy.

REQUEST_TIMEOUT_POLICY_ID
const CORBA::PolicyType REQUEST_TIMEOUT_POLICY_ID = 1330577417;

This policy type identifies the request timeout policy.

RETRY_ALWAYS
const short RETRY_ALWAYS = 2;

The RETRY_ALWAYS RetryPolicy value.

RETRY_NEVER
const short RETRY_NEVER = 0;

The RETRY_NEVER RetryPolicy value.

RETRY_POLICY_ID
const CORBA::PolicyType RETRY_POLICY_ID = 1330577412;

This policy type identifies the retry policy.
ORBacus

Module OB
RETRY_STRICT
const short RETRY_STRICT = 1;

The RETRY_STRICT RetryPolicy value.

TIMEOUT_POLICY_ID
const CORBA::PolicyType TIMEOUT_POLICY_ID = 1330577413;

This policy type identifies the timeout policy.
ORBacus 305

ORBacus Policy Reference

306
B.2 Interface OB::ACMTimeoutPolicy

interface ACMTimeoutPolicy
inherits from CORBA::Policy

The active connection management (ACM) timeout policy. This policy can be used to specify a
time after which idle connections are shut down by the client.

Attributes

value
readonly attribute unsigned long value;

If an object has an ACMTimeoutPolicy set, the connection associated with this object refer-
ence will be shut down after it has been idle for value seconds. The default value is the value
of the property ooc.orb.client_timeout. A value of 0 means no timeout.
ORBacus

Interface OB::ConnectTimeoutPolicy
B.3 Interface OB::ConnectTimeoutPolicy

interface ConnectTimeoutPolicy
inherits from CORBA::Policy

The connect timeout policy. This policy can be used to specify a maximum time limit for connec-
tion establishment.

See Also:
TimeoutPolicy

Attributes

value
readonly attribute unsigned long value;

If an object has a ConnectTimeoutPolicy set and a connection cannot be established after
value milliseconds, a CORBA::NO_RESPONSE exception is raised. The default value is -1,
which means no timeout.
ORBacus 307

ORBacus Policy Reference

308
B.4 Interface OB::ConnectionReusePolicy

interface ConnectionReusePolicy
inherits from CORBA::Policy

The connection reuse policy. This policy determines whether connections may be reused or are pri-
vate to specific objects.

Attributes

value
readonly attribute boolean value;

If an object has a ConnectionReusePolicy set with value set to FALSE, then other object
references will not be permitted to use connections made on behalf of this object. If set to TRUE,
then connections are shared. The default value is TRUE.
ORBacus

Interface OB::InterceptorPolicy
B.5 Interface OB::InterceptorPolicy

interface InterceptorPolicy
inherits from CORBA::Policy

The interceptor policy. This policy can be used to control whether interceptors are called on method
invocations on both the client and the server side.

Attributes

value
readonly attribute boolean value;

If an object has an InterceptorPolicy set and value is FALSE then any installed intercep-
tors are not called. Otherwise, interceptors are called for each method invocation. The default
value is TRUE.
ORBacus 309

ORBacus Policy Reference

310
B.6 Interface OB::LocationTransparencyPolicy

interface LocationTransparencyPolicy
inherits from CORBA::Policy

The location transparency policy. This policy is used to control how strict the ORB is in enforcing
location transparency. This is useful for performance reasons.

Attributes

value
readonly attribute short value;

LOCATION_TRANSPARENCY_STRICT ensures strict location transparency is followed.
LOCATION_TRANSPARENCY_RELAXED relaxes the location transparency guarantees for perfor-
mance reasons. Specifically for collocated method invocations, the dispatch concurrency model
will be ignored, and policy overrides are not removed. The default value is
LOCATION_TRANSPARENCY_RELAXED.
ORBacus

Interface OB::ProtocolPolicy
B.7 Interface OB::ProtocolPolicy

interface ProtocolPolicy
inherits from CORBA::Policy

The protocol policy. This policy is used to force the selection of a specific protocol.

Attributes

value
readonly attribute OCI::ProtocolId value;

If a ProtocolPolicy is set, then the protocol with the given identifier will be used, if possible.
If it is not possible to use this protocol, a CORBA::NO_RESOURCES exception will be raised. By
default, the ORB chooses the protocol to be used.
ORBacus 311

ORBacus Policy Reference

312
B.8 Interface OB::RequestTimeoutPolicy

interface RequestTimeoutPolicy
inherits from CORBA::Policy

The request timeout policy. This policy can be used to specify a maximum time limit for requests.

See Also:
TimeoutPolicy

Attributes

value
readonly attribute unsigned long value;

If an object has a RequestTimeoutPolicy set and no response to a request is available after
value milliseconds, a CORBA::NO_RESPONSE exception is raised. The default value is -1,
which means no timeout.
ORBacus

Interface OB::RetryPolicy
B.9 Interface OB::RetryPolicy

interface RetryPolicy
inherits from CORBA::Policy

The retry policy. This policy is used to specify whether requests are retried after communication
failures (i.e., CORBA::TRANSIENT and CORBA::COMM_FAILURE exceptions).

Attributes

value
readonly attribute short value;

RETRY_NEVER indicates that requests should never be retried, and the exception is re-thrown to
the application. RETRY_STRICT will retry once if the exception completion status is
COMPLETED_NO, in order to guarantee at-most-once semantics. RETRY_ALWAYS will retry once,
regardless of the exception completion status. The default value is RETRY_STRICT. Note:
Many TCP/IP stacks do not provide a reliable indication of communication failure when send-
ing smaller requests, therefore the failure may not be detected until the ORB attempts to read
the reply. In this case, the ORB must assume that the remote end has received the request, in
order to guarantee at-most-once semantics for the request. The implication is that when using
the default setting of RETRY_STRICT, most communication failures will not cause a retry. This
behavior can be relaxed using RETRY_ALWAYS.
ORBacus 313

ORBacus Policy Reference

314
B.10 Interface OB::TimeoutPolicy

interface TimeoutPolicy
inherits from CORBA::Policy

The timeout policy. This policy can be used to specify the default timeout for connection establish-
ment and requests. If an object also has ConnectTimeoutPolicy or RequestTimeoutPolicy
set, those values have precedence.

See Also:
ConnectTimeoutPolicy, RequestTimeoutPolicy

Attributes

value
readonly attribute unsigned long value;

If an object has a TimeoutPolicy set and a connection cannot be established or no response to
a request is available after value milliseconds, a CORBA::NO_RESPONSE exception is raised.
The default value is -1, which means no timeout.
ORBacus

APPENDIX C Reactor Reference
C.1 Interface OB::Reactor

interface Reactor

A generic Reactor interface.

Operations

register_handler
void register_handler(in EventHandler handler,

in Mask handler_mask,
in TypeMask type_mask,
in Handle h);

Register an event handler with the Reactor, or change the registration of an already registered
event handler.

Parameters:
handler - The event handler to register.
mask - The type of events the event handler is interested in.
type_mask - The category the event handler belongs to.
h - The event handler's handle.
ORBacus 315

Reactor Reference

316
unregister_handler
void unregister_handler(in EventHandler handler);

Remove an event handler from the Reactor.

Parameters:
handler - The event handler to remove.

dispatch
boolean dispatch(in TypeMask type_mask);

Dispatch events.

Parameters:
type_mask - If not zero, this operation will return once all registered event handlers that
match the type mask have unregistered.

Returns:
TRUE if all event handlers that match the type mask have unregistered, or FALSE if event
dispatching has been interrupted.

interrupt_dispatch
void interrupt_dispatch();

Interrupt event dispatching. After calling this operation, interrupt() will return with FALSE.

dispatch_one_event
boolean dispatch_one_event(in long timeout);

Dispatch at least one event.

Parameters:
timeout - The timeout in milliseconds. A negative value means no timeout, i.e., the opera-
tion will not return before at least one event has been dispatched. A zero timeout means that
the operation will return immediately if there is no event to dispatch.

Returns:
TRUE if at least one event has been dispatched, or FALSE otherwise.

event_ready
boolean event_ready();
ORBacus

Interface OB::Reactor
Check whether an event is available.

Returns:
TRUE if an event is ready, or FALSE otherwise.
ORBacus 317

Reactor Reference

318
 ORBacus

APPENDIX D Logger Reference
D.1 Interface OB::Logger

interface Logger

The ORBacus message logger interface.

Operations

info
void info(in string msg);

Log an informational message.

Parameters:
msg - The message.

error
void error(in string msg);

Log an error message.

Parameters:
ORBacus 319

Logger Reference

320
msg - The error message.

warning
void warning(in string msg);

Log a warning message.

Parameters:
msg - The warning message.

trace
void trace(in string category,

in string msg);

Log a trace message.

Parameters:
category - The trace category.
msg - The trace message.
ORBacus

APPENDIX E OpenCommunications
Interface Reference
E.1 Module OCI

The Open Communications Interface (OCI). The definitions in this module provide a uniform inter-
face to network protocols. This allows for easy plug-in of new protocols or other communication
mechanisms into ORBs that implement the OCI. Furthermore, protocol implementations need only
to be written once and can then be reused with all OCI compliant ORBs. For more information,
please see the OCI documentation.

Aliases

BufferSeq
typedef sequence<Buffer> BufferSeq;

Alias for a sequence of buffers.

IOR
typedef IOP::IOR IOR;

Alias for an IOR.

ProfileId
typedef IOP::ProfileId ProfileId;
ORBacus 321

Open Communications Interface Reference

322
Alias for a profile id.

ProfileIdSeq
typedef sequence<ProfileId> ProfileIdSeq;

Alias for a sequence of profile ids.

ObjectKey
typedef CORBA::OctetSeq ObjectKey;

Alias for an object key, which is a sequence of octets.

TaggedComponentSeq
typedef IOP::TaggedComponentSeq TaggedComponentSeq;

Alias for a sequence of tagged components.

Handle
typedef long Handle;

Alias for a system-specific handle type.

ProtocolId
typedef unsigned long ProtocolId;

Alias for a protocol id.

ProfileInfoSeq
typedef sequence<ProfileInfo> ProfileInfoSeq;

Alias for a sequence of basic information about profiles.

ParamSeq
typedef sequence<Param> ParamSeq;

Alias for a sequence of parameters.

CloseCBSeq
typedef sequence<CloseCB> CloseCBSeq;
ORBacus

Module OCI
Alias for a sequence of close callback objects.

ConnectorSeq
typedef sequence<Connector> ConnectorSeq;

Alias for a sequence of Connectors.

ConnectCBSeq
typedef sequence<ConnectCB> ConnectCBSeq;

Alias for a sequence of connect callback objects.

AcceptorSeq
typedef sequence<Acceptor> AcceptorSeq;

Alias for a sequence of Acceptors.

AcceptCBSeq
typedef sequence<AcceptCB> AcceptCBSeq;

Alias for a sequence of accept callback objects.

AccFactorySeq
typedef sequence<AccFactory> AccFactorySeq;

Alias for a sequence of AccFactory objects.

ConFactorySeq
typedef sequence<ConFactory> ConFactorySeq;

Alias for a sequence of Connector factories.

Structs

ProfileInfo
struct ProfileInfo
{

ObjectKey key;
octet major;
octet minor;
ProfileId id;
unsigned long index;
ORBacus 323

Open Communications Interface Reference

324
TaggedComponentSeq components;
};

Basic information about an IOR profile. Profiles for specific protocols contain additional data.
(For example, an IIOP profile also contains a hostname and a port number.)

Members:
key - The object key.
major - The major version number of the ORB's protocol. (For example, the major GIOP
version, if the underlying ORB uses GIOP.)
minor - The minor version number of the ORB's protocol. (For example, the minor GIOP
version, if the underlying ORB uses GIOP.)
id - The id of the profile that contains this information.
index - The position index of this profile in an IOR.
components - A sequence of tagged components.

Param
struct Param
{

string name;
any value;

};

A parameter represented as a name/value pair.

Members:
name - The parameter name.
value - The parameter value.

Exceptions

InvalidParam
exception InvalidParam
{

Param p;
string reason;

};

A parameter is invalid. Either the name is unrecognized, the value has the wrong type, or the
value is invalid.

Members:
p - The offending parameter.
ORBacus

Module OCI
reason - The reason why this parameter is invalid.

FactoryAlreadyExists
exception FactoryAlreadyExists
{

ProtocolId id;
};

A factory with the given protocol id already exists.

Members:
id - The protocol id.

NoSuchFactory
exception NoSuchFactory
{

ProtocolId id;
};

No factory with the given protocol id could be found.

Members:
id - The protocol id.
ORBacus 325

Open Communications Interface Reference

326
E.2 Interface OCI::Buffer

interface Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of octets and a posi-
tion counter, which determines how many octets have already been sent or received. The IDL inter-
face definition for Buffer is incomplete and must be extended by the specific language mappings.
For example, the C++ mapping defines the following additional functions:
• Octet* data(): Returns a C++ pointer to the first element of the array of octets, which repre-

sents the buffer's contents.
• Octet* rest(): Similar to data(), this operation returns a C++ pointer, but to the n-th ele-

ment of the array of octets with n being the value of the position counter.

Attributes

length
readonly attribute unsigned long length;

The buffer length.

pos
attribute unsigned long pos;

The position counter. Note that the buffer's length and the position counter don't depend on each
other. There are no restrictions on the values permitted for the counter. This implies that it's
even legal to set the counter to values beyond the buffer's length.

Operations

advance
void advance(in unsigned long delta);

Increment the position counter.

Parameters:
delta - The value to add to the position counter.

rest_length
unsigned long rest_length();
ORBacus

Interface OCI::Buffer
Returns the rest length of the buffer. The rest length is the length minus the position counter's
value. If the value of the position counter exceeds the buffer's length, the return value is unde-
fined.

Returns:
The rest length.

is_full
boolean is_full();

Checks if the buffer is full. The buffer is considered full if its length is equal to the position
counter's value.

Returns:
TRUE if the buffer is full, FALSE otherwise.
ORBacus 327

Open Communications Interface Reference

328
E.3 Interface OCI::Transport

interface Transport

The interface for a Transport object, which provides operations for sending and receiving octet
streams. In addition, it is possible to register callbacks with the Transport object, which are invoked
whenever data can be sent or received without blocking.

See Also:
Connector
Acceptor

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

handle
readonly attribute Handle handle;

The "handle" for this Transport. The handle may only be used to determine whether the Trans-
port object is ready to send or to receive data, e.g., with select() on Unix-based operating
systems. All other uses (e.g., calls to read(), write(), close()) are strictly non-compliant.
A handle value of -1 indicates that the protocol plug-in does not support "selectable" Trans-
ports.

Operations

close
void close();

Closes the Transport. After calling close, no operations on this Transport object and its associ-
ated TransportInfo object may be called. To ensure that no messages get lost when close is
called, shutdown should be called first. Then dummy data should be read from the Transport,
ORBacus

Interface OCI::Transport
using one of the receive operations, until either an exception is raised, or until connection clo-
sure is detected. After that its save to call close, i.e., no messages can get lost.

Raises:
COMM_FAILURE - In case of an error.

shutdown
void shutdown();

Shutdown the Transport. Upon a successful shutdown, threads blocking in the receive opera-
tions will return or throw an exception. After calling shutdown, no operations on associated
TransportInfo object may be called. To fully close the Transport, close must be called.

Raises:
COMM_FAILURE - In case of an error.

receive
void receive(in Buffer buf,

in boolean block);

Receives a buffer's contents.

Parameters:
buf - The buffer to fill.
block - If set to TRUE, the operation blocks until the buffer is full. If set to FALSE, the oper-
ation fills as much of the buffer as possible without blocking.

Raises:
COMM_FAILURE - In case of an error.

receive_detect
boolean receive_detect(in Buffer buf,

in boolean block);

Similar to receive, but it signals a connection loss by returning FALSE instead of raising
COMM_FAILURE.

Parameters:
buf - The buffer to fill.
block - If set to TRUE, the operation blocks until the buffer is full. If set to FALSE, the oper-
ation fills as much of the buffer as possible without blocking.
ORBacus 329

Open Communications Interface Reference

330
Returns:
FALSE if a connection loss is detected, TRUE otherwise.

Raises:
COMM_FAILURE - In case of an error.

receive_timeout
void receive_timeout(in Buffer buf,

in unsigned long timeout);

Similar to receive, but it is possible to specify a timeout. On return the caller can test whether
there was a timeout by checking if the buffer has been filled completely.

Parameters:
buf - The buffer to fill.
timeout - The timeout value in milliseconds. A zero timeout is equivalent to calling
receive(buf, FALSE).

Raises:
COMM_FAILURE - In case of an error.

send
void send(in Buffer buf,

in boolean block);

Sends a buffer's contents.

Parameters:
buf - The buffer to send.
block - If set to TRUE, the operation blocks until the buffer has completely been sent. If set
to FALSE, the operation sends as much of the buffer's data as possible without blocking.

Raises:
COMM_FAILURE - In case of an error.

send_detect
boolean send_detect(in Buffer buf,

in boolean block);

Similar to send, but it signals a connection loss by returning FALSE instead of raising
COMM_FAILURE.
ORBacus

Interface OCI::Transport
Parameters:
buf - The buffer to fill.
block - If set to TRUE, the operation blocks until the entire buffer has been sent. If set to
FALSE, the operation sends as much of the buffer's data as possible without blocking.

Returns:
FALSE if a connection loss is detected, TRUE otherwise.

Raises:
COMM_FAILURE - In case of an error.

send_timeout
void send_timeout(in Buffer buf,

in unsigned long timeout);

Similar to send, but it is possible to specify a timeout. On return the caller can test whether
there was a timeout by checking if the buffer has been sent completely.

Parameters:
buf - The buffer to send.
timeout - The timeout value in milliseconds. A zero timeout is equivalent to calling
send(buf, FALSE).

Raises:
COMM_FAILURE - In case of an error.

get_info
TransportInfo get_info();

Returns the information object associated with the Transport.

Returns:
The Transport information object.
ORBacus 331

Open Communications Interface Reference

332
E.4 Interface OCI::TransportInfo

interface TransportInfo

Information on an OCI Transport object. Objects of this type must be narrowed to a Transport
information object for a concrete protocol implementation, for example to OCI::IIOP::Trans-
portInfo in case the plug-in implements IIOP.

See Also:
Transport

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

connector_info
readonly attribute ConnectorInfo connector_info;

The ConnectorInfo object for the Connector that created the Transport object that this Trans-
portInfo object belongs to. If the Transport for this TransportInfo was not created by a Connec-
tor, this attribute is set to the nil object reference.

acceptor_info
readonly attribute AcceptorInfo acceptor_info;

The AcceptorInfo object for the Acceptor that created the Transport object that this Transport-
Info object belongs to. If the Transport for this TransportInfo was not created by an Acceptor,
this attribute is set to the nil object reference.

Operations

describe
string describe();
ORBacus

Interface OCI::TransportInfo
Returns a human readable description of the transport.

Returns:
The description.

add_close_cb
void add_close_cb(in CloseCB cb);

Add a callback that is called before a connection is closed. If the callback has already been reg-
istered, this method has no effect.

Parameters:
cb - The callback to add.

remove_close_cb
void remove_close_cb(in CloseCB cb);

Remove a close callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.
ORBacus 333

Open Communications Interface Reference

334
E.5 Interface OCI::CloseCB

interface CloseCB

An interface for a close callback object.

See Also:
TransportInfo

Operations

close_cb
void close_cb(in TransportInfo transport_info);

Called before a connection is closed.

Parameters:
transport_info - The TransportInfo for the new closeion.
ORBacus

Interface OCI::Connector
E.6 Interface OCI::Connector

interface Connector

An interface for Connector objects. A Connector is used by CORBA clients to initiate a connection
to a server. It also provides operations for the management of IOR profiles.

See Also:
ConFactory
Transport

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

connect
Transport connect();

Used by CORBA clients to establish a connection to a CORBA server. It returns a Transport
object, which can be used for sending and receiving octet streams to and from the server.

Returns:
The new Transport object.

Raises:
TRANSIENT - If the server cannot be contacted.
COMM_FAILURE - In case of other errors.

connect_timeout
Transport connect_timeout(in unsigned long timeout);
ORBacus 335

Open Communications Interface Reference

336
Similar to connect, but it is possible to specify a timeout. On return the caller can test whether
there was a timeout by checking whether a nil object reference was returned.

Parameters:
timeout - The timeout value in milliseconds.

Returns:
The new Transport object.

Raises:
TRANSIENT - If the server cannot be contacted.
COMM_FAILURE - In case of other errors.

get_usable_profiles
ProfileInfoSeq get_usable_profiles(in IOR ref,

in CORBA::PolicyList policies);

From the given IOR and list of policies, get basic information about all profiles for which this
Connector can be used.

Parameters:
ref - The IOR from which the profiles are taken.
policies - The policies that must be satisfied.

Returns:
The sequence of basic information about profiles. If this sequence is empty, there is no pro-
file in the IOR that matches this Connector and the list of policies.

equal
boolean equal(in Connector con);

Find out whether this Connector is equal to another Connector. Two Connectors are considered
equal if they are interchangeable.

Parameters:
con - The connector to compare with.

Returns:
TRUE if the Connectors are equal, FALSE otherwise.
ORBacus

Interface OCI::Connector
get_info
ConnectorInfo get_info();

Returns the information object associated with the Connector.

Returns:
The Connector information object.
ORBacus 337

Open Communications Interface Reference

338
E.7 Interface OCI::ConnectorInfo

interface ConnectorInfo

Information on a OCI Connector object. Objects of this type must be narrowed to a Connector
information object for a concrete protocol implementation, for example to OCI::IIOP::Connec-
torInfo in case the plug-in implements IIOP.

See Also:
Connector

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

add_connect_cb
void add_connect_cb(in ConnectCB cb);

Add a callback that is called whenever a new connection is established. If the callback has
already been registered, this method has no effect.

Parameters:
ORBacus

Interface OCI::ConnectorInfo
cb - The callback to add.

remove_connect_cb
void remove_connect_cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.
ORBacus 339

Open Communications Interface Reference

340
E.8 Interface OCI::ConnectCB

interface ConnectCB

An interface for a connect callback object.

See Also:
ConnectorInfo

Operations

connect_cb
void connect_cb(in TransportInfo transport_info);

Called after a new connection has been established. If the application wishes to reject the con-
nection CORBA::NO_PERMISSION may be raised.

Parameters:
transport_info - The TransportInfo for the new connection.
ORBacus

Interface OCI::Acceptor
E.9 Interface OCI::Acceptor

interface Acceptor

An interface for an Acceptor object, which is used by CORBA servers to accept client connection
requests. It also provides operations for the management of IOR profiles.

See Also:
AccRegistry
AccFactory
Transport

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

handle
readonly attribute Handle handle;

The "handle" for this Acceptor. Like with the handle for Transports, the handle may only be
used with operations like select(). A handle value of -1 indicates that the protocol plug-in
does not support "selectable" Transports.

Operations

close
void close();

Closes the Acceptor. accept or listen may not be called after close has been called.

Raises:
COMM_FAILURE - In case of an error.
ORBacus 341

Open Communications Interface Reference

342
listen
void listen();

Sets the acceptor up to listen for incoming connections. Until this method is called on the accep-
tor, new connection requests should result in a connection request failure.

Raises:
COMM_FAILURE - In case of an error.

accept
Transport accept(in boolean block);

Used by CORBA servers to accept client connection requests. It returns a Transport object,
which can be used for sending and receiving octet streams to and from the client.

Parameters:
block - If set to TRUE, the operation blocks until a new connection has been accepted. If set
to FALSE, the operation returns a nil object reference if there is no new connection ready to
be accepted.

Returns:
The new Transport object.

Raises:
COMM_FAILURE - In case of an error.

connect_self
Transport connect_self();

Connect to this acceptor. This operation can be used to unblock threads that are blocking in
accept.

Returns:
The new Transport object.

Raises:
TRANSIENT - If the server cannot be contacted.
COMM_FAILURE - In case of other errors.

add_profiles
void add_profiles(in ProfileInfo profile_info,
ORBacus

Interface OCI::Acceptor
inout IOR ref);

Add new profiles that match this Acceptor to an IOR.

Parameters:
profile_info - The basic profile information to use for the new profiles.
ref - The IOR.

get_local_profiles
ProfileInfoSeq get_local_profiles(in IOR ref);

From the given IOR, get basic information about all profiles for which are local to this Accep-
tor.

Parameters:
ref - The IOR from which the profiles are taken.

Returns:
The sequence of basic information about profiles. If this sequence is empty, there is no pro-
file in the IOR that is local to the Acceptor.

get_info
AcceptorInfo get_info();

Returns the information object associated with the Acceptor.

Returns:
The Acceptor information object.
ORBacus 343

Open Communications Interface Reference

344
E.10 Interface OCI::AcceptorInfo

interface AcceptorInfo

Information on an OCI Acceptor object. Objects of this type must be narrowed to an Acceptor
information object for a concrete protocol implementation, for example to OCI::IIOP::Accep-
torInfo in case the plug-in implements IIOP.

See Also:
Acceptor

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

add_accept_cb
void add_accept_cb(in AcceptCB cb);

Add a callback that is called whenever a new connection is accepted. If the callback has already
been registered, this method has no effect.

Parameters:
ORBacus

Interface OCI::AcceptorInfo
cb - The callback to add.

remove_accept_cb
void remove_accept_cb(in AcceptCB cb);

Remove an accept callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.
ORBacus 345

Open Communications Interface Reference

346
E.11 Interface OCI::AcceptCB

interface AcceptCB

An interface for an accept callback object.

See Also:
AcceptorInfo

Operations

accept_cb
void accept_cb(in TransportInfo transport_info);

Called after a new connection has been accepted. If the application wishes to reject the connec-
tion CORBA::NO_PERMISSION may be raised.

Parameters:
transport_info - The TransportInfo for the new connection.
ORBacus

Interface OCI::AccFactory
E.12 Interface OCI::AccFactory

interface AccFactory

An interface for an AccFactory object, which is used by CORBA servers to create Acceptors.

See Also:
Acceptor
AccFactoryRegistry

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

create_acceptor
Acceptor create_acceptor(in ParamSeq params)

raises(InvalidParam);

Create an Acceptor using the given configuration parameters. Refer to the plug-in documenta-
tion for a description of the configuration parameters supported for a particular protocol.

Parameters:
params - The configuration parameters.

Returns:
The new Acceptor.

Raises:
InvalidParam - If any of the parameters are invalid.
ORBacus 347

Open Communications Interface Reference

348
get_info
AccFactoryInfo get_info();

Returns the information object associated with the Acceptor factory.

Returns:
The Acceptor
ORBacus

Interface OCI::AccFactoryInfo
E.13 Interface OCI::AccFactoryInfo

interface AccFactoryInfo

Information on an OCI AccFactory object.

See Also:
AccFactory

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.
ORBacus 349

Open Communications Interface Reference

350
E.14 Interface OCI::AccFactoryRegistry

interface AccFactoryRegistry

A registry for Acceptor factories.

See Also:
Acceptor
AccFactory

Operations

add_factory
void add_factory(in AccFactory factory)

raises(FactoryAlreadyExists);

Adds an Acceptor factory to the registry.

Parameters:
factory - The Acceptor factory to add.

Raises:
FactoryAlreadyExists - If a factory already exists with the same protocol id as the
given factory.

get_factory
AccFactory get_factory(in ProtocolId id)

raises(NoSuchFactory);

Returns the factory with the given protocol id.

Parameters:
id - The protocol id.

Returns:
The Acceptor factory.

Raises:
NoSuchFactory - If no factory was found with a matching protocol id.

get_factories
ORBacus

Interface OCI::AccFactoryRegistry
AccFactorySeq get_factories();

Returns all registered factories.

Returns:
The Acceptor factories.
ORBacus 351

Open Communications Interface Reference

352
E.15 Interface OCI::ConFactory

interface ConFactory

A factory for Connector objects.

See Also:
Connector
ConFactoryRegistry

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

create_connectors
ConnectorSeq create_connectors(in IOR ref,

in CORBA::PolicyList policies);

Returns a sequence of Connectors for a given IOR and a list of policies. The sequence includes
one or more Connectors for each IOR profile that matches this Connector factory and satisfies
the list of policies.

Parameters:
ref - The IOR for which Connectors are returned.
policies - The policies that must be satisfied.

Returns:
The sequence of Connectors.

equivalent
boolean equivalent(in IOR ior1,
ORBacus

Interface OCI::ConFactory
in IOR ior2);

Checks whether two IORs are equivalent, taking only profiles into account matching this Con-
nector factory.

Parameters:
ior1 - The first IOR to check for equivalence.
ior2 - The second IOR to check for equivalence.

Returns:
TRUE if the IORs are equivalent, FALSE otherwise.

hash
unsigned long hash(in IOR ref,

in unsigned long maximum);

Calculates a hash value for an IOR.

Parameters:
ref - The IOR to calculate a hash value for.
maximum - The maximum value of the hash value.

Returns:
The hash value.

get_info
ConFactoryInfo get_info();

Returns the information object associated with the Connector factory.

Returns:
The Connector factory information object.
ORBacus 353

Open Communications Interface Reference

354
E.16 Interface OCI::ConFactoryInfo

interface ConFactoryInfo

Information on an OCI ConFactory object.

See Also:
ConFactory

Attributes

id
readonly attribute ProtocolId id;

The protocol id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

add_connect_cb
void add_connect_cb(in ConnectCB cb);

Add a callback that is called whenever a new connection is established. If the callback has
already been registered, this method has no effect.

Parameters:
cb - The callback to add.
ORBacus

Interface OCI::ConFactoryInfo
remove_connect_cb
void remove_connect_cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.
ORBacus 355

Open Communications Interface Reference

356
E.17 Interface OCI::ConFactoryRegistry

interface ConFactoryRegistry

A registry for Connector factories.

See Also:
Connector
ConFactory

Operations

add_factory
void add_factory(in ConFactory factory)

raises(FactoryAlreadyExists);

Adds a Connector factory to the registry.

Parameters:
factory - The Connector factory to add.

Raises:
FactoryAlreadyExists - If a factory already exists with the same protocol id as the
given factory.

get_factory
ConFactory get_factory(in ProtocolId id)

raises(NoSuchFactory);

Returns the factory with the given protocol id.

Parameters:
id - The protocol id.

Returns:
The Connector factory.

Raises:
NoSuchFactory - If no factory was found with a matching protocol id.

get_factories
ORBacus

Interface OCI::ConFactoryRegistry
ConFactorySeq get_factories();

Returns all registered factories.

Returns:
The Connector factories.
ORBacus 357

Open Communications Interface Reference

358
E.18 Interface OCI::Current

interface Current
inherits from CORBA::Current

Interface to access Transport and Acceptor information objects related to the current request.

Operations

get_oci_transport_info
TransportInfo get_oci_transport_info();

This method returns the Transport information object for the Transport used to invoke the cur-
rent request.

get_oci_acceptor_info
AcceptorInfo get_oci_acceptor_info();

This method returns the Acceptor information object for the Acceptor which created the Trans-
port used to invoke the current request.
ORBacus

Module OCI::IIOP
E.19 Module OCI::IIOP

This module contains interfaces to support the IIOP OCI plug-in.

Aliases

InetAddr
typedef octet InetAddr[4];

Alias for an array of four octets. This alias will be used for address information from the various
information classes. The address will always be in network byte order.

Constants

TAG_IIOP
const ProtocolId TAG_IIOP = 1330577409;

The protocol id for the OOC IIOP plug-in.
ORBacus 359

Open Communications Interface Reference

360
E.20 Interface OCI::IIOP::TransportInfo

interface TransportInfo
inherits from OCI::TransportInfo

Information on an IIOP OCI Transport object.

See Also:
Transport
TransportInfo

Attributes

addr
readonly attribute InetAddr addr;

The local 32 bit IP address.

port
readonly attribute unsigned short port;

The local port.

remote_addr
readonly attribute InetAddr remote_addr;

The remote 32 bit IP address.

remote_port
readonly attribute unsigned short remote_port;

The remote port.
ORBacus

Interface OCI::IIOP::ConnectorInfo
E.21 Interface OCI::IIOP::ConnectorInfo

interface ConnectorInfo
inherits from OCI::ConnectorInfo

Information on an IIOP OCI Connector object.

See Also:
Connector
ConnectorInfo

Attributes

remote_addr
readonly attribute InetAddr remote_addr;

The remote 32 bit IP address to which this connector connects.

remote_port
readonly attribute unsigned short remote_port;

The remote port to which this connector connects.
ORBacus 361

Open Communications Interface Reference

362
E.22 Interface OCI::IIOP::AcceptorInfo

interface AcceptorInfo
inherits from OCI::AcceptorInfo

Information on an IIOP OCI Acceptor object.

See Also:
Acceptor
AcceptorInfo

Attributes

hosts
readonly attribute CORBA::StringSeq hosts;

Hostnames used for creation of IIOP object references.

addr
readonly attribute InetAddr addr;

The local 32 bit IP address on which this acceptor accepts.

port
readonly attribute unsigned short port;

The local port on which this acceptor accepts.
ORBacus

Interface OCI::IIOP::AccFactoryInfo
E.23 Interface OCI::IIOP::AccFactoryInfo

interface AccFactoryInfo
inherits from OCI::AccFactoryInfo

Information on an IIOP OCI Acceptor Factory object.

See Also:
AccFactory
ORBacus 363

Open Communications Interface Reference

364
E.24 Interface OCI::IIOP::ConFactoryInfo

interface ConFactoryInfo
inherits from OCI::ConFactoryInfo

Information on an IIOP OCI Connector Factory object.

See Also:
ConFactory
ConFactoryInfo
ORBacus

References
[1] Buschman, F., et al. 1996. Pattern-Oriented Software Architecture: A System of Patterns.
New York: Wiley.

[2] Gamma, E., et al. 1994. Design Patterns. Reading, MA: Addison-Wesley

[3] Henning, M., and S. Vinoski. 1999. Advanced CORBA Programming with C++. Reading,
MA: Addison-Wesley.

[4] Object Management Group. 1999. The Common Object Request Broker: Architecture and
Specification. Revision 2.3.1. ftp://www.omg.org/pub/docs/formal/99-10-07.pdf.
Framingham, MA: Object Management Group.

[5] Object Management Group. 1999. C++ Language Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-45.pdf. Framingham, MA: Object
Management Group.

[6] Object Management Group. 1999. IDL/Java Language Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-53.pdf. Framingham, MA: Object
Management Group.

[7] Object Management Group. 1999. Portable Interceptors.
ftp://ftp.omg.org/pub/docs/orbos/99-12-02.pdf. Framingham, MA: Object Management
Group.
ORBacus 365

References

366
[8] Object Management Group. 1998. CORBA Messaging.
ftp://ftp.omg.org/pub/docs/orbos/98-05-06.pdf. Framingham, MA: Object Management
Group.

[9] Object Management Group. 1998. CORBAservices: Common Object Services
Specification. ftp://www.omg.org/pub/docs/formal/98-12-09.pdf. Framingham, MA:
Object Management Group.

[10] Object Management Group. 1999. Naming Service Specification.
ftp://ftp.omg.org/pub/docs/ptc/99-12-03.pdf. Framingham, MA: Object Management
Group.

[11] Object Oriented Concepts. 2000 JTHREADS/C++. http://www.ooc.com/jtc/. Billerica, MA:
Object-Oriented Concepts.

[12] Object Oriented Concepts. 2000. JTHREADS/C++ User’s Manual. Billerica, MA:
Object-Oriented Concepts.

[13] Object Oriented Concepts. 2000. ORBACUS. http://www.ooc.com/ob/. Billerica, MA:
Object Oriented Concepts.

[14] Schmidt, D. C. 1995. “Reactor: An Object Behavioral Pattern for Concurrent Event
Demultiplexing and Event Handler Dispatching.” In Pattern Languages of Program
Design, ed. James O. Coplien and Douglas C. Schmidt. Reading, MA: Addison-Wesley.
ORBacus

A
Applet 104

B
Basic Object Adapter 76
Bindings 140
BOA 76
Boot Manager 106

C
Callbacks 68
Code Generators 31
Command-line Options 58
Concurrency Models

Blocking 256
Reactive 257
Thread Pool 262
Threaded 259
Thread-per-Client 260
Thread-per-Request 261

Configuration File 59
Currently Executing Request 95

D
demo program 17
Documenting IDL Files 41

E
Event Channel 187
Event Consumers 187
Event Loop 71
Event Service 181
Event Suppliers 187
Exceptions 283

H
Hostname 100, 271
HTML 41
ORBacus 367

368
I
IFR 243
IIOP

Configuration 55
Installation 51

Implementation Repository 113
Implementation Repository Administration 122
IMR 113
IMR Console 131
included IDL files 40
Initial Services 108

Configuring 110
Resolving 108

Interface Repository 243
IP Address 272, 274
irdel 247
irfeed 246

J
javadoc 44
JDK 1.2 48

N
Name Service

Configuration 138
Initialization 142
Persistence 138

Names Console 149
Netscape 72

O
OAD 113
Object Activation Daemon 113
Object Adapter

Configuration 53
Initialization 48

Object Key 101
Object References 97
Objects

Locating 97
ORBacus

Persistent 89
Transient 89

OCI 267
Acceptor 268
Acceptor Factory 268
Bi-directional Plug-in 277
Connector 268
Connector Factory 268
IIOP Plug-in 275
Info Objects 268
Registries 268
Transport 268

Open Communications Interface 267
Options

hidl 37
idl 32
irgen 39
jidl 36
ridl 38

ORB
Configuration 49
Destruction 70
Initialization 47

ORBacus Names 135

P
POA 76, 116
POA Manager 65

Creating 65
Root POA Manager 67

Policies 249
ConnectionReusePolicy 250
ConnectTimeoutPolicy 250
InterceptorPolicy 250
LocationTransparencyPolicy 250
ProtocolPolicy 250
RequestTimeoutPolicy 251
RetryPolicy 251
TimeoutPolicy 251
ORBacus 369

370
Popup Menu 156
Port 100, 271
Portable Object Adapter 76
Programming Examples

Event Service 190
Implementation Repository 127
Interface Repository 247
Name Service 142
OCI 270
Policies 251
Property Service 162
Time Service 176
Trading Service 210

Properties
ooc.bidir.mode 280
ooc.bidir.peer 280
ooc.config 49
ooc.event.max_events 183
ooc.event.max_retries 184
ooc.event.port 184
ooc.event.pull_interval 184
ooc.event.retry_multiplier 184
ooc.event.retry_timeout 184
ooc.event.trace.events 184
ooc.event.trace.lifecycle 184
ooc.event.typed_service 184
ooc.ifr.options 245
ooc.ifr.port 245
ooc.iiop.acceptor.manager.backlog 56
ooc.iiop.acceptor.manager.bind 57
ooc.iiop.acceptor.manager.host 57
ooc.iiop.acceptor.manager.multi_profile 57
ooc.iiop.acceptor.manager.numeric 57
ooc.iiop.acceptor.manager.port 58
ooc.iiop.backlog 55
ooc.iiop.bind 55
ooc.iiop.host 56
ooc.iiop.multi_profile 56
ORBacus

ooc.iiop.numeric 56
ooc.iiop.port 56
ooc.imr.dbdir 120
ooc.imr.trace.oad 121
ooc.naming.callback_timeout 138
ooc.naming.database 138
ooc.naming.no_updates 138
ooc.naming.port 138
ooc.naming.timeout 138
ooc.naming.trace_level 138
ooc.orb.client_shutdown_timeout 49
ooc.orb.client_timeout 50
ooc.orb.conc_model 50
ooc.orb.default_init_ref 50
ooc.orb.default_wcs 50
ooc.orb.giop.max_message_size 50
ooc.orb.id 51
ooc.orb.init_iiop 51
ooc.orb.native_cs 51
ooc.orb.native_wcs 51
ooc.orb.oa.conc_model 53
ooc.orb.oa.host 54
ooc.orb.oa.numeric 54, 55
ooc.orb.oa.port 54
ooc.orb.oa.thread_pool 54
ooc.orb.oa.version 54
ooc.orb.poamanager.manager.conc_model 54
ooc.orb.poamanager.manager.host 54
ooc.orb.poamanager.manager.numeric 55
ooc.orb.poamanager.manager.port 55
ooc.orb.poamanager.manager.version 55
ooc.orb.raise_dii_exceptions 51
ooc.orb.server_name 52
ooc.orb.server_shutdown_timeout 52
ooc.orb.server_timeout 52
ooc.orb.service.name 52
ooc.orb.trace.connections 52
ooc.orb.trace.retry 53
ORBacus 371

372
ooc.property.port 158
ooc.time.inaccuracy 167
ooc.trading.allow_nil_objects 196
ooc.trading.dbdir 196
ooc.trading.port 196
ooc.trading.timeout 196
ooc.trading.use_ir 196

Property Service 157

R
Reactor 263
Recursion 151
RTF 41

S
Security 74
Servants 76

Activation 86
C++ 84
Deactivation 89
Delegation 79
Inheritance 77
Java 85

T
Time Service 165
Toolbar 134, 155
Trader Console 215
Trader Federation 207
Trading Service 195

U
URL 103, 105

corbaloc 105
corbaname 107
file 107
relfile 108

W
Windows NT Registry 60
ORBacus

Windows Reactor 265

X
X11 Reactor 264
ORBacus 373

	CHAPTER 1 Introduction
	1.1 What is ORBacus?
	1.2 About this Document
	1.3 Getting Help

	CHAPTER 2 Getting Started
	2.1 The “Hello World” Application
	2.2 The IDL Code
	2.3 Implementing the Example in C++
	2.3.1 Implementing the Server
	2.3.2 Implementing the Client
	2.3.3 Compiling and Linking
	2.3.4 Running the Application

	2.4 Implementing the Example in Java
	2.4.1 Implementing the Server
	2.4.2 Implementing the Client
	2.4.3 Compiling
	2.4.4 Running the Application

	2.5 Summary
	2.6 Where to go from here

	CHAPTER 3 The ORBacus Code Generators
	3.1 Overview
	3.2 Synopsis
	3.3 Description
	3.4 Options for idl
	3.5 Options for jidl
	3.6 Options for hidl
	3.7 Options for ridl
	3.8 Options for irgen
	3.9 The IDL-to-C++ Translator and the Interface Repository
	3.10 Include Statements
	3.11 Documenting IDL Files
	3.12 Using javadoc

	CHAPTER 4 ORB and Object Adapter Initialization
	4.1 ORB Initialization
	4.1.1 Initializing the C++ ORB
	4.1.2 Initializing the Java ORB for Applications
	4.1.3 Initializing the Java ORB in JDK 1.2/1.3

	4.2 Object Adapter Initialization
	4.2.1 Initialization of the Object Adapter

	4.3 Configuring the ORB and Object Adapter
	4.3.1 ORB Properties
	4.3.2 OA Properties
	4.3.3 IIOP Properties
	4.3.4 Command-line Options
	4.3.5 Using a Configuration File
	4.3.6 Using the Windows NT Registry
	4.3.7 Defining Properties
	4.3.8 Precedence of Properties
	4.3.9 Advanced Property Usage

	4.4 Using POA Managers
	4.4.1 Creating POA Managers
	4.4.2 The Root POA Manager
	4.4.3 Dispatching Requests
	4.4.4 Callbacks
	4.4.5 Advanced Configuration Example

	4.5 ORB Destruction
	4.5.1 Destroying the C++ ORB
	4.5.2 Destroying the Java ORB

	4.6 Server Event Loop
	4.7 Applets
	4.7.1 Compatibility with Netscape
	4.7.2 Initializing the Java ORB for Applets
	4.7.3 Adding ORBacus Applets to Web Pages
	4.7.4 Defining ORB Options for an Applet
	4.7.5 Defining the ORB Class Parameters
	4.7.6 Security Issues

	CHAPTER 5 CORBA Objects
	5.1 Overview
	5.2 Implementing Servants
	5.2.1 Implementing Servants using Inheritance
	5.2.2 Implementing Servants using Delegation

	5.3 Creating Servants
	5.3.1 Creating Servants using C++
	5.3.2 Creating Servants using Java

	5.4 Activating Servants
	5.4.1 Implicit Activation of Servants using C++
	5.4.2 Implicit Activation of Servants using Java
	5.4.3 Explicit Activation of Servants using C++
	5.4.4 Explicit Activation of Servants using Java

	5.5 Deactivating Servants
	5.5.1 Deactivation of Servants using C++
	5.5.2 Deactivation of Servants using Java
	5.5.3 Transient and Persistent Objects

	5.6 Factory Objects
	5.6.1 Factory Objects using C++
	5.6.2 Factory Objects using Java
	5.6.3 Caveats
	5.6.4 Obtaining the POA for a Servant
	5.6.5 Getting the POA for a Currently Executing Request

	CHAPTER 6 Locating Objects
	6.1 Obtaining Object References
	6.2 Lifetime of Object References
	6.2.1 Hostname
	6.2.2 Port Number
	6.2.3 Object Key

	6.3 Stringified Object References
	6.3.1 Using a File
	6.3.2 Using a URL
	6.3.3 Using Applet Parameters

	6.4 Object Reference URLs
	6.4.1 corbaloc: URLs
	6.4.2 corbaname: URLs
	6.4.3 file: URLs
	6.4.4 relfile: URLs

	6.5 Initial Services
	6.5.1 Resolving an Initial Service
	6.5.2 Configuring the Initial Services
	6.5.3 The Initial Service Locator

	CHAPTER 7 The Implementation Repository
	7.1 Background
	7.1.1 How It All Works
	7.1.2 Information Managed by the IMR
	7.1.3 IMR Security

	7.2 Synopsis
	7.2.1 Usage
	7.2.2 Windows NT Native Service
	7.2.3 Configuration Properties

	7.3 Connecting to the Service
	7.4 Utilities
	7.4.1 Implementation Repository Administration
	7.4.2 Making References
	7.4.3 Upgrading the IMR Database

	7.5 Getting Started with the Implementation Repository
	7.6 Programming Example

	CHAPTER 8 The Implementation Repository Console
	8.1 Synopsis
	8.1.1 Usage
	8.1.2 CLASSPATH Requirements
	8.1.3 Implementation Repository Service Lookup

	8.2 The Menus
	8.2.1 The File Menu
	8.2.2 The Edit Menu
	8.2.3 The View Menu

	8.3 The Toolbar and the Popup Menu

	CHAPTER 9 ORBacus Names
	9.1 Synopsis
	9.1.1 Usage
	9.1.2 Windows NT Native Service
	9.1.3 Configuration Properties
	9.1.4 Persistence
	9.1.5 CLASSPATH Requirements

	9.2 Connecting to the Service
	9.3 Using the Naming Service with the IMR
	9.4 Naming Service Concepts
	9.4.1 Bindings
	9.4.2 Name Resolution

	9.5 Programming Example
	9.5.1 Initialization
	9.5.2 Binding
	9.5.3 Exceptions
	9.5.4 The Event Loop
	9.5.5 Releasing Resources

	CHAPTER 10 ORBacus Names Console
	10.1 Synopsis
	10.1.1 Usage
	10.1.2 CLASSPATH Requirements
	10.1.3 Naming Service Lookup

	10.2 The Menus
	10.2.1 The File Menu
	10.2.2 The Edit Menu
	10.2.3 The View Menu
	10.2.4 The Tools Menu

	10.3 The Toolbar
	10.4 The Popup Menu

	CHAPTER 11 ORBacus Properties
	11.1 Synopsis
	11.1.1 Usage
	11.1.2 Configuration Properties
	11.1.3 CLASSPATH Requirements

	11.2 Connecting to the Service
	11.3 Using the Property Service with the IMR
	11.4 Property Service Concepts
	11.4.1 Creating Properties
	11.4.2 Querying for Properties
	11.4.3 Deleting Properties

	11.5 Programming Example

	CHAPTER 12 ORBacus Time
	12.1 Compliance Statement
	12.1.1 Criteria to Be Followed for Secure Time
	12.1.2 Proxies and Time Uncertainty

	12.2 Synopsis
	12.2.1 Usage
	12.2.2 Configuration Properties
	12.2.3 CLASSPATH Requirements

	12.3 Time Service Concepts
	12.3.1 Representation of Time
	12.3.2 Basic Types
	12.3.3 Enumerations
	12.3.4 Exceptions
	12.3.5 The Universal Time Object
	12.3.6 The Time Interval Object
	12.3.7 The TimeService Object

	12.4 Time Service Extensions
	12.5 Programming Example

	CHAPTER 13 ORBacus Events
	13.1 Synopsis
	13.1.1 Usage
	13.1.2 Windows NT Native Service
	13.1.3 Configuration Properties
	13.1.4 Diagnostics
	13.1.5 CLASSPATH Requirements

	13.2 Connecting to the Service
	13.3 Using the Event Service with the IMR
	13.4 Event Service Concepts
	13.4.1 The Event Channel
	13.4.2 Event Suppliers and Consumers
	13.4.3 Event Channel Policies
	13.4.4 Event Channel Factories

	13.5 Programming Example

	CHAPTER 14 ORBacus Trader
	14.1 Synopsis
	14.1.1 Usage
	14.1.2 Configuration Properties
	14.1.3 CLASSPATH Requirements

	14.2 Connecting to the Service
	14.3 Using the Trading Service with the IMR
	14.4 Trading Service Concepts
	14.4.1 Basic Concepts
	14.4.2 Importing Service Offers
	14.4.3 Offer Management
	14.4.4 Dynamic Properties
	14.4.5 Trader Federation with Links
	14.4.6 Supporting Legacy Applications with Proxy Offers

	14.5 Programming Example
	14.5.1 The Print Server
	14.5.2 The Client

	CHAPTER 15 ORBacus Trader Console
	15.1 Synopsis
	15.1.1 Usage
	15.1.2 CLASSPATH Requirements

	15.2 Main Window
	15.3 Terminology
	15.4 The Trader Console Menus
	15.4.1 The Console menu
	15.4.2 The Edit menu
	15.4.3 The View menu
	15.4.4 The Insert menu
	15.4.5 The Tools menu

	15.5 The Toolbar
	15.6 Managing Service Types
	15.6.1 Adding a New Service Type
	15.6.2 Removing a Service Type
	15.6.3 Masking a Service Type
	15.6.4 Unmasking a Service Type

	15.7 Managing Offers
	15.7.1 Adding a New Offer
	15.7.2 Modifying an Offer
	15.7.3 Withdrawing Offers

	15.8 Managing Proxy Offers
	15.8.1 Adding a New Proxy Offer
	15.8.2 Withdrawing Proxy Offers

	15.9 Managing Links
	15.9.1 Adding a New Link
	15.9.2 Modifying a Link
	15.9.3 Removing a Link

	15.10 Configuring the Trader Attributes
	15.10.1 Support Attributes
	15.10.2 Import Attributes
	15.10.3 Link Attributes
	15.10.4 Admin Attributes

	15.11 Executing Queries
	15.12 Connecting to a New Trader

	CHAPTER 16 The Interface Repository
	16.1 Synopsis
	16.1.1 Usage
	16.1.2 Windows NT Native Service
	16.1.3 Configuration Properties

	16.2 Connecting to the Interface Repository
	16.3 Configuration Issues
	16.4 Interface Repository Utilities
	16.4.1 irfeed
	16.4.2 irdel

	16.5 Programming Example

	CHAPTER 17 Using Policies
	17.1 Overview
	17.2 Supported Policies
	17.3 Programming Examples
	17.3.1 Connection Reuse Policy
	17.3.2 Timeout Policy

	CHAPTER 18 Concurrency Models
	18.1 Introduction
	18.1.1 What is a Concurrency Model?
	18.1.2 Why different Concurrency Models?
	18.1.3 ORBacus Concurrency Models Overview

	18.2 Single-Threaded Concurrency Models
	18.2.1 Blocking Clients
	18.2.2 Reactive Clients and Servers

	18.3 Multi-Threaded Concurrency Models
	18.3.1 Threaded Clients and Servers
	18.3.2 Thread-per-Client Server
	18.3.3 Thread-per-Request Server
	18.3.4 Thread Pool Server

	18.4 Selecting Concurrency Models
	18.5 The Reactor
	18.5.1 What is a Reactor?
	18.5.2 Available Reactors

	CHAPTER 19 The Open Communications Interface
	19.1 What is the Open Communications Interface?
	19.2 Interface Summary
	19.2.1 Buffer
	19.2.2 Transport
	19.2.3 Acceptor and Connector
	19.2.4 Acceptor and Connector Factories
	19.2.5 The Registries
	19.2.6 The Info Objects
	19.2.7 Class Diagram

	19.3 OCI Reference
	19.4 OCI for the Application Programmer
	19.4.1 A “Converter” Class for Java
	19.4.2 Getting Hostnames and Port Numbers
	19.4.3 Determining a Client’s IP Address
	19.4.4 Determining a Server’s IP Address

	19.5 The IIOP OCI Plug-in
	19.5.1 IIOP Acceptor Configuration

	19.6 The Bi-directional OCI Plug-in
	19.6.1 How does it work?
	19.6.2 Peers
	19.6.3 POA Managers
	19.6.4 Initialization and Configuration
	19.6.5 Bi-directional Acceptor Configuration

	CHAPTER 20 Exceptions and Error Messages
	20.1 CORBA System Exceptions
	20.1.1 INITIALIZE Minor Exception Code
	20.1.2 UNKNOWN Minor Exception Code
	20.1.3 BAD_PARAM Minor Exception Code
	20.1.4 NO_MEMORY Minor Exception Code
	20.1.5 IMP_LIMIT Minor Exception Code
	20.1.6 COMM_FAILURE Minor Exception Code
	20.1.7 MARSHAL Minor Exception Code
	20.1.8 NO_IMPLEMENT Minor Exception Code
	20.1.9 NO_RESOURCES Minor Exception Code
	20.1.10 BAD_INV_ORDER Minor Exception Code
	20.1.11 TRANSIENT Minor Exception Code
	20.1.12 INTF_REPOS Minor Exception Code
	20.1.13 OBJECT_NOT_EXIST Minor Exception Code
	20.1.14 INV_POLICY Minor Exception Code

	20.2 Non-Compliant Application Asserts

	APPENDIX A Boot Manager Reference
	A.1 Interface OB::BootManager
	A.2 Interface OB::BootLocator

	APPENDIX B ORBacus Policy Reference
	B.1 Module OB
	B.2 Interface OB::ACMTimeoutPolicy
	B.3 Interface OB::ConnectTimeoutPolicy
	B.4 Interface OB::ConnectionReusePolicy
	B.5 Interface OB::InterceptorPolicy
	B.6 Interface OB::LocationTransparencyPolicy
	B.7 Interface OB::ProtocolPolicy
	B.8 Interface OB::RequestTimeoutPolicy
	B.9 Interface OB::RetryPolicy
	B.10 Interface OB::TimeoutPolicy

	APPENDIX C Reactor Reference
	C.1 Interface OB::Reactor

	APPENDIX D Logger Reference
	D.1 Interface OB::Logger

	APPENDIX E Open Communications Interface Reference
	E.1 Module OCI
	E.2 Interface OCI::Buffer
	E.3 Interface OCI::Transport
	E.4 Interface OCI::TransportInfo
	E.5 Interface OCI::CloseCB
	E.6 Interface OCI::Connector
	E.7 Interface OCI::ConnectorInfo
	E.8 Interface OCI::ConnectCB
	E.9 Interface OCI::Acceptor
	E.10 Interface OCI::AcceptorInfo
	E.11 Interface OCI::AcceptCB
	E.12 Interface OCI::AccFactory
	E.13 Interface OCI::AccFactoryInfo
	E.14 Interface OCI::AccFactoryRegistry
	E.15 Interface OCI::ConFactory
	E.16 Interface OCI::ConFactoryInfo
	E.17 Interface OCI::ConFactoryRegistry
	E.18 Interface OCI::Current
	E.19 Module OCI::IIOP
	E.20 Interface OCI::IIOP::TransportInfo
	E.21 Interface OCI::IIOP::ConnectorInfo
	E.22 Interface OCI::IIOP::AcceptorInfo
	E.23 Interface OCI::IIOP::AccFactoryInfo
	E.24 Interface OCI::IIOP::ConFactoryInfo

	References

